1
|
Chobanov NM, Dzhemileva LU, Dzhemilev UM, D’yakonov VA. Lithocholic Acid's Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria. Antioxidants (Basel) 2024; 13:1448. [PMID: 39765777 PMCID: PMC11672617 DOI: 10.3390/antiox13121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The development of a methodology for the synthesis of new compounds with antitumor activity represents a significant and priority task within the field of medicinal chemistry. As a continuation of our research group's earlier studies on the antitumor activity of ionic derivatives of natural compounds, we have synthesized a series of previously undescribed pyrazole ionic compounds through a series of transformations of lithocholic acid methyl ester. To investigate the biological activity of the newly synthesized lithocholic acid derivatives, a series of modern flow cytometry techniques were employed to assess their cytotoxic activity, effects on the cell cycle, and induction of apoptosis. This included the analysis of alterations in the mitochondrial potential, accumulation of ROS ions in mitochondria, and loss of cytochrome c. These compounds demonstrate promising antitumor activity through their effects on mitochondrial oxidation and phosphorylation processes. These compounds, which we have designated as "soft dissociators", exhibit enhanced biopharmacological properties relative to the original lithocholic acid molecule.
Collapse
Affiliation(s)
| | - Lilya U. Dzhemileva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | | | - Vladimir A. D’yakonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
2
|
Romero-Ramírez L, Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int J Mol Sci 2024; 25:9279. [PMID: 39273226 PMCID: PMC11395147 DOI: 10.3390/ijms25179279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood-brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
3
|
Ishizawa M, Takano M, Kittaka A, Matsumoto T, Makishima M. 2α-Substituted Vitamin D Derivatives Effectively Enhance the Osteoblast Differentiation of Dedifferentiated Fat Cells. Biomolecules 2024; 14:706. [PMID: 38927109 PMCID: PMC11202298 DOI: 10.3390/biom14060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a principal regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). Previous studies have shown that 2α-(3-hydroxypropyl)-1,25D3 (O1C3) and 2α-(3-hydroxypropoxy)-1,25D3 (O2C3), vitamin D derivatives resistant to inactivation enzymes, can activate VDR, induce leukemic cell differentiation, and increase blood calcium levels in rats more effectively than 1,25(OH)2D3. In this study, to further investigate the usefulness of 2α-substituted vitamin D derivatives, we examined the effects of O2C3, O1C3, and their derivatives on VDR activity in cells and mouse tissues and on osteoblast differentiation of dedifferentiated fat (DFAT) cells, a cell type with potential therapeutic application in regenerative medicine. In cell culture experiments using kidney-derived HEK293 cells, intestinal mucosa-derived CaCO2 cells, and osteoblast-derived MG63 cells, and in mouse experiments, O2C2, O2C3, O1C3, and O1C4 had a weaker effect than or equivalent effect to 1,25(OH)2D3 in VDR transactivation and induction of the VDR target gene CYP24A1, but they enhanced osteoblast differentiation in DFAT cells equally to or more effectively than 1,25(OH)2D3. In long-term treatment with the compound without the medium change (7 days), the derivatives enhanced osteoblast differentiation more effectively than 1,25(OH)2D3. O2C3 and O1C3 were more stable than 1,25(OH)2D3 in DFAT cell culture. These results indicate that 2α-substituted vitamin D derivatives, such as inactivation-resistant O2C3 and O1C3, are more effective than 1,25(OH)2D3 in osteoblast differentiation of DFAT cells, suggesting potential roles in regenerative medicine with DFAT cells and other multipotent cells.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
4
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
5
|
Takahashi S, Takada I, Hashimoto K, Yokoyama A, Nakagawa T, Makishima M, Kume H. ESS2 controls prostate cancer progression through recruitment of chromodomain helicase DNA binding protein 1. Sci Rep 2023; 13:12355. [PMID: 37524814 PMCID: PMC10390525 DOI: 10.1038/s41598-023-39626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Molecular targeted therapy using poly (ADP-ribose) polymerase inhibitors has improved survival in patients with castration-resistant prostate cancer (CRPC). However, this approach is only effective in patients with specific genetic mutations, and additional drug discovery targeting epigenetic modulators is required. Here, we evaluated the involvement of the transcriptional coregulator ESS2 in prostate cancer. ESS2-knockdown PC3 cells dramatically inhibited proliferation in tumor xenografts in nude mice. Microarray analysis revealed that ESS2 regulated mRNA levels of chromodomain helicase DNA binding protein 1 (CHD1)-related genes and other cancer-related genes, such as PPAR-γ, WNT5A, and TGF-β, in prostate cancer. ESS2 knockdown reduced nuclear factor (NF)-κB/CHD1 recruitment and histone H3K36me3 levels on the promoters of target genes (TNF and CCL2). In addition, we found that the transcriptional activities of NF-κB, NFAT and SMAD2/3 were enhanced by ESS2. Tamoxifen-inducible Ess2-knockout mice showed delayed prostate development with hypoplasia and disruption of luminal cells in the ventral prostate. Overall, these findings identified ESS2 acts as a transcriptional coregulator in prostate cancer and ESS2 can be novel epigenetic therapeutic target for CRPC.
Collapse
Affiliation(s)
- Sayuri Takahashi
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Ichiro Takada
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Kenichi Hashimoto
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Haruki Kume
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
6
|
Mansell JP, Tanatani A, Kagechika H. An N-Cyanoamide Derivative of Lithocholic Acid Co-Operates with Lysophosphatidic Acid to Promote Human Osteoblast (MG63) Differentiation. Biomolecules 2023; 13:1113. [PMID: 37509149 PMCID: PMC10377543 DOI: 10.3390/biom13071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Less-calcaemic vitamin D receptor (VDR) agonists have the potential to promote osteoblast maturation in a bone regenerative setting. The emergence of lithocholic acid (LCA) as a bona fide VDR agonist holds promise as an adjunct for arthroplasty following reports that it was less calcaemic than calcitriol (1,25D). However, LCA and some earlier derivatives, e.g., LCA acetate, had to be used at much higher concentrations than 1,25D to elicit comparable effects on osteoblasts. However, recent developments have led to the generation of far more potent LCA derivatives that even outperform the efficacy of 1,25D. These new compounds include the cyanoamide derivative, Dcha-150 (also known as AY2-79). In light of this significant development, we sought to ascertain the ability of Dcha-150 to promote human osteoblast maturation by monitoring alkaline phosphatase (ALP) and osteocalcin (OC) expression. The treatment of MG63 cells with Dcha-150 led to the production of OC. When Dcha-150 was co-administered with lysophosphatidic acid (LPA) or an LPA analogue, a synergistic increase in ALP activity occurred, with Dcha-150 showing greater potency compared to 1,25D. We also provide evidence that this synergy is likely attributed to the actions of myocardin-related transcription factor (MRTF)-serum response factor (SRF) gene transcription following LPA-receptor-induced cytoskeletal reorganisation.
