1
|
Bilgic S, Remaley AT, Sniderman AD. Triglyceride-rich lipoprotein cholesterol and cardiovascular risk. Curr Opin Lipidol 2023; 34:259-266. [PMID: 37773930 PMCID: PMC10872610 DOI: 10.1097/mol.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
PURPOSE OF REVIEW The triglyceride-rich apoB lipoprotein particles make up a minority of the apoB particles in plasma. They vary in size, in lipid, and in protein content. Most are small enough to enter the arterial wall and therefore most are atherogenic. But how important a contribution TRL particles make to the total risk created by the apoB lipoproteins remains controversial. A recent Mendelian randomization analysis determined that the cardiovascular risk related to the cholesterol within these apoB particles--the TRL cholesterol--was greater than--and independent of--the risk related to apoB. If correct, these observations have major clinical significance. RECENT FINDINGS Accordingly, we have analyzed these results in detail. In our view, the independent strength of the association between TRL cholesterol and apoB with cardiovascular risk seems inconsistent with the biological connections between apoB and cholesterol as integral and highly correlated constituents of apoB particles. These results are also inconsistent with other lines of evidence such as the results of the fibrate randomized clinical trials. Moreover, we are also concerned with other aspects of the analysis. SUMMARY We do not regard the issue as settled. However, this enquiry has led us to a fuller understanding of the determinants of the cholesterol content of the TRL apoB particles and the complex processing of cholesterol amongst the plasma lipoproteins.
Collapse
Affiliation(s)
- Selin Bilgic
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Allan D. Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Pavanello C, Ossoli A, Strazzella A, Risè P, Veglia F, Lhomme M, Parini P, Calabresi L. Plasma FA composition in familial LCAT deficiency indicates SOAT2-derived cholesteryl ester formation in humans. J Lipid Res 2022; 63:100232. [PMID: 35598637 PMCID: PMC9198958 DOI: 10.1016/j.jlr.2022.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Risè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Marie Lhomme
- ICAN analytics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Paris, France
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
4
|
Yu XC, Fu Y, Bi YH, Zhang WW, Li J, Ji T, Chao Y, Meng QH, Chen Q, Ma MH, Zhang YH, Shan J, Bian HM. Alisol B 23-acetate activates ABCG5/G8 in the jejunum via the LXRα/ACAT2 pathway to relieve atherosclerosis in ovariectomized ApoE -/- mice. Aging (Albany NY) 2020; 12:25744-25766. [PMID: 33234731 PMCID: PMC7803561 DOI: 10.18632/aging.104185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Phytosterols have been shown to improve blood lipid levels and treat atherosclerosis. This research investigated the effects of phytosterol Alisol B 23-acetate (AB23A) on jejunum lipid metabolism and atherosclerosis. The results show that intragastric administration of AB23A can significantly reduce atherosclerotic plaque area and lipid accumulation in the jejunum of ovariectomized ApoE-/- mice fed a high-fat diet and can also improve the lipid mass spectra of the plasma and jejunum. In vitro studies have shown that AB23A can increase cholesterol outflow in Caco-2 cells exposed to high fat concentrations and increase the expression of ATP-binding cassette transfer proteins G5/G8 (ABCG5/G8), the liver X receptor α (LXRα). Furthermore, inhibition of LXRα can significantly eliminate the active effect of AB23A on decreasing intracellular lipid accumulation. We also confirmed that AB23A has a negative effect on Acyl-CoA cholesterol acyltransferase 2 (ACAT2) in Caco-2 cells cultured in the high concentrations of fat, and we found that AB23A further reduces ACAT2 expression in cells treated with the ACAT2 inhibitor pyripyropene or transfected with ACAT2 siRNA. In conclusion, we confirmed that AB23A can reduce the absorption of dietary lipids in the jejunum by affecting the LXRα-ACAT2-ABCG5/G8 pathway and ultimately exert an anti-atherosclerotic effect.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Caco-2 Cells
- Cholestenones/pharmacology
- Cholesterol/metabolism
- Cholesterol Esters/metabolism
- Diet, High-Fat
- Female
- Glycerophospholipids/metabolism
- Humans
- Jejunum/drug effects
- Jejunum/metabolism
- Jejunum/pathology
- Lipid Droplets/drug effects
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism/drug effects
- Lipoproteins/drug effects
- Lipoproteins/metabolism
- Liver X Receptors/drug effects
- Liver X Receptors/metabolism
- Mice
- Mice, Knockout, ApoE
- Ovariectomy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Sterol O-Acyltransferase/drug effects
- Sterol O-Acyltransferase/metabolism
- Triglycerides/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Xi-Chao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Hua Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- National Standard Laboratory of Pharmacology of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Pramfalk C, Jakobsson T, Verzijl CRC, Minniti ME, Obensa C, Ripamonti F, Olin M, Pedrelli M, Eriksson M, Parini P. Generation of new hepatocyte-like in vitro models better resembling human lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158659. [PMID: 32058035 DOI: 10.1016/j.bbalip.2020.158659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/21/2022]
Abstract
In contrast to human hepatocytes in vivo, which solely express acyl-coenzyme A:cholesterol acyltransferase (ACAT) 2, both ACAT1 and ACAT2 (encoded by SOAT1 and SOAT2) are expressed in primary human hepatocytes and in human hepatoma cell lines. Here, we aimed to create hepatocyte-like cells expressing the ACAT2, but not the ACAT1, protein to generate a model that - at least in this regard - resembles the human condition in vivo and to assess the effects on lipid metabolism. Using the Clustered Regularly Interspaced Short Palindromic Repeats technology, we knocked out SOAT1 in HepG2 and Huh7.5 cells. The wild type and SOAT2-only-cells were cultured with fetal bovine or human serum and the effects on lipoprotein and lipid metabolism were studied. In SOAT2-only-HepG2 cells, increased levels of cholesterol, triglycerides, apolipoprotein B and lipoprotein(a) in the cell media were detected; this was likely dependent of the increased expression of key genes involved in lipid metabolism (e.g. MTP, APOB, HMGCR, LDLR, ACACA, and DGAT2). Opposite effects were observed in SOAT2-only-Huh7.5 cells. Our study shows that the expression of SOAT1 in hepatocyte-like cells contributes to the distorted phenotype observed in HepG2 and Huh7.5 cells. As not only parameters of lipoprotein and lipid metabolism but also some markers of differentiation/maturation increase in the SOAT2-only-HepG2 cells cultured with HS, this cellular model represent an improved model for studies of lipid metabolism.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Jakobsson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Cristy R C Verzijl
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mirko E Minniti
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Clara Obensa
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Federico Ripamonti
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Olin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mats Eriksson
- Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
6
|
p-Methoxycinnamic Acid Diesters Lower Dyslipidemia, Liver Oxidative Stress and Toxicity in High-Fat Diet Fed Mice and Human Peripheral Blood Lymphocytes. Nutrients 2020; 12:nu12010262. [PMID: 31968556 PMCID: PMC7019318 DOI: 10.3390/nu12010262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023] Open
Abstract
The pursuit of cholesterol lowering natural products with less side effects is needed for controlling dyslipidemia and reducing the increasing toll of cardiovascular diseases that are associated with morbidity and mortality worldwide. The present study aimed at the examining effects of p-methoxycinnamic acid diesters (PCO-C) from carnauba (Copernicia prunifera)-derived wax on cytotoxic, genotoxic responses in vitro and on dyslipidemia and liver oxidative stress in vivo, utilizing high-fat diet (HFD) chronically fed Swiss mice. In addition, we evaluated the effect of PCO-C on the expression of key cholesterol metabolism-related genes, as well as the structural interactions between PCO-C and lecithin-cholesterol acyl transferase (LCAT) in silico. Oral treatment with PCO-C was able to reduce total serum cholesterol and low-density lipoprotein (LDL) levels following HFD. In addition, PCO-C reduced excessive weight gain and lipid peroxidation, and increased the gene expression of LCAT following HFD. Furthermore, the high affinity of the studied compound (ΔG: −8.78 Kcal/mol) towards the active sites of mutant LCAT owing to hydrophobic and van der Waals interactions was confirmed using bioinformatics. PCO-C showed no evidence of renal and hepatic toxicity, unlike simvastatin, that elevated aspartate aminotransferase (AST) levels, a marker of liver dysfunction. Finally, PCO-C showed no cytotoxicity or genotoxicity towards human peripheral blood lymphocytes in vitro. Our results suggest that PCO-C exerts hypocholesterolemic effects. The safety of PCO-C in the toxicological tests performed and the reports of its beneficial biological effects render this a promising compound for the development of new cholesterol-lowering therapeutics to control dyslipidemia. More work is needed for further elucidating PCO-C role on lipid metabolism to support future clinical studies.
