1
|
Jiang P, Huang H, Xie M, Liu Z, Jiang L, Shi H, Wu X, Hao S, Li S. Single-cell characterization of the immune heterogeneity of pulmonary hypertension identifies novel targets for immunotherapy. BMC Immunol 2025; 26:5. [PMID: 39930365 PMCID: PMC11809027 DOI: 10.1186/s12865-025-00684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a critical cardiopulmonary vascular disorder marked by the progressive elevation of pulmonary artery pressure, increased pulmonary vascular resistance, and eventual right heart failure. Research has shown that various immune cells play a significant role in the pathogenesis of PAH, both in patients diagnosed with the condition and in experimental models of PAH. Cell-cell communication is important for PAH progression and therapies, while the global cell landscape of intercellular signaling has not been elucidated. METHODS We performed single-cell RNA sequencing on NCBI Gene Expression Omnibus (GEO) databases GSE169471, GSE 210248, GSE228643 and GSE244781, and analyzed lung tissue samples across healthy controls and PAH patients. In total, approximately 124,561 cells were analyzed and a total 34 clusters were identified. We integrated the sequencing results of multiple samples and used an enhanced single-cell sequencing workflow to overcome the limitations of a single study. RESULTS In this study, we elucidated the functional characteristics and potential regulatory interactions of several cell subpopulations that have not been previously documented in similar research. We constructed a comprehensive landscape of cell communications at the single-cell resolution, which is expected to significantly advance the development of personalized diagnostic and therapeutic strategies for PAH. We demonstrated the transcriptomic features of different cell types in PAH patients. We presented an in-depth analysis of T cell subsets, myeloid cell heterogeneity and a comprehensive analysis of SMCs and FBs subsets in PAH. T cell heterogeneity and functional dynamics were exhibited in PAH, which suggests that targeting cytotoxic regulation may be a potential therapeutic strategy. Significant changes and potential functions of myeloid cell subsets in PAH patients and we especially focused on GPNMB+ macrophages. In addition, CellChat and NicheNet analyses reveal altered intercellular communication and dys-regulated signaling pathways in PAH progression. The enhanced MIF and IL-1 signaling suggests that the induced inflammatory response in PAH is greatly driven. CONCLUSIONS We systematically explored the immune heterogeneity and population and target cells in PAH, which may be valuable for developing new and precise therapies.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Nutrition, QingPu District Central Hospital, Shanghai, 200032, China
| | - Huai Huang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengshi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200032, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijing Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongyu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200032, China.
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of the Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhang L, Jiang H, Ma H. Progress in immune microenvironment, immunotherapy and prognostic biomarkers in pediatric osteosarcoma. Front Immunol 2025; 16:1548527. [PMID: 39911380 PMCID: PMC11794274 DOI: 10.3389/fimmu.2025.1548527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Pediatric osteosarcoma, the most prevalent primary malignant bone tumor in children, is marked by aggressive progression and a generally poor prognosis. Despite advances in treatment, including multi-agent chemotherapy, survival rates remain suboptimal, with metastasis, particularly to the lungs, contributing significantly to mortality. The tumor microenvironment plays a crucial role in osteosarcoma progression, with immune cells such as tumor-associated macrophages and T lymphocytes significantly influencing tumor behavior. The immunosuppressive environment, dominated by M2 macrophages, contributes to immune evasion and poor therapeutic outcomes, though recent findings suggest the potential for reprogramming these cells to enhance immune responses. This review provides a comprehensive overview of the immune landscape in pediatric osteosarcoma, with a focus on the role of immune cells and their interactions within the tumor microenvironment (TME). It examines the impact of immune checkpoints, genetic mutations, and inflammatory pathways on osteosarcoma progression, highlighting their contribution to tumor immune evasion and disease advancement. Additionally, emerging immunotherapeutic strategies, such as immune checkpoint inhibitors, macrophage reprogramming, and antibody-based therapies, are summarized in detail, showcasing their potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haoming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haichao Ma
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
3
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
4
|
Mukherjee A, Bandyopadhyay D. Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody-Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers (Basel) 2024; 16:3517. [PMID: 39456611 PMCID: PMC11505910 DOI: 10.3390/cancers16203517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is a significant health challenge globally, with millions of people affected every year, resulting in high morbidity and mortality. Although other treatment options are available with limitations, chemotherapy, either standalone or combined with other therapeutic procedures, is the most commonly used practice of treating cancer. In chemotherapy, cancer cells/malignant tumors are targeted; however, due to less target specificity, along with malignant cells, normal cells are also affected, which leads to various off-target effects (side effects) that impact the patient quality of life. Out of all the different types of cancers, breast cancer is the most common type of cancer in humans worldwide. Current anticancer drug discovery research aims to develop therapeutics with higher potency and lower toxicity, which is only possible through target-specific therapy. Antibody-drug conjugates (ADCs) are explicitly designed to target malignant tumors and minimize off-target effects by reducing systemic cytotoxicity. Several ADCs have been approved for clinical use and have shown moderate to good efficacy so far. Considering various aspects, chemotherapy and ADCs are useful in treating cancer. However, ADCs provide a more focused and less toxic approach, which is especially helpful in cases where resistance to chemotherapy (drug resistance) occurs and in the type of malignancies in which specific antigens are overexpressed. Ongoing ADC research aims to develop more target-specific cancer treatments. In short, this study presents a concise overview of ADCs specific to breast cancer treatment. This study provides insight into the classifications, mechanisms of action, structural aspects, and clinical trial phases (current status) of these chemo-biologic drugs (ADCs).
Collapse
Affiliation(s)
- Attrayo Mukherjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Patia, Bhubaneswar 751024, Odisha, India;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environmental, and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
5
|
Kimura T, Okita Y, Nagumo Y, Chin JM, Fikry MA, Shiga M, Kandori S, Kawahara T, Suzuki H, Nishiyama H, Kato M. Glycoprotein nonmetastatic melanoma protein B impacts the malignant potential of bladder cancer cells through its hem-immunoreceptor tyrosine-based activation motif. Pathol Int 2024; 74:262-273. [PMID: 38501371 DOI: 10.1111/pin.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Bladder cancer is one of the most common cancers among men worldwide. Although multiple genomic mutations and epigenetic alterations have been identified, an efficacious molecularly targeted therapy has yet to be established. Therefore, a novel approach is anticipated. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that is highly expressed in various cancers. In this study, we evaluated bladder cancer patient samples and found that GPNMB protein abundance is associated with high-grade tumors, and both univariate and multivariate analyses showed that GPNMB is a prognostic factor. Furthermore, the prognosis of patients with high GPNMB levels was significantly poorer in those with nonmuscle invasive bladder cancer (NMIBC) than in those with muscle invasive bladder cancer (MIBC). We then demonstrated that knockdown of GPNMB in MIBC cell lines with high GPNMB inhibits cellular migration and invasion, whereas overexpression of GPNMB further enhances cellular migration and invasion in MIBC cell lines with originally low GPNMB. Therefore, we propose that GPNMB is one of multiple driver molecules in the acquisition of cellular migratory and invasive potential in bladder cancers. Moreover, we revealed that the tyrosine residue in the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) is required for GPNMB-induced cellular motility.
Collapse
Affiliation(s)
- Tomokazu Kimura
- Department of Urology, University of Tsukuba, Ibaraki, Japan
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Okita
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | - Jas Min Chin
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Muhammad Ali Fikry
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, University of Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, University of Tsukuba, Ibaraki, Japan
| | | | - Hiroyuki Suzuki
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Mitsuyasu Kato
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Filis P, Zerdes I, Soumala T, Matikas A, Foukakis T. The ever-expanding landscape of antibody-drug conjugates (ADCs) in solid tumors: A systematic review. Crit Rev Oncol Hematol 2023; 192:104189. [PMID: 37866413 DOI: 10.1016/j.critrevonc.2023.104189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The advent of targeted therapies signaled novel avenues for more optimal oncological outcomes. Antibody-drug conjugates (ADCs) have risen as a cornerstone of the ever-expanding targeted therapy era. The purpose of this systematic review is to delineate the rapidly evolving clinical landscape of ADCs for solid tumors. METHODS A literature search was performed in Medline, Embase and Cochrane databases for phase II and III clinical trials. Outcomes of interest were the objective response rate, overall survival, progression-free survival and adverse events. RESULTS A total of 92 clinical trials (76 phase II and 16 phase III) evaluated the efficacy and safety of ADCs for a plethora of solid tumors. Out of the 30 investigated ADCs, 8 have received approval by regulatory organizations for solid tumors. Currently, 52 phase III clinical trials for ADCs are ongoing. CONCLUSION ADCs have shown promising results for several solid tumors and various cancer settings.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
| | - Ioannis Zerdes
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Theodora Soumala
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Yang T, Li W, Huang T, Zhou J. Antibody-Drug Conjugates for Breast Cancer Treatment: Emerging Agents, Targets and Future Directions. Int J Mol Sci 2023; 24:11903. [PMID: 37569276 PMCID: PMC10418918 DOI: 10.3390/ijms241511903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
To achieve the scheme of "magic bullets" in antitumor therapy, antibody-drug conjugates (ADCs) were developed. ADCs consist of antibodies targeting tumor-specific antigens, chemical linkers, and cytotoxic payloads that powerfully kill cancer cells. With the approval of ado-trastuzumab emtansine (T-DM1) and fam-trastuzumab deruxtecan (T-DXd), the therapeutic potentials of ADCs in breast cancer have come into the spotlight. Nearly 30 ADCs for breast cancer are under exploration to move targeted therapy forward. In this review, we summarize the presenting and emerging agents and targets of ADCs. The ADC structure and development history are also concluded. Moreover, the challenges faced and prospected future directions in this field are reviewed, which give insights into novel treatments with ADCs for breast cancer.
