1
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Farias HR, Ramos JMO, Griesang CT, Santos L, Junior OVR, Souza DG, Ferreira FS, Somacal S, Martins LAM, de Souza DOG, Moreira JCF, Wyse ATS, Guma FTCR, de Oliveira J. LDL Exposure Disrupts Mitochondrial Function and Dynamics in a Hippocampal Neuronal Cell Line. Mol Neurobiol 2025; 62:6939-6950. [PMID: 39302616 DOI: 10.1007/s12035-024-04476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Hypercholesterolemia has been associated with cognitive dysfunction and neurodegenerative diseases. Moreover, this metabolic condition disrupts the blood-brain barrier, allowing low-density lipoprotein (LDL) to enter the central nervous system. Thus, we investigated the effects of LDL exposure on mitochondrial function in a mouse hippocampal neuronal cell line (HT-22). HT-22 cells were exposed to human LDL (50 and 300 μg/mL) for 24 h. After this, intracellular lipid droplet (LD) content, cell viability, cell death, and mitochondrial parameters were assessed. We found that the higher LDL concentration increases LD content compared with control. Both concentrations increased the number of Annexin V-positive cells, indicating apoptosis. Moreover, in mitochondrial parameters, the LDL exposure on hippocampal neuronal cell line leads to a decrease in mitochondrial complexes I and II activities in both concentrations tested and a reduction in Mitotracker™ Red fluorescence and Mitotracker™ Red and Mitotracker™ Green ratio in the higher concentration, indicating mitochondrial impairment. The LDL incubation induces mitochondrial superoxide production and decreases superoxide dismutase activity in the lower concentration in HT-22 cells. Finally, LDL exposure increases the expression of genes associated with mitochondrial fusion (OPA1 and mitofusin 2) in the lower concentration. In conclusion, our findings suggest that LDL exposure induces mitochondrial dysfunction and modulates mitochondrial dynamics in the hippocampal neuronal cells.
Collapse
Affiliation(s)
- Hémelin Resende Farias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Marques Obelar Ramos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Tainá Griesang
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Debora Guerini Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Somacal
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leo Anderson Meira Martins
- Programa de Pós-Graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Neumann E. Spatial Multiomics Toward Understanding Neurological Systems. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5143. [PMID: 40360168 PMCID: PMC12074838 DOI: 10.1002/jms.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Dynamic biological processes in the brain involve complex interactions between various cell types, and these interactions span multiple biological scales. Each of these domains are crucial in maintaining brain health. Traditional methods, such as transcriptomics and protein labeling, provide valuable insights but fail to capture the full molecular landscape of neurological function. Multimodal imaging, combining multiple imaging techniques, offers a more comprehensive approach to studying biological systems by integrating different omics technologies. Spatial metabolomics involves using techniques like mass spectrometry imaging to enable detection of metabolites within their native tissue context and reveals functional roles that are crucial for understanding disease. Spatial transcriptomics and proteomics contribute information on gene expression and protein function but face challenges in resolution and integration with other omics approaches. Combining metabolomics, transcriptomics, and proteomics will enhance our understanding of cellular interactions, but challenges remain in optimizing sample preparation, maintaining molecular integrity, and integrating data across omics layers. Future advancements in spatial multiomics, incorporating epigenetics and extending to whole-body or nanoscale imaging, will significantly advance our understanding of neuroscience and complex diseases like Alzheimer's disease or autism spectrum disorder.
Collapse
|
4
|
Valenza M. Dysregulated astrocyte cholesterol synthesis in Huntington's disease: A potential intersection with other cellular dysfunctions. J Huntingtons Dis 2025:18796397251336192. [PMID: 40396448 DOI: 10.1177/18796397251336192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Astrocytes are key elements for synapse development and function. Several astrocytic dysfunctions contribute to the pathophysiology of various neurodegenerative disorders, including Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder that is characterized by motor and cognitive defects with behavioral/psychiatric disturbances. One dysfunction in HD related to astrocytes is reduced cholesterol synthesis, leading to a decreased availability of local cholesterol for synaptic activity. This review describes the specific role of astrocytes in the brain local cholesterol synthesis and presents evidence supporting a defective astrocyte-neuron cholesterol crosstalk in HD, by focusing on SREBP-2, the transcription factor that regulates the majority of genes involved in the cholesterol biosynthetic pathway. The emerging coordination of SREBP-2 with other physiological processes, such as energy metabolism, autophagy, and Sonic Hedgehog signaling, is also discussed. Finally, this review intends to stimulate future research directions to explore whether the impairment of astrocytic SREBP-2-mediated cholesterol synthesis in HD associates with other cellular dysfunctions in the disease.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Azarfar K, Decourt B, Camacho BS, Lawrence JJ, Omondi TR, Sabbagh MN. Cholesterol-modifying strategies for Alzheimer disease: promise or fallacy? Expert Rev Neurother 2025; 25:521-535. [PMID: 40140971 PMCID: PMC12068190 DOI: 10.1080/14737175.2025.2483928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION As the world population ages, Alzheimer disease (AD) prevalence increases. However, understanding of AD etiology continues to evolve, and the pathophysiological processes involved are only partially elucidated. One compound suspected to play a role in the development and progression of AD is cholesterol. Several lines of evidence support this connection, yet it remains unclear whether cholesterol-modifying strategies have potential applications in the clinical management of AD. AREAS COVERED A deep literature search using PubMed was performed to prepare this narrative review. The literature search, performed in early 2024, was inclusive of literature from 1990 to 2024. After providing an overview of cholesterol metabolism, this study summarizes key preclinical studies that have investigated cholesterol-modifying therapies in laboratory models of AD. It also summarizes past and current clinical trials testing specific targets modulated by anti-cholesterol therapies in AD patients. EXPERT OPINION Based on current epidemiological and mechanistic studies, cholesterol likely plays a role in AD etiology. The use of cholesterol-modifying therapies could be a promising treatment approach if administered at presymptomatic to early AD phases, but it is unlikely to be efficient in mild, moderate, and late AD stages. Several recommendations are provided for hypercholesterolemia management in AD patients.