Collapse
|
7
|
Ahmed O, Littmann K, Gustafsson U, Pramfalk C, Öörni K, Larsson L, Minniti ME, Sahlin S, Camejo G, Parini P, Eriksson M. Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. J Am Heart Assoc 2019; 7:e009876. [PMID: 30561264 PMCID: PMC6405603 DOI: 10.1161/jaha.118.009876] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background In randomized trials (SHARP [Study of Heart and Renal Protection], IMPROVE‐IT [Improved Reduction of Outcomes: Vytorin Efficacy International Trial]), combination of statin and ezetimibe resulted in additional reduction of cardiovascular events. The reduction was greater in patients with type 2 diabetes mellitus (T2DM), where elevated remnant cholesterol and high cardiovascular disease risk is characteristic. To evaluate possible causes behind these results, 40 patients eligible for cholecystectomy, randomized to simvastatin, ezetimibe, combined treatment (simvastatin+ezetimibe), or placebo treatment during 4 weeks before surgery, were studied. Methods and Results Fasting blood samples were taken before treatment start and at the end (just before surgery). Bile samples and liver biopsies were collected during surgery. Hepatic gene expression levels were assessed with qPCR. Lipoprotein, apolipoprotein levels, and content of cholesterol, cholesteryl ester, and triglycerides were measured after lipoprotein fractionation. Lipoprotein subclasses were analyzed by nuclear magnetic resonance. Apolipoprotein affinity for human arterial proteoglycans (PG) was measured. Biomarkers of cholesterol biosynthesis and intestinal absorption and bile lipid composition were analyzed using mass spectrometry. Combined treatment caused a statistically significant decrease in plasma remnant particles and apolipoprotein B (ApoB)/lipoprotein content of cholesterol, cholesteryl esters, and triglycerides. All treatments reduced ApoB‐lipoprotein PG binding. Simvastatin and combined treatment modified the composition of lipoproteins. Changes in biomarkers of cholesterol synthesis and absorption and bile acid synthesis were as expected. No adverse events were found. Conclusions Combined treatment caused atheroprotective changes on ApoB‐lipoproteins, remnant particles, bile components, and in ApoB‐lipoprotein affinity for arterial PG. These effects might explain the decrease of cardiovascular events seen in the SHARP and IMPROVE‐IT trials. Clinical Trial Registration URL: www.clinicaltrialsregister.eu. Unique identifier: 2006‐004839‐30).
Collapse
Affiliation(s)
- Osman Ahmed
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,2 Department of Biochemistry Faculty of Medicine Khartoum University Khartoum Sudan
| | - Karin Littmann
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,3 Function Area Clinical Chemistry Karolinska University Laboratory Function Karolinska University Hospital Stockholm Sweden
| | - Ulf Gustafsson
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - Camilla Pramfalk
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | | | - Lilian Larsson
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Mirko E Minniti
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Staffan Sahlin
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - German Camejo
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Paolo Parini
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| | - Mats Eriksson
- 4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| |
Collapse
|
8
|
Liu Y, Zhang X, Zhan Y, Li B, Lu W, Nan F. Design and synthesis of further simplified pyripyropene A based ACAT2 selective inhibitors. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Zhou X, Ren F, Wei H, Liu L, Shen T, Xu S, Wei J, Ren J, Ni H. Combination of berberine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats. Lipids Health Dis 2017; 16:239. [PMID: 29228954 PMCID: PMC5725942 DOI: 10.1186/s12944-017-0628-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hyperlipidemia characterized of elevated serum lipid levels is a prevalent disease frequently resulting in cardiovascular disease (CVD). Berberine and evodiamine are herbal products of traditional Chinese herb Coptis chinensis and Evodia rutaecarpa, which are indicated to exert regulation of lipid metabolism. Therefore, the objective of this study was to investigate the lipid-lowering effect of berberine and evodiamine combination in hyperlipidemic rats. METHOD The rat model of hyperlipidemia was established by providing high-fat-diet (HFD) for 4 weeks. Berberine (BB), evodiamine (EV), and their combination (BB + EV) were orally administered to HFD induced rats for 4 weeks. Body weight, food utilization, histopathology of liver tissues, lipid profiles of serum and liver were measured. Gas chromatography (GC) analysis was applied to examine the level of plasma total cholesterol and ß- Sitosterol (BS) to estimate cholesterol absorption activity. Furthermore, intestinal NPC1L1, ACAT2, and ApoB48 protein expressions were evaluated by immunohistochemical assay. RESULT According to the results, decreased levels of serum cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), as well as hepatic TC were showed in hyperlipidemic rats treated by combination of berberine and evodiamine. GC analysis indicated that the elevated plasma BS was significantly ameliorated by BB, EV, and BB + EV. In addition, immunohistochemical analysis revealed that BB + EV treatment down-regulated the expressions of intestinal NPC1L1 and ACAT2, and ApoB48 in HFD induced rats. CONCLUSION Based on the above results, combination of berberine and evodiamine exerted a promising preventive effect on hyperlipidemia, partially through inhibiting intestinal absorption of cholesterol.
Collapse
Affiliation(s)
- Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fengying Ren
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Hong Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liyun Liu
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayue Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hengfan Ni
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
10
|
Bhattarai K, Adhikari S, Fujitani M, Kishida T. Dietary daidzein, but not genistein, has a hypocholesterolemic effect in non-ovariectomized and ovariectomized female Sprague-Dawley rats on a cholesterol-free diet. Biosci Biotechnol Biochem 2017; 81:1805-1813. [DOI: 10.1080/09168451.2017.1350562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
We compared the effects of two major isoflavones, daidzein and genistein, on lipid metabolism in rats. Daidzein (150 mg/kg diet), genistein (150 mg/kg diet), daidzein and genistein (1:1, 300 mg/kg diet), or control diets were fed to 4 groups of 6-week-old ovariectomized (Ovx) and non-Ovx Sprague Dawley rats for 4 weeks. Dietary daidzein, but not genistein, reduced serum and hepatic total cholesterol levels significantly relative to that by the control group, regardless of whether the rats had undergone ovariectomy. Genistein did not exhibit any physiological effects on lipid levels, but did affect genes involved in cholesterol metabolism. These results indicate that daidzein and genistein may influence lipid regulation via differing modes of action.