Collapse
Affiliation(s)
| | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Lang M, Schmidt LS, Wilson KM, Ricketts CJ, Sourbier C, Vocke CD, Wei D, Crooks DR, Yang Y, Gibbs BK, Zhang X, Klumpp-Thomas C, Chen L, Guha R, Ferrer M, McKnight C, Itkin Z, Wangsa D, Wangsa D, James A, Difilippantonio S, Karim B, Morís F, Ried T, Merino MJ, Srinivasan R, Thomas CJ, Linehan WM. High-throughput and targeted drug screens identify pharmacological candidates against MiT-translocation renal cell carcinoma. J Exp Clin Cancer Res 2023; 42:99. [PMID: 37095531 PMCID: PMC10127337 DOI: 10.1186/s13046-023-02667-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Darawalee Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danny Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy James
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktir Karim
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, AS, 33011, Spain
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Afzal F, Aiman W, Zahoor H, Bajwa AR, Kazmi SH, Anwar A, Anwar MY, Rashid S, Zubair H, Kashif T, Ashar Ali M. Efficacy and safety of antibody-drug conjugates in triple-negative and HER-2 positive breast cancer: A systematic review and meta-analysis of clinical trials. Breast Dis 2023; 42:121-136. [PMID: 37125539 DOI: 10.3233/bd-220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Breast cancer (BC) is the 2nd most common cause of cancer-related deaths. Antibody-drug conjugates (ADCs) are monoclonal antibodies linked to cytotoxic agents and are directed towards a specific tumor protein. Therefore, they are more potent and can have relatively less toxicity. In this meta-analysis, we assessed the efficacy and safety of ADCs in breast cancer. We searched PubMed, Cochrane, Web of Science, and clinicaltrials.gov for relevant studies and included 7 randomized clinical trials (N = 5,302) and 7 non-randomized clinical trials (N = 658). R programming language software was used to conduct this meta-analysis. In 4 RCTs on HER-2 positive BC (N = 2,825), the pooled HR of PFS and OS was 0.72 (95% CI = 0.61-0.84, I2 = 71%) and 0.73 (95% CI = 0.64-0.84, I2 = 20%), respectively in favor of ADCs versus chemotherapy. In RCT on triple negative BC (N = 468), HR of PFS and OS were 0.55 (95%CI = 0.51-0.61) and 0.59 (95% CI = 0.54-0.66), respectively, in favor of saci-gov versus chemotherapy. In RCT on HER-2 positive residual invasive BC, HR of recurrence/death was 0.61 (95% CI = 0.54-0.69) in favor of ADC versus chemotherapy. In an RCT (N = 524), the HR of PFS and OS were 0.28 (95% CI = 0.22-0.37) and 0.55 (95%CI = 0.36-0.86), respectively, in favor of trastuzumab-deruxtecan (T-der) as compared to trastuzumab-emtansine (T-DM1). Anemia, rash, diarrhea, fatigue, hypertension, thrombocytopenia, and elevated aminotransferases were the common ≥grade 3 adverse events reported in 4%, 1%, 2%, 1%, 2%, 9%, and 3% of the patients, respectively. ADCs were more effective than single and double agent chemotherapy in patients with HER-2 positive or triple negative BC. Among ADCs, T-der was more effective than T-DM1.
Collapse
Affiliation(s)
- Fatima Afzal
- Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, Canada
| | - Wajeeha Aiman
- Saint Michael's Medical Center, New York Medical College, Newark, NJ, USA
| | | | | | | | - Aqsa Anwar
- Ameer-ud-din Medical College, Lahore, Pakistan
| | | | | | - Hina Zubair
- Rawalpindi Medical College, Rawalpindi, Pakistan
| | - Tooba Kashif
- Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Ashar Ali
- PHCC at Saint Clare's and Saint Mary's General Hospitals, Denville, NJ, USA
| |
Collapse
|
10
|
Webster BR, Gopal N, Ball MW. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes (Basel) 2022; 13:2122. [PMID: 36421797 PMCID: PMC9690265 DOI: 10.3390/genes13112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Collapse
Affiliation(s)
| | | | - Mark W. Ball
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Antibody-Drug Conjugates in Breast Cancer: What Is Beyond HER2? Cancer J 2022; 28:436-445. [DOI: 10.1097/ppo.0000000000000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhang J, Xia Y, Zhou X, Yu H, Tan Y, Du Y, Zhang Q, Wu Y. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol 2022; 13:977660. [PMID: 36188535 PMCID: PMC9523914 DOI: 10.3389/fphar.2022.977660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer (BC) with vicious behaviors. TNBC is usually associated with relatively poor clinical outcomes, earlier recurrence, and high propensity for visceral metastases than other BC types. TNBC has been increasingly recognized to constitute a very molecular heterogeneous subtype, which may offer additional therapeutic opportunities due to newly discovered cancer-causing drivers and targets. At present, there are multiple novel targeted therapeutic drugs in preclinical researches, clinical trial designs, and clinical practices, such as platinum drugs, poly ADP-ribose polymerase (PARP) inhibitors, immunocheckpoint inhibitors, androgen receptor inhibitors as well as PI3K/AKT/mTOR targeted inhibitors. These personalized, single, or combinational therapies based on molecular heterogeneity are currently showing positive results. The scope of this review is to highlight the latest knowledge about these potential TNBC therapeutic drugs, which will provide comprehensive insights into the personalized therapeutic strategies and options for combating TNBC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yu Xia
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 2022; 41:4573-4590. [PMID: 36050467 DOI: 10.1038/s41388-022-02443-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada. .,Department of Medicine, McGill University, Montréal, QC, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
14
|
Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM. EBioMedicine 2022; 83:104239. [PMID: 36054938 PMCID: PMC9437813 DOI: 10.1016/j.ebiom.2022.104239] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/27/2022] Open
|
15
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 396] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
17
|
Suda M, Shimizu I, Katsuumi G, Hsiao CL, Yoshida Y, Matsumoto N, Yoshida Y, Katayama A, Wada J, Seki M, Suzuki Y, Okuda S, Ozaki K, Nakanishi-Matsui M, Minamino T. Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep 2022; 12:6522. [PMID: 35444208 PMCID: PMC9021310 DOI: 10.1038/s41598-022-10522-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
Accumulation of senescent cells in various tissues has been reported to have a pathological role in age-associated diseases. Elimination of senescent cells (senolysis) was recently reported to reversibly improve pathological aging phenotypes without increasing rates of cancer. We previously identified glycoprotein nonmetastatic melanoma protein B (GPNMB) as a seno-antigen specifically expressed by senescent human vascular endothelial cells and demonstrated that vaccination against Gpnmb eliminated Gpnmb-positive senescent cells, leading to an improvement of age-associated pathologies in mice. The aim of this study was to elucidate whether GPNMB plays a role in senescent cells. We examined the potential role of GPNMB in senescent cells by testing the effects of GPNMB depletion and overexpression in vitro and in vivo. Depletion of GPNMB from human vascular endothelial cells shortened their replicative lifespan and increased the expression of negative cell cycle regulators. Conversely, GPNMB overexpression protected these cells against stress-induced premature senescence. Depletion of Gpnmb led to impairment of vascular function and enhanced atherogenesis in mice, whereas overexpression attenuated dietary vascular dysfunction and atherogenesis. GPNMB was upregulated by lysosomal stress associated with cellular senescence and was a crucial protective factor in maintaining lysosomal integrity. GPNMB is a seno-antigen that acts as a survival factor in senescent cells, suggesting that targeting seno-antigens such as GPNMB may be a novel strategy for senolytic treatments.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Chieh Lun Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Senotherapeautics, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Mayumi Nakanishi-Matsui
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
18
|
Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) 2022; 14:cancers14051198. [PMID: 35267507 PMCID: PMC8909490 DOI: 10.3390/cancers14051198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Despite all the efforts and advances made in the treatment of breast cancer, this pathology continues to be one of the main causes of cancer death in women, particularly triple-negative breast cancer (TNBC), and, although to a lesser degree, HER-2 receptor-positive tumors. Chemotherapy is one of the main treatments available. However, it shows numerous limitations due to its lack of selectivity. In this sense, the selective delivery of antineoplastics to cancer cells can reduce their adverse effects and increase their efficacy. The use of active targeted nanomedicine is a good strategy to achieve this selective chemotherapy. In fact, in recent decades, several active targeted nanoformulations have been approved or reached clinical investigation with excellent results. Among all nanomedicines, antibody-drug conjugates are the most promising. Abstract Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody–drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody–drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.
