1
|
Alotaibi G, Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur J Pharmacol 2025; 998:177509. [PMID: 40089262 DOI: 10.1016/j.ejphar.2025.177509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Jahanbani A, Rezazadeh D, Sajadi E, Haj Hosseini M, Ketabchi D, EskandariRoozbahani N. Human adaptation response to obesity. Int J Obes (Lond) 2025:10.1038/s41366-025-01791-9. [PMID: 40287541 DOI: 10.1038/s41366-025-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
This article examines the human body's adaptive responses to obesity from biological, behavioral, and evolutionary perspectives. It explores how ancient survival mechanisms, such as fat storage during scarcity, have persisted but become maladaptive in modern contexts of food abundance and sedentary lifestyles. Using the Thrifty Gene Hypothesis and General Adaptation Syndrome (GAS), the study investigates how chronic stress and genetic predispositions contribute to obesity. Chronic stress, as described in GAS, is linked to obesity through mechanisms like prolonged cortisol elevation, which promotes fat storage, particularly in the abdominal region, and disrupts hunger and satiety regulation. The article also explores the possibility that contemporary chronic stress may cause the body to buffer stressful conditions through fat accumulation. While the Thrifty Gene Hypothesis suggests that genetic traits evolved to optimize energy storage during scarcity, contributing to obesity in modern environments, it remains controversial. Critics argue that it oversimplifies obesity's causes, such as lifestyle and environmental factors. Although genetic variations influencing obesity susceptibility continue to evolve, the physiological mechanisms of fat storage and stress adaptation have remained largely unchanged since ancient times.
Collapse
Affiliation(s)
- Alireza Jahanbani
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Sajadi
- Department of Basic Science, Faculty of veterinary medicine, Shiraz University, Shiraz, Iran
| | - Mahdiyeh Haj Hosseini
- Department of Physical Education and Sport Sciences, National University of Skills (NS), Tehran, Iran
| | - Deniz Ketabchi
- School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Tanaka M, Sato T, Gohda T, Kamei N, Murakoshi M, Ishiwata E, Endo K, Kawaharata W, Aida H, Nakata K, Akiyama Y, Kubota M, Sanuki M, Suzuki T, Suzuki Y, Furuhashi M. Urinary fatty acid-binding protein 4 is a promising biomarker for glomerular damage in patients with diabetes mellitus. J Diabetes Investig 2025; 16:670-679. [PMID: 39723798 PMCID: PMC11970305 DOI: 10.1111/jdi.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS/INTRODUCTION Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined. MATERIALS AND METHODS Immunohistological analyses of FABP4 and FABP1 (liver-type FABP), an established biomarker for impaired proximal tubules, were performed in the kidneys of patients with DKD and nonobese diabetic mice (KK-Ta/Akita mice). The associations between U-FABP4 and U-FABP1 with kidney function and metabolic indices were also investigated in patients with type 1 diabetes (n = 57, mean age: 61 years) and patients with type 2 diabetes (n = 608, mean age: 65 years). RESULTS In both patients with diabetes and diabetic mice, FABP4 was expressed in injured glomeruli with increased markers of endoplasmic reticulum stress in addition to peritubular capillaries, whereas FABP1 was mainly expressed in proximal tubules. Levels of U-FABP4 and U-FABP1 were independently associated with each other, and both levels were independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) after adjustment of age, sex, type of diabetes, duration of diabetes, and systolic blood pressure in patients with diabetes. CONCLUSIONS Urinary level of FABP4 derived from injured glomeruli with increased endoplasmic reticulum stress is independently associated with eGFR and UACR, suggesting a promising biomarker for glomerular damage in patients with diabetes.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Tanaka Medical ClinicYoichiJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Tomohito Gohda
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Nozomu Kamei
- Department of Endocrinology and MetabolismHiroshima Red Cross Hospital & Atomic‐bomb Survivors HospitalHiroshimaJapan
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Maki Murakoshi
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Erika Ishiwata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hiroki Aida
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yukinori Akiyama
- Department of NeurosurgerySapporo Medical University School of MedicineSapporoJapan
| | - Mitsunobu Kubota
- Department of Endocrinology and DiabetologyNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Michiyoshi Sanuki
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Toru Suzuki
- Natori Toru Internal Medicine and Diabetes ClinicNatoriJapan
| | - Yusuke Suzuki
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
4
|
Renzi G, Vlassakev I, Hansen M, Higos R, Lecoutre S, Elmastas M, Hodek O, Moritz T, Alaeddine LM, Frendo-Cumbo S, Dahlman I, Kerr A, Maqdasy S, Mejhert N, Rydén M. Epigenetic suppression of creatine kinase B in adipocytes links endoplasmic reticulum stress to obesity-associated inflammation. Mol Metab 2025; 92:102082. [PMID: 39675471 PMCID: PMC11731883 DOI: 10.1016/j.molmet.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In white adipose tissue, disturbed creatine metabolism through reduced creatine kinase B (CKB) transcription contributes to obesity-related inflammation. However, the mechanisms regulating CKB expression in human white adipocytes remain unclear. By screening conditions perturbed in obesity, we identified endoplasmic reticulum (ER) stress as a key suppressor of CKB transcription across multiple cell types. Through follow-up studies, we found that ER stress through the IRE1-XBP1s pathway, promotes CKB promoter methylation via the methyltransferase DNMT3A. This epigenetic change represses CKB transcription, shifting metabolism towards glycolysis and increasing the production of the pro-inflammatory chemokine CCL2. We validated our findings in vivo, demonstrating that individuals living with obesity show an inverse relationship between CKB expression and promoter methylation in white adipocytes, along with elevated CCL2 secretion. Overall, our study uncovers a regulatory axis where ER stress drives inflammation in obesity by reducing CKB abundance, and consequently altering the bioenergetic state of the cell.
Collapse
Affiliation(s)
- Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Mattias Hansen
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France
| | - Merve Elmastas
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn M Alaeddine
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| |
Collapse
|
5
|
Congur I, Mingrone G, Guan K. Targeting endoplasmic reticulum stress as a potential therapeutic strategy for diabetic cardiomyopathy. Metabolism 2025; 162:156062. [PMID: 39515414 DOI: 10.1016/j.metabol.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis. In obesity and type 2 diabetes mellitus (T2DM), accumulating data indicate that persistent ER stress due to maladaptive UPR interacts with insulin/leptin signaling, which may be the potential and central mechanistic link between obesity-/T2DM-induced metabolic dysregulation (chronic hyperglycemia, dyslipidemia and lipotoxicity in cardiomyocytes), insulin/leptin resistance and the development of diabetic cardiomyopathy (DiabCM). Meanwhile, these pathological conditions further exacerbate ER stress. However, their interrelationships and the underlying molecular mechanisms are not fully understood. A deeper understanding of ER stress-mediated pathways in DiabCM is needed to develop novel therapeutic strategies. The aim of this review is to discuss the crosstalk between ER stress and leptin/insulin signaling and their involvement in the development of DiabCM focusing on mitochondria-associated ER membranes and chronic inflammation. We also present the current direction of drug development and important considerations for translational research into targeting ER stress for the treatment of DiabCM.