Collapse
Affiliation(s)
- Keshab Bhattarai
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Sudhashree Adhikari
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Mina Fujitani
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taro Kishida
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| |
Collapse
|
11
|
Nault R, Fader KA, Lydic TA, Zacharewski TR. Lipidomic Evaluation of Aryl Hydrocarbon Receptor-Mediated Hepatic Steatosis in Male and Female Mice Elicited by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Chem Res Toxicol 2017; 30:1060-1075. [PMID: 28238261 PMCID: PMC5896278 DOI: 10.1021/acs.chemrestox.6b00430] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic steatosis mediated by the aryl hydrocarbon receptor. To further characterize TCDD-elicited hepatic lipid accumulation, mice were gavaged with TCDD every 4 days for 28 days. Liver samples were examined using untargeted lipidomics with structural confirmation of lipid species by targeted high-resolution MS/MS, and data were integrated with complementary RNA-Seq analyses. Approximately 936 unique spectral features were detected, of which 379 were confirmed as unique lipid species. Both male and female samples exhibited similar qualitative changes (lipid species) but differed in quantitative changes. A shift to higher mass lipid species was observed, indicative of increased free fatty acid (FFA) packaging. For example, of the 13 lipid classes examined, triglycerides increased from 46 to 48% of total lipids to 68-83% in TCDD treated animals. Hepatic cholesterol esters increased 11.3-fold in male mice with moieties consisting largely of dietary fatty acids (FAs) (i.e., linolenate, palmitate, and oleate). Phosphatidylserines, phosphatidylethanolamines, phosphatidic acids, and cardiolipins decreased 4.1-, 5.0-, 5.4- and 7.4-fold, respectively, while ceramides increased 6.6-fold. Accordingly, the integration of lipidomic data with differential gene expression associated with lipid metabolism suggests that in addition to the repression of de novo fatty acid synthesis and β-oxidation, TCDD also increased hepatic uptake and packaging of lipids, while inhibiting VLDL secretion, consistent with hepatic fat accumulation and the progression to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Rance Nault
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kelly A. Fader
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Arif A, Terenzi F, Potdar AA, Jia J, Sacks J, China A, Halawani D, Vasu K, Li X, Brown JM, Chen J, Kozma SC, Thomas G, Fox PL. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 2017; 542:357-361. [PMID: 28178239 PMCID: PMC5480610 DOI: 10.1038/nature21380] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Arnab China
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Kommireddy Vasu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Sara C Kozma
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - George Thomas
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain.,Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
13
|
Ontsouka CE, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol 2017; 439:35-45. [PMID: 27760380 DOI: 10.1016/j.mce.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/25/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
Cell-based studies previously showed that the ATP-binding cassette transporter A1 (ABCA1) transfers cholesterol across mammary epithelial cells (MEC). Data for phospholipid transport are lacking, and it is unclear from which cellular source the transported cholesterol stems, whether this transport activates signaling pathways, and how lactogenic hormones regulate it. To clarify these aspects, lipid transport and expressional analyses were performed in bovine primary (bMEC) and/or immortalized (MAC-T) MEC cultures. Lipid efflux and ABCA1, ABCG1 and liver X receptorα mRNA levels were higher in MAC-T than bMEC. In MAC-T, the transported cholesterol originated mainly from the plasma membrane. ABCA1 dependent cholesterol efflux was higher than phosphatidylcholine efflux, was suppressed by probucol (ABCA1 inhibitor), AG490 (janus kinase-2 inhibitor), PD98059 (mitogen activated protein kinase kinase inhibitor) and pretreatment with β-cyclodextrin (lowering membrane cholesterol). Insulin was the only hormone significantly increasing cholesterol efflux. In conclusion, this study gives novel mechanistic and regulatory insights into the transport of cholesterol and phospholipids in MEC.
Collapse
Affiliation(s)
- Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Eldar Aliyev
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Guo D, Lu M, Hu X, Xu J, Hu G, Zhu M, Zhang X, Li Q, Chang CCY, Chang T, Song B, Xiong Y, Li B. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors. Acta Biochim Biophys Sin (Shanghai) 2016; 48:980-989. [PMID: 27688151 PMCID: PMC5091289 DOI: 10.1093/abbs/gmw091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/18/2016] [Accepted: 07/15/2016] [Indexed: 01/15/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Guo D, Zhang X, Li Q, Qian L, Xu J, Lu M, Hu X, Zhu M, Chang CCY, Song B, Chang T, Xiong Y, Li B. The ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters. Acta Biochim Biophys Sin (Shanghai) 2016; 48:990-997. [PMID: 27688150 PMCID: PMC5091290 DOI: 10.1093/abbs/gmw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/24/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
Acyl-coenzymeA:cholesterol acyltransferase 2 (ACAT2) is abundantly expressed in intestine and fetal liver of healthy human. Our previous studies have shown that in monocytic cells the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the CCAAT/enhancer binding protein (C/EBP) transcription factors. In this study, we further report that the ACAT2 gene expression is attributable to the C/EBPs in the human leukocytes and correlated with the excretion of fluorescent lipoproteins containing the ACAT2-catalyzed NBD22-steryl esters. Moreover, this lipoprotein excretion can be inhibited by the ACAT2 isoform-selective inhibitor pyripyropene A (PPPA) in a dose-dependent manner, and employed to determine the half maximum inhibitory concentration (IC50) values of PPPA. Significantly, it is found that the differentiation-inducing factor all-trans retinoic acid, but not the proinflammatory cytokine tumor necrosis factor-α, enhances this ACAT2-dependent lipoprotein excretion. These data demonstrate that the ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters (CE/SE), and suggest that the excretion of lipoproteins containing the ACAT2-catalyzed CS/SE may avoid cytotoxicity through decreasing the excess intracellular cholesterols/sterols (especially various oxysterols), which is essential for the action of the human leukocytes.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Qian
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Phytosterol Esterification is Markedly Decreased in Preterm Infants Receiving Routine Parenteral Nutrition. Lipids 2016; 51:1353-1361. [DOI: 10.1007/s11745-016-4197-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
17
|
Ding Y, Xiao C, Wu Q, Xie Y, Li X, Hu H, Li L. The Mechanisms Underlying the Hypolipidaemic Effects of Grifola frondosa in the Liver of Rats. Front Microbiol 2016; 7:1186. [PMID: 27536279 PMCID: PMC4971090 DOI: 10.3389/fmicb.2016.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022] Open
Abstract
The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats, and of hyperlipidaemic rats treated with oral G. frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with G. frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acyl-coenzyme A: cholesterol acyltransferase (ACAT2), apolipoprotein B (ApoB), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC1) were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1) was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) were used to identify 20 proteins differentially expressed in livers of rats treated with G. frondosa compared with untreated hyperlipidemic rats. Of these 20 proteins, seven proteins were down-regulated, and 13 proteins were up-regulated. These findings indicate that the hypolipidaemic effects of G. frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption, and catabolic pathways. G. frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, G. frondosa may produce both hypolipidaemic and anti-atherosclerotic effects, and potentially be of use as a functional food for the treatment or prevention of hyperlipidaemia and atherosclerosis.