Collapse
Affiliation(s)
- Katia Azarfar
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Boris Decourt
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Brandon Sanchez Camacho
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - John Joshua Lawrence
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Tania R. Omondi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Marwan N. Sabbagh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
6
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
7
|
Shaw A, Teng R, Fasina T, Gonzales AS, Wong A, Schweitzer D, Akefe IO. Lipid dysregulation and delirium in older adults: A review of the current evidence and future directions. Brain Res Bull 2025; 224:111299. [PMID: 40086765 DOI: 10.1016/j.brainresbull.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Delirium is a complex medical condition marked by acute episodes of cognitive dysfunction and behavioral disturbances, with a multifaceted etiology and challenging management across various clinical settings. Older adults, particularly in postoperative contexts, are at increased risk of developing delirium. Despite extensive research, a single underlying pathophysiological mechanism for delirium remains elusive. However, emerging evidence suggests a correlation between lipid dysregulation and delirium development in elderly patients, especially in postoperative settings. This connection has led to proposed treatments targeting dyslipidemia and associated neuroinflammatory effects in acute-phase delirium. This review aims to synthesize current literature on the relationship between lipid dysregulation and delirium in older adults, highlighting the need for further research into specific neurolipidome constituents and age-related lipid profile changes, potentially uncovering novel therapeutic strategies for delirium.
Collapse
Affiliation(s)
- AnaLee Shaw
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rujia Teng
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Toluwani Fasina
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Ana-Sofia Gonzales
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Audrey Wong
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia; CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
8
|
Kondo S, Murthy V, Asgharnejad M, Benitez A, Nakashima K, Hawkins N, White HS. A review of the putative antiseizure and antiepileptogenic mechanisms of action for soticlestat. Epilepsia 2025; 66:1394-1405. [PMID: 39963730 PMCID: PMC12097479 DOI: 10.1111/epi.18287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 05/23/2025]
Abstract
Soticlestat (TAK-935) is a potent and selective inhibitor of cholesterol 24-hydroxylase (CYP46A1), an enzyme primarily expressed in the brain that catabolizes cholesterol to 24S-hydroxycholesterol (24HC). In the ELEKTRA phase II clinical trial, soticlestat reduced seizure frequency in patients with developmental and epileptic encephalopathies, and two phase III studies evaluating the safety and efficacy of soticlestat in Dravet syndrome (SKYLINE) and Lennox-Gastaut syndrome (SKYWAY) have recently been completed. The exact mechanism of action by which soticlestat exerts pharmacological benefits remains undetermined. In this review, we assess the available preclinical evidence and present a working hypothesis for the antiseizure effects of soticlestat. The data support three potential mechanisms of action: (1) normalization of the seizure threshold via reduction of 24HC levels in the brain; as 24HC acts as a potent and selective positive allosteric modulator of glutamate N-methyl-D-aspartate receptors, reduction of 24HC levels by soticlestat may lead to decreased hyperexcitability and elevated seizure thresholds; (2) restoration of glutamate sequestration from the synaptic cleft; accumulation of glutamate in the synaptic cleft enhances neural excitation and can contribute to neurotoxicity; soticlestat may inhibit conversion of cholesterol to 24HC in the membrane lipid raft microdomain and help to preserve it, consequently reducing excessive glutamate excitation; and (3) suppression of neuroinflammation via reduction of inflammatory cytokine release. These potential mechanisms of action warrant further investigation.
Collapse
Affiliation(s)
- Shinichi Kondo
- Neuroscience Drug Discovery UnitTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | | | | | - Arturo Benitez
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Kosuke Nakashima
- Neuroscience Drug Discovery UnitTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Nicole Hawkins
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - H. Steve White
- Center for Epilepsy Drug Discovery, Department of Pharmacy, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
9
|
Tsoi SC, Barrientos AC, Vicario DS, Phan ML, Pytte CL. Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model. PLoS One 2025; 20:e0314690. [PMID: 40294005 PMCID: PMC12036933 DOI: 10.1371/journal.pone.0314690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/11/2024] [Indexed: 04/30/2025] Open
Abstract
Statins are highly effective and widely prescribed cholesterol lowering drugs. However, statins cross the blood-brain barrier and decrease neural cholesterol in animal models, raising concern that long-term statin use may impact cholesterol-dependent structures and functions in the brain. Cholesterol is a fundamental component of cell membranes and experimentally decreasing membrane cholesterol has been shown to alter cell morphology in vitro. In addition, brain regions that undergo adult neurogenesis rely on local brain cholesterol for the manufacture of new neuronal membranes. Thus neurogenesis may be particularly vulnerable to long-term statin use. Here we asked whether oral statin treatment impacts neurogenesis in juveniles, either by decreasing numbers of new cells formed or altering the structure of new neurons. The use of statins in children and adolescents has received less attention than in older adults, with few studies on potential unintended effects in young brains. We examined neurons in the juvenile zebra finch songbird in telencephalic regions that function in song perception and memory (caudomedial nidopallium, NCM) and song production (HVC). Birds received either 40 mg/kg of atorvastatin in water or water vehicle once daily for 2-3 months until they reached adulthood. We labeled newborn cells using systemic injections of bromodeoxyuridine (BrdU) and quantified cells double-labeled with antibodies for BrdU and the neuron-specific protein Hu 30-32 days post mitosis. We also quantified a younger cohort of new neurons in the same birds using antibody to the neuronal protein doublecortin (DCX). We then compared numbers of new neurons and soma morphology of BrdU + /Hu+ neurons between statin-treated and control birds. We did not find an effect of statins on the density of newly formed neurons in either brain region, suggesting that statin treatment did not impact neurogenesis or young neuron survival in our paradigm. However, we found that neuronal soma morphology differed significantly between statin-treated and control birds. Somata of BrdU + /Hu+ (30-32 day old) neurons were flatter and had more furrowed contours in statin-treated birds relative to controls. In a larger, heterogeneous cohort of non-birthdated BrdU-/Hu+ neurons, largely born prior to statin treatment, somata were smaller in statin-treated birds than in controls. Our findings indicate that atorvastatin may affect neural cytoarchitecture in both newly formed and mature neurons, perhaps as a consequence of decreased cholesterol availability in the brain.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alicia C. Barrientos
