1
|
Hao D, Wang Q, Ito M, Xue J, Guo L, Huang B, Mineo C, Shaul PW, Li XA. The ACTH test fails to diagnose adrenal insufficiency and augments cytokine production in sepsis. JCI Insight 2025; 10:e187487. [PMID: 40048257 PMCID: PMC12016919 DOI: 10.1172/jci.insight.187487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
The adrenocorticotropic hormone (ACTH) test diagnoses relative adrenal insufficiency (RAI) or critical illness-related corticosteroid insufficiency (CIRCI). Initially, guidelines recommended corticosteroid/glucocorticoid (GC) therapy for septic patients with RAI, but later trials did not show a survival benefit, leading to updated guidelines that abandon targeting RAI or CIRCI. Recent studies with an RAI mouse model showed a clear survival benefit from GC therapy in mice with RAI, suggesting that inconclusive GC clinical trials might be due to issues with the ACTH test rather than targeting RAI. To investigate, we performed the ACTH test in septic mice. Interestingly, the ACTH test identified most mice as having adrenal insufficiency in early and middle stages of sepsis, even those with a normal adrenal stress response. Surprisingly, the ACTH test increased inflammatory cytokines to lethal levels, moderately increasing mortality in septic mice. This study revealed significant flaws in the ACTH test for diagnosing RAI/CIRCI. It not only fails to correctly identify these conditions, leading to misguided use of GCs, but also induces a lethal inflammatory response in sepsis. These findings suggest that inconclusive GC therapy trials may be due to the problematic nature of the ACTH test rather than ineffectiveness of targeting RAI/CIRCI.
Collapse
Affiliation(s)
- Dan Hao
- Department of Pharmacology and Nutritional Sciences
| | - Qian Wang
- Saha Cardiovascular Research Center, and
| | - Misa Ito
- Department of Pharmacology and Nutritional Sciences
| | - Jianyao Xue
- Department of Pharmacology and Nutritional Sciences
| | - Ling Guo
- Saha Cardiovascular Research Center, and
| | - Bin Huang
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip W. Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences
- Saha Cardiovascular Research Center, and
- Lexington VA Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Hao D, Xue JY, Wang Q, Guo L, Li XA. The Role of Scavenger Receptor BI in Sepsis. Int J Mol Sci 2024; 25:13441. [PMID: 39769206 PMCID: PMC11677381 DOI: 10.3390/ijms252413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from a dysregulated host response to infection. Currently, there is no effective therapy for sepsis due to an incomplete understanding of its pathogenesis. Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that plays a key role in HDL metabolism by modulating the selective uptake of cholesteryl ester from HDL. Recent studies, including those from our laboratory, indicate that SR-BI protects against sepsis through multiple mechanisms: (1) preventing nitric oxide-induced cytotoxicity; (2) promoting hepatic lipopolysaccharide (LPS) clearance and regulating cholesterol metabolism in the liver; (3) inhibiting LPS-induced inflammatory signaling in macrophages; and (4) mediating the uptake of cholesterol from HDL for inducible glucocorticoid (iGC) synthesis in the adrenal gland, which controls systemic inflammatory response. In this article, we review the roles of SR-BI in sepsis.
Collapse
Affiliation(s)
- Dan Hao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jian-Yao Xue
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qian Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ling Guo
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Hoekstra M, Zhang Z, Lindenburg PW, Van Eck M. Scavenger Receptor BI Deficiency in Mice Is Associated With Plasma Ceramide and Sphingomyelin Accumulation and a Reduced Cholesteryl Ester Fatty Acid Length and Unsaturation Degree. J Lipid Atheroscler 2024; 13:69-79. [PMID: 38299166 PMCID: PMC10825577 DOI: 10.12997/jla.2024.13.1.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 02/02/2024] Open
Abstract
Objective Scavenger receptor class B type I (SR-BI) is primarily known for its role in the selective uptake of cholesteryl esters (CEs) from high-density lipoproteins (HDLs). Here we investigated whether SR-BI deficiency is associated with other potentially relevant changes in the plasma lipidome than the established effect of HDL-cholesterol elevation. Methods Targeted ultra-high-performance liquid chromatography-tandem mass spectrometry was utilized to measure lipid species in plasma from female wild-type and SR-BI knockout mice. Results SR-BI deficiency was associated with a reduction in the average CE fatty acid length (-2%; p<0.001) and degree of CE fatty acid unsaturation (-18%; p<0.001) due to a relative shift from longer, polyunsaturated CE species CE (20:4), CE (20:5), and CE (22:6) towards the mono-unsaturated CE (18:1) species. Sphingomyelin (SM) levels were 64% higher (p<0.001) in SR-BI knockout mice without a parallel change in (lyso)phosphatidylcholine (LPC) concentrations, resulting in an increase in the SM/LPC ratio from 0.102±0.005 to 0.163±0.003 (p<0.001). In addition, lower LPC lengths (-5%; p<0.05) and fatty acid unsaturation degrees (-20%; p<0.01) were detected in SR-BI knockout mice. Furthermore, SR-BI deficiency was associated with a 4.7-fold increase (p<0.001) in total plasma ceramide (Cer) levels, with a marked >9-fold rise (p<0.001) in Cer (d18:1/24:1) concentrations. Conclusion We have shown that SR-BI deficiency in mice not only impacts the CE concentrations, length, and saturation index within the plasma compartment, but is also associated with plasma accumulation of several Cer and SM species that may contribute to the development of specific hematological and metabolic (disease) phenotypes previously detected in SR-BI knockout mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| | - Zhengzheng Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Peter W. Lindenburg
- Research Group Metabolomics, Faculty Science & Technology, University of Applied Sciences Leiden, Hogeschool Leiden, Leiden, The Netherlands
| | - Miranda Van Eck
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
4
|
Verwilligen RAF, Mulder L, Araújo PM, Carneiro M, Bussmann J, Hoekstra M, Van Eck M. Zebrafish as outgroup model to study evolution of scavenger receptor class B type I functions. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159308. [PMID: 36931457 DOI: 10.1016/j.bbalip.2023.159308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND AND AIMS Scavenger receptor class B1 (SCARB1) - also known as the high-density lipoprotein (HDL) receptor - is a multi-ligand scavenger receptor that is primarily expressed in liver and steroidogenic organs. This receptor is known for its function in reverse cholesterol transport (RCT) in mammals and hence disruption leads to a massive increase in HDL cholesterol in these species. The extracellular domain of SCARB1 - which is important for cholesterol handling - is highly conserved across multiple vertebrates, except in zebrafish. METHODS To examine the functional conservation of SCARB1 among vertebrates, two stable scarb1 knockout zebrafish lines, scarb1 715delA (scarb1 -1 nt) and scarb1 715_716insGG (scarb1 +2 nt), were created using CRISPR-Cas9 technology. RESULTS We demonstrate that, in zebrafish, SCARB1 deficiency leads to disruption of carotenoid-based pigmentation, reduced fertility, and a decreased larvae survival rate, whereas steroidogenesis was unaltered. The observed reduced fertility is driven by defects in female fertility (-50 %, p < 0.001). Importantly, these alterations were independent of changes in free (wild-type 2.4 ± 0.2 μg/μl versus scarb1-/- 2.0 ± 0.1 μg/μl) as well as total (wild-type 4.2 ± 0.4 μg/μl versus scarb1-/- 4.0 ± 0.3 μg/μl) plasma cholesterol levels. Uptake of HDL in the liver of scarb1-/- zebrafish larvae was reduced (-86.7 %, p < 0.001), but this coincided with reduced perfusion of the liver. No effect was observed on lipoprotein uptake in the caudal vein. SCARB1 deficient canaries, which also lack carotenoids in their plumage, similarly as scarb1-/- zebrafish, failed to show an increase in plasma free- and total cholesterol levels. CONCLUSION Our findings suggest that the specific function of SCARB1 in maintaining plasma cholesterol could be an evolutionary novelty that became prominent in mammals, while other known functions were already present earlier during vertebrate evolution.
Collapse
Affiliation(s)
- Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands.
| | - Lindsay Mulder
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Pedro M Araújo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department Life Sciences, Coimbra, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands; Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands; Pharmacy Leiden, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands; Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands; Pharmacy Leiden, Leiden, the Netherlands
| |
Collapse
|
5
|
Fuller MT, Dadoo O, Xiong T, Chivukula P, MacDonald ME, Lee SK, Austin RC, Igdoura SA, Trigatti BL. Extensive diet-induced atherosclerosis in scavenger receptor class B type 1-deficient mice is associated with substantial leukocytosis and elevated vascular cell adhesion molecule-1 expression in coronary artery endothelium. Front Physiol 2023; 13:1023397. [PMID: 36714321 PMCID: PMC9877335 DOI: 10.3389/fphys.2022.1023397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
High levels of low density lipoprotein (LDL) cholesterol and low levels of high density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease. Mice that lack genes involved in the clearance of LDL from the bloodstream, such as the LDL receptor and apolipoprotein E, are widely used models of experimental atherosclerosis. Conversely, mice that lack the HDL receptor, scavenger receptor class B type I, and therefore have disrupted HDL functionality, also develop diet-inducible atherosclerosis but are a seldom-used disease model. In this study, we compared atherosclerosis and associated phenotypes in scavenger receptor class B type I knockout mice with those of wild type, LDL receptor knockout, and apolipoprotein E knockout mice after 20 weeks of being fed an atherogenic diet containing sodium cholate. We found that while scavenger receptor class B type I knockout mice had substantially lower plasma cholesterol than LDL receptor and apolipoprotein E knockout mice, they developed atherosclerotic plaques with similar sizes and compositions in their aortic sinuses, and more extensive atherosclerosis in their descending aortas and coronary arteries. This was associated with elevated tumor necrosis factor alpha levels in scavenger receptor class B type I knockout mice compared to wild type and LDL receptor knockout mice, and lymphocytosis, monocytosis, and elevated vascular cell adhesion molecule expression in coronary artery endothelial cells compared to the other mice examined. We conclude that extensive atherosclerosis in arteries that are not generally susceptible to atherosclerosis in scavenger receptor class B type I knockout mice is driven by factors in addition to hypercholesterolemia, including inflammation, dysregulation of the immune system and increased sensitivity of endothelial cells in arteries that are normally resistant to atherosclerosis. Scavenger receptor class B type I knockout mice fed a cholate containing atherogenic diet may prove to be a useful model to study mechanisms of atherosclerosis and evaluate treatments that rely on intact LDL clearance pathways.