Collapse
Affiliation(s)
- Jason P Mansell
- School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
7
|
Zeng C, Xu S, Yin Z, Cui Y, Xu X, Li N. Optimization and Impurity Control Strategy for Lithocholic Acid Production Using Commercially Plant-Sourced Bisnoralcohol. ACS OMEGA 2023; 8:23130-23141. [PMID: 37396276 PMCID: PMC10308411 DOI: 10.1021/acsomega.3c02548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
In this study, lithocholic acid (LCA) was prepared using commercially available plant-sourced bisnoralcohol (BA), and the overall yield of the product was 70.6% for five steps. To prevent process-related impurities, the isomerizations of catalytic hydrogenation in the C4-C5 double bond and reduction of the 3-keto group were optimized. The double bond reduction isomerization was improved (5β-H:5α-H = 97:3) using palladium-copper nanowires (Pd-Cu NWs) instead of Pd/C. The reduction of the 3-keto group was 100% converted to a 3α-OH product by 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Moreover, the impurities during the optimization process were comprehensively studied. Compared with the reported synthesis methods, our developed method significantly improved the isomer ratio and overall yield, affording ICH-grade quality of LCA, and it is more cost-effective and suitable for large-scale production of LCA.
Collapse
Affiliation(s)
- Chunling Zeng
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Shitang Xu
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Zhenlong Yin
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Yue Cui
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Xinhua Xu
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Ningbo Li
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| |
Collapse
|
8
|
Singh S, Verma SC, Kumar V, Sharma K, Singh D, Khan S, Gupta N, Singh R, Khan F, Chanda D, Mishra DP, Singh D, Roy P, Gupta A. Synthesis of amide derivatives of 3-aryl-3H-benzopyrans as osteogenic agent concomitant with anticancer activity. Bioorg Chem 2023; 133:106380. [PMID: 36731295 DOI: 10.1016/j.bioorg.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
The present study reports a series of 3-aryl-3H-benzopyran-based amide derivatives as osteogenic agents concomitant with anticancer activity. Six target compounds viz 22e, 22f, 23i, and 24b-d showed good osteogenic activity at 1 pM and 100 pM concentrations. One of the potential molecules, 24b, effectively induced ALP activity and mRNA expression of osteogenic marker genes at 1 pM and bone mineralization at 100 pM concentrations. These molecules also presented significant growth inhibition of osteosarcoma (MG63) and estrogen-dependent and -independent (MCF-7 and MDA-MB-231) breast cancer cells. The most active compound, 24b, inhibited the growth of all the cancer cells within the IC50 10.45-12.66 µM. The mechanistic studies about 24b showed that 24b induced apoptosis via activation of the Caspase-3 enzyme and inhibited cancer cell migration. In silico molecular docking performed for 24b revealed its interaction with estrogen receptor-β (ER-β) preferentially.
Collapse
Affiliation(s)
- Sarita Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Surendra Chandra Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Vinay Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Diksha Singh
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Sana Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Neelam Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Romila Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Feroz Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Durga Prasad Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Atul Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India.
| |
Collapse
|
9
|
Lee SJ, Joo SA, Kim H, Lee Y, Chung SJ, Chae YJ, Maeng HJ. Involvement of CYP3A4 and MDR1 in altered metabolism and transport of indinavir in 1,25(OH) 2D 3-treated Caco-2 cells. Eur J Pharm Sci 2023; 183:106396. [PMID: 36736464 DOI: 10.1016/j.ejps.2023.106396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Altered drug concentrations may induce unexpected toxicity or treatment failure; thus, understanding the factors that alter the pharmacokinetic profiles of drugs is crucial for optimal disease treatment. Vitamin D receptor (VDR), a nuclear receptor, regulates the expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1), which are crucial determinants of drug pharmacokinetics. In this study, we investigated the effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a VDR ligand, on the metabolism, transport, and pharmacokinetics of indinavir, a dual substrate of CYP3A4 and MDR1. 1,25(OH)2D3 treatment for three days upregulated the expression levels of CYP3A4 and MDR1 in Caco-2 cells and consequently led to an increase in the level of a metabolite formed via CYP3A4 (indinavir M6) and the efflux ratio of indinavir in transport study. The increase in the metabolic reaction was also confirmed through a metabolism assay performed using the lysate of 1,25(OH)2D3-treated Caco-2 cells. In the Ussing chamber study conducted with the rat intestine, 1,25(OH)2D3 treatment did not alter the transport of indinavir into the basolateral side but increased indinavir M6 formation. Similarly, plasma levels of the metabolite increased in 1,25(OH)2D3-treated rats; however, systemic exposure to indinavir led to insignificant alterations. Considering the overlapping substrate specificities for CYP3A4 and MDR1 and their significant roles in drug pharmacokinetics, VDR may play an important role in drug interactions of CYP3A4 and MDR1 substrates for accessing more effective and safe disease treatments.
Collapse
Affiliation(s)
- Su-Jin Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Heejeong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Jee Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| |
Collapse
|
10
|
Kubota H, Ishizawa M, Kodama M, Nagase Y, Kato S, Makishima M, Sakurai K. Vitamin D Receptor Mediates Attenuating Effect of Lithocholic Acid on Dextran Sulfate Sodium Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24043517. [PMID: 36834927 PMCID: PMC9965401 DOI: 10.3390/ijms24043517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Bile acids are major components of bile; they emulsify dietary lipids for efficient digestion and absorption and act as signaling molecules that activate nuclear and membrane receptors. The vitamin D receptor (VDR) is a receptor for the active form of vitamin D and lithocholic acid (LCA), a secondary bile acid produced by the intestinal microflora. Unlike other bile acids that enter the enterohepatic circulation, LCA is poorly absorbed in the intestine. Although vitamin D signaling regulates various physiological functions, including calcium metabolism and inflammation/immunity, LCA signaling remains largely unknown. In this study, we investigated the effect of the oral administration of LCA on colitis in a mouse model using dextran sulfate sodium (DSS). Oral LCA decreased the disease activity of colitis in the early phase, which is a phenotype associated with the suppression of histological injury, such as inflammatory cell infiltration and goblet cell loss. These protective effects of LCA were abolished in VDR-deleted mice. LCA decreased the expression of inflammatory cytokine genes, but this effect was at least partly observed in VDR-deleted mice. The pharmacological effect of LCA on colitis was not associated with hypercalcemia, an adverse effect induced by vitamin D compounds. Therefore, LCA suppresses DSS-induced intestinal injury in its action as a VDR ligand.
