1
|
Hahm J, Thirunavukarasu B, Gadoo R, Andrade JAF, Dalton T, Arany E, Hill DJ. Alpha- to Beta-Cell Transdifferentiation in Neonatal Compared with Adult Mouse Pancreas in Response to a Modest Reduction in Beta-Cells Using Streptozotocin. Int J Mol Sci 2024; 25:11152. [PMID: 39456933 PMCID: PMC11508719 DOI: 10.3390/ijms252011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Following the near-total depletion of pancreatic beta-cells with streptozotocin (STZ), a partial recovery of beta-cell mass (BCM) can occur, in part due to the alpha- to beta-cell transdifferentiation with an intermediary insulin/glucagon bi-hormonal cell phenotype. However, human type 2 diabetes typically involves only a partial reduction in BCM and it is not known if recovery after therapeutic intervention involves islet cell transdifferentiation, or how this varies with age. Here, we used transgenic mouse models to examine if islet cell transdifferentiation contributes to BCM recovery following only a partial depletion of BCM. Cell lineage tracing was employed using Glucagon-Cre/yellow fluorescent protein (YFP) transgenic mice treated with STZ (25 mg/kg-neonates; 70 mg/kg-adults) or vehicle alone on 3 consecutive days. Mice were euthanized 2-30 days later with a prior glucose tolerance test on day 30, and immunofluorescence histology performed on the pancreata. Beta-cell abundance was reduced by 30-40% two days post STZ in both neonates and adults, and subsequently partially recovered in adult but not neonatal mice. Glucose tolerance recovered in adult females, but not in males or neonates. Bi-hormonal cell abundance increased 2-3-fold in STZ-treated mice vs. controls in both neonates and adults, as did transdifferentiated cells expressing insulin and the YFP lineage tag, but not glucagon. Transdifferentiated cell presence was an order of magnitude lower than that of bi-hormonal cells. We conclude that alpha- to beta-cell transdifferentiation occurs in mice following only a moderate depletion in BCM, and that this was accompanied by a partial recovery of BCM in adults.
Collapse
Affiliation(s)
- Jiwon Hahm
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Bavina Thirunavukarasu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Reva Gadoo
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Juan Andres Fernandez Andrade
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Tyler Dalton
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Edith Arany
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Burton JJN, Alonso LC. Overnutrition in the early postnatal period influences lifetime metabolic risk: Evidence for impact on pancreatic β-cell mass and function. J Diabetes Investig 2024; 15:263-274. [PMID: 38193815 PMCID: PMC10906026 DOI: 10.1111/jdi.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Overconsumption of energy-rich foods that disrupt caloric balance is a fundamental cause of overweight, obesity and diabetes. Dysglycemia and the resulting cardiovascular disease cause substantial morbidity and mortality worldwide, as well as high societal cost. The prevalence of obesity in childhood and adolescence is increasing, leading to younger diabetes diagnosis, and higher severity of microvascular and macrovascular complications. An important goal is to identify early life conditions that increase future metabolic risk, toward the goal of preventing diabetes and cardiovascular disease. An ample body of evidence implicates prenatal and postnatal childhood growth trajectories in the programming of adult metabolic disease. Human epidemiological data show that accelerated childhood growth increases risk of type 2 diabetes in adulthood. Type 2 diabetes results from the combination of insulin resistance and pancreatic β-cell failure, but specific mechanisms by which accelerated postnatal growth impact one or both of these processes remain uncertain. This review explores the metabolic impact of overnutrition during postnatal life in humans and in rodent models, with specific attention to the connection between accelerated childhood growth and future adiposity, insulin resistance, β-cell mass and β-cell dysfunction. With improved knowledge in this area, we might one day be able to modulate nutrition and growth in the critical postnatal window to maximize lifelong metabolic health.
Collapse
Affiliation(s)
- Joshua JN Burton
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health, Weill Cornell MedicineNew York CityNew YorkUSA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health, Weill Cornell MedicineNew York CityNew YorkUSA
| |
Collapse
|
4
|
Serpente P, Zhang Y, Islimye E, Hart-Johnson S, Gould AP. Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Res 2022; 6:218. [PMID: 35634534 PMCID: PMC9120932 DOI: 10.12688/wellcomeopenres.17124.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results: Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.