Collapse
Affiliation(s)
- Mark T. Fuller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Omid Dadoo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Ting Xiong
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Pardh Chivukula
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Melissa E. MacDonald
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Samuel K. Lee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Richard C. Austin
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada,Department of Medicine, Division of Nephrology, The Research Institute of St. Joe’s Hamilton and the Hamilton Center for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada,*Correspondence: Bernardo L. Trigatti,
| |
Collapse
|
6
|
Warde KM, Lim YJ, Ribes Martinez E, Beuschlein F, O'Shea P, Hantel C, Dennedy MC. Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma. Endocrinology 2022; 163:6633639. [PMID: 35797592 PMCID: PMC9342684 DOI: 10.1210/endocr/bqac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare aggressive cancer with low overall survival. Adjuvant mitotane improves survival but is limited by poor response rates and resistance. Mitotane's efficacy is attributed to the accumulation of toxic free cholesterol, predominantly through cholesterol storage inhibition. However, targeting this pathway has proven unsuccessful. We hypothesize that mitotane-induced free-cholesterol accumulation is also mediated through enhanced breakdown of lipid droplets. METHODOLOGY ATCC-H295R (mitotane-sensitive) and MUC-1 (mitotane-resistant) ACC cells were evaluated for lipid content using specific BODIPY dyes. Protein expression was evaluated by immunoblotting and flow cytometry. Cell viability was measured by quantifying propidium iodide-positive cells following mitotane treatment and pharmacological inhibitors of lipolysis. RESULTS H295R and MUC-1 cells demonstrated similar neutral lipid droplet numbers at baseline. However, evaluation of lipid machinery demonstrated distinct profiles in each model. Analysis of intracellular lipid droplet content showed H295R cells preferentially store cholesteryl esters, whereas MUC-1 cells store triacylglycerol. Decreased lipid droplets were associated with increased lipolysis in H295R and in MUC-1 at toxic mitotane concentrations. Pharmacological inhibition of lipolysis attenuated mitotane-induced toxicity in both models. CONCLUSION We highlight that lipid droplet breakdown and activation of lipolysis represent a putative additional mechanism for mitotane-induced cytotoxicity in ACC. Further understanding of cholesterol and lipids in ACC offers potential novel therapeutic exploitation, especially in mitotane-resistant disease.
Collapse
Affiliation(s)
- Kate M Warde
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Yi Jan Lim
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eduardo Ribes Martinez
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Paula O'Shea
- Department of Clinical Biochemistry, Galway University Hospitals, Saolta Hospitals Group, Newcastle Road, Galway, H91 RW28, Ireland
| | - Constanze Hantel
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Germany
| | - Michael Conall Dennedy
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| |
Collapse
|
7
|
Chang X, Zhao Y, Qin S, Wang H, Wang B, Zhai L, Liu B, Gu HM, Zhang DW. Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Front Cardiovasc Med 2021; 8:764024. [PMID: 34859075 PMCID: PMC8631933 DOI: 10.3389/fcvm.2021.764024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The adrenal gland produces steroid hormones to play essential roles in regulating various physiological processes. Our previous studies showed that knockout of hepatic Surf4 (Surf4LKO) markedly reduced fasting plasma total cholesterol levels in adult mice, including low-density lipoprotein and high-density lipoprotein cholesterol. Here, we found that plasma cholesterol levels were also dramatically reduced in 4-week-old young mice and non-fasted adult mice. Circulating lipoprotein cholesterol is an important source of the substrate for the production of adrenal steroid hormones. Therefore, we investigated whether adrenal steroid hormone production was affected in Surf4LKO mice. We observed that lacking hepatic Surf4 essentially eliminated lipid droplets and significantly reduced cholesterol levels in the adrenal gland; however, plasma levels of aldosterone and corticosterone were comparable in Surf4LKO and the control mice under basal and stress conditions. Further analysis revealed that mRNA levels of genes encoding enzymes important for hormone synthesis were not altered, whereas the expression of scavenger receptor class B type I (SR-BI), low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methyl-glutaryl-CoA reductase was significantly increased in the adrenal gland of Surf4LKO mice, indicating increased de novo cholesterol biosynthesis and enhanced LDLR and SR-BI-mediated lipoprotein cholesterol uptake. We also observed that the nuclear form of SREBP2 was increased in the adrenal gland of Surf4 LKO mice. Taken together, these findings indicate that the very low levels of circulating lipoprotein cholesterol in Surf4LKO mice cause a significant reduction in adrenal cholesterol levels but do not significantly affect adrenal steroid hormone production. Reduced adrenal cholesterol levels activate SREBP2 and thus increase the expression of genes involved in cholesterol biosynthesis, which increases de novo cholesterol synthesis to compensate for the loss of circulating lipoprotein-derived cholesterol in the adrenal gland of Surf4LKO mice.
Collapse
Affiliation(s)
- Xiaole Chang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongfang Zhao
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Shucun Qin
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Bingxiang Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Lei Zhai
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Boyan Liu
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Van Wyngene L, Vanderhaeghen T, Petta I, Timmermans S, Corbeels K, Van der Schueren B, Vandewalle J, Van Looveren K, Wallaeys C, Eggermont M, Dewaele S, Catrysse L, van Loo G, Beyaert R, Vangoitsenhoven R, Nakayama T, Tavernier J, De Bosscher K, Libert C. ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. iScience 2021; 24:102790. [PMID: 34337361 PMCID: PMC8324811 DOI: 10.1016/j.isci.2021.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis forms a complex neuroendocrine system that regulates the body’s response to stress such as starvation. In contrast with the glucocorticoid receptor (GR), Zinc finger and BTB domain containing 32 (ZBTB32) is a transcription factor with poorly described functional relevance in physiology. This study shows that ZBTB32 is essential for the production of glucocorticoids (GCs) in response to starvation, since ZBTB32−/− mice fail to increase their GC production in the absence of nutrients. In terms of mechanism, GR-mediated upregulation of adrenal Scarb1 gene expression was absent in ZBTB32−/− mice, implicating defective cholesterol import as the cause of the poor GC synthesis. These lower GC levels are further associated with aberrations in the metabolic adaptation to starvation, which could explain the progressive weight gain of ZBTB32−/− mice. In conclusion, ZBTB32 performs a crosstalk with the GR in the metabolic adaptation to starvation via regulation of adrenal GC production. ZBTB32 is involved in the glucocorticoid production in response to starvation GR-mediated upregulation of adrenal Scarb1 regulates cholesterol import The weight gain of ZBTB32−/− mice is associated with aberrant metabolic adaptations
Collapse
Affiliation(s)
- Lise Van Wyngene
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Ioanna Petta
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium.,Department of Rheumatology, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katrien Corbeels
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Kelly Van Looveren
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Wallaeys
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Melanie Eggermont
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sylviane Dewaele
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Leen Catrysse
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jan Tavernier
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Translational Nuclear Receptor Research Lab, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai,9000 Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Giammanco A, Noto D, Barbagallo CM, Nardi E, Caldarella R, Ciaccio M, Averna MR, Cefalù AB. Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life (Basel) 2021; 11:581. [PMID: 34207236 PMCID: PMC8235218 DOI: 10.3390/life11060581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy, alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL), apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase (EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular diseases and possible treatment options.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Carlo Maria Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Emilio Nardi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Rosalia Caldarella
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Marcello Ciaccio
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Maurizio Rocco Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| |
Collapse
|
10
|
Reece SW, Varikuti S, Kilburg-Basnyat B, Dunigan-Russell K, Hodge MX, Luo B, Madenspacher JH, Thomas SY, Tokarz DA, Tighe RM, Cook DN, Fessler MB, Gowdy KM. Scavenger Receptor BI Attenuates IL-17A-Dependent Neutrophilic Inflammation in Asthma. Am J Respir Cell Mol Biol 2021; 64:698-708. [PMID: 33647226 PMCID: PMC8456883 DOI: 10.1165/rcmb.2020-0007oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking. Scavenger receptors, in particular SR-BI (scavenger receptor class B type I), are known to direct cellular cholesterol uptake and efflux. We recently defined SR-BI functions in pulmonary host defense; however, the function of SR-BI in asthma pathogenesis is unknown. To elucidate the role of SR-BI in allergic asthma, SR-BI-sufficient (SR-BI+/+) and SR-BI-deficient (SR-BI-/-) mice were sensitized (Days 0 and 7) and then challenged (Days 14, 15, and 16) with a house dust mite (HDM) preparation administered through oropharyngeal aspiration. Airway inflammation and cytokine production were quantified on Day 17. When compared with SR-BI+/+ mice, the HDM-challenged SR-BI-/- mice had increased neutrophils and pulmonary IL-17A production in BAL fluid. This augmented IL-17A production in SR-BI-/- mice originated from a non-T-cell source that included neutrophils and alveolar macrophages. Given that SR-BI regulates adrenal steroid hormone production, we tested whether the changes in SR-BI-/- mice were glucocorticoid dependent. Indeed, SR-BI-/- mice were adrenally insufficient during the HDM challenge, and corticosterone replacement decreased pulmonary neutrophilia and IL-17A production in SR-BI-/- mice. Taken together, these data indicate that SR-BI dampens pulmonary neutrophilic inflammation and IL-17A production in allergic asthma at least in part by maintaining adrenal function.