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mimi L. Phan
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, Flushing, New York, United States of America
| |
Collapse
|
10
|
Belaidi AA, Bush AI, Ayton S. Apolipoprotein E in Alzheimer's disease: molecular insights and therapeutic opportunities. Mol Neurodegener 2025; 20:47. [PMID: 40275327 PMCID: PMC12023563 DOI: 10.1186/s13024-025-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Apolipoprotein E (APOE- gene; apoE- protein) is the strongest genetic modulator of late-onset Alzheimer's disease (AD), with its three major isoforms conferring risk for disease ε2 < ε3 < ε4. Emerging protective gene variants, such as APOE Christchurch and the COLBOS variant of REELIN, an alternative target of certain apoE receptors, offer novel insights into resilience against AD. In recent years, the role of apoE has been shown to extend beyond its primary function in lipid transport, influencing multiple biological processes, including amyloid-β (Aβ) aggregation, tau pathology, neuroinflammation, autophagy, cerebrovascular integrity and protection from lipid peroxidation and the resulting ferroptotic cell death. While the detrimental influence of apoE ε4 on these and other processes has been well described, the molecular mechanisms underpinning this disadvantage require further enunciation, particularly to realize therapeutic opportunities related to apoE. This review explores the multifaceted roles of apoE in AD pathogenesis, emphasizing recent discoveries and translational approaches to target apoE-mediated pathways. These findings underscore the potential for apoE-based therapeutic strategies to prevent or mitigate AD in genetically at-risk populations.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
11
|
Zagare A, Sauter T, Barmpa K, Pacheco M, Krüger R, Schwamborn JC, Saraiva C. MIRO1 mutation leads to metabolic maladaptation resulting in Parkinson's disease-associated dopaminergic neuron loss. NPJ Syst Biol Appl 2025; 11:37. [PMID: 40246848 PMCID: PMC12006346 DOI: 10.1038/s41540-025-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/16/2025] [Indexed: 04/19/2025] Open
Abstract
MIRO1 is a mitochondrial outer membrane protein important for mitochondrial distribution, dynamics and bioenergetics. Over the last decade, evidence has pointed to a link between MIRO1 and Parkinson's disease (PD) pathogenesis. Moreover, a heterozygous MIRO1 mutation (p.R272Q) was identified in a PD patient, from which an iPSC-derived midbrain organoid model was derived, showing MIRO1 mutant-dependent selective loss of dopaminergic neurons. Herein, we use patient-specific iPSC-derived midbrain organoids carrying the MIRO1 p.R272Q mutation to further explore the cellular and molecular mechanisms involved in dopaminergic neuron degeneration. Using single-cell RNA sequencing (scRNAseq) analysis and metabolic modeling we show that the MIRO1 p.R272Q mutation affects the dopaminergic neuron developmental path leading to metabolic deficits and disrupted neuron-astrocyte metabolic crosstalk, which might represent an important pathogenic mechanism leading to their loss.
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Systems Biology and Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Maria Pacheco
- Systems Biology and Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Edison, L-1445, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, 4, rue Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jens Christian Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
12
|
Fanti F, Sergi M, Compagnone D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J Pharm Biomed Anal 2025; 256:116681. [PMID: 39847924 DOI: 10.1016/j.jpba.2025.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease. Accurate assessment of OS levels is then crucial and oxidized lipidic products are considered relevant OS biomarkers. In fact, lipids are particularly prone to ROS attack, leading to lipid peroxidation, cell membrane damage, and toxic by-products affecting DNA, proteins, and low-density lipoproteins. This review reports on recent advances in LC-MS/MS approaches for OS lipidic biomarkers, focusing on overcoming analytical challenges. 3 different classes of biomarkers have been reported, malondialdehyde, isoprostanes and oxidised sterols. For each class, the main analytical challenges with a particular focus on derivatisation procedure, sensitivity, matrix effect, ionisation have been described and discussed. The recent advancements of the LC-MS-MS procedures move towards simpler approaches, reducing errors and improving the reliability of the measurement thus enabling a comprehensive and robust OS assessment.
Collapse
Affiliation(s)
- Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy.
| |
Collapse
|
13
|
Su T, Si Y. PCSK9 exacerbates sevoflurane-induced neuroinflammatory response and apoptosis by up-regulating cGAS-STING signal. Tissue Cell 2025; 93:102739. [PMID: 39818066 DOI: 10.1016/j.tice.2025.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a postoperative complication that can be induced by anaesthesia. PCSK9 has been shown to have a role in neuronal development and apoptosis. However, PCSK9 has not been studied in sevoflurane-induced POCD-related disorders. OBJECTIVE To explore whether PCSK9 can exacerbate sevoflurane-induced neuroinflammatory response and apoptosis by up-regulating cGAS-STING signalling. METHODS A POCD model was constructed by stimulating BV2 microglia with Sevoflurane. CCK8 was used to detect the cell viability, and immunofluorescence was used to observe the expression of microglial activation markers (Iba-1, CD11b) and BDNF to determine the activation of BV2 microglia. Cell proliferation was measured by EDU staining, and apoptosis was analyzed by flow cytometry and western blot. The levels of inflammatory cytokines, ROS, MDA, SOD and CAT were respectively detected by ELISA, DCFH-DA staining, and kits to determine the neuroinflammation and oxidative stress of cells. Mitochondrial ROS, mitochondrial membrane potential, mtDNA and ATP levels were measured to evaluate cellular mitochondrial function. RESULTS Transfection of si-PCSK9 inhibited Sevoflurane-induced microglial activation and restored cellular viability, promoted cell proliferation, inhibited apoptosis and neuroinflammation, decreased ROS and MDA levels in the cells while up-regulating the levels of SOD and CAT, thus inhibiting oxidative stress, restored the mitochondrial membrane potential to normal and decreased mitochondrial ROS and mtDNA levels and increased ATP production, thereby alleviating mitochondrial dysfunction. Moreover, PCSK9 depletion also down-regulated the expression of cGAS and STING to inactivate cGAS-STING signaling. However, cGAS overexpression partially reversed the effects of si-PCSK9. CONCLUSION PCSK9 exacerbates sevoflurane-induced neuroinflammatory response and apoptosis by upregulating cGAS-STING signaling.