Collapse
Affiliation(s)
- Patricia Serpente
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| | - Ying Zhang
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Eva Islimye
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Hart-Johnson
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
- Biological Research Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex P. Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
5
|
Sevillano J, Liang A, Strutt B, Hill TG, Szlapinski S, Ramos-Álvarez MP, Hill DJ. Pleiotrophin Expression and Actions in Pancreatic β-Cells. Front Endocrinol (Lausanne) 2022; 13:777868. [PMID: 35250852 PMCID: PMC8894601 DOI: 10.3389/fendo.2022.777868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Pleiotrophin (PTN) is a heparin-binding cytokine that is widely expressed during early development and increases in maternal circulation during pregnancy.Aged PTN-deficient mice exhibit insulin resistance, suggesting a role in metabolic control. The objectives of this study were to determine if PTN is expressed in mouse pancreatic β-cells in young vs. adult animals, and its effects on DNA synthesis, β-cell gene expression and glucose-stimulated insulin secretion (GSIS). The Ptn gene was expressed in isolated fractions of young mouse β-cells, especially within immature β-cells with low glucose transporter 2 expression. Expression was retained in the adult pancreas but did not significantly change during pregnancy. PTN and its receptor, phosphotyrosine phosphatase-β/ζ, were also expressed in the proliferative INS1E β-cell line. Fluorescence immunohistochemistry showed that PTN peptide was present in islets of Langerhans in adult mice, associated predominantly with β-cells. The percentage of β-cells staining for PTN did not alter during mouse pregnancy, but intense staining was seen during β-cell regeneration in young mice following depletion of β-cells with streptozotocin. Incubation of INS1E cells with PTN resulted in an increased DNA synthesis as measured by Ki67 localization and increased expression of Pdx1 and insulin. However, both DNA synthesis and GSIS were not altered by PTN in isolated adult mouse islets. The findings show that Ptn is expressed in mouse β-cells in young and adult life and could potentially contribute to adaptive increases in β-cell mass during early life or pregnancy.
Collapse
Affiliation(s)
- Julio Sevillano
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Aileen Liang
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Brenda Strutt
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Thomas G. Hill
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Sandra Szlapinski
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Maria Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - David J. Hill
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
- *Correspondence: David J. Hill,
| |
Collapse
|
6
|
Sciascia QL, Prehn C, Adamski J, Daş G, Lang IS, Otten W, Görs S, Metges CC. The Effect of Dietary Protein Imbalance during Pregnancy on the Growth, Metabolism and Circulatory Metabolome of Neonatal and Weaned Juvenile Porcine Offspring. Nutrients 2021; 13:nu13093286. [PMID: 34579160 PMCID: PMC8471113 DOI: 10.3390/nu13093286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Protein imbalance during pregnancy affects women in underdeveloped and developing countries and is associated with compromised offspring growth and an increased risk of metabolic diseases in later life. We studied in a porcine model the glucose and urea metabolism, and circulatory hormone and metabolite profile of offspring exposed during gestation, to maternal isoenergetic low-high (LP-HC), high-low (HP-LC) or adequate (AP) protein-carbohydrate ratio diets. At birth, LP-HC were lighter and the plasma acetylcarnitine to free carnitine ratios at 1 day of life was lower compared to AP offspring. Plasma urea concentrations were lower in 1 day old LP-HC offspring than HP-LC. In the juvenile period, increased insulin concentrations were observed in LP-HC and HP-LC offspring compared to AP, as was body weight from HP-LC compared to LP-HC. Plasma triglyceride concentrations were lower in 80 than 1 day old HP-LC offspring, and glucagon concentrations lower in 80 than 1 day old AP and HP-LC offspring. Plasma urea and the ratio of glucagon to insulin were lower in all 80 than 1 day old offspring. Aminoacyl-tRNA, arginine and phenylalanine, tyrosine and tryptophan metabolism, histidine and beta-alanine metabolism differed between 1 and 80 day old AP and HP-LC offspring. Maternal protein imbalance throughout pregnancy did not result in significant consequences in offspring metabolism compared to AP, indicating enormous plasticity by the placenta and developing offspring.