Collapse
Affiliation(s)
- Sky W. Reece
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sanjay Varikuti
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Katelyn Dunigan-Russell
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Myles X. Hodge
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Bin Luo
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Jennifer H. Madenspacher
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Seddon Y. Thomas
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Debra A. Tokarz
- Center for Human Health and the Environment, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina; and
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, North Carolina
| | - Donald N. Cook
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Michael B. Fessler
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kymberly M. Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Meier S, Frick M, Liu M, Saeedi Saravi SS, Montrasio G, Preiss H, Pasterk L, Bonetti N, Egloff M, Schmid HR, Sudano I, Camici GG, Mach F, Luescher TF, Ehret G, Beer JH. Reduced adrenal stress response in patients on PCSK9 inhibitor therapy. Atherosclerosis 2021; 325:63-68. [PMID: 33892329 DOI: 10.1016/j.atherosclerosis.2021.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Treatment with proprotein convertase subtilisin-kexin type 9 inhibitors (PCSK9i), in addition to statin therapy, reduces LDL-cholesterol (LDL-c) in some patients to extremely low levels (i.e.< 20 mg/dl or < 0.52 mmol/l). There is concern that at such low levels, the physiologic role of cholesterol may be impaired, e.g. the adrenal cortisol stress response might be compromised. We therefore evaluated the effect of PCSK9i therapy on the cortisol response to ACTH in patients with LDL-c down to extremely low levels. METHODS Nineteen patients on PCSK9i therapy and 18 controls matched for age, gender and comorbidities were included. The cortisol response to adrenocorticotropic hormone (ACTH) was tested after application of 250 μg ACTH. RESULTS LDL-c levels ranged from 0.42 to 3.32 mmol/l (mean 1.38 ± 0.84 mmol/l) in the PCSK9i group and 0.81-4.82 mmol/l (mean 2.10 ± 0.97) in the control group. By analysis of covariance (ANCOVA), the PCSK9i group had significantly lower cortisol response compared to the control group (- 97.26 nmol/l, -178.60 to -15.93, p = 0.02) after 60 min. There was a significant positive correlation between the duration of PCSK9i treatment and cortisol levels (r = 0.59, p = 0.009). Extremely low LDL-c levels down to 0.42 mmol/l were not associated with lower stimulated cortisol levels. CONCLUSIONS Patients on PCSK9i therapy showed a significantly lower cortisol response to ACTH. Stimulated cortisol levels were lower in the first months of PCSK9i treatment, suggesting an adaptive phenomenon. We conclude that the adrenal stress response in patients on PCSK9 inhibitor therapy is reduced.
Collapse
Affiliation(s)
- Simon Meier
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Marcel Frick
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Michael Liu
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Seyed Soheil Saeedi Saravi
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland; Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Giulia Montrasio
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Helga Preiss
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Lisa Pasterk
- Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Michael Egloff
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Hans-Rudolf Schmid
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland
| | - Isabella Sudano
- University Heart Center Zürich, University Hospital of Zürich, Rämistrasse 100, 8091, Switzerland
| | - Giovanni G Camici
- Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - François Mach
- Department of Cardiology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Thomas F Luescher
- Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Heart Division, Royal Brompton & Harefield Hospital and National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Georg Ehret
- Department of Cardiology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Jürg H Beer
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404, Baden, Switzerland; Laboratory for Platelet Research and of Endothelial Function, Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| |
Collapse
|
12
|
SR-BI deficiency disassociates obesity from hepatic steatosis and glucose intolerance development in high fat diet-fed mice. J Nutr Biochem 2021; 89:108564. [DOI: 10.1016/j.jnutbio.2020.108564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023]
|
13
|
Vishnyakova TG, Bocharov AV, Baranova IN, Kurlander R, Drake SK, Chen Z, Amar M, Sviridov D, Vaisman B, Poliakov E, Remaley AT, Eggerman TL, Patterson AP. SR-BI mediates neutral lipid sorting from LDL to lipid droplets and facilitates their formation. PLoS One 2020; 15:e0240659. [PMID: 33057430 PMCID: PMC7561250 DOI: 10.1371/journal.pone.0240659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.
Collapse
Affiliation(s)
- Tatyana G. Vishnyakova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Alexander V. Bocharov
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- * E-mail:
| | - Irina N. Baranova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Roger Kurlander
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Steven K. Drake
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Zhigang Chen
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Marcelo Amar
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Boris Vaisman
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Eugenia Poliakov
- National Eye Institute, Bethesda, Maryland, United States of
America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Thomas L. Eggerman
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda,
Maryland, United States of America
| | - Amy P. Patterson
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| |
Collapse
|
14
|
Hoekstra M. Identification of scavenger receptor BI as a potential screening candidate for congenital primary adrenal insufficiency in humans. Am J Physiol Endocrinol Metab 2020; 319:E102-E104. [PMID: 32369415 DOI: 10.1152/ajpendo.00069.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids belong to the superfamily of steroid hormones that are synthesized from the common precursor cholesterol. Adrenal gland-derived glucocorticoids, e.g., cortisol in humans and corticosterone in rodents, contribute to various processes essential for normal daily life. Glucocorticoid deficiency, also referred to as primary adrenal insufficiency, therefore, often becomes evident early in life and can be present with hypoglycemia, a failure to thrive, recurrent development of infections, and neurological problems, such as seizures and coma. The majority of congenital primary adrenal insufficiency cases are caused by deleterious mutations in genes involved in the intracellular mobilization of cholesterol and the subsequent conversion of cholesterol into glucocorticoids. A significant number of glucocorticoid deficiency cases, however, cannot be explained by known genetic variations. This perspective highlights existing literature regarding the importance of lipoprotein-derived cholesterol acquisition through scavenger receptor class B, type I (SR-BI/SCARB1) for the maintenance of an optimal adrenal glucocorticoid function in mice and humans. On the basis of the reviewed findings, it is suggested that the SCARB1 gene should be included in the standard glucocorticoid deficiency genetic screening panel to 1) facilitate knowledge development on the relative contribution of SR-BI-mediated cholesterol acquisition to steroid hormone synthesis in humans and 2) open up the possibility to reclassify glucocorticoid deficiency patients without a currently known genetic cause for concomitant treatment optimization.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| |
Collapse
|
15
|
Ito M, Ye X, Wang Q, Guo L, Hao D, Howatt D, Daugherty A, Cai L, Temel R, Li XA. SR-BI (Scavenger Receptor BI), Not LDL (Low-Density Lipoprotein) Receptor, Mediates Adrenal Stress Response-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:1830-1837. [PMID: 32522007 DOI: 10.1161/atvbaha.120.314506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adrenal gland secretes stress-induced glucocorticoids (iGCs) to coping with stress. Previous study showed that SR-BI (scavenger receptor BI) null (SR-BI-/-) mice failed to generate iGC in stress conditions, suggesting that SR-BI-mediated cholesterol uptake from HDL (high-density lipoprotein) is a key regulator for iGC production. However, the LDL (low-density lipoprotein)/LDLr (LDL receptor) pathway can also provide cholesterol for iGC synthesis, but rodents have limited LDL levels in circulation. Here, we generated SR-BI-/-ApoBtg (apolipoprotein B transgenic) mice with normal LDL levels in circulation to determine the relative contribution of the HDL/SR-BI and LDL/LDLr pathways to iGC production in stress conditions. Approach and Results: To obtain mouse models with normal LDL levels, SR-BI-/- mice were bred to ApoBtg mice. Then, the F1 SR-BI±ApoBtg mice were backcrossed to SR-BI-/- to obtain SR-BI-/-ApoBtg, SR-BI-/-ApoBwt (apolipoprotein B wild type), and SR-BI+/+ApoBtg mice. We first examined the lipoprotein profile, which shows a 6.5-fold increase in LDL levels in SR-BI-/-ApoBtg mice compared with SR-BI-/-ApoBwt mice. Then, we induced stress with adrenocorticotropic hormone and cecal ligation and puncture. One hour after adrenocorticotropic hormone stimulation, SR-BI+/+ApoBtg control mice produced iGC (14.9-fold), but both SR-BI-/-ApoBwt and SR-BI-/-ApoBtg showed no iGC production (P<0.001). Three hours after cecal ligation and puncture treatment, SR-BI+/+ApoBtg control mice showed iGC production (6.4-fold), but both SR-BI-/-ApoBwt and SR-BI-/-ApoBtg mice showed no iGC production (P<0.001). CONCLUSIONS SR-BI-/-ApoBtg mice fail to produce iGC in stress conditions even though with restored LDL levels in circulation. These findings clarify that the HDL/SR-BI, not LDL/LDLr, pathway is responsible for iGC production in stress conditions.