Collapse
Affiliation(s)
- Tao Su
- Anesthesia Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| | - Yuting Si
- Anesthesia Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| |
Collapse
|
14
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
15
|
Zheng Y, Gu H, Kong Y. Statin is associated with higher cortical thickness in early Alzheimer's disease. Exp Gerontol 2025; 202:112698. [PMID: 39900257 DOI: 10.1016/j.exger.2025.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND The brain is the most cholesterol-rich organ, essential for myelination and neuronal function. Statins, widely used to lower cholesterol, cross the blood-brain barrier and may impact brain cholesterol synthesis. Despite their widespread use, the effects of statins on cortical regions relevant to Alzheimer's disease (AD) are not well understood. This study aimed to compare cortical thickness between statin-exposed and statin-unexposed older adults and evaluate the potential neuroprotective effects of statins. METHODS Data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The sample included 193 healthy controls (HC), 485 individuals with mild cognitive impairment (MCI), and 169 individuals with Alzheimer's disease (AD). Participants were categorized as statin users if they had used statins for at least two years. MRI data were processed using FreeSurfer software to estimate cortical thickness in 64 regions of interest. ANCOVA models assessed the association between statin use and cortical thickness at baseline, and linear mixed models evaluated longitudinal changes. RESULTS Statin use was associated with increased cortical thickness in multiple brain regions across HC, MCI, and AD participants. In HC, statin users had greater thickness in the right lateral occipital, left middle temporal, and left parahippocampal regions. MCI participants exhibited additional increases in the right cuneus, right posterior cingulate, and left superior temporal cortex. In AD, statin users had higher thickness in the right cuneus and right superior parietal lobule. Longitudinal analysis revealed no statin-related differences in cortical thickness changes among HC and AD groups, but in MCI, statins slowed cortical thinning in the left medial orbitofrontal cortex. CONCLUSION Statin use is associated with greater cortical thickness in older adults, particularly in those with MCI. These findings suggest that statins may have neuroprotective effects, potentially mitigating neurodegenerative changes in early cognitive decline. Further research with larger cohorts and longer follow-up periods is needed to confirm these findings and understand the mechanisms involved.
Collapse
Affiliation(s)
- Yane Zheng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai 200083, China.
| | - Huiying Gu
- Department of Internal Medicine, Tangqiao Community Health Service Center, Shanghai 200127, China
| | - Yuming Kong
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200438, China
| |
Collapse
|
16
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
17
|
Xu Y, Li S, Xu Y, Sun X, Wei Y, Wang Y, Li S, Ji Y, Hu K, Xu Y, Zhu C, Lu B, Wang D. Visualize neuronal membrane cholesterol with split-fluorescent protein tagged YDQA sensor. J Lipid Res 2025; 66:100781. [PMID: 40118459 DOI: 10.1016/j.jlr.2025.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Cholesterol is a major component of the cellular plasma membrane (PM), and its homeostasis is essential for brain health. Dysregulated cholesterol homeostasis has been strongly implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease (AD). However, in vivo visualization of cholesterol has remained challenging, hindering a comprehensive understanding of AD pathology. In this study, we generated a new sensor combining the split-fluorescent protein tags with YDQA, a derivate of cholesterol-dependent cytolysin PFO. Through a series of validations in cell and C. elegans models, we demonstrate that the new sensor (name as sfPMcho) efficiently detects neuronal PM cholesterol. We further applied this sensor in 5X FAD and APOE KO mice models and revealed the cholesterol changes within neurons. PM cholesterol became sparse and locally aggregated in neuron bodies but significantly accumulated in nerve fibers. Collectively, this study provides a new tool for detecting neuronal PM cholesterol in vivo and uncovers cholesterol abnormalities in AD-related pathology at the cellular level. Further development based on this sensor or a similar strategy is to be expected.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Saixuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yiran Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Xiaoqin Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuqing Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuejun Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Shuang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yongqi Ji
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Keyi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuxia Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Bin Lu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China.