Collapse
Affiliation(s)
- Yinrun Ding
- School of Bioscience and Bioengineering, South China University of TechnologyGuangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
- Department of Biology, Basic Medical College, Guangdong Medical UniversityZhangjiang, China
| | - Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Liangqiu Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| |
Collapse
|
18
|
Eslam M, Mangia A, Berg T, Chan HLY, Irving WL, Dore GJ, Abate ML, Bugianesi E, Adams LA, Najim MAM, Miele L, Weltman M, Mollison L, Cheng W, Riordan S, Fischer J, Romero-Gomez M, Spengler U, Nattermann J, Rahme A, Sheridan D, Booth DR, McLeod D, Powell E, Liddle C, Douglas MW, van der Poorten D, George J. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology 2016; 64:34-46. [PMID: 26822232 DOI: 10.1002/hep.28475] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/27/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED A genome-wide exome association study has identified the transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 variant encoding an E167K substitution as a genetic determinant of hepatic steatosis in nonalcoholic fatty liver disease (NAFLD). The roles of this variant across a spectrum of liver diseases and pathologies and on serum lipids comparing viral hepatitis to NAFLD and viral load in chronic viral hepatitis, as well as its intrahepatic molecular signature, have not been well characterized. We undertook detailed analyses in 3260 subjects with viral and nonviral liver diseases and in healthy controls. Serum inflammatory markers and hepatic expression of TM6SF2 and genes regulating lipid metabolism were assessed in a subset with chronic hepatitis C (CHC). The rs58542926 T allele was more prevalent in 502 NAFLD patients than controls (P = 0.02) but not different in cohorts with CHC (n = 2023) and chronic hepatitis B (n = 507). The T allele was associated with alterations in serum lipids and hepatic steatosis in all diseases and with reduced hepatic TM6SF2 and microsomal triglyceride transfer protein expression. Interestingly, the substitution was associated with reduced CHC viral load but increased hepatitis B virus DNA. The rs58542926 T allele had no effect on inflammation, impacted ≥F2 fibrosis in CHC and NAFLD assessed cross-sectionally (odds ratio = 1.39, 95% confidence interval 1.04-1.87, and odds ratio = 1.62, 95% confidence interval 1.03-2.52, respectively; P < 0.03 for both), but had no effect on fibrosis progression in 1174 patients with CHC and a known duration of infection. CONCLUSION The TM6SF2 E167K substitution promotes steatosis and lipid abnormalities in part by altering TM6SF2 and microsomal triglyceride transfer protein expression and differentially impacts CHC and chronic hepatitis B viral load, while effects on fibrosis are marginal. (Hepatology 2016;64:34-46).
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Alessandra Mangia
- Division of Hepatology, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Henry Lik Yuen Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - William L Irving
- NIHR Biomedical Research Unit in Gastroenterology and the Liver, University of Nottingham, Nottingham, UK
| | - Gregory J Dore
- Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- St. Vincent's Hospital, Sydney, NSW, Australia
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Leon A Adams
- School of Medicine and Pharmacology, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Mustafa A M Najim
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Lindsay Mollison
- Department of Gastroenterology and Hepatology, Fremantle Hospital, Fremantle, WA, Australia
| | - Wendy Cheng
- Department of Gastroenterology & Hepatology, Royal Perth Hospital, WA, Australia
| | - Stephen Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital and University of New South Wales, Sydney, NSW, Australia
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases and CIBERehd, Hospital Universitario de Valme, Sevilla, Spain
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Antony Rahme
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - David Sheridan
- Institute of Translational and Stratified Medicine, Plymouth University, UK
| | - David R Booth
- Institute of Immunology and Allergy Research, Westmead Hospital and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, Australia
| | - Elizabeth Powell
- The University of Queensland, School of Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David van der Poorten
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| |
Collapse
|
19
|
Extended-Release Niacin/Laropiprant Improves Overall Efficacy of Postprandial Reverse Cholesterol Transport. Arterioscler Thromb Vasc Biol 2016; 36:285-94. [DOI: 10.1161/atvbaha.115.306834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
20
|
Zhan Y, Zhang XW, Xiong Y, Li BL, Nan FJ. Design and synthesis of simple, yet potent and selective non-ring-A pyripyropene A-based inhibitors of acyl-coenzyme A: cholesterol acyltransferase 2 (ACAT2). Org Biomol Chem 2016; 14:747-751. [PMID: 26584338 DOI: 10.1039/c5ob02019k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of pyripyropene A-based compounds were designed and synthesized by opening the upper section of the A-ring, which significantly simplifies the structure and synthesis from commercially available starting materials. Representative compound (-)-3 exhibited potent activity against ACAT2 and greater selectivity for ACAT2 than for ACAT1.
Collapse
Affiliation(s)
- Yang Zhan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | | | | | | | | |
Collapse
|
21
|
Zhang J, Sawyer JK, Marshall SM, Kelley KL, Davis MA, Wilson MD, Brown JM, Rudel LL. Cholesterol esters (CE) derived from hepatic sterol O-acyltransferase 2 (SOAT2) are associated with more atherosclerosis than CE from intestinal SOAT2. Circ Res 2014; 115:826-33. [PMID: 25239141 PMCID: PMC4209196 DOI: 10.1161/circresaha.115.304378] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Cholesterol esters (CE), especially cholesterol oleate, generated by hepatic and intestinal sterol O-acyltransferase 2 (SOAT2) play a critical role in cholesterol homeostasis. However, it is unknown whether the contribution of intestine-derived CE from SOAT2 would have similar effects in promoting atherosclerosis progression as for liver-derived CE. OBJECTIVE To test whether, in low-density lipoprotein receptor null (LDLr(-/-)) mice, the conditional knockout of intestinal SOAT2 (SOAT2(SI-/SI-)) or hepatic SOAT2 (SOAT2(L-/L-)) would equally limit atherosclerosis development compared with the global deletion of SOAT2 (SOAT2(-/-)). METHODS AND RESULTS SOAT2 conditional knockout mice were bred with LDLr(-/-) mice creating LDLr(-/-) mice with each of the specific SOAT2 gene deletions. All mice then were fed an atherogenic diet for 16 weeks. SOAT2(SI-/SI-)LDLr(-/-) and SOAT2(-/-)LDLr(-/-) mice had significantly lower levels of intestinal cholesterol absorption, more fecal sterol excretion, and lower biliary cholesterol levels. Analysis of plasma LDL showed that all mice with SOAT2 gene deletions had LDL CE with reduced percentages of cholesterol palmitate and cholesterol oleate. Each of the LDLr(-/-) mice with SOAT2 gene deletions had lower accumulations of total cholesterol and CE in the liver compared with control mice. Finally, aortic atherosclerosis development was significantly lower in all mice with global or tissue-restricted SOAT2 gene deletions. Nevertheless, SOAT2(-/-)LDLr(-/-) and SOAT2(L-/L-)LDLr(-/-) mice had less aortic CE accumulation and smaller aortic lesions than SOAT2(SI-/SI-)LDLr(-/-) mice. CONCLUSIONS SOAT2-derived CE from both the intestine and liver significantly contribute to the development of atherosclerosis, although the CE from the hepatic enzyme appeared to promote more atherosclerosis development.
Collapse
Affiliation(s)
- Jun Zhang
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Janet K Sawyer
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Stephanie M Marshall
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Kathryn L Kelley
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Matthew A Davis
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Martha D Wilson
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - J Mark Brown
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.)
| | - Lawrence L Rudel
- From the Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (J.Z., J.K.S., S.M.M., K.L.K., M.A.D., M.D.W., L.L.R.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (S.M.M., J.M.B.).
| |
Collapse
|
22
|
Read SA, Tay E, Shahidi M, George J, Douglas MW. Hepatitis C virus infection mediates cholesteryl ester synthesis to facilitate infectious particle production. J Gen Virol 2014; 95:1900-1910. [PMID: 24859394 DOI: 10.1099/vir.0.065300-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cholesterol is a critical component of the hepatitis C virus (HCV) life cycle, as demonstrated by its accumulation within infected hepatocytes and lipoviral particles. To cope with excess cholesterol, hepatic enzymes ACAT1 and ACAT2 produce cholesteryl esters (CEs), which are destined for storage in lipid droplets or for secretion as apolipoproteins. Here we demonstrate in vitro that cholesterol accumulation following HCV infection induces upregulation of the ACAT genes and increases CE synthesis. Analysis of human liver biopsy tissue showed increased ACAT2 mRNA expression in liver infected with HCV genotype 3, compared with genotype 1. Inhibiting cholesterol esterification using the potent ACAT inhibitor TMP-153 significantly reduced production of infectious virus, but did not inhibit virus RNA replication. Density gradient analysis showed that TMP-153 treatment caused a significant increase in lipoviral particle density, suggesting reduced lipidation. These data suggest that cholesterol accumulation following HCV infection stimulates the production of CE, a major component of lipoviral particles. Inhibition of CE synthesis reduces HCV particle density and infectivity, suggesting that CEs are required for optimal infection of hepatocytes.