Collapse
Affiliation(s)
- Misa Ito
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang Ye
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Qian Wang
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ling Guo
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Dan Hao
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Deborah Howatt
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Lei Cai
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ryan Temel
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang-An Li
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| |
Collapse
|
16
|
Martins Cardoso R, Absalah S, Van Eck M, Bouwstra JA. Barrier lipid composition and response to plasma lipids: A direct comparison of mouse dorsal back and ear skin. Exp Dermatol 2020; 29:548-555. [PMID: 32350936 PMCID: PMC7383511 DOI: 10.1111/exd.14106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
The skin of the ear and the back are frequently selected sites in skin research using mouse models. However, distinct responses to treatment have been described between these two sites in several studies. Despite the crucial role of the stratum corneum (SC) in the skin barrier function of both dorsal back and ear skin, it remains unclear whether differences in lipid composition might underlie altered responses. Here, we compared the skin morphology and the barrier lipid composition of the ear with the back skin of wild-type mice. The ear contained more corneocyte layers in the SC and its barrier lipid composition was enriched with sphingosine ceramide subclasses, especially the short ones with a total chain length of 33-34 carbons. The free fatty acid (FFA) profile in the ear skin shifted towards shorter chains, significantly reducing the mean chain length to 23.3 vs 24.7 carbons in the back skin. In line, FFA species in the ear displayed a twofold increase in unsaturation index (P < .001). Gene expression in the ear skin revealed low expression of genes involved in lipid synthesis and uptake, indicating a reduced metabolic activity. Finally, the effects of hypercholesterolaemia on SC FFA composition was compared in ear and back skin of apolipoprotein E knockout (APOE-/- ) mice. Interestingly, the FFA profile in APOE-/- ear skin was minimally affected, while the FFA composition in the back skin was markedly changed in response to hypercholesterolaemia. In conclusion, ear and back skin have distinct barrier lipids and respond differently to elevated plasma cholesterol.
Collapse
Affiliation(s)
- Renata Martins Cardoso
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Samira Absalah
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Miranda Van Eck
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Joke A. Bouwstra
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
17
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
18
|
VLDL/LDL serves as the primary source of cholesterol in the adrenal glucocorticoid response to food deprivation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158682. [PMID: 32169652 DOI: 10.1016/j.bbalip.2020.158682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 11/23/2022]
Abstract
The contribution of individual lipoprotein species to the generation of the adrenal cholesterol pool used for the synthesis of anti-inflammatory glucocorticoid species remains unknown. Here we examined the impact of specific lowering of very low-density lipoprotein (VLDL) and low-density (LDL) levels on adrenal cholesterol and glucocorticoid homeostasis. Hereto, lethally-irradiated hypercholesterolemic apolipoprotein E (APOE) knockout mice received APOE-containing bone marrow from wild-type mice (n = 6) or APOE knockout control bone marrow (n = 10) and were subsequently fed a regular chow diet. Transplantation with wild-type bone marrow was associated with a 10-fold decrease in VLDL/LDL-cholesterol levels. No changes were observed in adrenal weights, adrenal cholesterol content, or basal plasma corticosterone levels. However, food deprivation-induced corticosterone secretion was 64% lower (P < 0.05) in wild-type bone marrow recipients as compared to APOE knockout bone marrow recipients, in the context of similar plasma adrenocorticotropic hormone (ACTH) levels. A parallel 19-29% decrease in adrenal relative mRNA expression levels of ACTH-responsive genes SR-BI (P < 0.01), STAR (P < 0.05), and CYP11A1 (P < 0.05) was detected. In support of relative glucocorticoid insufficiency, blood lymphocyte and eosinophil concentrations were respectively 2.4-fold (P < 0.01) and 8-fold (P < 0.001) higher in wild-type bone marrow recipients under food deprivation stress conditions. In conclusion, we have shown that a selective lowering of VLDL/LDL levels in APOE knockout mice through a transplantation with APOE-containing wild-type bone marrow is associated with a decreased maximal adrenal glucocorticoid output. Our studies provide experimental support for the hypothesis that, in vivo, VLDL/LDL serves as the primary source of cholesterol used for glucocorticoid synthesis during food deprivation stress.
Collapse
|
19
|
Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Praticò D, van Berkel TJC, Rensen PCN, Kooijman S, Jauhiainen M, van Eck M. Disruption of Phospholipid Transfer Protein-Mediated High-Density Lipoprotein Maturation Reduces Scavenger Receptor BI Deficiency-Driven Atherosclerosis Susceptibility Despite Unexpected Metabolic Complications. Arterioscler Thromb Vasc Biol 2020; 40:611-623. [PMID: 31941380 DOI: 10.1161/atvbaha.119.313862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We tested the hypothesis that enlarged, dysfunctional HDL (high-density lipoprotein) particles contribute to the augmented atherosclerosis susceptibility associated with SR-BI (scavenger receptor BI) deficiency in mice. Approach and Results: We eliminated the ability of HDL particles to fully mature by targeting PLTP (phospholipid transfer protein) functionality. Particle size of the HDL population was almost fully normalized in male and female SR-BI×PLTP double knockout mice. In contrast, the plasma unesterified cholesterol to cholesteryl ester ratio remained elevated. The PLTP deficiency-induced reduction in HDL size in SR-BI knockout mice resulted in a normalized aortic tissue oxidative stress status on Western-type diet. Atherosclerosis susceptibility was-however-only partially reversed in double knockout mice, which can likely be attributed to the fact that they developed a metabolic syndrome-like phenotype characterized by obesity, hypertriglyceridemia, and a reduced glucose tolerance. Mechanistic studies in chow diet-fed mice revealed that the diminished glucose tolerance was probably secondary to the exaggerated postprandial triglyceride response. The absence of PLTP did not affect LPL (lipoprotein lipase)-mediated triglyceride lipolysis but rather modified the ability of VLDL (very low-density lipoprotein)/chylomicron remnants to be cleared from the circulation by the liver through receptors other than SR-BI. As a result, livers of double knockout mice only cleared 26% of the fractional dose of [14C]cholesteryl oleate after intravenous VLDL-like particle injection. CONCLUSIONS We have shown that disruption of PLTP-mediated HDL maturation reduces SR-BI deficiency-driven atherosclerosis susceptibility in mice despite the induction of proatherogenic metabolic complications in the double knockout mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Ronald J van der Sluis
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Reeni B Hildebrand
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Bart Lammers
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Ying Zhao
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Pharmacology, Philadelphia, PA (D.P.)
| | - Theo J C van Berkel
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine (P.C.N.R., S.K.)
| | - Matti Jauhiainen
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (P.C.N.R., S.K)
| | - Miranda van Eck
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| |
Collapse
|
20
|
Ahi EP, Brunel M, Tsakoumis E, Schmitz M. Transcriptional study of appetite regulating genes in the brain of zebrafish (Danio rerio) with impaired leptin signalling. Sci Rep 2019; 9:20166. [PMID: 31882937 PMCID: PMC6934527 DOI: 10.1038/s41598-019-56779-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The hormone leptin is a key regulator of body weight, food intake and metabolism. In mammals, leptin acts as an anorexigen and inhibits food intake centrally by affecting the appetite centres in the hypothalamus. In teleost fish, the regulatory connections between leptin and other appetite-regulating genes are largely unknown. In the present study, we used a zebrafish mutant with a loss of function leptin receptor to investigate brain expression patterns of 12 orexigenic and 24 anorexigenic genes under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). Expression patterns were compared to wild-type zebrafish, in order to identify leptin-dependent differentially expressed genes under different feeding conditions. We provide evidence that the transcription of certain orexigenic and anorexigenic genes is influenced by leptin signalling in the zebrafish brain. We found that the expression of orexigenic genes was not affected by impaired leptin signalling under normal feeding conditions; however, several orexigenic genes showed increased transcription during fasting and refeeding, including agrp, apln, galr1a and cnr1. This suggests an inhibitory effect of leptin signal on the transcription of these orexigenic genes during short-term fasting and refeeding in functional zebrafish. Most pronounced effects were observed in the group of anorexigenic genes, where the impairment of leptin signalling resulted in reduced gene expression in several genes, including cart family, crhb, gnrh2, mc4r, pomc and spx, in the control group. This suggests a stimulatory effect of leptin signal on the transcription of these anorexigenic genes under normal feeding condition. In addition, we found multiple gain and loss in expression correlations between the appetite-regulating genes, in zebrafish with impaired leptin signal, suggesting the presence of gene regulatory networks downstream of leptin signal in zebrafish brain. The results provide the first evidence for the effects of leptin signal on the transcription of various appetite-regulating genes in zebrafish brain, under different feeding conditions. Altogether, these transcriptional changes suggest an anorexigenic role for leptin signal, which is likely to be mediated through distinct set of appetite-regulating genes under different feeding conditions.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
21
|
Martins Cardoso R, Creemers E, Absalah S, Hoekstra M, Gooris GS, Bouwstra JA, Van Eck M. Hyperalphalipoproteinemic scavenger receptor BI knockout mice exhibit a disrupted epidermal lipid barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158592. [PMID: 31863970 DOI: 10.1016/j.bbalip.2019.158592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023]
Abstract