Collapse
Affiliation(s)
- Irem Congur
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom; Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany.
| |
Collapse
|
6
|
Yuan S, Zhao E. Recent advances of lipid droplet-targeted AIE-active materials for imaging, diagnosis and therapy. Biosens Bioelectron 2025; 267:116802. [PMID: 39332250 DOI: 10.1016/j.bios.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Lipid droplets (LDs) are cellular organelles specialized in the storage and regulating the release of lipids critical for energy metabolism. As investigation on LDs deepens, the complex biological functions of LDs are revealed and their relationships with various diseases such as atherosclerosis, fatty liver, obesity, and cancer are uncovered. Fluorescence-based techniques with simple operations, visible results and high non-invasiveness are ideal tools for investigating LD-related biological processes and diseases. Materials with aggregation-induced emission (AIE) characteristics have emerged as promising candidates for investigating LDs due to their high signal-to-noise ratio (S/N), strong photostability, and large Stokes shift. This review discusses the principles and advantages of LD-targeting AIE probes for imaging LDs, diagnosis of LD-associated diseases including atherosclerotic plaques, liver diseases, acute kidney diseases and cancer, therapies with LD-targeting AIE-active photosensitizers and other relevant fields in the past five years. Through typical examples, we illustrate the status of investigating LD-related imaging, diagnosis of diseases and therapy with AIE materials. This review is expected to attract attentions from scientists with different research backgrounds and contribute to the further development of LD-targeting AIE materials.
Collapse
Affiliation(s)
- Sisi Yuan
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
7
|
Köröskényi K, Sós L, Rostás M, Papp AB, Kókai E, Garabuczi É, Deák D, Beke L, Méhes G, Szondy Z. Loss of MER Tyrosine Kinase Attenuates Adipocyte Hypertrophy and Leads to Enhanced Thermogenesis in Mice Exposed to High-Fat Diet. Cells 2024; 13:1902. [PMID: 39594650 PMCID: PMC11593050 DOI: 10.3390/cells13221902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is characterized by low-grade inflammation that originates predominantly from the expanding visceral adipose tissue, in which adipocytes respond to lipid overload with hypertrophy, and consequently die by apoptosis. Recruited adipose tissue macrophages (ATMs) take up the excess lipids and remove the dead cells; however, long-term exposure to high concentrations of lipids alters their phenotype to M1-like ATMs that produce pro-inflammatory cytokines and resistin leading to insulin resistance and other obesity-related pathologies. Mer tyrosine kinase is expressed by macrophages and by being an efferocytosis receptor, and by suppressing inflammation, we hypothesized that it might play a protective role against obesity. To our surprise, however, the loss of Mer protected mice against high-fat diet (HFD)-induced obesity. We report in this paper that Mer is also expressed by adipocytes of both white and brown adipose tissues, and while its activity facilitates adipocyte lipid storage both in vitro and in vivo in mice exposed to HFD, it simultaneously attenuates thermogenesis in the brown adipose tissue contributing to its 'whitening'. Our data indicate that Mer is one of the adipocyte tyrosine kinase receptors, the activity of which contributes to the metabolic decision about the fate of excess lipids favoring their storage within the body.
Collapse
Affiliation(s)
- Krisztina Köröskényi
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Sós
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (M.R.); (A.B.P.)
| | - Melinda Rostás
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (M.R.); (A.B.P.)
| | - Albert Bálint Papp
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (M.R.); (A.B.P.)
| | - Endre Kókai
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Garabuczi
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Dávid Deák
- Laboratory Animal Facility, Life Science Building, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.B.); (G.M.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.B.); (G.M.)
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Abushamat LA, Shah PA, Eckel RH, Harrison SA, Barb D. The Emerging Role of Glucagon-Like Peptide-1 Receptor Agonists for the Treatment of Metabolic Dysfunction-Associated Steatohepatitis. Clin Gastroenterol Hepatol 2024; 22:1565-1574. [PMID: 38367743 DOI: 10.1016/j.cgh.2024.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects 1 in 3-4 adult individuals and can progress to metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Insulin resistance plays a central role in MASLD/MASH pathophysiology with higher rates of MASLD (2 in 3) and MASH with fibrosis (1 in 5) in adults with obesity and diabetes. This review summarizes the role of glucagon-like peptide-1 receptor agonists in treating MASLD/MASH. Although not approved by the Food and Drug Administration for the treatment of MASLD, this class of medication is available to treat obesity and type 2 diabetes and has been shown to reverse steatohepatitis, reduce cardiovascular risk, and is safe to use across the spectrum of MASLD with or without fibrosis.
Collapse
Affiliation(s)
- Layla A Abushamat
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Pir Ahmad Shah
- Gastroenterology and Hepatology, Creighton University, Phoenix, Arizona
| | - Robert H Eckel
- Division of Endocrinology, Metabolism & Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Diana Barb
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida.
| |
Collapse
|
9
|
Yang H, Ou-Yang K, He Y, Wang X, Wang L, Yang Q, Li D, Li L. Nitrite induces hepatic glucose and lipid metabolism disorders in zebrafish through mitochondrial dysfunction and ERs response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107015. [PMID: 38996482 DOI: 10.1016/j.aquatox.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.
Collapse
Affiliation(s)
- Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Igwe JK, Alaribe U. Cannabis use associated with lower mortality among hospitalized Covid-19 patients using the national inpatient sample: an epidemiological study. J Cannabis Res 2024; 6:18. [PMID: 38582889 PMCID: PMC10998318 DOI: 10.1186/s42238-024-00228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Prior reports indicate that modulation of the endocannabinoid system (ECS) may have a protective benefit for Covid-19 patients. However, associations between cannabis use (CU) or CU not in remission (active cannabis use (ACU)), and Covid-19-related outcomes among hospitalized patients is unknown. METHODS In this multicenter retrospective observational cohort analysis of adults (≥ 18 years-old) identified from 2020 National Inpatient Sample database, we utilize multivariable regression analyses and propensity score matching analysis (PSM) to analyze trends and outcomes among Covid-19-related hospitalizations with CU and without CU (N-CU) for primary outcome of interest: Covid-19-related mortality; and secondary outcomes: Covid-19-related hospitalization, mechanical ventilation (MV), and acute pulmonary embolism (PE) compared to all-cause admissions; for CU vs N-CU; and for ACU vs N-ACU. RESULTS There were 1,698,560 Covid-19-related hospitalizations which were associated with higher mortality (13.44% vs 2.53%, p ≤ 0.001) and worse secondary outcomes generally. Among all-cause hospitalizations, 1.56% of CU and 6.29% of N-CU were hospitalized with Covid-19 (p ≤ 0.001). ACU was associated with lower odds of MV, PE, and death among the Covid-19 population. On PSM, ACU(N(unweighted) = 2,382) was associated with 83.97% lower odds of death compared to others(N(unweighted) = 282,085) (2.77% vs 3.95%, respectively; aOR:0.16, [0.10-0.25], p ≤ 0.001). CONCLUSIONS These findings suggest that the ECS may represent a viable target for modulation of Covid-19. Additional studies are needed to further explore these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Ugo Alaribe
- Caribbean Medical University School of Medicine, 5600 N River Rd Suite 800, Rosemont, IL, 60018, USA
| |
Collapse
|
11
|
Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol 2024; 15:1381227. [PMID: 38638434 PMCID: PMC11024263 DOI: 10.3389/fimmu.2024.1381227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Marin AG, Filipescu A, Petca A. The Role of Obesity in the Etiology and Carcinogenesis of Endometrial Cancer. Cureus 2024; 16:e59219. [PMID: 38807790 PMCID: PMC11132319 DOI: 10.7759/cureus.59219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/30/2024] Open
Abstract
Endometrial cancer, the most common gynecological malignancy, presents a complex public health challenge. While its incidence rises alongside the obesity epidemic, a well-established risk factor for endometrial cancer development, the impact of obesity on survival after diagnosis remains unclear. This review aims to explore the complex relationship between obesity and endometrial cancer's development and survival rates, examining evidence from both epidemiological and clinical studies. It also aims to explore the proposed biological mechanisms by which excess adipose tissue promotes carcinogenesis and contributes to endometrial cancer progression and its negative effects on treatment outcomes. Furthermore, we analyzed the impact of body mass index, inflammation, hormonal imbalances, and their potential effects on endometrial cancer survival rates.