Collapse
|
19
|
Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM, Morin G, Martina JA, Sirois I, Aguilar-Mahecha A, Gruosso T, McGuirk S, Rose AAN, Tokat UM, Johnson RM, Sahin O, Bareke E, St-Pierre J, Park M, Basik M, Majewski J, Puertollano R, Pause A, Huang S, Keler T, Siegel PM. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022; 41:1701-1717. [PMID: 35110681 DOI: 10.1038/s41388-022-02206-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alex Kiepas
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian E Hsu
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Geneviève Morin
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Isabelle Sirois
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Tina Gruosso
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - April A N Rose
- Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Unal M Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Bareke
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.,Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Abstract
The development of senomorphic drugs to attenuate the senescent phenotype and senolytics to clear pro-inflammatory senescent cells to treat aging-associated disorders is being hotly pursued. The effort is complicated by the fact that senescent cells play a constructive role in some cellular processes such as tissue repair and wound healing. However, concerns about efficacy, which senescent cells to target, and unwanted side effects have created potential roadblocks. Chimeric Antigen Receptor (CAR) T cells directed against urokinase-type plasminogen activator receptor (uPAR), which is expressed on at least a subset of senescent cells (SC) in atherosclerotic plaques and fibrotic livers, removed SC and improved glucose metabolism. A conventional vaccine targeting CD153-expressing senescent T-cells, also improved glucose metabolism in obese mice. Recent work to selectively target senescent cells associated with several pathologies has resulted in the creation of a peptide vaccine that primarily targets endothelial cells expressing high levels of GPNMB, recently identified as a biomarker of senescence. The vaccine reduces atherosclerotic plaque burden and metabolic dysfunction such as glucose intolerance in mouse models of obesity and atherosclerosis. For translation to humans the activity of the vaccine will need to be tightly controlled, as the target, GPNMB has multiple roles in normal physiology including acting to inhibit and possibly resolve inflammation. A promising alternative approach would be to use passive immunization with a monoclonal antibody directed against GPNMB.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, 1230 Bordeaux Dr, Sunnyvale, California, United States, 94089.,Regenerative Sciences Institute, 1230 Bordeaux Dr, Sunnyvale, California, United States, 94089;
| | - James Larrick
- Panorama Research Institute, 1230 Bordeaux Drive, Sunnyvale, California, United States, 94089;
| |
Collapse
|
21
|
Salles DC, Asrani K, Woo J, Vidotto T, Liu HB, Vidal I, Matoso A, Netto GJ, Argani P, Lotan TL. GPNMB
expression identifies
TSC1
/2/
mTOR
‐associated and
MiT
family translocation‐driven renal neoplasms. J Pathol 2022; 257:158-171. [PMID: 35072947 PMCID: PMC9310781 DOI: 10.1002/path.5875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
GPNMB (glycoprotein nonmetastatic B) and other TFE3/TFEB transcriptional targets have been proposed as markers for microphthalmia (MiT) translocation renal cell carcinomas (tRCCs). We recently demonstrated that constitutive mTORC1 activation via TSC1/2 loss leads to increased activity of TFE3/TFEB, suggesting that the pathogenesis and molecular markers for tRCCs and TSC1/2‐associated tumors may be overlapping. We examined GPNMB expression in human kidney and angiomyolipoma (AML) cell lines with TSC2 and/or TFE3/TFEB loss produced using CRISPR–Cas9 genome editing as well as in a mouse model of Tsc2 inactivation‐driven renal tumorigenesis. Using an automated immunohistochemistry (IHC) assay for GPNMB, digital image analysis was employed to quantitatively score expression in clear cell RCC (ccRCC, n = 87), papillary RCC (papRCC, n = 53), chromophobe RCC (chRCC, n = 34), oncocytoma (n = 4), TFE3‐ or TFEB‐driven tRCC (n = 56), eosinophilic solid and cystic RCC (ESC, n = 6), eosinophilic vacuolated tumor (EVT, n = 4), and low‐grade oncocytic tumor (LOT, n = 3), as well as AML (n = 29) and perivascular epithelioid cell tumors (PEComas, n = 8). In cell lines, GPNMB was upregulated following TSC2 loss in a MiT/TFE‐ and mTORC1‐dependent fashion. Renal tumors in Tsc2+/− A/J mice showed upregulation of GPNMB compared with normal kidney. Mean GPNMB expression was significantly higher in tRCC than in ccRCC (p < 0.0001), papRCC (p < 0.0001), and chRCC (p < 0.0001). GPNMB expression in TSC1/2/MTOR alteration‐associated renal tumors (including ESC, LOT, AML, and PEComa) was comparable to that in tRCC. The immunophenotype of tRCC and TSC1/2/MTOR alteration‐associated renal tumors is highly overlapping, likely due to the increased activity of TFE3/TFEB in both, revealing an important caveat regarding the use of TFE3/TFEB‐transcriptional targets as diagnostic markers. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daniela C. Salles
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Kaushal Asrani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Juhyung Woo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thiago Vidotto
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Hans B. Liu
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Igor Vidal
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andres Matoso
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - George J. Netto
- Department of Pathology University of Alabama Birmingham Alabama USA
| | - Pedram Argani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L. Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
22
|
Lee S, Cavaliere A, Gallezot JD, Keler T, Michelhaugh SK, Belitzky E, Liu M, Mulnix T, Maher SE, Bothwell ALM, Li F, Phadke M, Mittal S, Marquez-Nostra B. [89Zr]ZrDFO-CR011 positron emission tomography correlates with response to glycoprotein non-metastatic melanoma B-targeted therapy in triple negative breast cancer. Mol Cancer Ther 2022; 21:440-447. [PMID: 35027482 DOI: 10.1158/1535-7163.mct-21-0590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
There is a need for prognostic markers to select patients most likely to benefit from antibody drug conjugate (ADC) therapy. We quantified the relationship between pre-treatment positron emission tomography (PET) imaging of glycoprotein non-metastatic melanoma B (gpNMB) with 89Zr-labeled anti-gpNMB antibody ([89Zr]ZrDFO-CR011) and response to ADC therapy (CDX-011) in triple negative breast cancer (TNBC). First, we compared different PET imaging metrics and found that standardized uptake values (SUV) and tumor-to-heart SUV ratios (SUVR) were sufficient to delineate differences in radiotracer uptake in the tumor of four different cell- and patient-derived tumor models and achieved high standardized effect sizes. These tumor models with varying levels of gpNMB expression were imaged with [89Zr]ZrDFO-CR011 followed by treatment with a single bolus injection of CDX-011. The percent change in tumor volume relative to baseline (% CTV) was then correlated with SUVmean of [89Zr]ZrDFO-CR011 uptake in the tumor. All gpNMB-positive tumor models responded to CDX-011 over 6 weeks of treatment, except one patient-derived tumor re-grew after 4 weeks of treatment. As expected, the gpNMB-negative tumor increased in volume by 130 {plus minus} 59 % at endpoint. The magnitude of pre-treatment SUV had the strongest inverse correlation with the % CTV at 2 - 4 weeks after treatment with CDX-011 (Spearman ρ = -0.8). However, pre-treatment PET imaging with [89Zr]ZrDFO-CR011 did not inform on which tumor types will re-grow over time. Other methods will be needed to predict resistance to treatment.