Collapse
Affiliation(s)
- Hitomi Kubota
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Makoto Kodama
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshihiro Nagase
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shigeaki Kato
- Graduate School of Science and Technology, Iryo Sosei University, 5-5-1 Iino, Chuodai, Iwaki, Fukushima 970-8044, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Kaminodai-57 Jobankamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Kenichi Sakurai
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| |
Collapse
|
11
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
12
|
Way GW, Jackson KG, Muscu SR, Zhou H. Key Signaling in Alcohol-Associated Liver Disease: The Role of Bile Acids. Cells 2022; 11:1374. [PMID: 35456053 PMCID: PMC9031669 DOI: 10.3390/cells11081374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a spectrum of diseases, the onset and progression of which are due to chronic alcohol use. ALD ranges, by increasing severity, from hepatic steatosis to alcoholic hepatitis (AH) and alcohol-associated cirrhosis (AC), and in some cases, can lead to the development of hepatocellular carcinoma (HCC). ALD continues to be a significant health burden and is now the main cause of liver transplantations in the United States. ALD leads to biological, microbial, physical, metabolic, and inflammatory changes in patients that vary depending on disease severity. ALD deaths have been increasing in recent years and are projected to continue to increase. Current treatment centers focus on abstinence and symptom management, with little in the way of resolving disease progression. Due to the metabolic disruption and gut dysbiosis in ALD, bile acid (BA) signaling and metabolism are also notably affected and play a prominent role in disease progression in ALD, as well as other liver disease states, such as non-alcoholic fatty liver disease (NAFLD). In this review, we summarize the recent advances in the understanding of the mechanisms by which alcohol consumption induces hepatic injury and the role of BA-mediated signaling in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
| | - Shreya R. Muscu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
13
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
14
|
Gaikwad S, González CM, Vilariño D, Lasanta G, Villaverde C, Mouriño A, Verlinden L, Verstuyf A, Peluso-Iltis C, Rochel N, Berkowska K, Marcinkowska E. Lithocholic acid-based design of noncalcemic vitamin D receptor agonists. Bioorg Chem 2021; 111:104878. [PMID: 33853023 DOI: 10.1016/j.bioorg.2021.104878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
The hypercalcemic effects of the hormone 1α,25-dihydroxyvitamin D3 (calcitriol) and most of known vitamin D metabolites and analogs call for the development of non secosteroidal vitamin D receptor (VDR) ligands as new selective and noncalcemic agonists for treatment of hyperproliferative diseases. We report on the in silico design and stereoselective synthesis of six lithocholic acid derivatives as well as on the calcemic activity of a potent LCA derivative and its crystallographic structure in complex with zVDR LBD. The low calcemic activity of this compound in comparison with the native hormone makes it of potential therapeutic value. Structure-function relationships provide the basis for the development of even more potent and selective lithocholic acid-based VDR ligands.
Collapse
Affiliation(s)
- Sunil Gaikwad
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Carmen M González
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Daniel Vilariño
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Gonzalo Lasanta
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Carmen Villaverde
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago de Compostela, Avda das Ciencias s/n, 15782 Santiago de Compostela, Spain.
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, bus, 9802, 3000 Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, bus, 9802, 3000 Leuven, Belgium
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| | - Klaudia Berkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ewa Marcinkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
15
|
D’yakonov VA, Tuktarova RA, Dzhemileva LU, Ishmukhametova SR, Dzhemilev UM. Synthesis and Anticancer Activity of Hybrid Molecules Based on Lithocholic and (5 Z,9 Z)-Tetradeca-5,9-dienedioic Acids Linked via Mono(di,tri,tetra)ethylene Glycol and α,ω-Diaminoalkane Units. Pharmaceuticals (Basel) 2021; 14:ph14020084. [PMID: 33498764 PMCID: PMC7911507 DOI: 10.3390/ph14020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
For the first time, hybrid molecules were synthesized on the basis of lithocholic and (5Z,9Z)-1,14-tetradeca-5,9-dienedicarboxylic acids, obtained in two stages using the homo-cyclomagnesiation reaction of 2-(hepta-5,6-diene-1-yloxy)tetrahydro-2H-pyran at the key stage. The resulting hybrid molecules containing 5Z,9Z-dienoic acids are of interest as novel synthetic biologically active precursors to create modern drugs for the treatment of human oncological diseases. The synthesized hybrid molecules were found to exhibit extremely high in vitro inhibitory activity against human topoisomerase I, which is 2-4 times higher than that of camptothecin, a known topoisomerase I inhibitor. Using flow cytometry and fluorescence microscopy, it was first shown that these new molecules are efficient apoptosis inducers in HeLa, U937, Jurkat, K562, and Hek293 cell cultures. In addition, the results of investigations into the effect of the synthesized acids on mitochondria and studies of possible DNA damage in Jurkat tumor cells are also presented.
Collapse
|
16
|
Sasaki H, Masuno H, Kawasaki H, Yoshihara A, Numoto N, Ito N, Ishida H, Yamamoto K, Hirata N, Kanda Y, Kawachi E, Kagechika H, Tanatani A. Lithocholic Acid Derivatives as Potent Vitamin D Receptor Agonists. J Med Chem 2020; 64:516-526. [PMID: 33369416 DOI: 10.1021/acs.jmedchem.0c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lithocholic acid (2) was identified as a second endogenous ligand of vitamin D receptor (VDR), though its activity is very weak. In this study, we designed novel lithocholic acid derivatives based on the crystal structure of VDR-ligand-binding domain (LBD) bound to 2. Among the synthesized compounds, 6 bearing a 2-hydroxy-2-methylprop-1-yl group instead of the 3-hydroxy group at the 3α-position of 2 showed dramatically increased activity in HL-60 cell differentiation assay, being at least 10 000 times more potent than lithocholic acid (2) and 3 times more potent than 1α,25-dihydroxyvitamin D3 (1). Although the binding affinities of 6 and its epimer 7 were less than that of 1, their transactivation activities were greater than that of 1. X-ray structure analyses of VDR LBD bound to 6 or 7 showed that the binding positions of these compounds in the ligand-binding pocket are similar to that of 1.