Collapse
Affiliation(s)
| | - Alexandru Filipescu
- Obstetrics and Gynaecology, Elias Emergency University Hospital, Bucharest, ROU
| | - Aida Petca
- Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Obstetrics and Gynaecology, Elias Emergency University Hospital, Bucharest, ROU
| |
Collapse
|
13
|
Nakagawa S, Fukui-Miyazaki A, Yoshida T, Ishii Y, Murata E, Taniguchi K, Ishizu A, Kasahara M, Tomaru U. Decreased Proteasomal Function Exacerbates Endoplasmic Reticulum Stress-Induced Chronic Inflammation in Obese Adipose Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00076-2. [PMID: 38423355 DOI: 10.1016/j.ajpath.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Low-grade chronic inflammation contributes to both aging and the pathogenesis of age-related diseases. White adipose tissue (WAT) in obese individuals exhibits chronic inflammation, which is associated with obesity-related disorders. Aging exacerbates obesity-related inflammation in WAT; however, the molecular mechanisms underlying chronic inflammation and its exacerbation by aging remain unclear. Age-related decline in activity of the proteasome, a multisubunit proteolytic complex, has been implicated in age-related diseases. This study employed a mouse model with decreased proteasomal function that exhibits age-related phenotypes to investigate the impact of adipocyte senescence on WAT inflammation. Transgenic mice expressing proteasomal subunit β5t with weak chymotrypsin-like activity experience reduced lifespan and develop age-related phenotypes. Mice fed with a high-fat diet and experiencing proteasomal dysfunction exhibited increased WAT inflammation, increased infiltration of proinflammatory M1-like macrophages, and increased proinflammatory adipocytokine-like monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and tumor necrosis factor-α, which are all associated with activation of endoplasmic reticulum (ER) stress-related pathways. Impaired proteasomal activity also activated ER stress-related molecules and induced expression of proinflammatory adipocytokines in adipocyte-like cells differentiated from 3T3-L1 cells. Collective evidence suggests that impaired proteasomal activity increases ER stress and that subsequent inflammatory pathways play pivotal roles in WAT inflammation. Because proteasomal function declines with age, age-related proteasome impairment may be involved in obesity-related inflammation among elderly individuals.
Collapse
Affiliation(s)
- Shimpei Nakagawa
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Fukui-Miyazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takuma Yoshida
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasushi Ishii
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Eri Murata
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Fundamental Nursing, School of Nursing, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
14
|
Wi D, Park CY. 1,25-dihydroxyvitamin D 3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes. Nutr Res Pract 2024; 18:1-18. [PMID: 38352211 PMCID: PMC10861344 DOI: 10.4162/nrp.2024.18.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.
Collapse
Affiliation(s)
- Dain Wi
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| | - Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| |
Collapse
|
15
|
Jha D, Prajapati SK, Deb PK, Jaiswal M, Mazumder PM. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 2024; 51:209. [PMID: 38270737 DOI: 10.1007/s11033-023-08962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Santosh Kumar Prajapati
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohit Jaiswal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
16
|
Lu Y, Luo Z, Zhou H, Shi Y, Zhu Y, Guo X, Huang J, Zhang J, Liu X, Wang S, Shan X, Yin H, Du Y, Li Q, You J, Luo L. A nanoemulsion targeting adipose hypertrophy and hyperplasia shows anti-obesity efficiency in female mice. Nat Commun 2024; 15:72. [PMID: 38167723 PMCID: PMC10761889 DOI: 10.1038/s41467-023-44416-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity often leads to severe medical complications. However, existing FDA-approved medications to combat obesity have limited effectiveness in reducing adiposity and often cause side effects. These medications primarily act on the central nervous system or disrupt fat absorption through the gastrointestinal tract. Adipose tissue enlargement involves adipose hyperplasia and hypertrophy, both of which correlate with increased reactive oxygen species (ROS) and hyperactivated X-box binding protein 1 (XBP1) in (pre)adipocytes. In this study, we demonstrate that KT-NE, a nanoemulsion loaded with the XBP1 inhibitor KIRA6 and α-Tocopherol, simultaneously alleviates aberrant endoplasmic reticulum stress and oxidative stress in (pre)adipocytes. As a result, KT-NE significantly inhibits abnormal adipogenic differentiation, reduces lipid droplet accumulation, restricts lipid droplet transfer, impedes obesity progression, and lowers the risk of obesity-associated non-alcoholic fatty liver disease in female mice with obesity. Furthermore, diverse administration routes of KT-NE impact its in vivo biodistribution and contribute to localized and/or systemic anti-obesity effectiveness.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
17
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
18
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
19
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
20
|
Zheng Y, Wang S, Wu J, Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 2023; 21:510. [PMID: 37507803 PMCID: PMC10375703 DOI: 10.1186/s12967-023-04367-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Collapse
Affiliation(s)
- Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shiting Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
21
|
Panico G, Fasciolo G, Migliaccio V, De Matteis R, Lionetti L, Napolitano G, Agnisola C, Venditti P, Lombardi A. 1,3-Butanediol Administration Increases β-Hydroxybutyrate Plasma Levels and Affects Redox Homeostasis, Endoplasmic Reticulum Stress, and Adipokine Production in Rat Gonadal Adipose Tissue. Antioxidants (Basel) 2023; 12:1471. [PMID: 37508009 PMCID: PMC10376816 DOI: 10.3390/antiox12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ketone bodies (KBs) are an alternative energy source under starvation and play multiple roles as signaling molecules regulating energy and metabolic homeostasis. The mechanism by which KBs influence visceral white adipose tissue physiology is only partially known, and our study aimed to shed light on the effects they exert on such tissue. To this aim, we administered 1,3-butanediol (BD) to rats since it rapidly enhances β-hydroxybutyrate serum levels, and we evaluated the effect it induces within 3 h or after 14 days of treatment. After 14 days of treatment, rats showed a decrease in body weight gain, energy intake, gonadal-WAT (gWAT) weight, and adipocyte size compared to the control. BD exerted a pronounced antioxidant effect and directed redox homeostasis toward reductive stress, already evident within 3 h after its administration. BD lowered tissue ROS levels and oxidative damage to lipids and proteins and enhanced tissue soluble and enzymatic antioxidant capacity as well as nuclear erythroid factor-2 protein levels. BD also reduced specific mitochondrial maximal oxidative capacity and induced endoplasmic reticulum stress as well as interrelated processes, leading to changes in the level of adipokines/cytokines involved in inflammation, macrophage infiltration into gWAT, adipocyte differentiation, and lipolysis.
Collapse
Affiliation(s)
- Giuliana Panico
- Department of Biology, University of Naples Federico II, Complesso Monte Sant'Angelo Via Cintia 26, 80126 Napoli, Italy
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Complesso Monte Sant'Angelo Via Cintia 26, 80126 Napoli, Italy
| | - Vincenzo Migliaccio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gaetana Napolitano
- Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Complesso Monte Sant'Angelo Via Cintia 26, 80126 Napoli, Italy
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Complesso Monte Sant'Angelo Via Cintia 26, 80126 Napoli, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Complesso Monte Sant'Angelo Via Cintia 26, 80126 Napoli, Italy
| |
Collapse
|
22
|
d'Aiello A, Bonanni A, Vinci R, Pedicino D, Severino A, De Vita A, Filomia S, Brecciaroli M, Liuzzo G. Meta-Inflammation and New Anti-Diabetic Drugs: A New Chance to Knock Down Residual Cardiovascular Risk. Int J Mol Sci 2023; 24:ijms24108643. [PMID: 37239990 DOI: 10.3390/ijms24108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Type 2 diabetes mellitus (DM) represents, with its macro and microvascular complications, one of the most critical healthcare issues for the next decades. Remarkably, in the context of regulatory approval trials, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) proved a reduced incidence of major adverse cardiovascular events (MACEs), i.e., cardiovascular death and heart failure (HF) hospitalizations. The cardioprotective abilities of these new anti-diabetic drugs seem to run beyond mere glycemic control, and a growing body of evidence disclosed a wide range of pleiotropic effects. The connection between diabetes and meta-inflammation seems to be the key to understanding how to knock down residual cardiovascular risk, especially in this high-risk population. The aim of this review is to explore the link between meta-inflammation and diabetes, the role of newer glucose-lowering medications in this field, and the possible connection with their unexpected cardiovascular benefits.