Collapse
Affiliation(s)
- Supum Lee
- Radiology and Biomedical Imaging, Yale University
| | | | | | | | | | | | - Michael Liu
- Radiology and Biomedical Imaging, Yale University
| | | | | | | | - Fangyong Li
- Yale Center for Analytic Sciences, Yale University School of Public Health
| | - Manali Phadke
- Yale Center for Analytical Sciences, Yale School of Medicine
| | - Sandeep Mittal
- Neurosurgery, Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine
| | | |
Collapse
|
23
|
Zhai JP, Liu ZH, Wang HD, Huang GL, Man LB. GPNMB overexpression is associated with extensive bone metastasis and poor prognosis in renal cell carcinoma. Oncol Lett 2021; 23:36. [PMID: 34966452 DOI: 10.3892/ol.2021.13154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Glycoprotein non-metastatic protein B (GPNMB) promotes bone metastasis (BM) in various types of cancer. However, GPNMB expression and its function in patients with renal cell carcinoma (RCC) and BM is still unknown. Therefore, the clinical significance of GPNMB and its biological function in RCC with BM was investigated in the present study. A total of 31 patients with RCC and BM were retrospectively collected. The association between GPNMB protein expression level on the primary tumor and the clinicopathological characteristics of the patients was analyzed. Kaplan-Meier analysis was used to investigate the association between GPNMB expression and the prognosis of the patients. The effects of GPNMB inhibition on cell proliferation, migration and invasion in RCC cells were investigated using short hairpin (sh)RNA. High GPNMB expression level was significantly associated with the number (P=0.001) and the extent of BM (P=0.001), Fuhrman grade (P=0.037), and ERK expression level (P=0.003) of the primary tumor. In addition, GPNMB overexpression was significantly associated with poor prognosis with respect to overall survival time (P=0.001). Furthermore, a specific shRNA sequence targeting the GPNMB gene was constructed and transduced into the ACHN cell line, using a lentivirus vector to obtain a stable cell line with low mRNA expression level of GPNMB. Low GPNMB expression level inhibited RCC cell proliferation, which was measured using a Cell Counting Kit-8 assay. Cell migration and invasion ability was significantly decreased in GPNMB knockdown RCC cells compared with that in cells transduced with the negative control shRNA. In addition, the protein expression levels of phosphorylated ERK were lower in the GPNMB shRNA-transduced ACHN cells compared with those in the control cells. Therefore, these results suggested that GPNMB plays an important role in tumor progression in RCC with BM. Furthermore, it might serve as a predictive marker for BM and as a poor prognostic factor in RCC with BM. GPNMB downregulation suppressed the proliferation, migration and invasion of the RCC cells, which may be mediated through the inhibition of the ERK signaling pathway.
Collapse
Affiliation(s)
- Jian-Po Zhai
- Department of Urology, Beijing Jishuitan Hospital, Beijing 102200, P.R. China
| | - Zhen-Hua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing 102200, P.R. China
| | - Hai-Dong Wang
- Department of Urology, Beijing Jishuitan Hospital, Beijing 102200, P.R. China
| | - Guang-Lin Huang
- Department of Urology, Beijing Jishuitan Hospital, Beijing 102200, P.R. China
| | - Li-Bo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing 102200, P.R. China
| |
Collapse
|
24
|
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6:3269-3287. [PMID: 33778204 PMCID: PMC7970221 DOI: 10.1016/j.bioactmat.2021.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/09/2023] Open
Abstract
The management of aggressive breast cancer, particularly, triple negative breast cancer (TNBC) remains a formidable challenge, despite treatment advancement. Although newer therapies such as atezolizumab, olaparib, and sacituzumab can tackle the breast cancer prognosis and/or progression, but achieved limited survival benefit(s). The current research efforts are aimed to develop and implement strategies for improved bioavailability, targetability, reduce systemic toxicity, and enhance therapeutic outcome of FDA-approved treatment regimen. This review presents various nanoparticle technology mediated delivery of chemotherapeutic agent(s) for breast cancer treatment. This article also documents novel strategies to employ cellular and cell membrane cloaked (biomimetic) nanoparticles for effective clinical translation. These technologies offer a safe and active targeting nanomedicine for effective management of breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Upasana Ghosh
- Department of Biomedical Engineering, School of Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kamalika Samanta
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
25
|
Khan SA, Sun Z, Dahlberg S, Malhotra J, Keresztes R, Ikpeazu C, Ma P, Ramalingam SS, Pillai R. Efficacy and Safety of Glembatumumab Vedotin in Patients With Advanced or Metastatic Squamous Cell Carcinoma of the Lung (PrECOG 0504). JTO Clin Res Rep 2021; 2:100166. [PMID: 34590018 PMCID: PMC8474292 DOI: 10.1016/j.jtocrr.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Glycoprotein NMB is a transmembrane protein linked with poor prognosis and is expressed in most squamous lung cancer. Glembatumumab vedotin is an antibody-drug conjugate targeting glycoprotein NMB, administered intravenously every 3 weeks in this phase 1 study to determine the safety, tolerability, and maximum tolerated dose in patients who had progressed on any number of previous therapies. Results A total of 13 patients were enrolled; adverse events (of any grade) including dyspnea, neutropenia, respiratory failure, anemia, increased aspartate transaminase/alanine transaminase, diarrhea, and hypophosphatemia were seen in 15% of patients. Grade 5 events included two cases of respiratory failure, either completely or partially attributed to cancer progression. The only other grade 5 event was “disease progression.” The most common adverse events (23%) were decreased appetite, fatigue, rash, and weight loss. The median overall and progression-free survivals were 5.7 months (90% confidence interval: 2.5–16.8) and 2.5 months (90% confidence interval: 1.6–5.8) respectively. Conclusions Glembatumumab vedotin exhibited no serious or unexpected toxicity in this heavily pretreated population, except those caused by disease progression. Modest anticancer activity was observed with a recommendation for a phase 2 dose of 1.9 mg/kg. This portion of the study was not undertaken owing to the company’s decision to discontinue drug development.
Collapse
Affiliation(s)
- Saad A. Khan
- Harold C. Simmons Comprehensive Cancer Center, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Current Affiliation: Cancer Institute, Stanford Medicine, Stanford University, Stanford, California
- Corresponding author. Address for correspondence: Saad A. Khan, MD, Division of Oncology, Department of Medicine, 875 Blake Wilbur Avenue, Stanford, CA 94304.
| | - Zhuoxin Sun
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Suzanne Dahlberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts
- Current Affiliation: Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Roger Keresztes
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York
| | - Chukwuemeka Ikpeazu
- Division of Medical Oncology, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrick Ma
- Department of Medicine, Penn State University, State College, Pennsylvania
| | - Suresh S. Ramalingam
- Department of Hematology/Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Rathi Pillai
- Department of Hematology/Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Osteosarcoma in Children: Not Only Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14090923. [PMID: 34577623 PMCID: PMC8471047 DOI: 10.3390/ph14090923] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most severe bone malignant tumor, responsible for altered osteoid deposition and with a high rate of metastasis. It is characterized by heterogeneity, chemoresistance and its interaction with bone microenvironment. The 5-year survival rate is about 67% for patients with localized OS, while it remains at 20% in case of metastases. The standard therapy for OS patients is represented by neoadjuvant chemotherapy, surgical resection, and adjuvant chemotherapy. The most used chemotherapy regimen for children is the combination of high-dose methotrexate, doxorubicin, and cisplatin. Considered that the necessary administration of high-dose chemotherapy is responsible for a lot of acute and chronic side effects, the identification of novel therapeutic strategies to ameliorate OS outcome and the patients' life expectancy is necessary. In this review we provide an overview on new possible innovative therapeutic strategies in OS.
Collapse
|
27
|
Reuss JE, Gosa L, Liu SV. Antibody Drug Conjugates in Lung Cancer: State of the Current Therapeutic Landscape and Future Developments. Clin Lung Cancer 2021; 22:483-499. [PMID: 34420859 DOI: 10.1016/j.cllc.2021.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
While both targeted therapy and immunotherapy-based strategies have emerged as frontline standard-of-care for patients with advanced lung cancer, acquired resistance and disease progression remain inevitable in most cases. Chemotherapy is a common salvage option in this scenario, but is limited by a relatively narrow therapeutic index. The emergence of antibody-drug conjugates (ADCs) offer an appealing alternative. ADCs couple the specificity of a monoclonal antibody with the cytotoxic effects of chemotherapy to facilitate the targeted delivery of cytotoxic payloads directly to cancer cells. Here, we review the general structure and function of ADCs, followed by a discussion of emerging ADCs in lung cancer and the future applications of this increasingly relevant class of novel agents.