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesteryl esters (CE) from high-density lipoproteins (HDL). An impaired SR-BI function leads to hyperalphalipoproteinemia with elevated levels of cholesterol transported in the HDL fraction. Accumulation of cholesterol in apolipoprotein B (apoB)-containing lipoproteins has been shown to alter skin lipid composition and barrier function in mice. To investigate whether these hypercholesterolemic effects on the skin also occur in hyperalphalipoproteinemia, we compared skins of wild-type and SR-BI knockout (SR-BI-/-) mice. SR-BI deficiency did not affect the epidermal cholesterol content and induced only minor changes in the ceramide subclasses. The epidermal free fatty acid (FFA) pool was, however, enriched in short and unsaturated chains. Plasma CE levels strongly correlated with epidermal FFA C18:1 content. The increase in epidermal FFA coincided with downregulation of cholesterol and FFA synthesis genes, suggesting a compensatory response to increased flux of plasma cholesterol and FFAs into the skin. Importantly, the SR-BI-/- epidermal lipid barrier showed increased permeability to ethyl-paraminobenzoic acid, indicating an impairment of the barrier function. In conclusion, increased HDL-cholesterol levels in SR-BI-/- mice can alter the epidermal lipid composition and lipid barrier function similarly as observed in hypercholesterolemia due to elevated levels of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Renata Martins Cardoso
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Eline Creemers
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands
| | - Samira Absalah
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Menno Hoekstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Gert S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Miranda Van Eck
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
22
|
Tourkova IL, Dobrowolski SF, Secunda C, Zaidi M, Papadimitriou-Olivgeri I, Papachristou DJ, Blair HC. The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro. J Transl Med 2019; 99:1850-1860. [PMID: 31467425 PMCID: PMC11715553 DOI: 10.1038/s41374-019-0311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/20/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
We examined bone formation and turnover in high-density lipoprotein (HDL) receptor, scavenger receptor type I (Scarb1), knockout animals relative to wild-type (WT) controls. Scarb1-/- animals have elevated serum adrenocorticotropic hormone (ACTH) due to the role of Scarb1 in glucocorticoid production, which might cause increased bone mass. However, this was not observed: Scarb1-/- mice, with ACTH, over 1000 pg/ml relative to wild-type ACTH ~ 25 pg/ml, bone of the knockout animals was osteopenic relative to the wild type at 16 weeks, including bone volume/total volume and trabecular thickness. Other serum parameters of WT and Scarb1-/- animals in cortisol or calcium were unaffected, although Scarb1-/- animals had significantly elevated PTH and decreased phosphate. Osteoblast and osteoclast-related mRNAs extracted from bone were greatly decreased at 8 or 16 weeks. Importantly, in normal ACTH, osteogenic differentiation in vitro from mesenchymal stem cells showed reduced alkaline phosphatase and mineralization. In Scarb1-/- cells relative to WT, mRNAs for RunX2, alkaline phosphatase, type I collagen, and osteocalcin were reduced 40-90%, all p < 0.01, indicating a role of Scarb1 in osteoblast differentiation independent of ACTH. Additionally, in vitro osteoblast differentiation at variable ACTH in WT cells confirmed ACTH increasing bone differentiation, mineralization, alkaline phosphatase, and osteocalcin mRNA at 0-10 nM ACTH, but reduced bone differentiation at 100-1000 nM ACTH. Overall Scarb1-/- animals show inhibited bone formation with age. This may be a mixed effect on direct bone formation and of very high ACTH. Further, this work shows that both ACTH concentration and the HDL receptor Scarb1 play important independent roles in osteoblast differentiation.
Collapse
Affiliation(s)
- Irina L Tourkova
- Veteran's Affairs Medical Center, Pittsburgh, PA, 15206, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Cassandra Secunda
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ioanna Papadimitriou-Olivgeri
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras, School of Medicine, Patras, Greece
| | - Dionysios J Papachristou
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras, School of Medicine, Patras, Greece
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh, PA, 15206, USA.
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
23
|
Zheng Z, Ai J, Guo L, Ye X, Bondada S, Howatt D, Daugherty A, Li XA. SR-BI (Scavenger Receptor Class B Type 1) Is Critical in Maintaining Normal T-Cell Development and Enhancing Thymic Regeneration. Arterioscler Thromb Vasc Biol 2019; 38:2706-2717. [PMID: 30354229 DOI: 10.1161/atvbaha.118.311728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Continuous T-cell production from thymus is essential in replenishing naïve T-cell pool and maintaining optimal T-cell functions. However, the underlying mechanisms regulating the T-cell development in thymus remains largely unknown. Approach and Results- We identified SR-BI (scavenger receptor class B type 1), an HDL (high-density lipoprotein) receptor, as a novel modulator in T-cell development. We found that SR-BI deficiency in mice led to reduced thymus size and decreased T-cell production, which was accompanied by narrowed peripheral naïve T-cell pool. Further investigation revealed that SR-BI deficiency impaired progenitor thymic homing, causing a dramatic reduction in the percentage of earliest thymic progenitors, but did not affect other downstream T-cell developmental steps inside the thymus. As a result of the impaired progenitor thymic homing, SR-BI-deficient mice displayed delayed thymic regeneration postirradiation. Using a variety of experimental approaches, we revealed that the impaired T-cell development in SR-BI-deficient mice was not caused by hematopoietic SR-BI deficiency or SR-BI deficiency-induced hypercholesterolemia, but mainly attributed to the SR-BI deficiency in adrenal glands, as adrenal-specific SR-BI-deficient mice exhibited similar defects in T-cell development and thymic regeneration with SR-BI-deficient mice. Conclusions- This study demonstrates that SR-BI deficiency impaired T-cell development and delayed thymic regeneration by affecting progenitor thymic homing in mice, elucidating a previously unrecognized link between SR-BI and adaptive immunity.
Collapse
Affiliation(s)
- Zhong Zheng
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Junting Ai
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ling Guo
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang Ye
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Subbarao Bondada
- Department of Microbiology (S.B.), University of Kentucky College of Medicine, Lexington
| | - Deborah Howatt
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Alan Daugherty
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang-An Li
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| |
Collapse
|
24
|
van der Geest R, van der Sluis RJ, Groen AK, Van Eck M, Hoekstra M. Cholestasis-associated glucocorticoid overexposure does not increase atherogenesis. J Endocrinol 2019; 242:1-12. [PMID: 31035252 DOI: 10.1530/joe-19-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Chronic glucocorticoid overexposure predisposes to the development of atherosclerotic cardiovascular disease in humans. Cholestatic liver disease is associated with increased plasma glucocorticoid levels. Here, we determined - in a preclinical setting - whether the chronic presence of cholestatic liver disease also induces a concomitant negative impact on atherosclerosis susceptibility. Hereto, regular chow diet-fed atherosclerosis-susceptible hypercholesterolemic apolipoprotein E (APOE)-knockout mice were treated with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) for 8 weeks. ANIT exposure induced the development of fibrotic cholestatic liver disease as evident from collagen deposits and compensatory bile duct hyperproliferation within the liver and the rise in plasma levels of bilirubin (+60%; P < 0.01) and bile acids (10-fold higher; P < 0.01). Adrenal weights (+22%; P < 0.01) and plasma corticosterone levels (+72%; P < 0.01) were increased in ANIT-treated mice. In contrast, atherosclerosis susceptibility was not increased in response to ANIT feeding, despite the concomitant increase in plasma free cholesterol (+30%; P < 0.01) and cholesteryl ester (+42%; P < 0.001) levels. The ANIT-induced hypercorticosteronemia coincided with marked immunosuppression as judged from the 50% reduction (P < 0.001) in circulating lymphocyte numbers. However, hepatic glucocorticoid signaling was not enhanced after ANIT treatment. It thus appears that the immunosuppressive effect of glucocorticoids is uncoupled from their metabolic effect under cholestatic disease conditions. In conclusion, we have shown that cholestatic liver disease-associated endogenous glucocorticoid overexposure does not increase atherosclerosis susceptibility in APOE-knockout mice. Our studies provide novel preclinical evidence for the observations that the hypercholesterolemia seen in cholestatic human subjects does not translate into a higher risk for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Rick van der Geest
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Albert K Groen
- Departments of Pediatrics and Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| |
Collapse
|
25
|
van der Sluis RJ, Depuydt MAC, Verwilligen RAF, Hoekstra M, Van Eck M. Elimination of adrenocortical apolipoprotein E production does not impact glucocorticoid output in wild-type mice. Mol Cell Endocrinol 2019; 490:21-27. [PMID: 30953750 DOI: 10.1016/j.mce.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E (APOE) deficient mice exhibit unexplained hypercorticosteronemia. Given that APOE is also produced locally within the adrenals, we evaluated the effect of adrenal-specific APOE deficiency on the glucocorticoid function. Hereto, one adrenal containing or lacking APOE was transplanted into adrenalectomized wild-type mice. Adrenal APOE deficiency did not impact adrenal total cholesterol levels. Importantly, the ability of the two adrenal types to produce glucocorticoids was also not different as judged from the similar plasma corticosterone levels. Adrenal mRNA expression levels of HMG-CoA reductase and the LDL receptor were decreased by respectively 72% (p < 0.01) and 65% (p = 0.07), suggesting that cholesterol acquisition pathways were inhibited to possibly compensate the lack of APOE. In support, a parallel increase in the expression level of the cholesterol accumulation-associated ER stress marker CHOP was detected (+117%; p < 0.05). In conclusion, our studies show that elimination of adrenocortical APOE production does not impact glucocorticoid output in wild-type mice.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands.