Collapse
Affiliation(s)
- Harue Sasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Haru Kawasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Ayana Yoshihara
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Hiroaki Ishida
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Emiko Kawachi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
18
|
Kojima H, Fujita Y, Takeuchi R, Ikebe Y, Ohashi N, Yamamoto K, Itoh T. Cyclization Reaction-Based Turn-on Probe for Covalent Labeling of Target Proteins. Cell Chem Biol 2020; 27:334-349.e11. [PMID: 31991094 DOI: 10.1016/j.chembiol.2020.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
Fluorescent molecules have contributed to basic biological research but there are currently only a limited number of probes available for the detection of non-enzymatic proteins. Here, we report turn-on fluorescent probes mediated by conjugate addition and cyclization (TCC probes). These probes react with multiple amino acids and exhibit a 36-fold greater emission intensity after reaction. We analyzed the reactions between TCC probes and nuclear receptors by electrospray ionization mass spectrometry, X-ray crystallography, spectrofluorometry, and fluorescence microscopy. In vitro analysis showed that probes consisting of a protein ligand and TCC could label vitamin D receptor and peroxisome proliferator-activated receptor γ. Moreover, we demonstrated that not only a ligand unit but also a peptide unit can label the target protein in a complex mixture.
Collapse
Affiliation(s)
- Hiroyuki Kojima
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuki Fujita
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ryosuke Takeuchi
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuka Ikebe
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nami Ohashi
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
19
|
Masuno H, Kazui Y, Tanatani A, Fujii S, Kawachi E, Ikura T, Ito N, Yamamoto K, Kagechika H. Development of novel lithocholic acid derivatives as vitamin D receptor agonists. Bioorg Med Chem 2019; 27:3674-3681. [DOI: 10.1016/j.bmc.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
20
|
Novel Derivatives of Deoxycholic Acid Bearing Linear Aliphatic Diamine and Aminoalcohol Moieties and their Cyclic Analogs at the C3 Position: Synthesis and Evaluation of Their In Vitro Antitumor Potential. Molecules 2019; 24:molecules24142644. [PMID: 31330911 PMCID: PMC6681416 DOI: 10.3390/molecules24142644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
A series of novel deoxycholic acid (DCA) derivatives containing aliphatic diamine and aminoalcohol or morpholine moieties at the C3 position were synthesized by 3,26-epoxide ring-opening reactions. These compounds were investigated for their cytotoxicity in four human tumor cell lines and murine macrophages and for inhibitory activity against macrophage-mediated NO synthesis in vitro. Obtained data revealed that: (i) all amine-containing substituents significantly increased the cytotoxicity of the novel compounds (IC502–10 = 1.0–36.0 μM) in comparison with DCA (IC50DCA ≥ 82.9 μM); (ii) aminoalcohol moieties were more preferable than diamine moieties due to the fact they imparted better selectivity for tumor cells of the novel derivatives; (iii) the susceptibility of tested cell lines to derivatives diminished in the following order: HuTu-80 (duodenal carcinoma) ≈ HepG2 (hepatocarcinoma) > KB-3-1 (cervical carcinoma) > RAW264.7 (macrophages) > A549 (lung carcinoma); (iv) compounds 8 and 9, bearing aminoethanol and aminopropanol moieties, respectively, exhibited high cytotoxic selectivity indexes (SIHuTu-80 = 7.9 and 8.3, respectively) and good drug-likeness parameters; (v) the novel compounds do not display anti-NO activity. Mechanistic study revealed that compound 9 induces ROS-dependent cell death by activation of intrinsic caspase-dependent apoptosis and cytodestructive autophagy in HuTu-80 cells and vitamin D receptor can be considered as its primary target.
Collapse
|
21
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
22
|
Umeda N, Endo-Umeda K, Nakashima H, Kato S, Seki S, Makishima M. Frontline Science: Concanavalin A-induced acute hepatitis is attenuated in vitamin D receptor knockout mice with decreased immune cell function. J Leukoc Biol 2019; 106:791-801. [PMID: 31034649 DOI: 10.1002/jlb.3hi0219-048r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D, 1α,25-dihydroxyvitamin D3 , and regulates various physiologic processes, such as bone and calcium metabolism, cellular proliferation and differentiation, and immunity. VDR is highly expressed in the intestine, kidney, bone, and macrophages, but is expressed at a low level in the liver. The liver is a major metabolic organ and also acts as an immune gateway for dietary nutrients and xenobiotics. In this study, we investigated the function of VDR in hepatic immune cells, such as Kupffer cells/macrophages, utilizing VDR knockout (KO) mice. We showed that VDR is functionally expressed in hepatic mononuclear cells, specifically resident Kupffer cells. We examined the role of VDR in acute hepatitis induced by concanavalin A (Con-A) and found that Con-A-induced hepatitis is attenuated in VDR-KO mice compared to wild-type (WT) mice. Con-A-induced hepatitis is known to be mediated by NKT cell activation, cytokine production, and reactive oxygen species (ROS) production in Kupffer cells/macrophages. However, the proportions of Kupffer cells/macrophages and the NKT cell activation were similar in the liver of WT and VDR-KO mice and inflammatory cytokine gene expression was increased in VDR-KO mice. On the other hand, plasma and hepatic ROS levels were decreased in the liver of VDR-KO mice compared to WT mice. The phagocytic activity of resident Kupffer cells and hepatic neutrophils were also decreased in VDR-KO mice. Therefore, VDR is necessary for Con-A-induced acute hepatitis and plays an important role in hepatic immune cell functions.