| | - Dandan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
18
|
Rong J, Zhao C, Chaudhary AF, Chen J, Zhou X, Zhang K, Song Z, Sun Z, Gao Y, Zhang Z, Feng S, Collier TL, Yuan H, Patel JS, Haider A, Li Y, Liang SH. Development of a Novel 18F-Labeled Radioligand for Imaging Cholesterol 24-Hydroxylase with Positron Emission Tomography. ACS Pharmacol Transl Sci 2025; 8:800-807. [PMID: 40109739 PMCID: PMC11915032 DOI: 10.1021/acsptsci.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Cholesterol 24-hydroxylase (CYP46A1), also known as CH24H, is a brain-specific monooxygenase responsible for the elimination of cholesterol from the central nervous system (CNS). It catalyzes the conversion of cholesterol to 24(S)-hydroxycholesterol, the primary pathway for CNS cholesterol clearance. Dysregulation of cholesterol homeostasis has been implicated in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This study presents the synthesis and evaluation of [18F]5 ([18F]CHL2310) as a novel radioligand for imaging CYP46A1 and cholesterol metabolism in the brain by positron emission tomography (PET). CHL2310 was identified as a potent inhibitor of CYP46A1 and subsequently labeled with fluorine-18 in a radiochemical yield of 13% and a high molar activity of 93 GBq/μmol. [18F]CHL2310 was evaluated in rats using in vitro autoradiography and PET imaging, demonstrating high brain uptake, heterogeneous brain distribution, favorable binding specificity, and suitable clearance kinetic profiles within the CNS. In all, [18F]5 ([18F]CHL2310) represents a promising tool for noninvasive quantification of cholesterol metabolism by imaging CYP46A1.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Ahmad F Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Kuo Zhang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Zhenkun Sun
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Zachary Zhang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Siyan Feng
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Thomas Lee Collier
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
21
|
Puljko B, Štracak M, Kalanj-Bognar S, Todorić Laidlaw I, Mlinac-Jerkovic K. Gangliosides and Cholesterol: Dual Regulators of Neuronal Membrane Framework in Autism Spectrum Disorder. Int J Mol Sci 2025; 26:1322. [PMID: 39941090 PMCID: PMC11818915 DOI: 10.3390/ijms26031322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with heterogeneous clinical presentation. Diagnosing ASD is complex, and the criteria for diagnosis, as well as the term ASD, have changed during the last decades. Diagnosis is made based on observation and accomplishment of specific diagnostic criteria, while a particular biomarker of ASD does not yet exist. However, studies universally report a disequilibrium in membrane lipid content, pointing to a unique neurolipid signature of ASD. This review sheds light on the possible role of cholesterol and gangliosides, complex membrane glycosphingolipids, in the development of ASD. In addition to maintaining membrane integrity, neuronal signaling, and synaptic plasticity, these lipids play a role in neurotransmitter release and calcium signaling. Evidence linking ASD to lipidome changes includes low cholesterol levels, unusual ganglioside levels, and unique metabolic profiles. ASD symptoms may be mitigated with therapeutic interventions targeting the lipid composition of membranes. However, restoring membrane equilibrium in the central nervous system remains a challenge. This review underscores the need for comprehensive research into lipid metabolism to uncover practical insights into ASD etiology and treatment as lipidomics emerges as a major area in ASD research.
Collapse
Affiliation(s)
- Borna Puljko
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Svjetlana Kalanj-Bognar
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Todorić Laidlaw
- Department for Forensic Psychiatry, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
23
|
Panunggal B, Yeh TH, Tsao SP, Pan CH, Shih WT, Lin YT, Faradina A, Fang CL, Huang HY, Huang SY. Treadmill intervention attenuates motor deficit with 6-OHDA-induced Parkinson's disease rat via changes in lipid profiles in brain and muscle. Aging (Albany NY) 2025; 17:232-250. [PMID: 39754647 PMCID: PMC11810068 DOI: 10.18632/aging.206181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 01/06/2025]
Abstract
One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD. PD was induced by injecting 6-hydroxy dopamine (6-OHDA) into the medial forebrain bundle (MFB). For 10 weeks, rats underwent treadmill training on a four-lane motorized treadmill. Motor function deficits were evaluated through behavioral tests. Lipidomic analysis was performed through ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS). Treadmill intervention significantly improved motor function and restored altered brain and muscle lipid profiles in PD rats. Among the lipid species identified in PD rats, brain abundance was highest for phosphatidylethanolamine (PE), correlating positively with the beam-walking scores; muscle abundance peaked with lysophosphatidylethanolamine (LysoPE), correlating positively with grip strength scores. In the brain, the levels of diacylglycerol (DG), triacylglycerol (TG), and lysophosphatidylcholine (PC) correlated positively with grip strength and rotarod scores, while only phosphatidylethanolamine (PE) linked to beam-walking scores. In the muscle, the levels of phosphatidylinositol (PI), lysophosphatidylethanolamine (PE), lysophosphatidic acid (PA), ceramide (Cer), and ganglioside were positively correlated with grip strength and rotarod scores. In conclusion, treadmill may protect the cortex, mitigating motor deficits via change lipid profiles in the brain and muscle.
Collapse
Affiliation(s)
- Binar Panunggal
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Central Java, Indonesia
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ting Shih
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Centre for Digestive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Neuroscience Research Centre, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
24
|
Ueno H, Takahashi Y, Mori S, Kitano E, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Age-related behavioural abnormalities in C57BL/6.KOR- Apoe shl mice. Transl Neurosci 2025; 16:20220363. [PMID: 40026711 PMCID: PMC11868718 DOI: 10.1515/tnsci-2022-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer's disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare,
Okayama, 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Eriko Kitano
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Tetsuji Miyazaki
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University,
Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University,
Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| |
Collapse
|
25
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
26
|
Wheless JW, Rho JM. Role of cholesterol in modulating brain hyperexcitability. Epilepsia 2025; 66:33-46. [PMID: 39487852 PMCID: PMC11742637 DOI: 10.1111/epi.18174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Cholesterol is a critical molecule in the central nervous system, and imbalances in the synthesis and metabolism of brain cholesterol can result in a range of pathologies, including those related to hyperexcitability. The impact of cholesterol on disorders of epilepsy and developmental and epileptic encephalopathies is an area of growing interest. Cholesterol cannot cross the blood-brain barrier, and thus the brain synthesizes and metabolizes its own pool of cholesterol. The primary metabolic enzyme for brain cholesterol is cholesterol 24-hydroxylase (CH24H), which metabolizes cholesterol into 24S-hydroxycholesterol (24HC). Dysregulation of CH24H and 24HC can affect neuronal excitability through a range of mechanisms. 24HC is a positive allosteric modulator of N-methyl-D-aspartate (NMDA) receptors and can increase glutamate release via tumor necrosis factor-α-dependent pathways. Increasing cholesterol metabolism can lead to dysfunction of excitatory amino acid transporter 2 and impair glutamate reuptake. Finally, overstimulation of NMDA receptors can further activate metabolism of cholesterol, leading to a vicious cycle of overactivation. All of these mechanisms increase extracellular glutamate and can lead to hyperexcitability. For these reasons, the cholesterol pathway represents a new potential mechanistic target for antiseizure medications. CH24H inhibition has been shown to decrease seizure behavior and improve survival in multiple animal models of epilepsy and could be a promising new mechanism of action for the treatment of neuronal hyperexcitability and developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- James W. Wheless
- Division of Pediatric NeurologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jong M. Rho
- Department of Neurosciences, Pediatrics and PharmacologyUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
- Rady Children's Hospital–San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
27
|
Zidan EF, El-Mezayen NS, Elrewini SH, Afify EA, Ali MA. Memantine/Rosuvastatin Therapy Abrogates Cognitive and Hippocampal Injury in an Experimental Model of Alzheimer's Disease in Rats: Role of TGF-β1/Smad Signaling Pathway and Amyloid-β Clearance. J Neuroimmune Pharmacol 2024; 20:4. [PMID: 39708240 DOI: 10.1007/s11481-024-10159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, histopathological, molecular and gene expression techniques. The upregulated TGF-β1-signaling in the untreated rats was found to be highly correlated to transporters and microRNAs governing Aβ-efflux; ABCA1/miRNA-26 and LRP1/miRNA-205 expressions, rather than RAGE/miRNA-185 controlling Aβ-influx; an effect that was opposed by the tested drugs and was found to be correlated with the abolished TGF-β1-signaling as well. Combined memantine/rosuvastatin therapy ameliorated the STZ evoked decreases in escape latency and number of crossovers in the Morris water maze test, % spontaneous alternation in the Y-maze test, and discrimination and recognition indices in the object recognition test. The evoked behavioral responses were directly related to the β-amyloid accumulation and the alteration in its clearance. Additionally, drug treatment increased brain glutathione and decreased malondialdehyde levels. These findings were histopathologically confirmed by a marked reduction of gliosis and restoration of neuronal integrity in the CA1 region of the hippocampus of the AD rats. These findings implicated that the memantine/rosuvastatin combination could offer a new therapeutic potential for AD management by abrogating the TGF-β1/p-Smad2/p21 pathway and regulating Aβ-clearance.