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| |
Collapse
|
26
|
Zheng L, Yang L, Zhao X, Long N, Li P, Wang Y. Effect of risperidone on proliferation and apoptosis of MC3T3-E1 cells. ACTA ACUST UNITED AC 2019; 52:e8098. [PMID: 30810624 PMCID: PMC6393850 DOI: 10.1590/1414-431x20188098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023]
Abstract
This aim of this study was to assess the molecular mechanism of osteoporosis in schizophrenia patients with risperidone use. Here, we investigated the effects of risperidone on cellular proliferation and apoptosis of a preosteoblast cell line, MC3T3-E1. Cell viability and apoptotic rate of MC3T3-E1 were detected by cell counting kit-8 and flow cytometry at a serial dose of risperidone and at different time points, respectively. Bone transformation relevant gene serum osteocalcin (BGP), collagen 1, tumor necrosis factor-α (TNF-α), osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) mRNA levels were determined by real-time PCR (qPCR). Their protein expression patterns were evaluated using western blot. The results revealed that risperidone dramatically inhibited MC3T3-E1 cell proliferation in a dose-dependent manner. It also significantly induced MC3T3-E1 cell apoptosis. TNF-α gene and protein levels were greatly enhanced after risperidone treatment. In contrast, BGP, collagen 1, OPG, and RANKL gene and protein levels were markedly downregulated. Our study indicated that risperidone suppressed MC3T3-E1 cell proliferation and induced apoptosis. It also regulated BGP gene and protein expression.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Mental Health and Psychiatry, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lixia Yang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Zhao
- The Sixth People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Niya Long
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Hoekstra M, Ouweneel AB, Nahon JE, van der Geest R, Kröner MJ, van der Sluis RJ, Van Eck M. ATP-binding cassette transporter G1 deficiency is associated with mild glucocorticoid insufficiency in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:443-451. [PMID: 30633988 DOI: 10.1016/j.bbalip.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Since cholesterol is the sole precursor for glucocorticoid synthesis, it is hypothesized that genetic defects in proteins that impact the cellular cholesterol pool may underlie glucocorticoid insufficiency in humans. In the current study, we specifically focused on the cholesterol efflux mediator ATP-binding cassette transporter G1 (ABCG1) as gene candidate. METHODS The adrenal transcriptional response to fasting stress was measured in wild-type mice to identify putative novel gene candidates. Subsequently, the adrenal glucocorticoid function was compared between ABCG1 knockout mice and wild-type controls. RESULTS Overnight food deprivation induced a change in relative mRNA expression levels of cholesterol metabolism-related proteins previously linked to steroidogenesis, i.e. scavenger receptor class B type I (+149%; P < 0.001), LDL receptor (-70%; P < 0.001) and apolipoprotein E (-41%; P < 0.01). Strikingly, ABCG1 transcript levels were also markedly decreased (-61%; P < 0.05). In contrast to our hypothesis that decreasing cholesterol efflux would increase the adrenal cholesterol pool and enhance glucocorticoid output, ABCG1 knockout mice as compared to wild-type mice exhibited a reduced ability to secrete corticosterone in response to an ACTH challenge (two-way ANOVA: P < 0.001 for genotype) or fasting stress. As a result, glucocorticoid target gene expression levels in liver and hypothalamus were reduced and blood lymphocyte concentrations and spleen weights increased in ABCG1 knockout mice under fasting stress conditions. This was paralleled by a 48% reduction in adrenal cholesteryl ester stores and stimulation of adrenal NPC intracellular cholesterol transporter 2 (+37%; P < 0.05) and apolipoprotein E (+59%; P < 0.01) mRNA expression. CONCLUSION ABCG1 deficiency is associated with mild glucocorticoid insufficiency in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | - Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Joya E Nahon
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Rick van der Geest
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| |
Collapse
|
28
|
Theiler-Schwetz V, Zaufel A, Schlager H, Obermayer-Pietsch B, Fickert P, Zollner G. Bile acids and glucocorticoid metabolism in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:243-251. [DOI: 10.1016/j.bbadis.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
29
|
Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, Weston TA, Vashi D, Ferrari A, Orozco JL, Hartman CL, Strugatsky D, Lee SD, He C, Hong C, Jiang H, Bentolila LA, Gatta AT, Levine TP, Ferng A, Lee R, Ford DA, Young SG, Ikonen E, Schwabe JWR, Tontonoz P. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell 2018; 175:514-529.e20. [PMID: 30220461 DOI: 10.1016/j.cell.2018.08.033] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/08/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.
Collapse
Affiliation(s)
- Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiqian Li
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Louise Fairall
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Simon G Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Jennifer E Gurnett
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dipti Vashi
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose L Orozco
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David Strugatsky
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Laurent A Bentolila
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Alberto T Gatta
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Tim P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Annie Ferng
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - John W R Schwabe
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Deng Y, Xiao Y, Yuan F, Liu Y, Jiang X, Deng J, Fejes-Toth G, Naray-Fejes-Toth A, Chen S, Chen Y, Ying H, Zhai Q, Shu Y, Guo F. SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity. Diabetes 2018; 67:569-580. [PMID: 29321171 DOI: 10.2337/db17-1069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022]
Abstract
Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.
Collapse
Affiliation(s)
- Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Xiaoxue Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Geza Fejes-Toth
- Department of Physiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | | | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Wei XB, Chen XJ, Li YL, Huang JL, Chen XL, Yu DQ, Tan N, Liu YH, Chen JY, He PC. Apolipoprotein A-I: A favorable prognostic marker in infective endocarditis. J Clin Lipidol 2017; 12:498-505. [PMID: 29339066 DOI: 10.1016/j.jacl.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Decreased apolipoprotein A-I (apoA-I) and high-density lipoprotein cholesterol (HDL-C) are common in inflammation and sepsis. No study with a large sample size has been performed to investigate the prognostic value of apoA-I or HDL-C in infective endocarditis (IE). OBJECTIVE The present study aimed to explore the prognostic value of apoA-I and HDL-C for adverse outcomes in IE patients. METHODS Patients with a definite diagnosis of IE between January 2009 and July 2015 were enrolled and divided into 3 groups according to their apoA-I tertiles at admission. Univariate and multivariate analyses were performed to evaluate the relationship of apoA-I and HDL-C with clinical outcomes. RESULTS Of the 593 included patients, 40 (6.7%) died in hospital. Patients with lower apoA-I experienced markedly higher rates of in-hospital mortality (10.7%, 7.0%, and 2.5% in tertiles 1-3, respectively; P = .006) and major adverse clinical events (32.5%, 24.1%, and 8.6% in tertiles 1-3, respectively; P < .001). ApoA-I (area under the curve, 0.671; P < .001) and HDL-C (area under the curve, 0.672; P < .001) had predictive values for in-hospital death. Multivariate logistic regression showed that apoA-I <0.90 g/L and HDL-C <0.78 mmol/L were independent risk predictors for in-hospital death. A multivariate Cox proportional hazard analysis revealed that apoA-I (increments of 1 g/L; hazard ratio, 0.36; 95% confidence interval, 0.15-0.87; P = .023) and HDL-C (increments of 1 mmol/L; hazard ratio, 0.38; 95% confidence interval, 0.18-0.83; P = .015) were independently associated with long-term mortality. CONCLUSIONS ApoA-I and HDL-C were inversely associated with adverse IE prognosis.
Collapse
Affiliation(s)
- Xue-Biao Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Xiao-Jin Chen
- Department of Internal Medicine, Longnan Medicine Hospital, Ganzhou, China
| | - Yuan-Ling Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Jie-Leng Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Xiao-Lan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Dan-Qing Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China
| | - Yuan-Hui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China.
| | - Ji-Yan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China.
| | - Peng-Cheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, China; Department of Cardiology, The Second People's Hospital of Nanhai District, Guangdong General Hospital's Nanhai Hospital, Foshan, China.
| |
Collapse
|
32
|
Ouweneel AB, van der Sluis RJ, Nahon JE, Van Eck M, Hoekstra M. Simvastatin treatment aggravates the glucocorticoid insufficiency associated with hypocholesterolemia in mice. Atherosclerosis 2017; 261:99-104. [DOI: 10.1016/j.atherosclerosis.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 11/26/2022]
|
33
|
Buitenwerf E, Dullaart RPF, Muller Kobold AC, Links TP, Sluiter WJ, Connelly MA, Kerstens MN. Cholesterol delivery to the adrenal glands estimated by adrenal venous sampling: An in vivo model to determine the contribution of circulating lipoproteins to steroidogenesis in humans. J Clin Lipidol 2017; 11:733-738. [PMID: 28461157 DOI: 10.1016/j.jacl.2017.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cholesterol, required for adrenal steroid hormone synthesis, is at least in part derived from circulating lipoproteins. The contribution of high-density lipoproteins (HDL) and low-density lipoproteins (LDL) to adrenal steroidogenesis in humans is unclear. OBJECTIVE The aim of the study was to determine the extent to which HDL and LDL are taken up by the adrenal glands using samples obtained during adrenal venous sampling (AVS). METHODS AVS was successfully performed in 23 patients with primary aldosteronism. Samples were drawn from both adrenal veins and inferior vena cava (IVC). HDL cholesterol (HDL-C) and lipoprotein particle profiles were determined by nuclear magnetic resonance spectroscopy. Apolipoprotein (apo) A-I and apoB were assayed by immunoturbidimetry. RESULTS Plasma HDL-C and HDL and LDL particle concentrations (HDL-P and LDL-P) were not lower in samples obtained from the adrenal veins compared with the IVC (HDL-C, P = .59; HDL-P, P = .06; LDL-P, P = .93). ApoB was lower in adrenal venous plasma than in IVC (P = .026; P < .05 for right adrenal vein). In 13 patients with an aldosterone producing adenoma (APA), apoB was also lower (P = .045) and LDL-P tended to be lower (P = .065) in the APA adrenal vein compared with the IVC. ApoA-I was not lower in adrenal venous plasma compared with the IVC, neither in the whole group (P = .20) nor in the APA subgroup (P = .075). CONCLUSION These in vivo observations suggest that circulating LDL may contribute to adrenal steroidogenesis in humans as inferred from adrenal venous-IVC apoB concentration differences. AVS is a feasible method to investigate the relationships between lipoproteins and steroidogenesis.