Collapse
Affiliation(s)
- Naoki Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shigeaki Kato
- Iwaki Meisei University, Iwaki, Fukushima, Japan.,Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
24
|
Hirota Y, Nakagawa K, Isomoto K, Sakaki T, Kubodera N, Kamao M, Osakabe N, Suhara Y, Okano T. Eldecalcitol is more effective in promoting osteogenesis than alfacalcidol in Cyp27b1-knockout mice. PLoS One 2018; 13:e0199856. [PMID: 30281599 PMCID: PMC6169848 DOI: 10.1371/journal.pone.0199856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 01/29/2023] Open
Abstract
Calcium (Ca) absorption from the intestinal tract is promoted by active vitamin D (1α,25D3). Vitamin D not only promotes Ca homeostasis, but it also inhibits bone resorption and promotes osteogenesis, thus playing a role in the maintenance of normal bone metabolism. Because 1α,25D3 plays an important role in osteogenesis, vitamin D formulations, such as alfacalcidol (ALF) and eldecalcitol (ELD), are used for treating osteoporosis. While it is known that, in contrast to ALF, ELD is an active ligand that directly acts on bone, the reason for its superior osteogenesis effects is unknown. Cyp27b1-knockout mice (Cyp27b1-/-mice) are congenitally deficient in 1α,25D3 and exhibit marked hypocalcemia and high parathyroid hormone levels, resulting in osteodystrophy involving bone hypocalcification and growth plate cartilage hypertrophy. However, because the vitamin D receptor is expressed normally in Cyp27b1-/-mice, they respond normally to 1α,25D3. Accordingly, in Cyp27b1-/-mice, the pharmacological effects of exogenously administered active vitamin D derivatives can be analyzed without being affected by 1α,25D3. We used Cyp27b1-/-mice to characterize and clarify the superior osteogenic effects of ELD on the bone in comparison with ALF. The results indicated that compared to ALF, ELD strongly induces ECaC2, calbindin-D9k, and CYP24A1 in the duodenum, promoting Ca absorption and decreasing the plasma concentration of 1α,25D3, resulting in improved osteogenesis. Because bone morphological measurements demonstrated that ELD has stronger effects on bone calcification, trabecular formation, and cancellous bone density than ALF, ELD appears to be a more effective therapeutic agent for treating postmenopausal osteoporosis, in which cancellous bone density decreases markedly. By using Cyp27b1-/-mice, this study was the first to succeed in clarifying the osteogenic effect of ELD without any influence of endogenous 1α,25D3. Furthermore, ELD more strongly enhanced bone mineralization, trabecular proliferation, and cancellous bone density than did ALF. Thus, ELD is expected to show an effect on postmenopausal osteoporosis, in which cancellous bone mineral density decreases markedly. In the future, this study may enable the development of next-generation active vitamin D derivatives with higher affinity for bone than ELD.
Collapse
Affiliation(s)
- Yoshihisa Hirota
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Keigo Isomoto
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Noboru Kubodera
- International Institute of Active Vitamin D Analogs, Sankeidai, Mishima, Shizuoka, Japan
| | - Maya Kamao
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Naomi Osakabe
- Food and Nutrition Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
| | - Yoshitomo Suhara
- Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
| | - Toshio Okano
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| |
Collapse
|
25
|
Ishizawa M, Akagi D, Makishima M. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Int J Mol Sci 2018; 19:ijms19071975. [PMID: 29986424 PMCID: PMC6073204 DOI: 10.3390/ijms19071975] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria, acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1 expression effectively in the duodenum and jejunum, the LCA increased target gene expression in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA administration was not effective in the VDR target gene induction in the kidney. No effect of LCA on the ileal Cyp24a1 expression was observed in the VDR-null mice. Thus, the results indicate that LCA is a selective VDR ligand acting in the lower intestine, particularly the ileum. LCA may be a signaling molecule, which links intestinal bacteria and host VDR function.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Daisuke Akagi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
26
|
Nakagawa M, Uno S, Iriyama N, Matsunawa M, Makishima M, Takeuchi J, Tsuboi I, Hatta Y, Takei M. Combined treatment with benzo[a]pyrene and 1α,25-dihydroxyvitamin D 3 induces expression of plasminogen activator inhibitor 1 in monocyte/macrophage-derived cells. Toxicol Appl Pharmacol 2018. [PMID: 29524502 DOI: 10.1016/j.taap.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Benzo[a]pyrene (BaP) is an environmental pollutant found in cigarette smoke and is implicated as a causative agent of tobacco-related diseases, such as arteriosclerosis. In contrast, vitamin D signaling, which is principally mediated by conversion of vitamin D to the active form, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], decreases cardiovascular disease risk. However, combined treatment with BaP and 1,25(OH)2D3 enhances BaP toxicity, including BaP-DNA adduct formation. We further investigated the cross-talk between BaP and 1,25(OH)2D3 signaling pathways, and found that combined treatment with these compounds induces mRNA and protein expression of plasminogen activator inhibitor 1 (PAI-1) in monocyte/macrophage-derived THP-1 and U937 cells. Protein synthesis inhibitor treatment did not inhibit induction of the PAI-1 gene (SERPINE1) in these cells. BaP plus 1,25(OH)2D3 induced differentiation markers, inhibited cellular proliferation, and induced apoptosis and oxidative stress in these cells. Reactive oxygen species scavenger treatment suppressed apoptosis but not SERPINE1 induction in cells treated with BaP plus 1,25(OH)2D3. Thus, combined treatment with BaP and 1,25(OH)2D3 induced SERPINE1 mRNA expression in these cells through a mechanism that does not require de novo protein synthesis or reactive oxygen species production. These findings suggest that induction of the proinflammatory factor PAI-1 plays a role in BaP toxicity. Interestingly, PAI-1 knockdown decreased expression of the cell surface antigen CD14, a monocytic differentiation marker, in THP-1 cells treated with BaP plus 1,25(OH)2D3. PAI-1 induction may also be related to a function of monocytes/macrophages in response to xenobiotic and vitamin D signaling.