Collapse
Affiliation(s)
- Joshua E Reuss
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.
| | - Laura Gosa
- Georgetown University School of Medicine, Georgetown University, Washington, DC
| | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
28
|
Vahdat LT, Schmid P, Forero-Torres A, Blackwell K, Telli ML, Melisko M, Möbus V, Cortes J, Montero AJ, Ma C, Nanda R, Wright GS, He Y, Hawthorne T, Bagley RG, Halim AB, Turner CD, Yardley DA. Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer ("METRIC"): a randomized multicenter study. NPJ Breast Cancer 2021; 7:57. [PMID: 34016993 PMCID: PMC8137923 DOI: 10.1038/s41523-021-00244-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/16/2021] [Indexed: 12/09/2022] Open
Abstract
The METRIC study (NCT#0199733) explored a novel antibody–drug conjugate, glembatumumab vedotin (GV), targeting gpNMB that is overexpressed in ~40% of patients with triple-negative breast cancer (TNBC) and associated with poor prognosis. The study was a randomized, open-label, phase 2b study that evaluated progression-free survival (PFS) of GV compared with capecitabine in gpNMB-overexpressing TNBC. Patients who had previously received anthracycline and taxane-based therapy were randomized 2:1 to receive, GV (1.88 mg/kg IV q21 days) or capecitabine (2500 mg/m2 PO daily d1–14 q21 days). The primary endpoint was RECIST 1.1 PFS per independent, blinded central review. In all, 327 patients were randomized to GV (213 treated) or capecitabine (92 treated). Median PFS was 2.9 months for GV vs. 2.8 months for capecitabine. The most common grade ≥3 toxicities for GV were neutropenia, rash, and leukopenia, and for capecitabine were fatigue, diarrhea, and palmar-plantar erythrodysesthesia. The study did not meet the primary endpoint of improved PFS over capecitabine or demonstrate a relative risk/benefit improvement over capecitabine.
Collapse
Affiliation(s)
| | - Peter Schmid
- Center for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| | | | | | | | - Michelle Melisko
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - Javier Cortes
- IOB Institute of Oncology, Quironsalud Group, Madrid & Barcelona, Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Cynthia Ma
- Washington University, St. Louis, MO, USA
| | | | - Gail S Wright
- Florida Cancer Specialists, New Port Richey, FL, USA
| | - Yi He
- Celldex Therapeutics, Inc., Hampton, NJ, USA.,AstraZeneca, Gaithersburg, MD, USA
| | | | - Rebecca G Bagley
- Celldex Therapeutics, Inc., Hampton, NJ, USA.,Syndax, Waltham, MA, USA
| | - Abdel-Baset Halim
- Celldex Therapeutics, Inc., Hampton, NJ, USA.,Taiho Oncology, Princeton, NJ, USA
| | - Christopher D Turner
- Celldex Therapeutics, Inc., Hampton, NJ, USA.,Blueprint Medicines, Inc., Cambridge, MA, USA
| | - Denise A Yardley
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| |
Collapse
|
29
|
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol 2021; 12:674739. [PMID: 34054862 PMCID: PMC8149902 DOI: 10.3389/fimmu.2021.674739] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.
Collapse
Affiliation(s)
- Marina Saade
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Giovanna Araujo de Souza
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2021; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
31
|
Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22:609-619. [PMID: 33845034 DOI: 10.1016/s1470-2045(21)00056-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Few effective second-line treatments exist for women with recurrent or metastatic cervical cancer. Accordingly, we aimed to evaluate the efficacy and safety of tisotumab vedotin, a tissue factor-directed antibody-drug conjugate, in this patient population. METHODS This multicentre, open-label, single-arm, phase 2 study was done across 35 academic centres, hospitals, and community practices in Europe and the USA. The study included patients aged 18 years or older who had recurrent or metastatic squamous cell, adenocarcinoma, or adenosquamous cervical cancer; disease progression on or after doublet chemotherapy with bevacizumab (if eligible by local standards); who had received two or fewer previous systemic regimens for recurrent or metastatic disease; had measurable disease based on Response Evaluation Criteria in Solid Tumors (RECIST; version 1.1); and had an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received 2·0 mg/kg (up to a maximum of 200 mg) tisotumab vedotin intravenously once every 3 weeks until disease progression (determined by the independent review committee) or unacceptable toxicity. The primary endpoint was confirmed objective response rate based on RECIST (version 1.1), as assessed by the independent review committee. Activity and safety analyses were done in patients who received at least one dose of the drug. This study is ongoing with recruitment completed and is registered with ClinicalTrials.gov, NCT03438396. FINDINGS 102 patients were enrolled between June 12, 2018, and April 11, 2019; 101 patients received at least one dose of tisotumab vedotin. Median follow-up at the time of analysis was 10·0 months (IQR 6·1-13·0). The confirmed objective response rate was 24% (95% CI 16-33), with seven (7%) complete responses and 17 (17%) partial responses. The most common treatment-related adverse events included alopecia (38 [38%] of 101 patients), epistaxis (30 [30%]), nausea (27 [27%]), conjunctivitis (26 [26%]), fatigue (26 [26%]), and dry eye (23 [23%]). Grade 3 or worse treatment-related adverse events were reported in 28 (28%) patients and included neutropenia (three [3%] patients), fatigue (two [2%]), ulcerative keratitis (two [2%]), and peripheral neuropathies (two [2%] each with sensory, motor, sensorimotor, and neuropathy peripheral). Serious treatment-related adverse events occurred in 13 (13%) patients, the most common of which included peripheral sensorimotor neuropathy (two [2%] patients) and pyrexia (two [2%]). One death due to septic shock was considered by the investigator to be related to therapy. Three deaths unrelated to treatment were reported, including one case of ileus and two unknown causes. INTERPRETATION Tisotumab vedotin showed clinically meaningful and durable antitumour activity with a manageable and tolerable safety profile in women with previously treated recurrent or metastatic cervical cancer. Given the poor prognosis for this patient population and the low activity of current therapies in this setting, tisotumab vedotin, if approved, would represent a new treatment for women with recurrent or metastatic cervical cancer. FUNDING Genmab, Seagen, Gynaecologic Oncology Group, and European Network of Gynaecological Oncological Trial Groups.
Collapse
|
32
|
Lang M, Vocke CD, Ricketts CJ, Metwalli AR, Ball MW, Schmidt LS, Linehan WM. Clinical and Molecular Characterization of Microphthalmia-associated Transcription Factor (MITF)-related Renal Cell Carcinoma. Urology 2021; 149:89-97. [PMID: 33242557 PMCID: PMC8728951 DOI: 10.1016/j.urology.2020.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To characterize the clinical presentation, genomic alterations, pathologic phenotype and clinical management of microphthalmia-associated transcription factor (MITF) familial renal cell carcinoma (RCC), caused by a member of the TFE3, TFEB, and MITF family of transcription factor genes. METHODS The clinical presentation, family history, tumor histopathology, and surgical management were evaluated and reported herein. DNA sequencing was performed on blood DNA, tumor DNA and DNA extracted from adjacent normal kidney tissue. Copy number and gene expression analyses on tumor and normal tissues were performed by Real-Time Polymerase chain reaction. TCGA gene expression data were used for comparative analysis. Protein expression and subcellular localization were evaluated by immunohistochemistry. RESULTS Germline genomic analysis identified the MITF p.E318K variant in a patient with bilateral, multifocal type 1 papillary RCC and a family history of RCC. All tumors displayed the MITF variant and were characterized by amplification of chromosomes 7 and 17, hallmarks of type 1 papillary RCC. We demonstrated that MITF p.E318K variant results in altered transcriptional activity and that downstream targets of MiT family members, such as GPNMB, are dysregulated in the tumors. CONCLUSION Association of the pathogenic MITF variant with bilateral and multifocal type 1 papillary RCC in this family supports its role as a risk allele for the development of RCC and emphasizes the importance of screening for MITF variants irrelevant of the RCC histologic subtype. This study identifies potential biomarkers for the disease, such as GPNMB expression, that may facilitate the development of targeted therapies for patients affected with MITF-associated RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William M Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
33
|
Abstract
ABSTRACT Triple-negative breast cancer is increasingly recognized as a heterogeneous entity that can be categorized according to histologic, molecular, and clinical subtypes. While chemotherapy remains the backbone of treatment for this disease, there are now several available targeted agents including immunotherapy, poly(adenosine diphosphate-ribose) polymerase inhibitors, and most recently a Food and Drug Administration-approved antibody-drug conjugate sacituzumab govitecan-hziy as a third-line treatment of metastatic triple-negative breast cancer. We review several actionable targets for triple-negative breast cancer and describe promising nonimmunotherapeutic agents including cyclin-dependent kinase inhibitors, androgen receptor inhibitors, mitogen-activated protein kinase inhibitors, phosphoinositide 3-kinase inhibitors, AKT (also known as protein kinase B) inhibitors, and antibody-drug conjugates.