Collapse
Affiliation(s)
- Esraa F Zidan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Safaa H Elrewini
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Toxicology, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| |
Collapse
|
28
|
Díaz-Pérez S, DeLong JH, Rivier CA, Lee CY, Askenase MH, Zhu B, Zhang L, Brennand KJ, Martins AJ, Sansing LH. Single-nucleus RNA sequencing of human periventricular white matter in vascular dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627202. [PMID: 39713290 PMCID: PMC11661092 DOI: 10.1101/2024.12.06.627202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Vascular dementia (VaD) refers to a variety of dementias driven by cerebrovascular disease and is the second leading cause of dementia globally. VaD may be caused by ischemic strokes, intracerebral hemorrhage, and/or cerebral small vessel disease, commonly identified as white matter hyperintensities on MRI. The mechanisms underlying these white matter lesions in the periventricular brain are poorly understood. In this study we perform an extensive transcriptomic analysis on human postmortem periventricular white matter lesions in patients with VaD with the goal of identifying molecular pathways in the disease. We find increased cellular stress responses in astrocytes, oligodendrocytes, and oligodendrocyte precursor cells as well as transcriptional and translational repression in microglia in our dataset. We show that several genes identified by GWAS as being associated with white matter disease are differentially expressed in cells in VaD. Finally, we compare our dataset to an independent snRNAseq dataset of PVWM in VaD and a scRNAseq dataset on human iPSC-derived microglia exposed to oxygen glucose deprivation (OGD). We identify the increase of the heat shock protein response as a conserved feature of VaD across celltypes and show that this increase is not linked to OGD exposure. Overall, our study is the first to show that increased heat shock protein responses are a common feature of lesioned PVWM in VaD and may represent a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jonathan H. DeLong
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Cyprien A. Rivier
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Chia-Yi Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Michael H. Askenase
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Kristen J. Brennand
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Andrew J. Martins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lauren H. Sansing
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
29
|
Korade Z, Anderson AC, Sharma K, Tallman KA, Kim HYH, Porter NA, Gripp KW, Mirnics K. Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS). Mol Psychiatry 2024; 29:3942-3949. [PMID: 38844533 DOI: 10.1038/s41380-024-02622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 12/05/2024]
Abstract
A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/- genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/- HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/- heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kanika Sharma
- Mass Spectrometry Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, 19803, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
30
|
He K, Zhao Z, Zhang J, Li D, Wang S, Liu Q. Cholesterol Metabolism in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1051-1072. [PMID: 38842175 DOI: 10.1089/ars.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms. Antioxid. Redox Signal. 41, 1051-1072.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Hanin A, Comi M, Sumida TS, Hafler DA. Cholesterol promotes IFNG mRNA expression in CD4 + effector/memory cells by SGK1 activation. Life Sci Alliance 2024; 7:e202402890. [PMID: 39366761 PMCID: PMC11452476 DOI: 10.26508/lsa.202402890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
IFNγ-secreting T cells are central for the maintenance of immune surveillance within the central nervous system (CNS). It was previously reported in healthy donors that the T-cell environment in the CNS induces distinct signatures related to cytotoxic capacity, CNS trafficking, tissue adaptation, and lipid homeostasis. These findings suggested that the CNS milieu consisting predominantly of lipids mediated the metabolic conditions leading to IFNγ-secreting brain CD4 T cells. Here, we demonstrate that the supplementation of CD4+CD45RO+CXCR3+ cells with cholesterol modulates their function and increases IFNG expression. The heightened IFNG expression was mediated by the activation of the serum/glucocorticoid-regulated kinase (SGK1). Inhibition of SGK1 by a specific enzymatic inhibitor significantly reduces the expression of IFNG Our results confirm the crucial role of lipids in maintaining T-cell homeostasis and demonstrate a putative role of environmental factors to induce effector responses in CD4+ effector/memory cells. These findings offer potential avenues for further research targeting lipid pathways to modulate inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Hanin
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Loiola RA, Nguyen C, Dib S, Saint-Pol J, Dehouck L, Sevin E, Naudot M, Landry C, Pahnke J, Pot C, Gosselet F. 25-Hydroxycholesterol attenuates tumor necrosis factor alpha-induced blood-brain barrier breakdown in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167479. [PMID: 39181516 DOI: 10.1016/j.bbadis.2024.167479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Cindy Nguyen
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Shiraz Dib
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Julien Saint-Pol
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Lucie Dehouck
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Emmanuel Sevin
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Marie Naudot
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Christophe Landry
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO), Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL), University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv, IL-6997801, Israel
| | - Caroline Pot
- Lausanne University Hospital (CHUV), University of Lausanne, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, CH-1011 Lausanne, Vaud, Switzerland
| | - Fabien Gosselet
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France.