Collapse
Affiliation(s)
- Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shigeyuki Uno
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Manabu Matsunawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Jin Takeuchi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
27
|
Endo-Umeda K, Aoyama A, Shimizu M, Ishikawa M, Hashimoto Y, Yamada S, Makishima M. 1α-Hydroxy derivatives of 7-dehydrocholesterol are selective liver X receptor modulators. J Steroid Biochem Mol Biol 2017; 172:136-148. [PMID: 28736297 DOI: 10.1016/j.jsbmb.2017.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 12/22/2022]
Abstract
The nuclear receptors liver X receptor (LXR) α and LXRβ are involved in the regulation of lipid metabolism, inflammation, immunity, cellular proliferation, and apoptosis. Oxysterols are endogenous LXR ligands, and also interact with other nuclear and membrane receptors. We previously reported that a phytosterol derivative with a 1α-hydroxy group acts as a potent LXR agonist with intestine-selective action and that 25-hydroxy and 26/27-hydroxy metabolites of 7-dehydrocholesterol (7-DHC) exhibit partial LXR agonism. In this study, we report that 1α-hydroxy derivatives of 7-DHC, 1α-OH-7-DHC and 1,25-(OH)2-7-DHC, act as LXR modulators. Luciferase reporter gene assays showed that 1α-OH-7-DHC activates LXRα and LXRβ and that 1,25-(OH)2-7-DHC activates both LXRs and vitamin D receptor. Examination of cofactor peptide association showed that the 1α-hydroxy derivatives, specifically 1,25-(OH)2-7-DHC, induce association of coactivator/corepressor peptide in a different manner from the agonist T0901317. Docking modeling and alanine mutational analysis of LXRα demonstrated that 1,25-(OH)2-7-DHC interacts with LXRα residues in a manner distinct from potent agonists, such as T0901317 and 24(S),25-epoxycholesterol. 1α-OH-7-DHC and 1,25-(OH)2-7-DHC induced expression of LXR target genes in a cell type- and gene-selective manner. 1,25-(OH)2-7-DHC effectively suppressed lipopolysaccharide-stimulated proinflammatory gene expression in an LXR-dependent manner. Therefore, 1α-hydroxy derivatives, such as 1,25-(OH)2-7-DHC, are unique LXR modulators with selective agonistic activity and potent transrepression function. These oxysterols have potential as LXR-targeted therapeutics for inflammatory disease.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Atsushi Aoyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masato Shimizu
- School of Biomedical Science, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sachiko Yamada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
28
|
Ishizawa M, Akagi D, Yamamoto J, Makishima M. 1α,25-Dihydroxyvitamin D 3 enhances TRPV6 transcription through p38 MAPK activation and GADD45 expression. J Steroid Biochem Mol Biol 2017; 172:55-61. [PMID: 28578001 DOI: 10.1016/j.jsbmb.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 01/01/2023]
Abstract
The active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], acts as a ligand for the vitamin D receptor (VDR), and regulates various physiological processes, including calcium and bone metabolism, cellular growth and differentiation, immunity and cardiovascular function. A number of vitamin D derivatives have been synthesized for the treatment of cancer and inflammatory disease, but the adverse effect of hypercalcemic activity due to intestinal calcium absorption has limited wide clinical application. The VDR target gene product TRPV6 is essential for intestinal calcium absorption. Our prior study has demonstrated that 1,25(OH)2D3 induces TRPV6 mRNA expression at lower concentrations than for induction of CYP24A1, a VDR target gene involved in vitamin D inactivation, in intestinal SW480 cells, suggesting an additional mechanism for vitamin D signaling on TRPV6 induction. By searching for a signal transduction pathway involved in 1,25(OH)2D3-induced expression of TRPV6, we found that a p38 mitogen-activated protein kinase (MAPK) inhibitor reduces the expression of TRPV6 but not CYP24A1 in 1,25(OH)2D3-treated SW480 cells. Knockdown experiments showed that p38α is involved in 1,25(OH)2D3-induced expression of TRPV6 but not CYP24A1. Treatment with a de novo protein synthesis inhibitor suppressed 1,25(OH)2D3-induced TRPV6 expression. Finally, we found that 1,25(OH)2D3 treatment induced expression of GADD45A, which encodes the GADD45α MAPK kinase kinase activator, earlier than TRPV6 expression and that GADD45A knockdown reduced TRPV6 induction by 1,25(OH)2D3. These findings indicate that p38α and GADD45α are involved in an enhanced vitamin D signaling on TRPV6 expression.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Daisuke Akagi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; Department of Applied Biological Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-8510, Japan
| | - Jumpei Yamamoto
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; Department of Applied Biological Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-8510, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
29
|
Arichi N, Fujiwara S, Ishizawa M, Makishima M, Hua DH, Yamada KI, Yamaoka Y, Takasu K. Synthesis and biological evaluation of steroidal derivatives bearing a small ring as vitamin D receptor agonists. Bioorg Med Chem Lett 2017; 27:3408-3411. [PMID: 28610979 DOI: 10.1016/j.bmcl.2017.05.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
A novel series of 3-ketolithocholic acid derivatives as well as estrone derivatives bearing a small ring for the conformational fixation of the side chain were synthesized by using a catalytic [2+2] cycloaddition and a ring-contraction rearrangement. The steroidal derivatives were evaluated for transcriptional activation of vitamin D receptor by luciferase reporter assays. Among them, two estrone derivatives showed a higher efficacy of the transactivation of vitamin D receptor than 3-ketolithocholic acid, and the small ring moieties were found to be important for the efficacy.
Collapse
Affiliation(s)
- Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinichi Fujiwara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Ken-Ichi Yamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
30
|
Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol 2017; 23:2841-2853. [PMID: 28522903 PMCID: PMC5413780 DOI: 10.3748/wjg.v23.i16.2841] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The disequilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione (GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.
Collapse
|
31
|
Marchionatti AM, Pérez A, Rivoira MA, Rodríguez VA, Tolosa de Talamoni NG. Lithocholic acid: a new emergent protector of intestinal calcium absorption under oxidant conditions. Biochem Cell Biol 2017; 95:273-279. [PMID: 28318299 DOI: 10.1139/bcb-2016-0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
LCA and 1,25(OH)2D3 are vitamin D receptor ligands with different binding affinity. The secosteroid stimulates intestinal Ca2+ absorption. Whether LCA alters this process remains unknown. The aim of our work was to determine the effect of LCA on intestinal Ca2+ absorption in the absence or presence of NaDOC, bile acid that inhibits the cation transport. The data show that LCA by itself did not alter intestinal Ca2+ absorption, but prevented the inhibitory effect of NaDOC. The concomitant administration of LCA avoided the reduction of intestinal alkaline phosphatase activity caused by NaDOC. In addition, LCA blocked a decrease caused by NaDOC on gene and protein expression of molecules involved in the transcellular pathway of intestinal Ca2+ absorption. The oxidative stress and apoptosis triggered by NaDOC were abrogated by LCA co-treatment. In conclusion, LCA placed in the intestinal lumen protects intestinal Ca2+ absorption against the inhibitory effects caused by NaDOC. LCA avoids the reduction of the transcellular Ca2+ movement, apparently by blocking the oxidative stress and apoptosis triggered by NaDOC, normalizing the gene and protein expression of molecules involved in Ca2+ movement. Therefore, LCA might become a possible treatment to improve intestinal calcium absorption under oxidant conditions.