Collapse
Affiliation(s)
- Alessia d'Aiello
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Anna Severino
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Antonio De Vita
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Simone Filomia
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Mattia Brecciaroli
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
23
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
24
|
Yang X, Sun L, Feng D, Deng Y, Liao W. A Lipidomic Study: Nobiletin ameliorates hepatic steatosis through regulation of lipid alternation. J Nutr Biochem 2023; 118:109353. [PMID: 37116815 DOI: 10.1016/j.jnutbio.2023.109353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
Hepatic lipidome has been given emphasis for years since hepatic steatosis is the most remarkable character of nonalcoholic fatty liver diseases, an increasingly serious health issue worldwide. Nobiletin (NOB), one of the citrus flavonoids, exerted outstanding effect on lipid metabolism disorder. However, the underlying mechanism of NOB exerting effect on hepatic lipid alternation remains unclear. In this study, the animal model was built by feeding APOE-/- mice with high fat diet (HFD). The results of Oil Red O-stained liver section and the biochemical assay of lipid parameters confirmed the protective effect of NOB on hepatic steatosis and global lipid metabolism disorder in APOE-/- mice. The hepatic lipidomic study revealed a total of 958 lipids significantly altered by HFD and a total of 86, 116, 212 lipid metabolites changed by L-NOB (50 mg/kg/d NOB), M-NOB (100 mg/kg/d NOB) and H-NOB (200 mg/kg/d NOB) respectively. In the further screening analysis, an amount of 60 lipids were identified as the potential lipid markers of NOB treatment, most of which belonged to glycerophospholipids lipid categories and exhibited obvious correlation with each other and the lipid parameters related to hepatic steatosis. Taken together, our data demonstrated that glycerophospholipids metabolism played an indispensable role in the progression of hepatic steatosis and the protective effect of NOB. Besides, the modulation towards genes involved in lipid synthesis were observed after NOB administration in this study. These finding illustrated the anti-hepatic steatosis effect of NOB based on altering hepatic lipidome, particularly the glycerophospholipids metabolism, and provided a new insight in the pathogenesis of hepatic steatosis.
Collapse
Affiliation(s)
- Xushan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Park CY, Kim D, Seo MK, Kim J, Choe H, Kim JH, Hong JP, Lee YJ, Heo Y, Kim HJ, Park HS, Jang YJ. Dysregulation of Lipid Droplet Protein Expression in Adipose Tissues and Association with Metabolic Risk Factors in Adult Females with Obesity and Type 2 Diabetes. J Nutr 2023; 153:691-702. [PMID: 36931749 DOI: 10.1016/j.tjnut.2023.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adipocyte dysregulation of lipid droplet (LD) metabolism caused by altered expression of LD proteins contributes to obesity-related metabolic diseases. OBJECTIVES We aimed to investigate whether expression levels of PLIN1, CIDEA, and CIDEC were altered in adipose tissues of women with obesity and type 2 diabetes and whether their alterations were associated with metabolic risk factors. METHODS Normal-weight (NW; 18.5 kg/m2 < BMI ≤ 25 kg/m2; n = 43), nondiabetic obese (OB; BMI > 30 kg/m2; n = 38), and diabetic obese (OB/DM; BMI > 30 kg/m2, fasting glucose ≥ 126 mg/dL, HbA1c ≥ 6.5%; n = 22) women were recruited. Metabolic parameters were measured, and expressions of PLIN1, CIDEA, CIDEC, and obesity-related genes were quantified in abdominal subcutaneous (SAT) and visceral adipose tissues (VAT). Effects of proinflammatory cytokines, endoplasmic reticulum (ER) stress inducers, and metabolic improvement agents on LD protein gene expressions were investigated in human adipocytes. RESULTS PLIN1, CIDEA, and CIDEC expressions were lower in SAT and higher in VAT in OB subjects relative to NW subjects; however, they were suppressed in both fat depots in OB/DM subjects relative to OB (P < 0.05). Across the entire cohort, whereas VAT PLIN1 (r = 0.349) and CIDEC expressions (r = 0.282) were positively associated with BMI (P < 0.05), SAT PLIN1 (r = -0.390) and CIDEA expressions (r = -0.565) were inversely associated. After adjustment for BMI, some or all of the adipose LD protein gene expressions were negatively associated with fasting glucose (r = -0.259 or higher) and triglyceride levels (r = -0.284 or higher) and positively associated with UCP1 expression (r = 0.353 or higher) (P < 0.05). In adipocytes, LD protein gene expressions were 55-70% downregulated by increased proinflammatory cytokines and ER stress but 2-4-fold upregulated by the metabolic improvement agents exendin-4 and dapagliflozin (P < 0.05). CONCLUSIONS The findings suggest that reduction of adipose LD protein expression is involved in the pathogenesis of metabolic disorders in women with obesity and type 2 diabetes and that increasing LD protein expression in adipocytes could control development of metabolic disorders.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Donguk Kim
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Kyeong Seo
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jimin Kim
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Brexogen Research Center, Brexogen Inc., Seoul, Republic of Korea
| | - Han Choe
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Hyeok Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Pio Hong
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon Ji Lee
- Department of Family Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yoonseok Heo
- Department of General Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Republic of Korea
| | - Hye Soon Park
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yeon Jin Jang
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Binayi F, Moslemi M, Khodagholi F, Hedayati M, Zardooz H. Long-term high-fat diet disrupts lipid metabolism and causes inflammation in adult male rats: possible intervention of endoplasmic reticulum stress. Arch Physiol Biochem 2023; 129:204-212. [PMID: 32907408 DOI: 10.1080/13813455.2020.1808997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effect of long-term high-fat diet (HFD) on plasma lipid profile and probability of inflammation in adult rats. After weaning, male offspring were divided into six groups based on diet type and medication. After 20 weeks of dietary intake, 4-PBA (endoplasmic reticulum (ER) stress inhibitor) was injected for three days. Then, blood samples were taken to measure plasma concentrations of low-density lipoprotein (LDL), triglyceride (TG), high-density lipoprotein (HDL), cholesterol, leptin and interleukin 1-β (IL 1-β). The HFD increased body weight and food intake and intra-abdominal fat and thymus weights, which were associated with elevated plasma leptin level. Moreover, HFD increased plasma concentrations of TG, LDL, cholesterol and IL 1-β and decreased HDL level. Injection of 4-PBA reversed the plasma parameters changes caused by HFD. It seems that long-term HFD feeding through inducing the ER stress, disrupted the lipid metabolism and resulted in inflammation.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Liu L, Yang Y, Yang F, Lin Y, Liu K, Wang X, Zhang Y. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Hum Exp Toxicol 2023; 42:9603271221149011. [PMID: 36594174 DOI: 10.1177/09603271221149011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 μM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 μM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.