Collapse
Affiliation(s)
- Scott A Read
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Enoch Tay
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mahsa Shahidi
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mark W Douglas
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Sydney, Australia
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| |
Collapse
|
23
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
24
|
Liefhebber JMP, Hague CV, Zhang Q, Wakelam MJO, McLauchlan J. Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J Biol Chem 2014; 289:21276-88. [PMID: 24917668 PMCID: PMC4118089 DOI: 10.1074/jbc.m114.582999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Jolanda M P Liefhebber
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| | - Charlotte V Hague
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - John McLauchlan
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| |
Collapse
|
25
|
Marshall SM, Gromovsky AD, Kelley KL, Davis MA, Wilson MD, Lee RG, Crooke RM, Graham MJ, Rudel LL, Brown JM, Temel RE. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One 2014; 9:e98953. [PMID: 24901470 PMCID: PMC4047063 DOI: 10.1371/journal.pone.0098953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023] Open
Abstract
The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.
Collapse
Affiliation(s)
- Stephanie M. Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Anthony D. Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Kathryn L. Kelley
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
26
|
Pedrelli M, Davoodpour P, Degirolamo C, Gomaraschi M, Graham M, Ossoli A, Larsson L, Calabresi L, Gustafsson JÅ, Steffensen KR, Eriksson M, Parini P. Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice. PLoS One 2014; 9:e93552. [PMID: 24695360 PMCID: PMC3973598 DOI: 10.1371/journal.pone.0093552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers unesterified cholesterol (UC) to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2 may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism. DESIGN WT and LXRα/β double knockout (DOKO) mice were fed a western-type diet for 8 weeks. Animals were i.p. injected with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6), or with an ASO control. Injections started 4 weeks after, or concomitantly with, the beginning of the diet. RESULTS ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein independently of the diet conditions. ASO6 affected HDL lipids (increased UC) only in DOKO, while it increased apoE-containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE. CONCLUSIONS The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice. ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of ABCA1.
Collapse
Affiliation(s)
- Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Padideh Davoodpour
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Degirolamo
- Division of Lipid Science, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Monica Gomaraschi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Mark Graham
- Cardiovascular Group, Department of Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Alice Ossoli
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Lilian Larsson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calabresi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Jan-Åke Gustafsson
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
| | - Knut R. Steffensen
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Mats Eriksson
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Shi Y, Guo R, Wang X, Yuan D, Zhang S, Wang J, Yan X, Wang C. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats. PLoS One 2014; 9:e88282. [PMID: 24505463 PMCID: PMC3914959 DOI: 10.1371/journal.pone.0088282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE) and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD) rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC) and total bile acids (TBA) levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1) The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group) (P<0.05). (2) Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05). TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05). (3) mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05), as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05). The activities of these enzymes also paralleled the observed changes in mRNA levels. (4) There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1) the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2) the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.
Collapse
Affiliation(s)
- Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| | - Rui Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xianke Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dedi Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuebing Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| |
Collapse
|
28
|
Lu M, Hu XH, Li Q, Xiong Y, Hu GJ, Xu JJ, Zhao XN, Wei XX, Chang CCY, Liu YK, Nan FJ, Li J, Chang TY, Song BL, Li BL. A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. J Mol Cell Biol 2013; 5:404-15. [PMID: 24163426 DOI: 10.1093/jmcb/mjt039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The liver plays a central role in cholesterol homeostasis. It exclusively receives and metabolizes oxysterols, which are important metabolites of cholesterol and are more cytotoxic than free cholesterol, from all extrahepatic tissues. Hepatocellular carcinomas (HCCs) impair certain liver functions and cause pathological alterations in many processes including cholesterol metabolism. However, the link between an altered cholesterol metabolism and HCC development is unclear. Human ACAT2 is abundantly expressed in intestine and fetal liver. Our previous studies have shown that ACAT2 is induced in certain HCC tissues. Here, by investigating tissue samples from HCC patients and HCC cell lines, we report that a specific cholesterol metabolic pathway, involving induction of ACAT2 and esterification of excess oxysterols for secretion to avoid cytotoxicity, is established in a subset of HCCs for tumor growth. Inhibiting ACAT2 leads to the intracellular accumulation of unesterified oxysterols and suppresses the growth of both HCC cell lines and their xenograft tumors. Further mechanistic studies reveal that HCC-linked promoter hypomethylation is essential for the induction of ACAT2 gene expression. We postulate that specifically blocking this HCC-established cholesterol metabolic pathway may have potential therapeutic applications for HCC patients.
Collapse
Affiliation(s)
- Ming Lu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Melchior JT, Sawyer JK, Kelley KL, Shah R, Wilson MD, Hantgan RR, Rudel LL. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis. J Lipid Res 2013; 54:2495-503. [PMID: 23804810 DOI: 10.1194/jlr.m039644] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr(-/-) mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology, Section of Lipid Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Kent CR, Rudel LL. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:1598-609. [PMID: 22669916 PMCID: PMC3540850 DOI: 10.1194/jlr.m026823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/24/2012] [Indexed: 11/20/2022] Open
Abstract
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.
Collapse
Affiliation(s)
- Tam M. Nguyen
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Matthew A. Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Carol R. Kent
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
31
|
Cui Y, Liu H, Ze Y, Zengli Z, Hu Y, Cheng Z, Cheng J, Hu R, Gao G, Wang L, Tang M, Hong F. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol Sci 2012; 128:171-85. [PMID: 22539623 DOI: 10.1093/toxsci/kfs153] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although liver toxicity induced by titanium dioxide nanoparticles (TiO(2) NPs) has been demonstrated, very little is known about the molecular mechanisms of multiple genes working together underlying this type of liver injury in mice. In this study, we used the whole-genome microarray analysis technique to determine the gene expression profile in the livers of mice exposed to 10 mg/kg body weight TiO(2) NPs for 90 days. The findings showed that long-term exposure to TiO(2) NPs resulted in obvious titanium accumulation in the liver and TiO(2) NP aggregation in hepatocyte nuclei, an inflammatory response, hepatocyte apoptosis, and liver dysfunction. Furthermore, microarray data showed striking changes in the expression of 785 genes related to the immune/inflammatory response, apoptosis, oxidative stress, the metabolic process, response to stress, cell cycle, ion transport, signal transduction, cell proliferation, cytoskeleton, and cell differentiation in TiO(2) NP-exposed livers. In particular, a significant reduction in complement factor D (Cfd) expression following long-term exposure to TiO(2) NPs resulted in autoimmune and inflammatory disease states in mice. Therefore, Cfd may be a potential biomarker of liver toxicity caused by TiO(2) NPs exposure.
Collapse
Affiliation(s)
- Yaling Cui
- Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Zhang Z, Liu J, Xi Y, Yang R, Chen H, Li Z, Liu D, Liang C. Two novel cis-elements involved in hepatocyte nuclear factor 4α regulation of acyl-coenzyme A:cholesterol acyltransferase 2 expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:162-71. [PMID: 22155889 DOI: 10.1093/abbs/gmr102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is important for cholesterol ester synthesis and secretion. A previous study revealed that ACAT2 gene promoter activity was upregulated by hepatocyte nuclear factor 4α (HNF4α) through two sites around -247 and -311 of ACAT2 gene promoter. Here, we identified two novel cis-elements, site I (-1006 to -898) and site II (-38 to -29), which are important for HNF4α effect. In HepG2 cells, mutation of site I decreased ACAT2 gene promoter activity to one-fifth of that of the wild type, while mutation of site II reduced promoter activity to less than one-tenth of that of the wild type. In 293T cells, mutation of these two cis-elements profoundly impaired the HNF4α induction effect. When either of these two elements was inserted into pGL3-promoter, HNF4α induced promoter activity through the inserted element, while mutation of the element impaired HNF4α induction effect. In electrophoretic mobility shift assay and chromatin immunoprecipitation experiment, HNF4α bound to these two elements. Thus, the two cis-elements are important for HNF4α effect on ACAT2 gene transcription. We also showed that HNF4α positively regulates ACAT2 gene expression at mRNA level. Overexpression of HNF4α increased ACAT2 expression, whereas knockdown of HNF4α decreased ACAT2 expression. Peroxisome proliferator-activated receptor gamma coactivator 1α (PCG1α), a coactivator of HNF4α, increased ACAT2 expression, while small heterodimer partner (SHP), a corepressor of HNF4α, decreased ACAT2 expression. These results provide more insights into transcriptional regulation of ACAT2 expression.