Collapse
|
34
|
Baird DA, Liu JZ, Zheng J, Sieberts SK, Perumal T, Elsworth B, Richardson TG, Chen CY, Carrasquillo MM, Allen M, Reddy JS, De Jager PL, Ertekin-Taner N, Mangravite LM, Logsdon B, Estrada K, Haycock PC, Hemani G, Runz H, Smith GD, Gaunt TR, AMP-AD eQTL working group. Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome. PLoS Genet 2021; 17:e1009224. [PMID: 33417599 PMCID: PMC7819609 DOI: 10.1371/journal.pgen.1009224] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/21/2021] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer's Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer's disease, 6 genes with Parkinson's disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Denis A. Baird
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jimmy Z. Liu
- Translational Biology, Research and Development, Cambridge, Massachusetts, United States of America
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Tom G. Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Chia-Yen Chen
- Translational Biology, Research and Development, Cambridge, Massachusetts, United States of America
| | - Minerva M. Carrasquillo
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | - Joseph S. Reddy
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | - Philip L. De Jager
- Centre for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Centre, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Centre, New York, New York, United States of America
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, United States of America
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | | | - Ben Logsdon
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Karol Estrada
- Translational Biology, Research and Development, Cambridge, Massachusetts, United States of America
- BioMarin Pharmaceuticals, San Rafael, California, United States of America
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Heiko Runz
- Translational Biology, Research and Development, Cambridge, Massachusetts, United States of America
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Oakfield House, University of Bristol, Bristol, United Kingdom
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Oakfield House, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
35
|
Whitt J, Hong WS, Telange RR, Lin CP, Bibb J, Beebe DJ, Chen H, Jaskula-Sztul R. Non-toxic fragment of botulinum neurotoxin type A and monomethyl auristatin E conjugate for targeted therapy for neuroendocrine tumors. Cancer Gene Ther 2020; 27:898-909. [PMID: 32029905 DOI: 10.1038/s41417-020-0167-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Surgical resection is the only cure for neuroendocrine tumors (NETs). However, widespread metastases have already occured by the time of initial diagnosis in many cases making complete surgical removal impossible. We developed a recombinant heavy-chain receptor binding domain (rHCR) of botulinum neurotoxin type A that can specifically target synaptic vesicle 2 (SV2), a surface receptor abundantly expressed in multiple neuroendocrine tumors. Expression of neuroendocrine differentiation markers chromogranin A (CgA) and achaete-scute complex 1 (ASCL1) were signficantly reduced when treated with rHCR. rHCR conjugated to the antimitotic agent monomethyl auristatin E (MMAE) significantly suppressed proliferation of pancreatic carcinoid (BON) and medullary thyroid cancer cells (MZ) at concentrations of 500 and 300 nM respectively, while no growth suppression was observed in pulmonary fibroblasts and cortical neuron control cell lines. In vivo, rHCR-MMAE significantly reduced tumor volume in mouse xenografts with no observed adverse effects. These data suggest recombinant HCR (rHCR) of BoNT/A preferentially targets neuroendocrine cancer without the neurotoxicity of the full BoNT/A and that SV2 is a specific and promising target for delivering drugs to neuroendocrine tumors.
Collapse
Affiliation(s)
- Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Won S Hong
- Pathology and Laboratory Medicine and Biomedical Engineering, UW-Madison, Madison, WI, USA
| | - Rahul R Telange
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chee Paul Lin
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David J Beebe
- Pathology and Laboratory Medicine and Biomedical Engineering, UW-Madison, Madison, WI, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
36
|
|
37
|
Williams M, Spreafico A, Vashisht K, Hinrichs MJ. Patient Selection Strategies to Maximize Therapeutic Index of Antibody-Drug Conjugates: Prior Approaches and Future Directions. Mol Cancer Ther 2020; 19:1770-1783. [PMID: 32546659 DOI: 10.1158/1535-7163.mct-19-0993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) are targeted agents that have shown promise in treating cancer. A central challenge in development of ADCs is the relatively narrow therapeutic index observed in clinical studies. Patient selection strategies based on expression of the target in tumors have the potential to maximize benefit and provide the best chance of clinical success; however, implementation of biomarker-driven trials can be difficult both practically and scientifically. We conducted a survey of recent clinical experience from early-phase ADC trials completed between 2000 and 2019 to evaluate the different approaches to patient selection currently being used and assess whether there is evidence that target expression is associated with clinical activity. Our analysis of patient selection strategies indicates that optimal trial design for early-stage trials should be based on multiple factors, including prevalence and heterogeneity of target expression among intent-to-treat patients, as well as biological factors influencing expression of cell surface and soluble target. To ensure a high probability of success, early implementation of patient selection strategies centered around target expression are pivotal to development of ADCs. In this review, we propose a strategic approach that can be applied for optimization of trial design.
Collapse
Affiliation(s)
- Marna Williams
- Translational Medicine, Oncology, AstraZeneca, Gaithersburg, Maryland
| | - Anna Spreafico
- Drug Development Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
38
|
Hong DS, Concin N, Vergote I, de Bono JS, Slomovitz BM, Drew Y, Arkenau HT, Machiels JP, Spicer JF, Jones R, Forster MD, Cornez N, Gennigens C, Johnson ML, Thistlethwaite FC, Rangwala RA, Ghatta S, Windfeld K, Harris JR, Lassen UN, Coleman RL. Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer. Clin Cancer Res 2020; 26:1220-1228. [PMID: 31796521 DOI: 10.1158/1078-0432.ccr-19-2962] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE Tissue factor (TF) is a potential target in cervical cancer, as it is frequently highly expressed and associated with poor prognosis. Tisotumab vedotin, a first-in-class investigational antibody-drug conjugate targeting TF, has demonstrated encouraging activity in solid tumors. Here we report data from the cervical cancer cohort of innovaTV 201 phase I/II study (NCT02001623). PATIENTS AND METHODS Patients with recurrent or metastatic cervical cancer received tisotumab vedotin 2.0 mg/kg every 3 weeks until progressive disease, unacceptable toxicity, or consent withdrawal. The primary objective was safety and tolerability. Secondary objectives included antitumor activity. RESULTS Of the 55 patients, 51% had received ≥2 prior lines of treatment in the recurrent or metastatic setting; 67% had prior bevacizumab + doublet chemotherapy. Fifty-one percent of patients had squamous cell carcinoma. The most common grade 3/4 treatment-emergent adverse events (AEs) were anemia (11%), fatigue (9%), and vomiting (7%). No grade 5 treatment-related AEs occurred. Investigator-assessed confirmed objective response rate (ORR) was 24% [95% confidence interval (CI): 13%-37%]. Median duration of response (DOR) was 4.2 months (range: 1.0+-9.7); four patients responded for >8 months. The 6-month progression-free survival (PFS) rate was 29% (95% CI: 17%-43%). Independent review outcomes were comparable, with confirmed ORR of 22% (95% CI: 12%-35%), median DOR of 6.0 months (range: 1.0+-9.7), and 6-month PFS rate of 40% (95% CI: 24%-55%). Tissue factor expression was confirmed in most patients; no significant association with response was observed. CONCLUSIONS Tisotumab vedotin demonstrated a manageable safety profile and encouraging antitumor activity in patients with previously treated recurrent or metastatic cervical cancer.
Collapse
Affiliation(s)
- David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Nicole Concin
- Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Johann S de Bono
- Division of Clinical Studies, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Brian M Slomovitz
- Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Yvette Drew
- Medical Oncology, Northern Centre for Cancer Care, The Newcastle-upon-Tyne Hospitals NHS Foundation Trust and Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | - Jean-Pascal Machiels
- Service d'Oncologie Médicale, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale, UCLouvain, Brussels, Belgium
| | - James F Spicer
- Comprehensive Cancer Centre, King's College London, Guy's Hospital, London, United Kingdom
| | - Robert Jones
- Biosciences, Cardiff University and Velindre NHS Trust, Cardiff, United Kingdom
| | - Martin D Forster
- Department of Oncology, University College London Cancer Institute, University College London Hospitals, London, United Kingdom
| | - Nathalie Cornez
- Oncology, Centre Hospitalier Universitaire Ambroise Paré, Mons, Belgium
| | - Christine Gennigens
- Department of Medical Oncology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Melissa L Johnson
- Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Fiona C Thistlethwaite
- Medical Oncology, The Christie NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, Hawthorne T, Crowley E, Moscow JA, Reid JM, Villalobos V, Randall RL, Gorlick R, Janeway KA. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children's Oncology Group. Eur J Cancer 2019; 121:177-183. [PMID: 31586757 DOI: 10.1016/j.ejca.2019.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/21/2019] [Accepted: 08/22/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The prognosis is poor for children and adolescents with recurrent osteosarcoma (OS). Glycoprotein non-metastatic B (gpNMB) is a glycoprotein highly expressed in OS cells. We conducted a phase II study of glembatumumab vedotin (GV), a fully human IgG2 monoclonal antibody (CR011) against gpNMB conjugated to the microtubule inhibitor, monomethyl auristatin E. PATIENTS AND METHODS Patients aged ≥12 years and <50 years with relapsed or refractory OS were eligible. GV 1.9 mg/kg/dose was administered on day 1 of each 21 day cycle. Pharmacokinetics were mandatory in patients aged <15 years. gpNMB expression was measured by immunohistochemistry. The primary end-point was disease control at 4 months and Response Evaluation Criteria in Solid Tumours response. A 2-stage design was used to determine efficacy. RESULTS Twenty-two patients were enrolled, and all were evaluable for response. Antibody-drug conjugate levels were detectable in patients, although small numbers limit comparison to adult data. The toxicities observed were similar to the previous studies with GV. The most common grade III adverse event was rash. One death from end organ failure occurred possibly related to GV. Of the 22 patients, one patient had a partial response, and two had stable disease. There was no correlation between gpNMB expression and response to GV. CONCLUSIONS GV was well tolerated in this population. Although there was some antitumour activity, the extent of disease control in stage I did not meet the level required to proceed to stage II. TRIAL REGISTRATION NUMBERS NCT02487979.