Collapse
Affiliation(s)
- L Liu
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - Y Yang
- School of Pharmacy, 12412Changzhou University, Changzhou, China.,Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - F Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Lin
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - K Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - X Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
28
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
29
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
31
|
Xu Q, Fan Y, Loor JJ, Jiang Q, Zheng X, Wang Z, Yang T, Sun X, Jia H, Li X, Xu C. Effects of diacylglycerol O-acyltransferase 1 (DGAT1) on endoplasmic reticulum stress and inflammatory responses in adipose tissue of ketotic dairy cows. J Dairy Sci 2022; 105:9191-9205. [PMID: 36114053 DOI: 10.3168/jds.2022-21989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
Adipose tissue of ketotic dairy cows exhibits greater lipolytic rate and signs of inflammation, which further aggravate the metabolic disorder. In nonruminants, the endoplasmic reticulum (ER) is a key organelle coordinating metabolic adaptations and cellular functions; thus, disturbances known as ER stress lead to inflammation and contribute to metabolic disorders. Enhanced activity of diacylglycerol O-acyltransferase 1 (DGAT1) in murine adipocytes undergoing lipolysis alleviated ER stress and inflammation. The aim of the present study was to investigate the potential role of DGAT1 on ER stress and inflammatory response of bovine adipose tissue in vivo and in vitro. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of β-hydroxybutyrate, which were 4.05 (interquartile range = 0.46) and 0.52 mM (interquartile range = 0.14), respectively. Protein abundance of DGAT1 was greater in adipose tissue of ketotic cows. Among ER stress proteins measured, ratios of phosphorylated PKR-like ER kinase (p-PERK) to PERK and phosphorylated inositol-requiring enzyme 1 (p-IRE1) to IRE1, and protein abundance of cleaved ATF6 protein were greater in adipose tissue of ketotic cows. Furthermore, ratios of phosphorylated RELA subunit of NF-κB (p-RELA) to RELA and phosphorylated c-jun N-terminal kinase (p-JNK) to JNK were greater, whereas protein abundance of NF-κB inhibitor α (NFKBIA) was lower in adipose tissue of ketotic cows. In addition, mRNA abundance of proinflammatory cytokines including TNF and IL-6 was greater in adipose tissue of ketotic cows. To better address mechanistic aspects of these responses, primary bovine adipocytes isolated from the harvested adipose tissue of healthy cows were subjected to lipolysis-stimulating conditions via incubation with 1 μM epinephrine (EPI) for 2 h. In another experiment, adipocytes were cultured with DGAT1 overexpression adenovirus and DGAT1 small interfering RNA for 48 h, respectively, followed by EPI (1 μM) exposure for 2 h. Treatment with EPI led to greater ratios of p-PERK to PERK, p-IRE1 to IRE1, p-RELA to RELA, p-JNK to JNK, and cleaved ATF6 protein, whereas EPI stimulation inhibited protein abundance of NFKBIA. Furthermore, treatment with EPI upregulated the secretion of proinflammatory cytokines into culture medium, including TNF-α and IL-6. Overexpression of DGAT1 in EPI-treated adipocytes attenuated ER stress, the activation of NF-κB and JNK signaling pathways, and the secretion of inflammatory cytokines. In contrast, silencing DGAT1 further aggravated EPI-induced ER stress and inflammatory responses. Overall, these data indicated that activation of DGAT1 may act as an adaptive mechanism to dampen metabolic dysregulation in adipose tissue. As such, it contributes to relief from ER stress and inflammatory responses.
Collapse
Affiliation(s)
- Qiushi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yunhui Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xidan Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Tong Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xudong Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Hongdou Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Mawed SA, Centoducati G, Farag MR, Alagawany M, Abou-Zeid SM, Elhady WM, El-Saadony MT, Di Cerbo A, Al-Zahaby SA. Dunaliella salina Microalga Restores the Metabolic Equilibrium and Ameliorates the Hepatic Inflammatory Response Induced by Zinc Oxide Nanoparticles (ZnO-NPs) in Male Zebrafish. BIOLOGY 2022; 11:biology11101447. [PMID: 36290351 PMCID: PMC9598141 DOI: 10.3390/biology11101447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Microalgae are rich in bioactive compounds including pigments, proteins, lipids, polyunsaturated fatty acids, carbohydrates, and vitamins. Due to their non-toxic and nutritious characteristics, these are suggested as important food for many aquatic animals. Dunaliella salina is a well-known microalga that accumulates valuable amounts of carotenoids. We investigated whether it could restore the metabolic equilibrium and mitigate the hepatic inflammation induced by zinc oxide nanoparticles (ZnO-NPs) using male zebrafish which were exposed to 1/5th 96 h-LC50 for 4 weeks, followed by dietary supplementation with D. salina at two concentrations (15% and 30%) for 2 weeks. Collectively, ZnO-NPs affected fish appetite, whole body composition, hepatic glycogen and lipid contents, intestinal bacterial and Aeromonas counts, as well as hepatic tumor necrosis factor- α (TNF-α). In addition, the mRNA expression of genes related to gluconeogenesis (pck1, gys2, and g6pc3), lipogenesis (srepf1, acaca, fasn, and cd36), and inflammatory response (tnf-α, tnf-β, nf-kb2) were modulated. D. salina reduced the body burden of zinc residues, restored the fish appetite and normal liver architecture, and mitigated the toxic impacts of ZnO-NPs on whole-body composition, intestinal bacteria, energy metabolism, and hepatic inflammatory markers. Our results revealed that the administration of D. salina might be effective in neutralizing the hepatotoxic effects of ZnO-NPs in the zebrafish model.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (S.A.M.); (G.C.)
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, Casamassima km 3, 70010 Valenzano, Italy
- Correspondence: (S.A.M.); (G.C.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 6012201, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
33
|
da Cruz Nascimento SS, Carvalho de Queiroz JL, Fernandes de Medeiros A, de França Nunes AC, Piuvezam G, Lima Maciel BL, Souza Passos T, Morais AHDA. Anti-inflammatory agents as modulators of the inflammation in adipose tissue: A systematic review. PLoS One 2022; 17:e0273942. [PMID: 36048868 PMCID: PMC9436134 DOI: 10.1371/journal.pone.0273942] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is characterized by an adipose tissue mass expansion that presents a risk to health, associated with a chronic increase in circulating inflammatory mediators. Anti-inflammatory agents are an obesity alternative treatment. However, the lack of effective agents indicates the need to assess the mechanisms and identify effective therapeutic targets. The present work identified and described the mechanisms of action of anti-inflammatory agents in adipose tissue in experimental studies. The review was registered in the International Prospective Registry of Systematic Reviews (PROSPERO-CRD42020182897). The articles' selection was according to eligibility criteria (PICOS). The research was performed in PubMed, ScienceDirect, Scopus, Web of Science, VHL, and EMBASE. The methodological quality evaluation was assessed using SYRCLE. Initially, 1511 articles were selected, and at the end of the assessment, 41 were eligible. Among the anti-inflammatory agent classes, eight drugs, 28 natural, and five synthetic compounds were identified. Many of these anti-inflammatory agents act in metabolic pathways that culminate in the inflammatory cytokines expression reduction, decreasing the macrophages infiltration in white and adipose tissue and promoting the polarization process of type M1 to M2 macrophages. Thus, the article clarifies and systematizes these anti-inflammatory agents' mechanisms in adipose tissue, presenting targets relevant to future research on these pathways.