Collapse
Affiliation(s)
- Zhuqin Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Rudel LL. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:95-104. [PMID: 22045928 PMCID: PMC3243485 DOI: 10.1194/jlr.m018820] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/11/2011] [Indexed: 01/21/2023] Open
Abstract
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2⁺/⁺, ACAT2⁺/⁻, and ACAT2⁻/⁻ mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [³H]sitosterol and [¹⁴C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2⁻/⁻ mice was 16% compared with 46-47% in ACAT2⁺/⁺ and ACAT2⁺/⁻ mice. Chylomicrons from ACAT2⁺/⁺ and ACAT2⁺/⁻ mice carried ∼80% of total sterol mass as CE, whereas ACAT2⁻/⁻ chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2⁻/⁻ mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.
Collapse
Affiliation(s)
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Matthew A. Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
35
|
Fujita K, Imajo K, Shinohara Y, Nozaki Y, Wada K, Yoneda M, Endo H, Takahashi H, Abe Y, Inamori M, Shimamura T, Kobayashi N, Kirikoshi H, Kubota K, Saito S, Nakajima A. Novel Findings for the Development of Drug Therapy for Various Liver Diseases: Liver Microsomal Triglyceride Transfer Protein Activator May Be a Possible Therapeutic Agent in Non-alcoholic Steatohepatitis. J Pharmacol Sci 2011; 115:270-3. [DOI: 10.1254/jphs.10r14fm] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Zhu-qin Z, Hou-zao C, Rui-feng Y, Ran Z, Yu-yan J, Yang X, De-pei L, Chih-chuan L. Regulation of acyl-coenzyme A: cholesterol acyltransferase 2 expression by saturated fatty acids. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2010; 25:222-7. [PMID: 21232182 DOI: 10.1016/s1001-9294(11)60006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To verify the regulation of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT 2), which is associated with cholesterol metabolism, by saturated fatty acids (SFAs). METHODS Palmitic acid (PA), the most abundant saturated fatty acid in plasma, and oleic acid (OA), a widely distributed unsaturated fatty acid, were used to treat hepatic cells HepG2, HuH7, and mouse primary hepatocytes. In addition, PA at different concentrations and PA treatment at different durations were applied in HepG2 cells. In in vivo experiment, three-month male C57/BL6 mice were fed with control diet and SFA diet containing hydrogenated coconut oil rich of SFAs. The mRNA level of ACAT2 in those hepatic cells and the mouse livers was detected with real-time polymerase chain reaction (PCR). RESULTS In the three types of hepatic cells treated with PA, that SFA induced significant increase of ACAT2 expression (Pü0.01), whereas treatment with OA showed no significant effect. That effect of PA was noticed gradually rising along with the increase of PA concentration and the extension of PA treatment duration (both Pü0.05). SFA diet feeding in mice resulted in a short-term and transient increase of ACAT2 expression in vivo, with a peak level appearing in the mice fed with SFA diet for two days (Pü0.05). CONCLUSION SFA may regulate ACAT2 expression in human and mouse hepatic cells and in mouse livers.
Collapse
Affiliation(s)
- Zhang Zhu-qin
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown JM, Betters JL, Lord C, Ma Y, Han X, Yang K, Alger HM, Melchior J, Sawyer J, Shah R, Wilson MD, Liu X, Graham MJ, Lee R, Crooke R, Shulman GI, Xue B, Shi H, Yu L. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res 2010; 51:3306-15. [PMID: 20802159 DOI: 10.1194/jlr.m010256] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80-95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- J Mark Brown
- Departments of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Alger HM, Brown JM, Sawyer JK, Kelley KL, Shah R, Wilson MD, Willingham MC, Rudel LL. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization. J Biol Chem 2010; 285:14267-74. [PMID: 20231283 PMCID: PMC2863169 DOI: 10.1074/jbc.m110.118422] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol O-acyl transferase 2 (ACAT2) promotes cholesterol absorption by the intestine and the secretion of cholesteryl ester-enriched very low density lipoproteins by the liver. Paradoxically, mice lacking ACAT2 also exhibit mild hypertriglyceridemia. The present study addresses the unexpected role of ACAT2 in regulation of hepatic triglyceride (TG) metabolism. Mouse models of either complete genetic deficiency or pharmacological inhibition of ACAT2 were fed low fat diets containing various amounts of cholesterol to induce hepatic steatosis. Mice genetically lacking ACAT2 in both the intestine and the liver were dramatically protected against hepatic neutral lipid (TG and cholesteryl ester) accumulation, with the greatest differences occurring in situations where dietary cholesterol was elevated. Further studies demonstrated that liver-specific depletion of ACAT2 with antisense oligonucleotides prevents dietary cholesterol-associated hepatic steatosis both in an inbred mouse model of non-alcoholic fatty liver disease (SJL/J) and in a humanized hyperlipidemic mouse model (LDLr(-/-), apoB(100/100)). All mouse models of diminished ACAT2 function showed lowered hepatic triglyceride concentrations and higher plasma triglycerides secondary to increased hepatic secretion of TG into nascent very low density lipoproteins. This work demonstrates that inhibition of hepatic ACAT2 can prevent dietary cholesterol-driven hepatic steatosis in mice. These data provide the first evidence to suggest that ACAT2-specific inhibitors may hold unexpected therapeutic potential to treat both atherosclerosis and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark C. Willingham
- Department of Pathology/Tumor Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040
| | - Lawrence L. Rudel
- From the Department of Biochemistry
- Department of Pathology/Lipid Sciences, and
| |
Collapse
|
39
|
Costet P. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacol Ther 2010; 126:263-78. [PMID: 20227438 DOI: 10.1016/j.pharmthera.2010.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
Recent guidelines in North America and Europe recommend lowering low density lipoprotein associated cholesterol (LDLC) to achieve optimal coronary heart disease risk reduction. Statins have been the therapy of choice and proven successful and relatively safe. However, we are now facing new challenges and it appears that additional or alternative drugs are urgently needed. This boosts research in the field, reopening old cases like other inhibitors of cholesterol synthesis or making attractive tools from the latest technologies like gene silencing by anti-sense oligonucleotides. LDLs are cholesterol-enriched lipoproteins stabilized by the hepatic apolipoprotein B100, and derived from TG rich very low density lipoprotein. This review focuses on the molecular pathways involved in plasma LDLC production and elimination, in particular cholesterol absorption and the hepatobiliary route, apoB100 and VLDL production, and LDL clearance via the LDL receptor. We will identify important or rate-limiting proteins (including Niemann-Pick C1-like 1 (NPC1L1), microsomal TG transfer protein (MTP), acyl-coenzyme A/cholesterol acyltransferase (ACAT), Acyl-CoA:diacylglycerol acyltransferases 2 (DGAT2), proprotein convertase subtilisin kexin type 9 (PCSK9)), and nuclear receptors (farnesoid X receptor (FXR), thyroid hormone receptor (TR)) that constitute interesting therapeutic targets. Numerous compounds already in use modulate these pathways, such as phytosterols, ezetimibe, bile acids sequestrants, niacin, and fibrates. Many pathways can be considered to lower LDLC, but the road has been paved with disappointments and difficulties. With new targets identified and diversification of the drugs, a new era for better LDLC management is plausible.