Collapse
Affiliation(s)
- Lisa M Kopp
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| | - Suman Malempati
- Department of Pediatrics, Oregon Health & Sciences University, Portland, OR, USA
| | - Mark Krailo
- Children's Oncology Group, Monrovia, CA, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yun Gao
- Children's Oncology Group, Monrovia, CA, USA
| | | | - Brenda J Weigel
- Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | | | | | | | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Richard Gorlick
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Pediatric Hematology-Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
40
|
Nakhjavani M, Hardingham JE, Palethorpe HM, Price TJ, Townsend AR. Druggable Molecular Targets for the Treatment of Triple Negative Breast Cancer. J Breast Cancer 2019; 22:341-361. [PMID: 31598336 PMCID: PMC6769384 DOI: 10.4048/jbc.2019.22.e39] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is still the most common cancer among women worldwide. Amongst the subtypes of BC, triple negative breast cancer (TNBC) is characterized by deficient expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. These patients are therefore not given the option of targeted therapy and have worse prognosis as a result. Consequently, much research has been devoted to identifying specific molecular targets that can be utilized for targeted cancer therapy, thereby limiting the progression and metastasis of this invasive tumor, and improving patient outcomes. In this review, we have focused on the molecular targets in TNBC, categorizing these into targets within the immune system such as immune checkpoint modulators, intra-nuclear targets, intracellular targets, and cell surface targets. The aim of this review is to introduce and summarize the known targets and drugs under investigation in phase II or III clinical trials, while introducing additional possible targets for future drug development. This review brings a tangible benefit to cancer researchers who seek a comprehensive comparison of TNBC treatment options.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Tim J Price
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| |
Collapse
|
41
|
Xie R, Okita Y, Ichikawa Y, Fikry MA, Huynh Dam KT, Tran STP, Kato M. Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential. Cancer Sci 2019; 110:2237-2246. [PMID: 31127873 PMCID: PMC6609797 DOI: 10.1111/cas.14076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein‐protein or protein‐carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi‐immunoreceptor tyrosine‐based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem‐like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so‐called kringle‐like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src‐induced tyrosine phosphorylation at least in overexpression experiments, and homo‐oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E‐cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.
Collapse
Affiliation(s)
- Rudy Xie
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yukari Okita
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yumu Ichikawa
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Muhammad Ali Fikry
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kim Tuyen Huynh Dam
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sophie Thi PhuongDung Tran
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Pondé N, Aftimos P, Piccart M. Antibody-Drug Conjugates in Breast Cancer: a Comprehensive Review. Curr Treat Options Oncol 2019; 20:37. [DOI: 10.1007/s11864-019-0633-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, Lutzky J, Rothschild NE, Spitler LE, Cowey CL, Alizadeh AR, Salama AK, He Y, Hawthorne TR, Bagley RG, Zhang J, Turner CD, Hamid O. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer 2019; 125:1113-1123. [PMID: 30690710 DOI: 10.1002/cncr.31892] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glembatumumab vedotin is an antibody-drug conjugate that produced preliminary clinical activity against advanced melanoma in a phase 1 dose-escalation trial. The objective of the current study was to investigate further the antitumor activity of glembatumumab vedotin at the recommended phase 2 dose in heavily pretreated patients with melanoma. METHODS This single-arm, phase 2 study enrolled patients with stage IV melanoma who were refractory to checkpoint inhibition and to B-raf proto-oncogene, serine/threonine kinase (BRAF)/mitogen-activated protein kinase kinase (MEK) inhibition (in the presence of a BRAF valine mutation at codon 600). Patients received 1.9 mg/kg glembatumumab vedotin intravenously every 3 weeks until they developed disease progression or intolerance. The primary endpoint was objective response rate (ORR), which was determined according to Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints included progression-free survival (PFS), duration of response, overall survival (OS), safety, and clinical efficacy versus tumor glycoprotein NMB (gpNMB) expression. Tumor expression of gpNMB was assessed using immunohistochemistry. RESULTS In total, 62 patients received treatment. The ORR was 11% and the median response duration was 6.0 months (95% confidence interval [CI], 4.1 months to not reached). The median PFS was 4.4 months (95% CI, 2.6-5.5 months), and the median OS was 9.0 months (95% CI, 6.1-11.7 months). For patients who developed rash during the first cycle versus those who did not, the ORR was 21% versus 7%, respectively, and there was an overall improvement in PFS (hazard ratio, 0.43; P = .013) and OS (hazard ratio, 0.43; P = .017). The most frequent adverse events were alopecia, neuropathy, rash, fatigue, and neutropenia. With one exception, all evaluable tumors were positive for gpNMB, and 46 of 59 tumors (76%) had 100% gpNMB-positive epithelial cells. CONCLUSIONS Glembatumumab vedotin had modest activity and an acceptable safety profile in patients with advanced melanoma who were refractory to checkpoint inhibitors and MEK/BRAF inhibition. Treatment-related rash may be associated with response.
Collapse
Affiliation(s)
- Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna C Pavlick
- Department of Medical Oncology, New York University School of Medicine, New York, New York
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Lowell L Hart
- Florida Cancer Specialists and Research Institute, Fort Myers, Florida
| | | | - Jason J Luke
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Jose Lutzky
- Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida
| | | | | | - C Lance Cowey
- Northern California Melanoma Center, Baylor University Medical Center, Dallas, Texas
| | | | - April K Salama
- Department of Medical Oncology, Duke University, Durham, North Carolina
| | - Yi He
- Celldex Therapeutics, Inc, Hampton, New Jersey
| | | | | | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, Los Angeles, California
| |
Collapse
|
44
|
Kobayashi M, Chung JS, Beg M, Arriaga Y, Verma U, Courtney K, Mansour J, Haley B, Khan S, Horiuchi Y, Ramani V, Harker D, Gopal P, Araghizadeh F, Cruz PD, Ariizumi K. Blocking Monocytic Myeloid-Derived Suppressor Cell Function via Anti-DC-HIL/GPNMB Antibody Restores the In Vitro Integrity of T Cells from Cancer Patients. Clin Cancer Res 2019; 25:828-838. [PMID: 30049749 PMCID: PMC7315386 DOI: 10.1158/1078-0432.ccr-18-0330] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Blocking the function of myeloid-derived suppressor cells (MDSC) is an attractive approach for cancer immunotherapy. Having shown DC-HIL/GPNMB to be the T-cell-inhibitory receptor mediating the suppressor function of MDSCs, we evaluated the potential of anti-DC-HIL mAb as an MDSC-targeting cancer treatment. EXPERIMENTAL DESIGN Patients with metastatic cancer (n = 198) were analyzed by flow cytometry for DC-HIL or PDL1 expression on blood CD14+HLA-DRno/lo MDSCs. Their suppressor function was assessed by in vitro coculture with autologous T cells, and the ability of anti-DC-HIL or anti-PDL1 mAb to reverse such function was determined. Tumor expression of these receptors was examined histologically, and the antitumor activity of the mAb was evaluated by attenuated growth of colon cancers in mice. RESULTS Patients with metastatic cancer had high blood levels of DC-HIL+ MDSCs compared with healthy controls. Anti-DC-HIL mAb reversed the in vitro function in ∼80% of cancer patients tested, particularly for colon cancer. Despite very low expression on blood MDSCs, anti-PDL1 mAb was as effective as anti-DC-HIL mAb in reversing MDSC function, a paradoxical phenomenon we found to be due to upregulated expression of PDL1 by T-cell-derived IFNγ in cocultures. DC-HIL is not expressed by colorectal cancer cells but by CD14+ cells infiltrating the tumor. Finally, anti-DC-HIL mAb attenuated growth of preestablished colon tumors by reducing MDSCs and increasing IFNγ-secreting T cells in the tumor microenvironment, with similar outcomes to anti-PDL1 mAb. CONCLUSIONS Blocking DC-HIL function is a potentially useful treatment for at least colorectal cancer with high blood levels of DC-HIL+ MDSCs.See related commentary by Colombo, p. 453.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Muhammad Beg
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Udit Verma
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Courtney
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Mansour
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Barbara Haley
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saad Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma District, Saitama Prefecture, Japan
| | - Vijay Ramani
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Harker
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Purva Gopal
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Farshid Araghizadeh
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
45
|
Tray N, Adams S, Esteva FJ. Antibody-drug conjugates in triple negative breast cancer. Future Oncol 2018; 14:2651-2661. [PMID: 30175620 DOI: 10.2217/fon-2018-0131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease that comprises 15-20% of all breast cancers and is more frequently seen in younger women, African-Americans, and BRCA1 expression. Advanced TNBC carries aggressive features and is associated with overall poor outcomes. Unfortunately, there are no targeted therapies available for non-BRCA associated TNBC, which remains a high unmet therapeutic need. One emerging treatment modality includes antibody-drug conjugates which are highly selective monoclonal antibodies conjugated to cytotoxic agents, designed to deliver cytotoxic drugs to antigen-expressing tumor cells. This review will highlight three antibody-drug conjugates currently being evaluated in TNBC (CDX-011, SGN-LIV1a, IMMU-132), including one that has been given Breakthrough Therapy designation from the US FDA.