Collapse
Affiliation(s)
| | - Jaluza Luana Carvalho de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Amanda Fernandes de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Clara de França Nunes
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Department of Public Health, Center for Health Sciences, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
34
|
Cornejo PJ, Vergoni B, Ohanna M, Angot B, Gonzalez T, Jager J, Tanti JF, Cormont M. The Stress-Responsive microRNA-34a Alters Insulin Signaling and Actions in Adipocytes through Induction of the Tyrosine Phosphatase PTP1B. Cells 2022; 11:cells11162581. [PMID: 36010657 PMCID: PMC9406349 DOI: 10.3390/cells11162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic stresses alter the signaling and actions of insulin in adipocytes during obesity, but the molecular links remain incompletely understood. Members of the microRNA-34 (miR-34 family play a pivotal role in stress response, and previous studies showed an upregulation of miR-34a in adipose tissue during obesity. Here, we identified miR-34a as a new mediator of adipocyte insulin resistance. We confirmed the upregulation of miR-34a in adipose tissues of obese mice, which was observed in the adipocyte fraction exclusively. Overexpression of miR-34a in 3T3-L1 adipocytes or in fat pads of lean mice markedly reduced Akt activation by insulin and the insulin-induced glucose transport. This was accompanied by a decreased expression of VAMP2, a target of miR-34a, and an increased expression of the tyrosine phosphatase PTP1B. Importantly, PTP1B silencing prevented the inhibitory effect of miR-34a on insulin signaling. Mechanistically, miR-34a decreased the NAD+ level through inhibition of Naprt and Nampt, resulting in an inhibition of Sirtuin-1, which promoted an upregulation of PTP1B. Furthermore, the mRNA expression of Nampt and Naprt was decreased in adipose tissue of obese mice. Collectively, our results identify miR-34a as a new inhibitor of insulin signaling in adipocytes, providing a potential pathway to target to fight insulin resistance.
Collapse
Affiliation(s)
- Pierre-Jean Cornejo
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Bastien Vergoni
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mickaël Ohanna
- Université Côte d’Azur, Inserm, C3M, “Team Microenvironnement, Signalisation et Cancer”, 06204 Nice, France
| | - Brice Angot
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Teresa Gonzalez
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Aix Marseille Université, Inserm, INRAE, C2VN, 13385 Marseille, France
| | - Jennifer Jager
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Correspondence: ; Tel.: +33-4-89-15-38-31
| |
Collapse
|
35
|
Sodium butyrate reduces endoplasmic reticulum stress by modulating CHOP and empowers favorable anti-inflammatory adipose tissue immune-metabolism in HFD fed mice model of obesity. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100079. [PMID: 35415672 PMCID: PMC8991629 DOI: 10.1016/j.fochms.2022.100079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Over the past decade, the gut microbiome has been linked to several diseases including gastrointestinal diseases, cancer, immune disorder and metabolic syndrome. Shifts in the gut bacterial population affect the overall metabolic health status leading towards obesity and Type II diabetes mellitus. Secondary metabolites secreted by the gut microbiome interact with various host-sensing signalling pathways and are responsible for functional modulation of immune resident cells in metabolic tissues (Blüher, 2019). Of these, short- chain fatty acids (SCFAs) i.e., acetate, propionate and butyrate have been significantly correlated with the disposition of diabetes and metabolic disorder. The altered gut microbial population depletes the intestinal barrier causing entry of LPS into circulation and towards metabolic tissues triggering pro-inflammatory responses. As butyrate has been known to maintain intestinal integrity, we aimed to assess the apparent effect of externally given sodium butyrate [NaB] on immuno-metabolic profiling of adipose tissue, and its association with metabolic and inflammatory status of adipose tissue. To assess this, we put groups of C57BL/6 mice i.e., Control fed with a regular chow diet and another group that was fed on a high fat diet (HFD, 60%) for 8 weeks. Following this, the HFD group were further subdivided into two groups one fed with HFD and the other with HFD + NaB (5%w/w) for another 8 weeks. Body composition, weight gain, body adiposity and biochemical parameters were assessed. NaB fed group showed an improved metabolic profile compared to HFD fed group. Administration of NaB also improved glucose tolerance capacity and insulin sensitivity as determined by IPGTT and ITT profiles. Earlier reports have shown gut leakage and increased LPS in circulation is the primary cause of setting up inflammation at the tissue level. Our studies exhibited that, NaB increased the expression of tight junction proteins of intestinal linings and thereby enhanced intestinal barrier integrity. The FITC dextran permeability assay further confirmed this enhanced intestinal barrier integrity. We assessed the quantitative and relative population of different types of resident immune cells from a stromal vascular fraction of adipose tissue. Flow cytometry studies revealed significantly increased M2 (CD206+ ) macrophages and Tregs (CD25+ ) relative to the M1 macrophage population and CD4+ T cells respectively in NaB treated mice, suggesting its potential role in alleviating the inflammatory profile. In a nutshell, taken together better glucose tolerance, better gut health, reduced inflammatory adipose tissue immune cells, suggest potential beneficial role of sodium butyrate in alleviating overall inflammation and metabolic dysfunction associated with obesity.
Collapse
|
36
|
Wu P, Chen L, Cheng J, Pan Y, Zhu X, Chu W, Zhang J. Effect of starvation and refeeding on reactive oxygen species, autophagy and oxidative stress in Chinese perch (Siniperca chuatsi) muscle growth. JOURNAL OF FISH BIOLOGY 2022; 101:168-178. [PMID: 35538670 DOI: 10.1111/jfb.15081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
In skeletal muscle, autophagy regulates the development and growth of muscle fibres and maintains the normal muscle metabolism. Under starvation and refeeding conditions, the effect of reactive oxygen species (ROS) levels on skeletal muscle autophagy is still unclear, although the excessive accumulation of ROS has been shown to increase autophagy in cells. The purpose of this study was to explore the effects of starvation and diet after starvation on the autophagy of adult Chinese perch muscle, and to determine the level of ROS in the muscle. We performed zero (Normal control), three and seven starvation treatments on adult Chinese perch, and returned to normal feeding for 3 days after starvation for 7 days. In the muscles of the adult Chinese perch muscle after 3 days of starvation, the autophagy marker protein LC3 and the number of autophagosomes remained basically the same as in the normal feeding situation. However, on starvation for 7 days, the mitochondrial autophagy was sensitive and the number of autophagosomes increased, but the antioxidant-related molecules (malondialdehyde, catalase, glutathione S-transferase, glutathione and anti-superoxide anion) decreased and the accumulation of ROS was obvious. In addition, the extended starvation time also increased the level of LC3 protein. However, by refeeding after starvation this nutritional stress resulted in a decrease in ROS levels and a partial restoration of antioxidant enzyme activity. Our data show that in the adult Chinese perch muscle, starvation could reduce the antioxidant activity through the accumulation of ROS, and that the number of autophagosomes continues to increase. Refeeding after starvation could effectively compensate for the level of ROS, and restore the mRNA abundance of antioxidant genes and the activity of antioxidant enzymes to reduce autophagy and improve feed efficiency. Further research should optimize starvation conditions to reduce autophagy in muscles and maintain normal muscle metabolism.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Chen
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jia Cheng
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yaxiong Pan
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xin Zhu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
37
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
38
|
Gentile A, Magnacca N, de Matteis R, Moreno M, Cioffi F, Giacco A, Lanni A, de Lange P, Senese R, Goglia F, Silvestri E, Lombardi A. Ablation of uncoupling protein 3 affects interrelated factors leading to lipolysis and insulin resistance in visceral white adipose tissue. FASEB J 2022; 36:e22325. [PMID: 35452152 DOI: 10.1096/fj.202101816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.