Collapse
Affiliation(s)
- Ana M Marchionatti
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Adriana Pérez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María A Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Valeria A Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
32
|
Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 2017; 101:47-64. [PMID: 27888332 PMCID: PMC5203956 DOI: 10.1007/s00253-016-8006-6] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
Abstract
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ∼5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations.
Collapse
Affiliation(s)
- Christopher Staley
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexa R Weingarden
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Department of Medicine, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Michael J Sadowsky
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN
| |
Collapse
|
33
|
Carazo A, Hyrsova L, Dusek J, Chodounska H, Horvatova A, Berka K, Bazgier V, Gan-Schreier H, Chamulitrat W, Kudova E, Pavek P. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor. Toxicol Lett 2016; 265:86-96. [PMID: 27871908 DOI: 10.1016/j.toxlet.2016.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, CZ160 00 Praha, Czechia
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, 17. listopadu 1131, Olomouc CZ779 00, Czechia
| | - Vaclav Bazgier
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, 17. listopadu 1131, Olomouc CZ779 00, Czechia
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, Im Neuenheimer Feld, Heidelberg, Germany
| | - Waleé Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, Im Neuenheimer Feld, Heidelberg, Germany
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, CZ160 00 Praha, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia.
| |
Collapse
|
34
|
Teske KA, Bogart JW, Sanchez LM, Yu OB, Preston JV, Cook JM, Silvaggi NR, Bikle DD, Arnold LA. Synthesis and evaluation of vitamin D receptor-mediated activities of cholesterol and vitamin D metabolites. Eur J Med Chem 2016; 109:238-46. [PMID: 26774929 DOI: 10.1016/j.ejmech.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/01/2023]
Abstract
A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Jonathon W Bogart
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Luis M Sanchez
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Joshua V Preston
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - James M Cook
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Daniel D Bikle
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Milwaukee, WI, 53211, United States.
| |
Collapse
|
35
|
Ahmad MI, Raghuvanshi DS, Singh S, John AA, Prakash R, Nainawat KS, Singh D, Tripathi S, Sharma A, Gupta A. Design and synthesis of 3-arylbenzopyran based non-steroidal vitamin-D3mimics as osteogenic agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00469e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
27benhanced osteoblast differentiation at 1 pM in mouse calvarial osteoblast cells without inherent toxicity.
Collapse
Affiliation(s)
- Mohd. Imran Ahmad
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Dushyant Singh Raghuvanshi
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Sarita Singh
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Aijaz A. John
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Ravi Prakash
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Kripa Shankar Nainawat
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Divya Singh
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Shubhandra Tripathi
- Biotechnology Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Ashok Sharma
- Biotechnology Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Atul Gupta
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| |
Collapse
|
36
|
Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2015; 104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that these receptors regulate.
Collapse
|
37
|
Ikura T, Ito N. Crystal Structure of the Vitamin D Receptor Ligand-Binding Domain with Lithocholic Acids. VITAMINS AND HORMONES 2015; 100:117-36. [PMID: 26827950 DOI: 10.1016/bs.vh.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). The complexes of the ligand-binding domain of rat VDR (VDR-LBD) with LCA and its derivatives revealed that the ligands bound to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring was positioned at the top of the LBP, whereas their acyclic tail was located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 were reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring were also observed in the complexes, probably related to the observed difference in the potency among the LCA-type ligands. Recently, zebrafish VDR has been reported to have the second LBP on the outside of the canonical LBP, although its physiological function is unclear.
Collapse
Affiliation(s)
- Teikichi Ikura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
38
|
do Nascimento PGG, Lemos TLG, Almeida MCS, de Souza JMO, Bizerra AMC, Santiago GMP, da Costa JGM, Coutinho HDM. Lithocholic acid and derivatives: Antibacterial activity. Steroids 2015. [PMID: 26216208 DOI: 10.1016/j.steroids.2015.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to develop bioactive lithocholic acid derivatives, we prepared fifteen semi-synthetic compounds through modification at C-3 and/or C-24. The reactions showed yields ranging from 37% to 100%. The structures of all compounds obtained were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR). The activity of lithocholic acid and derivatives was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa. The derivative 3α-formyloxy-5β-cholan-24-oic acid (LA-06) showed the best activity, with MIC values of 0.0790 mM against E. coli (Ec 27) and B. cereus in both cases, and 0.0395 mM against S. aureus (ATCC 12692). Lithocholic acid and the derivatives with MIC⩽1.2 mM were evaluated on the susceptibility of some bacterial pathogens to the aminoglycoside antibiotics neomycin, amikacin and gentamicin was evaluated. There are no previously reported studies about these compounds as modifiers of the action of antibiotics or any other drugs.
Collapse
Affiliation(s)
- Patrícia G G do Nascimento
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Telma L G Lemos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil.