Collapse
|
40
|
Chung S, Timmins JM, Duong M, Degirolamo C, Rong S, Sawyer JK, Singaraja RR, Hayden MR, Maeda N, Rudel LL, Shelness GS, Parks JS. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J Biol Chem 2010; 285:12197-209. [PMID: 20178985 DOI: 10.1074/jbc.m109.096933] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of ABCA1 activity in Tangier disease (TD) is associated with abnormal apoB lipoprotein (Lp) metabolism in addition to the complete absence of high density lipoprotein (HDL). We used hepatocyte-specific ABCA1 knock-out (HSKO) mice to test the hypothesis that hepatic ABCA1 plays dual roles in regulating Lp metabolism and nascent HDL formation. HSKO mice recapitulated the TD lipid phenotype with postprandial hypertriglyceridemia, markedly decreased LDL, and near absence of HDL. Triglyceride (TG) secretion was 2-fold higher in HSKO compared with wild type mice, primarily due to secretion of larger TG-enriched VLDL secondary to reduced hepatic phosphatidylinositol 3-kinase signaling. HSKO mice also displayed delayed clearance of postprandial TG and reduced post-heparin plasma lipolytic activity. In addition, hepatic LDLr expression and plasma LDL catabolism were increased 2-fold in HSKO compared with wild type mice. Last, adenoviral repletion of hepatic ABCA1 in HSKO mice normalized plasma VLDL TG and hepatic phosphatidylinositol 3-kinase signaling, with a partial recovery of HDL cholesterol levels, providing evidence that hepatic ABCA1 is involved in the reciprocal regulation of apoB Lp production and HDL formation. These findings suggest that altered apoB Lp metabolism in TD subjects may result from hepatic VLDL TG overproduction and increased hepatic LDLr expression and highlight hepatic ABCA1 as an important regulatory factor for apoB-containing Lp metabolism.
Collapse
Affiliation(s)
- Soonkyu Chung
- Department of Pathology/Section on Lipid Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin DS, Steiner RD, Merkens LS, Pappu AS, Connor WE. The effects of sterol structure upon sterol esterification. Atherosclerosis 2010; 208:155-60. [PMID: 19679306 PMCID: PMC3098764 DOI: 10.1016/j.atherosclerosis.2009.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 06/03/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
Abstract
Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.
Collapse
Affiliation(s)
- Don S Lin
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
42
|
Parini P, Jiang ZY, Einarsson C, Eggertsen G, Zhang SD, Rudel LL, Han TQ, Eriksson M. ACAT2 and human hepatic cholesterol metabolism: identification of important gender-related differences in normolipidemic, non-obese Chinese patients. Atherosclerosis 2009; 207:266-71. [PMID: 19467657 PMCID: PMC2784173 DOI: 10.1016/j.atherosclerosis.2009.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/30/2009] [Accepted: 04/08/2009] [Indexed: 12/26/2022]
Abstract
OBJECTIVE ACAT2 is a major cholesterol esterification enzyme specifically expressed in hepatocytes and may control the amount of hepatic free (unesterified) cholesterol available for secretion into bile or into HDL. This study aims to further elucidate physiologic roles of ACAT2 in human hepatic cholesterol metabolism. METHODS AND RESULTS Liver biopsies from 40 normolipidemic, non-obese gallstone patients including some gallstone-free patients (female/male, 18/22) were collected and analyzed for microsomal ACAT2 activity, protein and mRNA expression. Plasma HDL-cholesterol (HDL-C) was significantly higher in females than in males, while triglycerides were significantly lower. ACAT2 activity in females was significantly lower than observed in males, regardless of the presence of gallstone disease. Moreover, the activity of ACAT2 correlated negatively with plasma levels of HDL-C (r=-0.57, P<0.05) and with Apo AI (r=-0.49, P<0.05). CONCLUSION This is the first description of a gender-related difference in hepatic ACAT2 activity in normolipidemic non-obese Chinese patients suggesting a possible role for ACAT2 in the regulation of cholesterol metabolism in humans. The negative correlation between ACAT2 activity and HDL-C or Apo AI may reflect this regulation. Since ACAT2 activity generally has been found to be pro-atherogenic in animal models, the observed sex-related difference may contribute to female protection from complications of coronary heart disease (CHD).
Collapse
Affiliation(s)
- Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fujita K, Nozaki Y, Wada K, Yoneda M, Fujimoto Y, Fujitake M, Endo H, Takahashi H, Inamori M, Kobayashi N, Kirikoshi H, Kubota K, Saito S, Nakajima A. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 2009; 50:772-80. [PMID: 19650159 DOI: 10.1002/hep.23094] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The specific mechanisms of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) pathogenesis remain unknown. In the present study we investigated the differences between NAFL and NASH in terms of liver lipid metabolites and serum lipoprotein. In all, 104 Japanese subjects (50 men and 54 postmenopausal women) with histologically verified NAFL disease (NAFLD) (51 with NAFL, 53 with NASH) were evaluated; all diagnoses were based on liver biopsy findings and the proposed diagnostic criteria. To investigate the differences between NAFL and NASH in humans, we carefully examined (1) lipid inflow in the liver, (2) lipid outflow from the liver, (3) very-low-density lipoprotein (VLDL) synthesis in the liver, (4) triglyceride (TG) metabolites in the liver, and (5) lipid changes and oxidative DNA damage. Most of the hepatic lipid metabolite profiles were similar in the NAFL and NASH groups. However, VLDL synthesis and lipid outflow from the liver were impaired, and surplus TGs might have been produced as a result of lipid oxidation and oxidative DNA damage in the NASH group. CONCLUSION A growing body of literature suggests that a deterioration in fatty acid oxidation and VLDL secretion from the liver, caused by the impediment of VLDL synthesis, might induce serious lipid oxidation and DNA oxidative damage, impacting the degree of liver injury and thereby contributing to the progression of NASH. Therefore, dysfunctional VLDL synthesis and release may be a key factor in progression to NASH.
Collapse
Affiliation(s)
- Koji Fujita
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Temel RE, Brown JM, Ma Y, Tang W, Rudel LL, Ioannou YA, Davies JP, Yu L. Diosgenin stimulation of fecal cholesterol excretion in mice is not NPC1L1 dependent. J Lipid Res 2009; 50:915-23. [PMID: 19141868 DOI: 10.1194/jlr.m800631-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diosgenin exists in some food supplements and herbal medicines and lowers plasma cholesterol by increasing fecal cholesterol excretion. It is believed that diosgenin promotes fecal cholesterol excretion by stimulating biliary cholesterol secretion and decreasing intestinal cholesterol absorption. Niemann-Pick C1-like 1 (NPC1L1) was recently identified as an essential protein for intestinal cholesterol absorption. To determine the relative contribution of biliary secretion and intestinal absorption of cholesterol in diosgenin-stimulated fecal cholesterol excretion, wild-type (WT) and NPC1L1-knockout (L1KO) mice were fed a diet with or without 1% diosgenin. Fecal cholesterol excretion (mumol/day/100 g body weight) increased in diosgenin-fed WT and L1KO mice from 4.2 to 52 and from 63 to 140, respectively. Surprisingly, this increase in diosgenin-treated versus untreated L1KO mice (77) was even greater than that seen in diosgenin-treated versus untreated WT mice (47.8). Additionally, WT and L1KO mice fed the diosgenin diet had similar increases in biliary cholesterol concentration, despite unaltered hepatic expression of the hepatobiliary cholesterol transporter, ATP binding cassette transporters G5 and G8. Facilitated cholesterol excretion in diosgenin-treated WT and L1KO mice was associated with decreased hepatic and plasma cholesterol and increased liver expression of cholesterol synthetic genes. In contrast, diosgenin had no effect on the intestinal expression of NPC1L1 and cholesterol synthetic genes. In an in vitro assay, diosgenin was unable to block NPC1L1-dependent cholesterol uptake. In conclusion, diosgenin stimulation of fecal cholesterol excretion is independent of NPC1L1-mediated cholesterol absorption.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Minehira K, Young SG, Villanueva CJ, Yetukuri L, Oresic M, Hellerstein MK, Farese RV, Horton JD, Preitner F, Thorens B, Tappy L. Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. J Lipid Res 2008; 49:2038-44. [PMID: 18515909 PMCID: PMC3837456 DOI: 10.1194/jlr.m800248-jlr200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/30/2008] [Indexed: 02/06/2023] Open
Abstract
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.