Collapse
Affiliation(s)
| | - Nunzia Magnacca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rita de Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Meliț LE, Mărginean CO, Săsăran MO. The Yin-Yang Concept of Pediatric Obesity and Gut Microbiota. Biomedicines 2022; 10:biomedicines10030645. [PMID: 35327446 PMCID: PMC8945275 DOI: 10.3390/biomedicines10030645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
The era of pediatric obesity is no longer a myth. Unfortunately, pediatric obesity has reached alarming incidence levels worldwide and the factors that contribute to its development have been intensely studied in multiple recent and emerging studies. Gut microbiota was recently included in the wide spectrum of factors implicated in the determination of obesity, but its role in pediatric obese patients is far from being fully understood. In terms of the infant gut microbiome, multiple factors have been demonstrated to shape its content, including maternal diet and health, type of delivery, feeding patterns, weaning and dietary habits. Nevertheless, the role of the intrauterine environment, such as the placental microbial community, cannot be completely excluded. Most studies have identified Firmicutes and Bacteroidetes as the most important players related to obesity risk in gut microbiota reflecting an increase of Firmicutes and a decrease in Bacteroidetes in the context of obesity; however, multiple inconsistencies between studies were recently reported, especially in pediatric populations, and there is a scarcity of studies performed in this age group.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
40
|
Zhang Z, Qiao D, Zhang Y, Chen Q, Chen Y, Tang Y, Que R, Chen Y, Zheng L, Dai Y, Tang Z. Portulaca oleracea L. Extract Ameliorates Intestinal Inflammation by Regulating Endoplasmic Reticulum Stress and Autophagy. Mol Nutr Food Res 2022; 66:e2100791. [PMID: 34968000 PMCID: PMC9286603 DOI: 10.1002/mnfr.202100791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 11/14/2022]
Abstract
SCOPE To investigate the role of endoplasmic reticulum stress (ERS)-induced autophagy in inflammatory bowel disease (IBD) and the intervention mechanism of Portulaca oleracea L. (POL) extract, a medicinal herb with anti-inflammatory, antioxidant, immune-regulating, and antitumor properties, in vitro and in vivo. METHODS AND RESULTS An IL-10-deficient mouse model is used for in vivo experiments; a thapsigargin (Tg)-stimulated ERS model of human colonic mucosal epithelial cells (HIECs) is used for in vitro experiments. The levels of ERS-autophagy-related proteins are examined by immunofluorescence and Western blot. Cellular ultrastructure is assessed with transmission electron microscopy. POL extract promotes a healing effect on colitis by regulating ERS-autophagy through the protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)/Beclin1-microtubule-associated protein light chain 3II (LC3II) pathway. CONCLUSION Overall, the results of this study further confirm the anti-inflammatory mechanism and protective effect of POL extract and provide a new research avenue for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Dan Qiao
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Yali Zhang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Qian Chen
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Yujun Chen
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Yingjue Tang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Renye Que
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Ying Chen
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Lie Zheng
- Department of GastroenterologyTraditional Chinese Medicine Hospital of Shaanxi ProvinceXi'an730000China
| | - Yancheng Dai
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Zhipeng Tang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| |
Collapse
|
41
|
Bian C, Sun J, Huang X, Ji S, Ji H. Endoplasmic reticulum stress is involved in lipid accumulation induced by oleic acid in adipocytes of grass carp (Ctenopharyngodon idella): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:275-284. [PMID: 35091868 DOI: 10.1007/s10695-021-01031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
It has been extensively claimed that endoplasmic reticulum stress (ER stress) is related to lipid accumulation in mammals, but little is known in fish. This study aims at elucidating the role of ER stress in mediating lipid accumulation induced by monounsaturated oleic acid (OA) with a focus on the transcriptional level. We treated the adipocytes of grass carp with 200 μM and 400 μM OA, respectively, while the control group was treated with 2% bovine serum albumin (BSA). The results showed that cell viability was significantly improved, while 400 μM OA treatment promoted neutral lipid accumulation along with stimulating ER stress more obviously. Although lipolysis and fatty acid β-oxidation were activated simultaneously, the primary effect of OA seems to be promotion of lipid accumulation. To further explore whether ER stress affects lipid accumulation, 4-phenyl butyric acid (4-PBA), an effective inhibitor of ER stress, was used to pretreat the cells for 4 h. Unsurprisingly, it was found that the mRNA expressions of genes linked with ER stress were decreased. Intracellular triglyceride (TG) content was also decreased, which was in accordance with the mRNA expressions of adipogenic and lipogenic transcription factors as well as their target genes. Collectively, our data shows that ER stress may take part in OA-induced lipid accumulation in adipocytes via activating adipogenesis and lipogenesis. Based on this, strategies for protecting ER could be used to alleviate excessive accumulation of lipid in grass carp adipose tissue.
Collapse
Affiliation(s)
- Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
42
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
43
|
Gonzalez MB, Robker RL, Rose RD. Obesity and oocyte quality: Significant implications for ART and Emerging mechanistic insights. Biol Reprod 2021; 106:338-350. [PMID: 34918035 DOI: 10.1093/biolre/ioab228] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 11/14/2022] Open
Abstract
The prevalence of obesity in adults worldwide, and specifically in women of reproductive age, is concerning given the risks to fertility posed by the increased risk of type 2 diabetes, metabolic syndrome and other non-communicable diseases. Obesity has a multi-systemic impact in female physiology that is characterized by the presence of oxidative stress, lipotoxicity, and the activation of pro-inflammatory pathways, inducing tissue-specific insulin resistance and ultimately conducive to abnormal ovarian function. A higher body mass is linked to Polycystic Ovary Syndrome, dysregulated menstrual cycles, anovulation, and longer time to pregnancy, even in ovulatory women. In the context of ART, compared to women of normal BMI, obese women have worse outcomes in every step of their journey, resulting in reduced success measured as live birth rate. Even after pregnancy is achieved, obese women have a higher chance of miscarriage, gestational diabetes, pregnancy complications, birth defects, and most worryingly, a higher risk of stillbirth and neonatal death. The potential for compounding effects of ART on pregnancy complications and infant morbidities in obese women has not been studied. There is still much debate in the field on whether these poorer outcomes are mainly driven by defects in oocyte quality, abnormal embryo development or an unaccommodating uterine environment, however the clinical evidence to date suggests a combination of all three are responsible. Animal models of maternal obesity shed light on the mechanisms underlaying the effects of obesity on the peri-conception environment, with recent findings pointing to lipotoxicity in the ovarian environment as a key driver of defects in oocytes that have not only reduced developmental competence but long-lasting effects in offspring health.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Rose
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, St. Andrews Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
44
|
Ogata H, Mori M, Jingushi Y, Matsuzaki H, Katahira K, Ishimatsu A, Enokizu-Ogawa A, Taguchi K, Moriwaki A, Yoshida M. Impact of visceral fat on the prognosis of coronavirus disease 2019: an observational cohort study. BMC Infect Dis 2021; 21:1240. [PMID: 34893021 PMCID: PMC8660963 DOI: 10.1186/s12879-021-06958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background Clarification of the risk factors for coronavirus disease 2019 (COVID-19) severity is strongly warranted for global health. Recent studies have indicated that elevated body mass index (BMI) is associated with unfavorable progression of COVID-19. This is assumed to be due to excessive deposition of visceral adipose tissue (VAT); however, the evidence investigating the association between intra-abdominal fat and COVID-19 prognosis is sparse. We therefore investigated whether measuring the amount of intra-abdominal fat is useful to predict the prognosis of COVID-19. Methods The present study enrolled 53 consecutive cases of COVID-19 patients aged ≥ 20 years with chest computed tomography (CT) scans. The VAT area, total adipose tissue (TAT) area, and VAT/TAT ratio were estimated using axial CT images at the level of the upper pole of the right kidney. Severe COVID-19 was defined as death or acute respiratory failure demanding oxygen at ≥ 6 L per minute, a high-flow nasal cannula, or mechanical ventilation. The association of VAT/TAT with the incidence of progression to a severe state was estimated as a hazard ratio (HR) using Cox regression analysis. To compare the prediction ability for COVID-19 disease progression between BMI and VAT/TAT, the area under the receiver operating characteristic curve (AUC) of each was assessed. Results A total of 15 cases (28.3% of the whole study subjects) progressed to severe stages. The incidence of developing severe COVID-19 increased significantly with VAT/TAT (HR per 1% increase = 1.040 (95% CI 1.008–1.074), P = 0.01). After adjustment for potential confounders, the positive association of VAT/TAT with COVID-19 aggravation remained significant (multivariable-adjusted HR = 1.055 (95% CI 1.000–1.112) per 1% increase, P = 0.049). The predictive ability of VAT/TAT for COVID-19 becoming severe was significantly better than that of BMI (AUC of 0.73 for VAT/TAT and 0.50 for BMI; P = 0.0495 for the difference). Conclusions A higher ratio of VAT/TAT was an independent risk factor for disease progression among COVID-19 patients. VAT/TAT was superior to BMI in predicting COVID-19 morbidity. COVID-19 patients with high VAT/TAT levels should be carefully observed as high-risk individuals for morbidity and mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06958-z.