Collapse
Affiliation(s)
- Edward Buitenwerf
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anneke C Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim J Sluiter
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margery A Connelly
- LipoScience, Laboratory Corporation of America Holdings, Raleigh, NC, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Hoekstra M. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis 2017; 258:153-161. [DOI: 10.1016/j.atherosclerosis.2017.01.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
|
35
|
Buitenwerf E, Kerstens MN, Links TP, Kema IP, Dullaart RPF. High-density lipoproteins and adrenal steroidogenesis: A population-based study. J Clin Lipidol 2017; 11:469-476. [PMID: 28502504 DOI: 10.1016/j.jacl.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/02/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cholesterol trafficked within plasma lipoproteins, in particular high-density lipoproteins (HDL), may represent an important source of cholesterol that is required for adrenal steroidogenesis. Based on a urinary gas chromatography method, compromised adrenal function has been suggested in men but not in women with (genetically determined) low plasma HDL-cholesterol (HDL-C). OBJECTIVE The objective of the article was to examine the extent to which glucocorticoid production relates to HDL-C in a population-based cohort. METHODS A total of 240 subjects (120 men and 120 women, aged 20-79 years) without relevant comorbidities were recruited from the general population. Glucocorticoid metabolites were measured by gas chromatography with tandem mass spectrometric detection in 24-hour urine collections to estimate total glucocorticoid production (TGP). Fasting plasma (apo)lipoproteins were assayed by routine methods. RESULTS TGP was not decreased but tended to be increased in subjects with low HDL-C (NCEP-ATPIII criteria; P = .094). In univariate analysis, TPG was correlated inversely with HDL-C (r = -0.353, P < .001) and apoA-I (r = -0.263, P = .01). Multivariable linear regression analysis demonstrated that TGP was still inversely related to HDL-C (β = -0.145, P = .019) or alternatively to low HDL-C (β = -0.129, P = .013) taking age, sex, current smoking, and other metabolic syndrome components into account. CONCLUSION In this population-based study, urinary glucocorticoid metabolite excretion was inversely associated with HDL-C. We found no evidence for an attenuated adrenal function in men and women with low HDL-C.
Collapse
Affiliation(s)
- Edward Buitenwerf
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Hoekstra M, Van Berkel TJ. Functionality of High-Density Lipoprotein as Antiatherosclerotic Therapeutic Target. Arterioscler Thromb Vasc Biol 2016; 36:e87-e94. [DOI: 10.1161/atvbaha.116.308262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Menno Hoekstra
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| | - Theo J.C. Van Berkel
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| |
Collapse
|
37
|
Kuwano T, Miura SI, Norimatsu K, Arimura T, Shiga Y, Tomita S, Nakayama A, Matsuo Y, Imaizumi S, Saku K. Advanced glycation of high-density lipoprotein and the functionality of aldosterone release in type 2 diabetes. Hypertens Res 2016; 40:271-276. [DOI: 10.1038/hr.2016.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023]
|
38
|
Pal R, Ke Q, Pihan GA, Yesilaltay A, Penman ML, Wang L, Chitraju C, Kang PM, Krieger M, Kocher O. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol 2016; 311:H1392-H1408. [PMID: 27694217 DOI: 10.1152/ajpheart.00463.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
The HDL receptor SR-BI mediates the transfer of cholesteryl esters from HDL to cells and controls HDL abundance and structure. Depending on the genetic background, loss of SR-BI causes hypercholesterolemia, anemia, reticulocytosis, splenomegaly, thrombocytopenia, female infertility, and fatal coronary heart disease (CHD). The carboxy terminus of SR-BI (505QEAKL509) must bind to the cytoplasmic adaptor PDZK1 for normal hepatic-but not steroidogenic cell-expression of SR-BI protein. To determine whether SR-BI's carboxy terminus is also required for normal protein levels in steroidogenic cells, we introduced into SR-BI's gene a 507Ala/STOP mutation that produces a truncated receptor (SR-BIΔCT). As expected, the dramatic reduction of hepatic receptor protein in SR-BIΔCT mice was similar to that in PDZK1 knockout (KO) mice. Unlike SR-BI KO females, SR-BIΔCT females were fertile. The severity of SR-BIΔCT mice's hypercholesterolemia was intermediate between those of SR-BI KO and PDZK1 KO mice. Substantially reduced levels of the receptor in adrenal cortical cells, ovarian cells, and testicular Leydig cells in SR-BIΔCT mice suggested that steroidogenic cells have an adaptor(s) functionally analogous to hepatic PDZK1. When SR-BIΔCT mice were crossed with apolipoprotein E KO mice (SR-BIΔCT/apoE KO), pathologies including hypercholesterolemia, macrocytic anemia, hepatic and splenic extramedullary hematopoiesis, massive splenomegaly, reticulocytosis, thrombocytopenia, and rapid-onset and fatal occlusive coronary arterial atherosclerosis and CHD (median age of death: 9 wk) were observed. These results provide new insights into the control of SR-BI in steroidogenic cells and establish SR-BIΔCT/apoE KO mice as a new animal model for the study of CHD.
Collapse
Affiliation(s)
- Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - German A Pihan
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Marsha L Penman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Li Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
39
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Kost Y, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3135-47. [PMID: 26936883 PMCID: PMC4856165 DOI: 10.4049/jimmunol.1501709] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ana C P Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892;
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris L Vaisman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marcelo J Amar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Yana Kost
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, DerOhannessian S, Kontush A, Surendran P, Saleheen D, Trompet S, Jukema JW, De Craen A, Deloukas P, Sattar N, Ford I, Packard C, Majumder AAS, Alam DS, Di Angelantonio E, Abecasis G, Chowdhury R, Erdmann J, Nordestgaard BG, Nielsen SF, Tybjærg-Hansen A, Schmidt RF, Kuulasmaa K, Liu DJ, Perola M, Blankenberg S, Salomaa V, Männistö S, Amouyel P, Arveiler D, Ferrieres J, Müller-Nurasyid M, Ferrario M, Kee F, Willer CJ, Samani N, Schunkert H, Butterworth AS, Howson JMM, Peloso GM, Stitziel NO, Danesh J, Kathiresan S, Rader DJ. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351:1166-71. [PMID: 26965621 DOI: 10.1126/science.aad3517] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).
Collapse
Affiliation(s)
- Paolo Zanoni
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sumeet A Khetarpal
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel B Larach
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William F Hancock-Cerutti
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - John S Millar
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie DerOhannessian
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatol Kontush
- INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands
| | - Anton De Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Chris Packard
- Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK
| | | | - Dewan S Alam
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck 23562, Germany
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Philippe Amouyel
- Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
| | - Jean Ferrieres
- Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marco Ferrario
- Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Adam S Butterworth
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gina M Peloso
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan O Stitziel
- Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Sekar Kathiresan
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel J Rader
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
41
|
Hoekstra M, Van Eck M. HDL is redundant for adrenal steroidogenesis in LDLR knockout mice with a human-like lipoprotein profile. J Lipid Res 2016; 57:631-7. [PMID: 26891738 DOI: 10.1194/jlr.m066019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/20/2022] Open
Abstract
The contribution of HDL to adrenal steroidogenesis appears to be different between mice and humans. In the current study, we tested the hypothesis that a difference in lipoprotein profile may be the underlying cause. Hereto, we determined the impact of HDL deficiency on the adrenal glucocorticoid output in genetically modified mice with a human-like lipoprotein profile. Genetic deletion of APOA1 in LDL receptor (LDLR) knockout mice was associated with HDL deficiency and a parallel increase in the level of cholesterol associated with nonHDL fractions. Despite a compensatory increase in the adrenal relative mRNA expression levels of the cholesterol synthesis gene, HMG-CoA reductase, adrenals from APOA1/LDLR double knockout mice were severely depleted of neutral lipids, as compared with those of control LDLR knockout mice. However, basal corticosterone levels and the adrenal glucocorticoid response to stress were not different between the two types of mice. In conclusion, we have shown that HDL is not critical for proper adrenal glucocorticoid function when mice are provided with a human-like lipoprotein profile. Our findings provide the first experimental evidence that APOB-containing lipoproteins may facilitate adrenal steroidogenesis, in an LDLR-independent manner, in vivo in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, 2333CC Leiden, The Netherlands
| | - Miranda Van Eck
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, 2333CC Leiden, The Netherlands
| |
Collapse
|
42
|
Wu DM, He Z, Chen T, Liu Y, Ma LP, Ping J. DNA hypermethylation of acetoacetyl-CoA synthetase contributes to inhibited cholesterol supply and steroidogenesis in fetal rat adrenals under prenatal nicotine exposure. Toxicology 2016; 340:43-52. [PMID: 26776438 DOI: 10.1016/j.tox.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 11/16/2022]
Abstract
Prenatal nicotine exposure is a risk factor for intrauterine growth retardation (IUGR). Steroid hormones synthesized from cholesterol in the fetal adrenal play an important role in the fetal development. The aim of this study is to investigate the effects of prenatal nicotine exposure on steroidogenesis in fetal rat adrenals from the perspective of cholesterol supply and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were administered 1.0mg/kg nicotine subcutaneously twice a day from gestational day (GD) 7 to GD17. The results showed that prenatal nicotine exposure increased IUGR rates. Histological changes, decreased steroid hormone concentrations and decreased cholesterol supply were observed in nicotine-treated fetal adrenals. In the gene expression array, the expression of genes regulating ketone metabolic process decreased in nicotine-treated fetal adrenals. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that acetoacetyl-CoA synthetase (AACS), the enzyme utilizing ketones for cholesterol supply, may play an important role in nicotine-induced cholesterol supply deficiency. Moreover, the decreased expression of AACS and increased DNA methylation in the proximal promoter of AACS in the fetal adrenal was verified by real-time reverse-transcription PCR (RT-PCR) and bisulfite sequencing PCR (BSP), respectively. In conclusion, prenatal nicotine exposure can cause DNA hypermethylation of the AACS promoter in the rat fetal adrenal. These changes may result in decreased AACS expression and cholesterol supply, which inhibits steroidogenesis in the fetal adrenal.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yang Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liang-Peng Ma
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
43
|
Abstract
The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.