Collapse
Affiliation(s)
- Nancy Tray
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Sylvia Adams
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Francisco J Esteva
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
46
|
Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med 2018; 16:147. [PMID: 29848327 PMCID: PMC5977468 DOI: 10.1186/s12967-018-1514-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.
Collapse
Affiliation(s)
- Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Yiran Qiu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| |
Collapse
|
47
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
48
|
Hanemaaijer SH, van Gijn SE, Oosting SF, Plaat BEC, Moek KL, Schuuring EM, van der Laan BFAM, Roodenburg JLN, van Vugt MATM, van der Vegt B, Fehrmann RSN. Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncol 2018; 80:33-39. [PMID: 29706186 DOI: 10.1016/j.oraloncology.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/11/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND For patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) palliative treatment options that improve overall survival are limited. The prognosis in this group remains poor and there is an unmet need for new therapeutic options. An emerging class of therapeutics, targeting tumor-specific antigens, are antibodies bound to a cytotoxic agent, known as antibody-drug conjugates (ADCs). The aim of this study was to prioritize ADC targets in HNSCC. METHODS With a systematic search, we identified 55 different ADC targets currently targeted by registered ADCs and ADCs under clinical evaluation. For these 55 ADC targets, protein overexpression was predicted in a dataset containing 344 HNSCC mRNA expression profiles by using a method called functional genomic mRNA profiling. The ADC target with the highest predicted overexpression was validated by performing immunohistochemistry (IHC) on an independent tissue microarray containing 414 HNSCC tumors. RESULTS The predicted top 5 overexpressed ADC targets in HNSCC were: glycoprotein nmb (GPNMB), SLIT and NTRK-like family member 6, epidermal growth factor receptor, CD74 and CD44. IHC validation showed combined cytoplasmic and membranous GPNMB protein expression in 92.0% of the cases. Strong expression was seen in 65.9% of the cases. In addition, 86.5% and 67.7% of cases showed ≥5% and >25% GPNMB positive tumor cells, respectively. CONCLUSIONS This study provides a data-driven prioritization of ADCs targets that will facilitate clinicians and drug developers in deciding which ADC should be taken for further clinical evaluation in HNSCC. This might help to improve disease outcome of HNSCC patients.
Collapse
Affiliation(s)
- Saskia H Hanemaaijer
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Stephanie E van Gijn
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Sjoukje F Oosting
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Boudewijn E C Plaat
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Kirsten L Moek
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Ed M Schuuring
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Bernard F A M van der Laan
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Jan L N Roodenburg
- University of Groningen, University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Bert van der Vegt
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands.
| |
Collapse
|
49
|
Mercatelli D, Bortolotti M, Bazzocchi A, Bolognesi A, Polito L. Immunoconjugates for Osteosarcoma Therapy: Preclinical Experiences and Future Perspectives. Biomedicines 2018; 6:E19. [PMID: 29439419 PMCID: PMC5874676 DOI: 10.3390/biomedicines6010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive osteoid-producing tumor of mesenchymal origin, which represents the most common primary bone malignancy. It is characterized by a complex and frequently uncertain etiology. The current standard care for high-grade OS treatment is neoadjuvant chemotherapy, followed by surgery and post-operative chemotherapy. In order to ameliorate survival rates of patients, new therapeutic approaches have been evaluated, mainly immunotherapy with antibody-drug conjugates or immunoconjugates. These molecules consist of a carrier (frequently an antibody) joined by a linker to a toxic moiety (drug, radionuclide, or toxin). Although several clinical trials with immunoconjugates have been conducted, mainly in hematological tumors, their potential as therapeutic agents is relatively under-explored in many types of cancer. In this review, we report the immunoconjugates directed against OS surface antigens, considering the in vitro and in vivo studies. To date, several attempts have been made in preclinical settings, reporting encouraging results and demonstrating the validity of the idea. The clinical experience with glembatumumab vedotin may provide new insights into the real efficacy of antibody-drug conjugates for OS therapy, possibly giving more information about patient selection. Moreover, new opportunities could arise from the ongoing clinical trials in OS patients with unconjugated antibodies that could represent future candidates as carrier moieties of immunoconjugates.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
- Department of Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Via G. C. Pupilli 1, 40136 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Alberto Bazzocchi
- Department of Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Via G. C. Pupilli 1, 40136 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
50
|
Gallery M, Zhang J, Bradley DP, Brauer P, Cvet D, Estevam J, Danaee H, Greenfield E, Li P, Manfredi M, Loke HK, Rabino C, Stringer B, Williamson M, Wyant T, Yang J, Zhu Q, Abu-Yousif A, Veiby OP. A monomethyl auristatin E-conjugated antibody to guanylyl cyclase C is cytotoxic to target-expressing cells in vitro and in vivo. PLoS One 2018; 13:e0191046. [PMID: 29370189 PMCID: PMC5784926 DOI: 10.1371/journal.pone.0191046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Guanylyl cyclase C (GCC) is a cell-surface protein that is expressed by normal intestinal epithelial cells, more than 95% of metastatic colorectal cancers (mCRC), and the majority of gastric and pancreatic cancers. Due to strict apical localization, systemically delivered GCC-targeting agents should not reach GCC in normal intestinal tissue, while accessing antigen in tumor. We generated an investigational antibody-drug conjugate (TAK-264, formerly MLN0264) comprising a fully human anti-GCC monoclonal antibody conjugated to monomethyl auristatin E via a protease-cleavable peptide linker. TAK-264 specifically bound, was internalized by, and killed GCC-expressing cells in vitro in an antigen-density-dependent manner. In GCC-expressing xenograft models with similar GCC expression levels/patterns observed in human mCRC samples, TAK-264 induced cell death, leading to tumor regressions and long-term tumor growth inhibition. TAK-264 antitumor activity was generally antigen-density-dependent, although some GCC-expressing tumors were refractory to TAK-264-targeted high local concentrations of payload. These data support further evaluation of TAK-264 in the treatment of GCC-expressing tumors.
Collapse
Affiliation(s)
- Melissa Gallery
- Molecular & Cellular Oncology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Julie Zhang
- Cancer Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Daniel P Bradley
- Biomedical Imaging, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Pamela Brauer
- Protein Sciences, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Donna Cvet
- Biomedical Imaging, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Jose Estevam
- Biomarker Assay & Exploratory Biology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Hadi Danaee
- Biomarker Assay & Exploratory Biology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Edward Greenfield
- Protein Sciences, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Ping Li
- Protein Sciences, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Mark Manfredi
- Cancer Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Huay-Keng Loke
- Oncology Biochemistry, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Claudia Rabino
- Molecular & Cellular Oncology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Brad Stringer
- Molecular Pathology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Mark Williamson
- US Medical Affairs, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Tim Wyant
- Translational Medicine, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Johnny Yang
- DMPK, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Qing Zhu
- DMPK, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - Adnan Abu-Yousif
- Cancer Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| | - O Petter Veiby
- Global Biotherapeutics, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, United States of America
| |
Collapse
|