Collapse
Affiliation(s)
- Hiroaki Ogata
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan.
| | - Masahiro Mori
- Department of Radiology, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Yujiro Jingushi
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Hiroshi Matsuzaki
- Department of Pediatrics, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Katsuyuki Katahira
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Akiko Ishimatsu
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Aimi Enokizu-Ogawa
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Kazuhito Taguchi
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Atsushi Moriwaki
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Makoto Yoshida
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| |
Collapse
|
45
|
Bharmal SH, Kimita W, Ko J, Petrov MS. Cytokine signature for predicting new-onset prediabetes after acute pancreatitis: A prospective longitudinal cohort study. Cytokine 2021; 150:155768. [PMID: 34823207 DOI: 10.1016/j.cyto.2021.155768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Acute inflammation of the pancreas often leads to metabolic sequelae, the most common of which is new-onset prediabetes (and, ultimately, diabetes). However, there is a lack of studies on predictors of this sequela. The aim was to investigate whether cytokines/chemokines measured at baseline are predictive of new-onset prediabetes after acute pancreatitis (NOPAP). METHODS This was a prospective longitudinal cohort study (as part of the LACERTA project) that included 68 individuals with non-necrotising acute pancreatitis who had no diabetes mellitus. Of them, 17 individuals had prediabetes at baseline and during follow-up, 37 individuals had normoglycaemia at baseline and during follow-up, and 14 individuals had normoglycaemia at baseline and developed NOPAP during follow-up. A commercially available human cytokine/chemokine multiplex kit was used to measure a total of 28 analytes at baseline. Multinomial regression analyses were conducted to investigate the associations between the cytokines/chemokines and the three study groups. RESULTS Interleukin-1β and interferon γ significantly predicted progression to NOPAP with an odds ratio (95% confidence interval) of 1.097 (1.002, 1.201) and 1.094 (1.003, 1.192), respectively (after accounting for age, sex, body mass index, and aetiology of acute pancreatitis). None of the studied cytokines/chemokines showed statistically significant associations with the antecedent prediabetes group (after accounting for the above covariates). CONCLUSION Elevated levels of interleukin-1β and interferon γ in acute pancreatitis individuals with normoglycaemia at baseline may predict progression to NOPAP during follow-up.
Collapse
Affiliation(s)
| | - Wandia Kimita
- School of Medicine, University of Auckland, New Zealand
| | - Juyeon Ko
- School of Medicine, University of Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, New Zealand.
| |
Collapse
|
46
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
47
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
Li N, Huang Z, Ding L, Shi H, Hong M. Endoplasmic reticulum unfolded protein response modulates the adaptation of Trachemys scripta elegans in salinity water. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109102. [PMID: 34102330 DOI: 10.1016/j.cbpc.2021.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Trachemys scripta elegans, as a freshwater invasive species, can survive and lay eggs in brackish water, which may lead to the expansion of its potential invasion range due to freshwater salinization. Our previous studies have shown that high salinity leads to the accumulation of serum lipid content, which may induce endoplasmic reticulum stress (ERS) in the turtle. To better understand whether ERS is triggered by salinity, and in turn whether the turtles promote the protection mechanism, we exposed the turtles to the freshwater (CK), 5‰ salinity water (S5) and 15‰ salinity water (S15), and sampled at 6 h, 24 h and 30 d. 13 differentially expressed genes (DEGs) related to ERS pathways were found in the comparison of CK vs. S15 by transcriptomics analysis. Then, the mRNA and protein expression of ERS and its related activation pathways were further investigated. ERS marker glucose regulated protein 78 kD (GRP78) increased significantly (p < 0.05) in both the transcript and protein levels after exposure to 15‰ salinity water, which clearly indicated that salinity could induce ERS in T. s. elegans. Meanwhile, the three unfolded protein response (UPR) including transducers protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating transcription factor-6 (ATF6) were promoted by salinity, suggesting that the turtle might promote physiological process to eliminate damaged cells and cope with unfolded proteins accumulation induced by ERS. Our results provide new insight into the mechanism of salinity adaptation in T. s. elegans and salt-tolerant biological invasion.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
49
|
Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, Yang J, Zhang Y. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med 2021; 25:9837-9850. [PMID: 34528389 PMCID: PMC8505842 DOI: 10.1111/jcmm.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammation of adipose tissue is one of the most common secondary pathological changes in atherosclerosis, which in turn influences the process of atherosclerosis. Natriuretic peptides have been revealed important effect in regulating adipose metabolism. However, the relationship between natriuretic peptide receptor C and inflammation of adipose tissue in atherosclerosis remains unknown. This study aims to explore the effect natriuretic peptide receptor C exerts on the regulation of the adipose inflammation in atherosclerotic mice induced by western-type diet and its overlying mechanisms. To clarify the importance of NPRC of adipose inflammation in atherosclerotic mice, NPRC expression was measured in mice fed with chow diet and western-type diet for 12 weeks and we found a considerable increase in adipose tissue of atherosclerotic mice. Global NPRC knockout in mice was bred onto ApoE-/- mice to generate NPRC-/- ApoE-/- mice, which displayed remarked increase in browning of white adipose tissue and lipolysis of adipose tissue and decrease in adipose inflammation manifested by decreased macrophage invasion to form less CLS (crown-like structure), reduced oxidative stress and alleviated expression of TNFα, IL-6, IL-1β and MCP1, but increased expression of adiponectin in adipose tissue. Moreover, our study showed that white adipose tissue browning in NPRC-/- ApoE-/- atherosclerotic mice was associated with decreased inflammatory response through cAMP/PKA signalling activation. These results identify NPRC as a novel regulator for adipose inflammation in atherosclerotic mice by modulating white adipose tissue browning.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fei Xue
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhai Sui
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Linlin Meng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lin Xie
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Cheng Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jianmin Yang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yun Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
50
|
Mintoff D, Benhadou F, Pace NP, Frew JW. Metabolic syndrome and hidradenitis suppurativa: epidemiological, molecular, and therapeutic aspects. Int J Dermatol 2021; 61:1175-1186. [PMID: 34530487 DOI: 10.1111/ijd.15910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, suppurative condition of the pilosebaceous unit. Patients suffering from HS demonstrate a molecular profile in keeping with a state of systemic inflammation and are often found to fit the criteria for a diagnosis of metabolic syndrome (MetS). In this paper, we review the literature with regards to established data on the prevalence of MetS in HS patients and revise the odds ratio of comorbid disease. Furthermore, we attempt to draw parallels between inflammatory pathways in HS and MetS and evaluate how convergences may explain the risk of comorbid disease, necessitating the need for multidisciplinary care.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta.,European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nikolai P Pace
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - John W Frew
- Department of Dermatology, Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|