Collapse
Affiliation(s)
- Kaori Minehira
- Gladstone Institute of Cardiovascular Disease, University of California-San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brown JM, Bell TA, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 2008; 283:10522-34. [PMID: 18281279 PMCID: PMC2447638 DOI: 10.1074/jbc.m707659200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 02/14/2008] [Indexed: 12/30/2022] Open
Abstract
Deletion of acyl-CoA:cholesterol O-acyltransferase 2 (ACAT2) in mice results in resistance to diet-induced hypercholesterolemia and protection against atherosclerosis. Recently, our group has shown that liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO)-mediated targeting likewise limits atherosclerosis. However, whether this atheroprotective effect was mediated by: 1) prevention of packaging of cholesterol into apoB-containing lipoproteins, 2) augmentation of nascent HDL cholesterol secretion, or 3) increased hepatobiliary sterol secretion was not examined. Therefore, the purpose of these studies was to determine whether hepatic ACAT2 is rate-limiting in all three of these important routes of cholesterol homeostasis. Liver-specific depletion of ACAT2 resulted in reduced packaging of cholesterol into apoB-containing lipoproteins (very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein), whereas high density lipoprotein cholesterol levels remained unchanged. In the liver of ACAT2 ASO-treated mice, cholesterol ester accumulation was dramatically reduced, yet there was no reciprocal accumulation of unesterified cholesterol. Paradoxically, ASO-mediated depletion of hepatic ACAT2 promoted fecal neutral sterol excretion without altering biliary sterol secretion. Interestingly, during isolated liver perfusion, ACAT2 ASO-treated livers had augmented secretion rates of unesterified cholesterol and phospholipid. Furthermore, we demonstrate that liver-derived cholesterol from ACAT2 ASO-treated mice is preferentially delivered to the proximal small intestine as a precursor to fecal excretion. Collectively, these studies provide the first insight into the hepatic itinerary of cholesterol when cholesterol esterification is inhibited only in the liver, and provide evidence for a novel non-biliary route of fecal sterol loss.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Biochemistry, and Orthopedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Heimerl S, Liebisch G, Lay SL, Böttcher A, Wiesner P, Lindtner S, Kurzchalia TV, Simons K, Schmitz G. Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice. Biochem Biophys Res Commun 2008; 367:826-33. [DOI: 10.1016/j.bbrc.2008.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
|
48
|
Brown JM, Shelness GS, Rudel LL. Monounsaturated fatty acids and atherosclerosis: opposing views from epidemiology and experimental animal models. Curr Atheroscler Rep 2007; 9:494-500. [PMID: 18377790 DOI: 10.1007/s11883-007-0066-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A substantial body of epidemiologic data has shed light on the potential protective effects of the Mediterranean diet against atherosclerosis in humans. Many believe the reason the Mediterranean diet is atheroprotective is the elevated consumption of olive oil, an oil poor in saturated fatty acids (SFA) and highly enriched in monounsaturated fatty acids (MUFA). Based on human feeding studies, the American Heart Association and the US Food and Drug Administration have advocated for the consumption of MUFA as a more healthy replacement for SFA. However, using experimental animal models in which extent of atherosclerosis can be directly measured following dietary intervention, it has been demonstrated that MUFA-enriched diets are not atheroprotective when compared with SFA-enriched diets. Hence, the current body of experimental evidence refutes the idea that MUFAs per se are atheroprotective; therefore much additional work is needed to determine which aspects of the Mediterranean diet are indeed heart healthy.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA
| | | | | |
Collapse
|
49
|
Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, Davies JP, Nilsson LM, Yu L. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 2007; 117:1968-78. [PMID: 17571164 PMCID: PMC1888567 DOI: 10.1172/jci30060] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 04/10/2007] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is required for cholesterol absorption. Intestinal NPC1L1 appears to be a target of ezetimibe, a cholesterol absorption inhibitor that effectively lowers plasma LDL-cholesterol in humans. However, human liver also expresses NPC1L1. Hepatic function of NPC1L1 was previously unknown, but we recently discovered that NPC1L1 localizes to the canalicular membrane of primate hepatocytes and that NPC1L1 facilitates cholesterol uptake in hepatoma cells. Based upon these findings, we hypothesized that hepatic NPC1L1 allows the retention of biliary cholesterol by hepatocytes and that ezetimibe disrupts hepatic function of NPC1L1. To test this hypothesis, transgenic mice expressing human NPC1L1 in hepatocytes (L1-Tg mice) were created. Hepatic overexpression of NPC1L1 resulted in a 10- to 20-fold decrease in biliary cholesterol concentration, but not phospholipid and bile acid concentrations. This decrease was associated with a 30%-60% increase in plasma cholesterol, mainly because of the accumulation of apoE-rich HDL. Biliary and plasma cholesterol concentrations in these animals were virtually returned to normal with ezetimibe treatment. These findings suggest that in humans, ezetimibe may reduce plasma cholesterol by inhibiting NPC1L1 function in both intestine and liver, and hepatic NPC1L1 may have evolved to protect the body from excessive biliary loss of cholesterol.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Weiqing Tang
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yinyan Ma
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark C. Willingham
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yiannis A. Ioannou
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Joanna P. Davies
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa-Mari Nilsson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Liqing Yu
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
50
|
Temel RE, Hou L, Rudel LL, Shelness GS. ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins. J Lipid Res 2007; 48:1618-27. [PMID: 17438337 DOI: 10.1194/jlr.m700109-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies in nonhuman primates revealed a striking positive correlation between liver cholesteryl ester (CE) secretion rate and the development of coronary artery atherosclerosis. CE incorporated into hepatic VLDL is necessarily synthesized by ACAT2, the cholesterol-esterifying enzyme in hepatocytes. We tested the hypothesis that the level of ACAT2 expression, in concert with cellular cholesterol availability, affects the CE content of apolipoprotein B (apoB)-containing lipoproteins. In a model system of lipoprotein secretion using COS cells cotransfected with microsomal triglyceride transfer protein and truncated forms of apoB, ACAT2 expression resulted in a 3-fold increase in microsomal ACAT activity and a 4-fold increase in the radiolabeled CE content of apoB-lipoproteins. After cholesterol-cyclodextrin (Chol-CD) treatment, CE secretion was increased by 27-fold in ACAT2-transfected cells but by only 7-fold in control cells. Chol-CD treatment also caused the percentage of CE in the apoB-lipoproteins to increase from 3% to 33% in control cells and from 16% to 54% in ACAT2-transfected cells. In addition, ACAT2-transfected cells secreted 3-fold more apoB than control cells. These results indicate that under all conditions of cellular cholesterol availability tested, the relative level of ACAT2 expression affects the CE content and, hence, the potential atherogenicity, of nascent apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|