| |
Collapse
|
33
|
Horiuchi M, Watanabe S, Komine O, Takahashi E, Kaneko K, Itohara S, Shimada M, Ogi T, Yamanaka K. ALS-linked mutant TDP-43 in oligodendrocytes induces oligodendrocyte damage and exacerbates motor dysfunction in mice. Acta Neuropathol Commun 2024; 12:184. [PMID: 39605053 PMCID: PMC11603663 DOI: 10.1186/s40478-024-01893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Nuclear clearance and cytoplasmic aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and its pathogenic mechanism is mediated by both loss-of-function and gain-of-toxicity of TDP-43. However, the role of TDP-43 gain-of-toxicity in oligodendrocytes remains unclear. To investigate the impact of excess TDP-43 on oligodendrocytes, we established transgenic mice overexpressing the ALS-linked mutant TDP-43M337V in oligodendrocytes through crossbreeding with Mbp-Cre mice. Two-step crossbreeding of floxed TDP-43M337V and Mbp-Cre mice resulted in the heterozygous low-level systemic expression of TDP-43M337V with (Cre-positive) or without (Cre-negative) oligodendrocyte-specific overexpression of TDP-43M337V. Although Cre-negative mice also exhibit subtle motor dysfunction, TDP-43M337V overexpression in oligodendrocytes aggravated clasping signs and gait disturbance accompanied by myelin pallor in the corpus callosum and white matter of the lumbar spinal cord in Cre-positive mice. RNA sequencing analysis of oligodendrocyte lineage cells isolated from whole brains of 12-month-old transgenic mice revealed downregulation of myelinating oligodendrocyte marker genes and cholesterol-related genes crucial for myelination, along with marked upregulation of apoptotic pathway genes. Immunofluorescence staining showed cleaved caspase 3-positive apoptotic oligodendrocytes surrounded by activated microglia and astrocytes in aged transgenic mice. Collectively, our findings demonstrate that an excess amount of ALS-linked mutant TDP-43 expression in oligodendrocytes exacerbates motor dysfunction in mice, likely through oligodendrocyte dysfunction and neuroinflammation. Therefore, targeting oligodendrocyte protection, particularly through ameliorating TDP-43 pathology, could represent a potential therapeutic approach for ALS.
Collapse
Affiliation(s)
- Mai Horiuchi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kumi Kaneko
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan.
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Aichi, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan.
| |
Collapse
|
34
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
35
|
Yalcin A, Turunc E, Kaplan MM, Uyanikgil Y, Erzurumlu Y, Gavini E, Kanit L. Potential neuroprotective effects of 2-hydroxypropyl-β cyclodextrin against amyloid β (1-42)-induced neurotoxicity on the rat hippocampus. Drug Chem Toxicol 2024; 47:1185-1192. [PMID: 38726980 DOI: 10.1080/01480545.2024.2349951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 11/21/2024]
Abstract
The neurodegenerative mechanisms of Alzheimer's disease (AD) are not fully understood, but it is believed that amyloid beta (Aβ) peptide causes oxidative stress, neuroinflammation, and disrupts metabotropic glutamate receptor 5 (mGluR5) signaling by interacting with cholesterol and caveolin-1 (Cav-1) in pathogenic lipid rafts. This study examined the effect of 2-hydroxypropyl-β-cyclodextrin (HP-CD) on cholesterol, oxidative stress (total oxidant status), neuroinflammation (TNF-α), and mGluR5 signaling molecules such as PKCβ1, PKCβ2, ERK1/2, CREB, BDNF, and NGF in Aβ (1-42)-induced neurotoxicity. The Sprague-Dawley rats were divided into four groups: control (saline), Aβ (1-42), HP-CD (100 mg/kg), and Aβ (1-42) + HP-CD (100 mg/kg). All groups received bilateral stereotaxic injections of Aβ (1-42) or saline into the hippocampus. After surgery, HP-CD was administered intraperitoneally (ip) for 7 days. Cholesterol, TNF-α, and TOS levels were measured in synaptosomes isolated from hippocampus tissue using spectrophotometry, fluorometry, and enzyme immunoassay, respectively. The gene expressions of Cav-1, mGluR5, PKCβ1, PKCβ2, ERK1/2, CREB, BDNF, and NGF in hippocampus tissue were evaluated using reverse transcription PCR after real-time PCR analysis. Treatment with Aβ (1-42) significantly elevated cholesterol, TOS, TNF-α, Cav-1, PKCβ2, and ERK1/2 levels. Additionally, mGluR5, CREB, and BDNF levels were shown to be lowered. HP-CD reduced cholesterol, TOS, and TNF-α levels while increasing mGluR5, CREB, and BDNF in response to Aβ (1-42) treatment. These findings indicate that HP-CD may have neuroprotective activity due to the decreased levels of cholesterol, oxidative stress, and neuroinflammation, as well as upregulated levels of mGluR5, CREB, and BDNF.