Collapse
Affiliation(s)
- Wen-Jun Shen
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Salman Azhar
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B. Kraemer
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- *Correspondence: Fredric B. Kraemer,
| |
Collapse
|
44
|
Ai J, Guo L, Zheng Z, Wang SX, Huang B, Li XA. Corticosteroid Therapy Benefits Septic Mice With Adrenal Insufficiency But Harms Septic Mice Without Adrenal Insufficiency. Crit Care Med 2015; 43:e490-8. [PMID: 26308430 PMCID: PMC9798902 DOI: 10.1097/ccm.0000000000001264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Corticosteroid therapy is frequently used in septic patients given the rationale that there is an increased demand for corticosteroid in sepsis, and up to 60% of severe septic patients experience adrenal insufficiency. However, the efficacy of corticosteroid therapy and whether the therapy should be based on the results of adrenal function testing are highly controversial. The lack of an adrenal insufficiency animal model and our poor understanding of the pathogenesis caused by adrenal insufficiency present significant barriers to address this long-standing clinical issue. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Scavenger receptor BI null and adrenal-specific scavenger receptor BI null mice. INTERVENTIONS Sepsis was induced by cecal ligation and puncture. MEASUREMENTS AND MAIN RESULTS Using scavenger receptor BI mice as the first relative adrenal insufficiency animal model, we found that corticosteroid therapy significantly improved the survival in cecal ligation and puncture-treated scavenger receptor BI mice but causes more septic death in wild-type mice. We identified a corticosteroid cocktail that provides effective protection 18 hours post cecal ligation and puncture; using adrenal-specific scavenger receptor BI mice as an inducible corticosteroid-deficient animal model, we found that inducible corticosteroid specifically suppresses interleukin-6 production without affecting tumor necrosis factor-α, nitric oxide, and interleukin-10 production. We further found that inducible corticosteroid does not induce peripheral lymphocyte apoptosis but promotes phagocytic activity of macrophages and neutrophils. CONCLUSIONS This study demonstrates that corticosteroid treatment benefits mice with adrenal insufficiency but harms mice without adrenal insufficiency. This study also reveals that inducible corticosteroid has both immunosuppressive and immunopermissive properties, suppressing interleukin-6 production, promoting phagocytosis of immune effector cells, but not inducing peripheral lymphocyte apoptosis. These findings support our hypothesis that corticosteroid is an effective therapy for a subgroup of septic patients with adrenal insufficiency but harms septic patients without adrenal insufficiency and encourage further efforts to test this hypothesis in clinic.
Collapse
Affiliation(s)
- Junting Ai
- 1Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY. 2Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY. 3Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY. 4Kentucky Cancer Registry, College of Medicine, University of Kentucky, Lexington, KY
| | | | | | | | | | | |
Collapse
|
45
|
van der Sluis RJ, Van Eck M, Hoekstra M. Adrenocortical LDL receptor function negatively influences glucocorticoid output. J Endocrinol 2015; 226:145-54. [PMID: 26136384 DOI: 10.1530/joe-15-0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
Over 50% of the cholesterol needed by adrenocortical cells for the production of glucocorticoids is derived from lipoproteins. However, the overall contribution of the different lipoproteins and associated uptake pathways to steroidogenesis remains to be determined. Here we aimed to show the importance of LDL receptor (LDLR)-mediated cholesterol acquisition for adrenal steroidogenesis in vivo. Female total body LDLR knockout mice with a human-like lipoprotein profile were bilaterally adrenalectomized and subsequently provided with one adrenal either expressing or genetically lacking the LDLR under their renal capsule to solely modulate adrenocortical LDLR function. Plasma total cholesterol levels and basal plasma corticosterone levels were identical in the two types of adrenal transplanted mice. Strikingly, restoration of adrenal LDLR function significantly reduced the ACTH-mediated stimulation of adrenal steroidogenesis (P<0.001), with plasma corticosterone levels that were respectively 44-59% lower (P<0.01) as compared to adrenal LDLR negative controls. In addition, LDLR positive adrenal transplanted mice exhibited a significant decrease (-39%; P<0.001) in their plasma corticosterone level under fasting stress conditions. Biochemical analysis did not show changes in the expression of genes involved in cholesterol mobilization. However, LDLR expressing adrenal transplants displayed a marked 62% reduction (P<0.05) in the transcript level of the key steroidogenic enzyme HSD3B2. In conclusion, our studies in a mouse model with a human-like lipoprotein profile provide the first in vivo evidence for a novel inhibitory role of the LDLR in the control of adrenal glucocorticoid production.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Miranda Van Eck
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
46
|
Wu DM, He Z, Ma LP, Wang LL, Ping J, Wang H. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals. Toxicol Appl Pharmacol 2015; 285:89-97. [PMID: 25868845 DOI: 10.1016/j.taap.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg · d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liang-Peng Ma
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lin-Long Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China
| |
Collapse
|
47
|
Zhao Y, Hoekstra M, Korporaal SJA, Van Berkel TJC, Van Eck M. HDL Receptor Scavenger Receptor BI. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
49
|
Martineau C, Martin-Falstrault L, Brissette L, Moreau R. Gender- and region-specific alterations in bone metabolism in Scarb1-null female mice. J Endocrinol 2014; 222:277-88. [PMID: 24928939 DOI: 10.1530/joe-14-0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A positive correlation between plasma levels of HDL and bone mass has been reported by epidemiological studies. As scavenger receptor class B, type I (SR-BI), the gene product of Scarb1, is known to regulate HDL metabolism, we recently characterized bone metabolism in Scarb1-null mice. These mice display high femoral bone mass associated with enhanced bone formation. As gender differences have been reported in HDL metabolism and SR-BI function, we investigated gender-specific bone alterations in Scarb1-null mice by microtomography and histology. We found 16% greater relative bone volume and 39% higher bone formation rate in the vertebrae from 2-month-old Scarb1-null females. No such alteration was seen in males, indicating gender- and region-specific differences in skeletal phenotype. Total and HDL-associated cholesterol levels, as well as ACTH plasma levels, were increased in both Scarb1-null genders, the latter being concurrent to impaired corticosterone response to fasting. Plasma levels of estradiol did not differ between null and WT females, suggesting that the estrogen metabolism alteration is not relevant to the higher vertebral bone mass in female Scarb1-null mice. Constitutively, high plasma levels of leptin along with 2.5-fold increase in its expression in white adipose tissue were measured in female Scarb1-null mice only. In vitro exposure of bone marrow stromal cells to ACTH and leptin promoted osteoblast differentiation as evidenced by increased gene expression of osterix and collagen type I alpha. Our results suggest that hyperleptinemia may account for the gender-specific high bone mass seen in the vertebrae of female Scarb1-null mice.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Louise Martin-Falstrault
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Louise Brissette
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Robert Moreau
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| |
Collapse
|
50
|
Bochem AE, Holleboom AG, Romijn JA, Hoekstra M, Dallinga GM, Motazacker MM, Hovingh GK, Kuivenhoven JA, Stroes ESG. Adrenal Function in females with low plasma HDL-C due to mutations in ABCA1 and LCAT. PLoS One 2014; 9:e90967. [PMID: 24842300 PMCID: PMC4026241 DOI: 10.1371/journal.pone.0090967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Adrenal steroidogenesis is essential for human survival and depends on the availability of the precursor cholesterol. Male subjects with low plasma levels of high density lipoprotein (HDL) cholesterol are characterized by decreased adrenal function. Whether this is also the case in female subjects with low plasma HDL-C levels is unresolved to date. FINDINGS 15 female ATP binding cassette transporter AI (ABCAI) and 14 female lecithin-cholesterol acyltransferase (LCAT) were included in the study. HDL-C levels were 38% and 41% lower in ABCA1 and LCAT mutation carriers compared to controls, respectively. Urinary steroid excretion of 17-ketogenic steroids or 17-hydroxy corticosteroids did not differ between 15 female ABCA1 mutation carriers (p = 0.27 vs 0.30 respectively) and 30 matched normolipidemic controls or between 14 female LCAT mutation carriers and 28 matched normolipidemic controls (p = 0.10 and 0.14, respectively). Cosyntropin testing in an unselected subgroup of 8 ABCA1 mutation carriers and 3 LCAT mutation carriers did not reveal differences between carriers and controls. CONCLUSION Adrenal function in females with molecularly defined low HDL-C levels is not different from controls. The discrepancy with the finding of impaired steroidogenesis in males with molecularly defined low HDL-C levels underscores the importance of gender specific analyses in cholesterol-related research.
Collapse
Affiliation(s)
- Andrea E. Bochem
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes A. Romijn
- Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Menno Hoekstra
- Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Geesje M. Dallinga
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Mahdi M. Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan A. Kuivenhoven
- Department of Pathology & Medical Biology, Medical Biology Section, Molecular Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|