| | - Macia C S Almeida
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Juliana M O de Souza
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Ayla M C Bizerra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Gilvandete M P Santiago
- Departamento de Farmácia, Universidade Federal do Ceará, Rua Capitão Francisco Pedro No. 1210, Campus do Porangabussu, 60430-370 Fortaleza, CE, Brazil
| | - José G M da Costa
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| |
Collapse
|
39
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
40
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
41
|
Effects of alkyl side chains and terminal hydrophilicity on vitamin D receptor (VDR) agonistic activity based on the diphenylpentane skeleton. Bioorg Med Chem Lett 2015; 25:5362-6. [DOI: 10.1016/j.bmcl.2015.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
|
42
|
Takada I, Makishima M. Therapeutic application of vitamin D receptor ligands: an updated patent review. Expert Opin Ther Pat 2015; 25:1373-83. [DOI: 10.1517/13543776.2015.1093113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Mangin M, Sinha R, Fincher K. Inflammation and vitamin D: the infection connection. Inflamm Res 2014; 63:803-19. [PMID: 25048990 PMCID: PMC4160567 DOI: 10.1007/s00011-014-0755-z] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/04/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Inflammation is believed to be a contributing factor to many chronic diseases. The influence of vitamin D deficiency on inflammation is being explored but studies have not demonstrated a causative effect. METHODS Low serum 25(OH)D is also found in healthy persons exposed to adequate sunlight. Despite increased vitamin D supplementation inflammatory diseases are increasing. The current method of determining vitamin D status may be at fault. The level of 25(OH)D does not always reflect the level of 1,25(OH)2D. Assessment of both metabolites often reveals elevated 1,25(OH)2D, indicating abnormal vitamin D endocrine function. FINDINGS This article reviews vitamin D's influence on the immune system, examines the myths regarding vitamin D photosynthesis, discusses ways to accurately assess vitamin D status, describes the risks of supplementation, explains the effect of persistent infection on vitamin D metabolism and presents a novel immunotherapy which provides evidence of an infection connection to inflammation. CONCLUSION Some authorities now believe that low 25(OH)D is a consequence of chronic inflammation rather than the cause. Research points to a bacterial etiology pathogenesis for an inflammatory disease process which results in high 1,25(OH)2D and low 25(OH)D. Immunotherapy, directed at eradicating persistent intracellular pathogens, corrects dysregulated vitamin D metabolism and resolves inflammatory symptoms.
Collapse
Affiliation(s)
- Meg Mangin
- Chronic Illness Recovery, Fort Worth, Texas, USA,
| | | | | |
Collapse
|
44
|
Swennes AG, Sheh A, Parry NMA, Muthupalani S, Lertpiriyapong K, García A, Fox JG. Helicobacter hepaticus infection promotes hepatitis and preneoplastic foci in farnesoid X receptor (FXR) deficient mice. PLoS One 2014; 9:e106764. [PMID: 25184625 PMCID: PMC4153687 DOI: 10.1371/journal.pone.0106764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that regulates bile acid metabolism and transport. Mice lacking expression of FXR (FXR KO) have a high incidence of foci of cellular alterations (FCA) and liver tumors. Here, we report that Helicobacter hepaticus infection is necessary for the development of increased hepatitis scores and FCA in previously Helicobacter-free FXR KO mice. FXR KO and wild-type (WT) mice were sham-treated or orally inoculated with H. hepaticus. At 12 months post-infection, mice were euthanized and liver pathology, gene expression, and the cecal microbiome were analyzed. H. hepaticus induced significant increases hepatitis scores and FCA numbers in FXR KO mice (P<0.01 and P<0.05, respectively). H. hepaticus altered the beta diversity of cecal microbiome in both WT and FXR KO mice compared to uninfected mice (P<0.05). Significant upregulation of β-catenin, Rela, Slc10a1, Tlr2, Nos2, Vdr, and Cyp3a11 was observed in all FXR KO mice compared to controls (P<0.05). Importantly, H. hepaticus and FXR deficiency were necessary to significantly upregulate Cyp2b10 (P<0.01). FXR deficiency was also a potent modulator of the cecal microbiota, as observed by a strong decrease in alpha diversity. A significant decrease in Firmicutes, particularly members of the order Clostridiales, was observed in FXR KO mice (P<0.05 and FDR<5%, ANOVA). While FXR deficiency strongly affects expression of genes related to immunity and bile acid metabolism, as well as the composition of the microbiome; however, its deficiency was not able to produce significant histopathological changes in the absence of H. hepaticus infection.
Collapse
Affiliation(s)
- Alton G. Swennes
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nicola M. A. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kvin Lertpiriyapong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexis García
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Belorusova AY, Eberhardt J, Potier N, Stote RH, Dejaegere A, Rochel N. Structural insights into the molecular mechanism of vitamin D receptor activation by lithocholic acid involving a new mode of ligand recognition. J Med Chem 2014; 57:4710-9. [PMID: 24818857 DOI: 10.1021/jm5002524] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The vitamin D receptor (VDR), an endocrine nuclear receptor for 1α,25-dihydroxyvitamin D3, acts also as a bile acid sensor by binding lithocholic acid (LCA). The crystal structure of the zebrafish VDR ligand binding domain in complex with LCA and the SRC-2 coactivator peptide reveals the binding of two LCA molecules by VDR. One LCA binds to the canonical ligand-binding pocket, and the second one, which is not fully buried, is anchored to a site located on the VDR surface. Despite the low affinity of the alternative site, the binding of the second molecule promotes stabilization of the active receptor conformation. Biological activity assays, structural analysis, and molecular dynamics simulations indicate that the recognition of two ligand molecules is crucial for VDR agonism by LCA. The unique binding mode of LCA provides clues for the development of new chemical compounds that target alternative binding sites for therapeutic applications.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | | | |
Collapse
|
46
|
Kudo T, Ishizawa M, Maekawa K, Nakabayashi M, Watarai Y, Uchida H, Tokiwa H, Ikura T, Ito N, Makishima M, Yamada S. Combination of Triple Bond and Adamantane Ring on the Vitamin D Side Chain Produced Partial Agonists for Vitamin D Receptor. J Med Chem 2014; 57:4073-87. [DOI: 10.1021/jm401989c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Michiyasu Ishizawa
- Department
of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | | | - Makoto Nakabayashi
- Department
of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | | | - Hikaru Uchida
- Department
of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | - Makoto Makishima
- Department
of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Sachiko Yamada
- Department
of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
47
|
Masuno H, Ikura T, Morizono D, Orita I, Yamada S, Shimizu M, Ito N. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives. J Lipid Res 2013; 54:2206-2213. [PMID: 23723390 DOI: 10.1194/jlr.m038307] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands.
Collapse
Affiliation(s)
- Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Teikichi Ikura
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; and
| | - Daisuke Morizono
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Isamu Orita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Sachiko Yamada
- School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masato Shimizu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; and.
| |
Collapse
|
48
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
49
|
Lancaster S, Mansell JP. The role of lysophosphatidic acid on human osteoblast formation, maturation and the implications for bone health and disease. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.12.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Mita Y, Dodo K, Noguchi-Yachide T, Hashimoto Y, Ishikawa M. Structure–activity relationship of benzodiazepine derivatives as LXXLL peptide mimetics that inhibit the interaction of vitamin D receptor with coactivators. Bioorg Med Chem 2013; 21:993-1005. [DOI: 10.1016/j.bmc.2012.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 11/15/2022]
|