Collapse
Affiliation(s)
- Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Ezgi Turunc
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
- Neuroscience Research Center, Izmir Katip Celebi University, Izmir, Türkiye
| | - Mehmet Mahsum Kaplan
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Lutfiye Kanit
- Department of Physiology, Faculty of Medicine, Ege University, Izmir, Türkiye
| |
Collapse
|
36
|
Huynh TN, Havrda MC, Zanazzi GJ, Chang CCY, Chang TY. Inhibiting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Myelin Debris-Treated Microglial Cell Lines Activates the Gene Expression of Cholesterol Efflux Transporter ABCA1. Biomolecules 2024; 14:1301. [PMID: 39456234 PMCID: PMC11505751 DOI: 10.3390/biom14101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Aging is the major risk factor for Alzheimer's disease (AD). In the aged brain, myelin debris accumulates and is cleared by microglia. Phagocytosed myelin debris increases neutral lipid droplet content in microglia. Neutral lipids include cholesteryl esters (CE) and triacylglycerol (TAG). To examine the effects of myelin debris on neutral lipid content in microglia, we added myelin debris to human HMC3 and mouse N9 cells. The results obtained when using 3H-oleate as a precursor in intact cells reveal that myelin debris significantly increases the biosynthesis of CE but not TAG. Mass analyses have shown that myelin debris increases both CE and TAG. The increase in CE biosynthesis was abolished using inhibitors of the cholesterol storage enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1/SOAT1). ACAT1 inhibitors are promising drug candidates for AD treatment. In myelin debris-loaded microglia, treatment with two different ACAT1 inhibitors, K604 and F12511, increased the mRNA and protein content of ATP-binding cassette subfamily A1 (ABCA1), a protein that is located at the plasma membrane and which controls cellular cholesterol disposal. The effect of the ACAT1 inhibitor on ABCA1 was abolished by preincubating cells with the liver X receptor (LXR) antagonist GSK2033. We conclude that ACAT1 inhibitors prevent the accumulation of cholesterol and CE in myelin debris-treated microglia by activating ABCA1 gene expression via the LXR pathway.
Collapse
Affiliation(s)
- Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Matthew C. Havrda
- Department of Molecular and System Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
37
|
Allende LG, Natalí L, Cragnolini AB, Bollo M, Musri MM, de Mendoza D, Martín MG. Lysosomal cholesterol accumulation in aged astrocytes impairs cholesterol delivery to neurons and can be rescued by cannabinoids. Glia 2024; 72:1746-1765. [PMID: 38856177 DOI: 10.1002/glia.24580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.
Collapse
Affiliation(s)
- Leandro G Allende
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lautaro Natalí
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea B Cragnolini
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina M Musri
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauricio G Martín
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
38
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
39
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|
40
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Yang Y, Ye H, Yan H, Zhang C, Li W, Li Z, Jing H, Li X, Liang J, Xie G, Liang W, Ou Y, Li X, Guo W. Potential correlations between asymmetric disruption of functional connectivity and metabolism in major depressive disorder. Brain Res 2024; 1838:148977. [PMID: 38705556 DOI: 10.1016/j.brainres.2024.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Previous research has suggested a connection between major depressive disorder (MDD) and certain comorbidities, including gastrointestinal issues, thyroid dysfunctions, and glycolipid metabolism abnormalities. However, the relationships between these factors and asymmetrical alterations in functional connectivity (FC) in adults with MDD remain unclear. METHOD We conducted a study on a cohort of 42 MDD patients and 42 healthy controls (HCs). Participants underwent comprehensive clinical assessments, including evaluations of blood lipids and thyroid hormone levels, as well as resting-state functional magnetic resonance imaging (Rs-fMRI) scans. Data analysis involved correlation analysis to compute the parameter of asymmetry (PAS) for the entire brain's functional connectome. We then examined the interrelationships between abnormal PAS regions in the brain, thyroid hormone levels, and blood lipid levels. RESULTS The third-generation ultra-sensitive thyroid stimulating hormone (TSH3UL) level was found to be significantly lower in MDD patients compared to HCs. The PAS score of the left inferior frontal gyrus (IFG) decreased, while the bilateral posterior cingulate cortex (Bi-PCC) PAS increased in MDD patients relative to HCs. Notably, the PAS score of the left IFG negatively correlated with both TSH and total cholesterol (CHOL) levels. However, these correlations lose significance after the Bonferroni correction. CONCLUSION MDD patients demonstrated abnormal asymmetry in resting-state FC (Rs-FC) within the fronto-limbic system, which may be associated with CHOL and thyroid hormone levels.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haibiao Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenxuan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huang Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
42
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
43
|
Shin KC, Ali Moussa HY, Park Y. Cholesterol imbalance and neurotransmission defects in neurodegeneration. Exp Mol Med 2024; 56:1685-1690. [PMID: 39085348 PMCID: PMC11371908 DOI: 10.1038/s12276-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
44
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Rahman MM, Islam A, Mamun MA, Afroz MS, Nabi MM, Sakamoto T, Sato T, Kahyo T, Takahashi Y, Okino A, Setou M. Low-Temperature Plasma Pretreatment Enhanced Cholesterol Detection in Brain by Desorption Electrospray Ionization-Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1227-1236. [PMID: 38778699 DOI: 10.1021/jasms.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.
Collapse
Affiliation(s)
- Md Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mst Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md Mahamodun Nabi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Quantum Imaging Laboratory, International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
46
|
Mesa H, Zhang EY, Wang Y, Zhang Q. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. J Cell Physiol 2024; 239:e30999. [PMID: 36966431 DOI: 10.1002/jcp.30999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Elaine Y Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Brentwood High School, Brentwood, Tennessee, USA
| | - Yingcai Wang
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Qi Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
47
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
48
|
Hunt AL, Khan I, Wu AML, Makohon-Moore SC, Hood BL, Conrads KA, Abulez T, Ogata J, Mitchell D, Gist G, Oliver J, Wei D, Chung MA, Rahman S, Bateman NW, Zhang W, Conrads TP, Steeg PS. The murine metastatic microenvironment of experimental brain metastases of breast cancer differs by host age in vivo: a proteomic study. Clin Exp Metastasis 2024; 41:229-249. [PMID: 37917186 DOI: 10.1007/s10585-023-10233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Alex M L Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Zymeworks Inc, Vancouver, BC, V5T 1G4, Canada
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Samiur Rahman
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Wei Zhang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
50
|
Jalalypour F, Howard RJ, Lindahl E. Allosteric Cholesterol Site in Glycine Receptors Characterized through Molecular Simulations. J Phys Chem B 2024; 128:4996-5007. [PMID: 38747451 PMCID: PMC11129184 DOI: 10.1021/acs.jpcb.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.
Collapse
Affiliation(s)
- Farzaneh Jalalypour
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Rebecca J. Howard
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Erik Lindahl
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| |
Collapse
|