Collapse
Affiliation(s)
- Quentin L. Sciascia
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gürbüz Daş
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Iris S. Lang
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Winfried Otten
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Solvig Görs
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Cornelia C. Metges
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
- Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68-650
| |
Collapse
|
7
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
8
|
Impact of the exposome on the development and function of pancreatic β-cells. Mol Aspects Med 2021; 87:100965. [PMID: 33965231 DOI: 10.1016/j.mam.2021.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The development and plasticity of the endocrine pancreas responds to both the intrauterine and postnatal exposome in a constant attempt to predict and respond to alterations in nutritional availability and metabolic requirements. Both under- and over-nutrition in utero, or exposure to adverse environmental pollutants or maternal behaviors, can each lead to altered β-cell or function at birth, and a subsequent mismatch in pancreatic hormonal demands and secretory capacity postnatally. This can be further exacerbated by metabolic stress postnatally such as from obesity or pregnancy, resulting in an increased risk of gestational diabetes, type 2 diabetes, and even type 1 diabetes. This review will discuss evidence identifying the cellular pathways in early life whereby the plasticity of the endocrine pancreatic can become pathologically limited. By necessity, much of this evidence has been gained from animal models, although extrapolation to human fetal development is possible from the fetal growth trajectory and study of the newborn. Cellular limitations to plasticity include the balance between β-cell proliferation and apoptosis, the appearance of β-cell oxidative stress, impaired glucose-stimulated insulin secretion, and sensitivity to circulating cytokines and responsiveness to programmed death receptor-1. Evidence suggests that many of the cellular pathways responsible for limiting β-cell plasticity are related to paracrine interactions within the islets of Langerhans.
Collapse
|
9
|
Szlapinski SK, Bennett J, Strutt BJ, Hill DJ. Increased alpha and beta cell mass during mouse pregnancy is not dependent on transdifferentiation. Exp Biol Med (Maywood) 2021; 246:617-628. [PMID: 33231513 PMCID: PMC7934144 DOI: 10.1177/1535370220972686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal pancreatic beta-cell mass (BCM) increases during pregnancy to compensate for relative insulin resistance. If BCM expansion is suboptimal, gestational diabetes mellitus can develop. Alpha-cell mass (ACM) also changes during pregnancy, but there is a lack of information about α-cell plasticity in pregnancy and whether α- to β-cell transdifferentiation can occur. To investigate this, we used a mouse model of gestational glucose intolerance induced by feeding low-protein (LP) diet from conception until weaning and compared pregnant female offspring to control diet-fed animals. Control and LP pancreata were collected for immunohistochemical analysis and serum glucagon levels were measured. In order to lineage trace α- to β-cell conversion, we utilized transgenic mice expressing yellow fluorescent protein behind the proglucagon gene promoter (Gcg-Cre/YFP) and collected pancreata for histology at various gestational timepoints. Alpha-cell proliferation increased significantly at gestational day (GD) 9.5 in control pregnancies resulting in an increased ACM at GD18.5, and this was significantly reduced in LP animals. Despite these changes, serum glucagon was higher in LP mice at GD18.5. Pregnant Gcg-Cre/YFP mice showed no increase in the abundance of insulin+YFP+glucagon- cells (phenotypic β-cells). A second population of insulin+YFP+glucagon+ cells was identified which also did not alter during pregnancy. However, there was an altered anatomical distribution within islets with fewer insulin+YFP+glucagon- cells but more insulin+YFP+glucagon+ cells being present in the islet mantle at GD18.5. These findings demonstrate that dynamic changes in ACM occur during normal pregnancy and were altered in glucose-intolerant pregnancies.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Jamie Bennett
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Brenda J Strutt
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - David J Hill
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| |
Collapse
|
10
|
de Almeida Silva LC, de Oliveira AC, Cavalcante-Silva V, Franco MDC, D'Almeida V. Hyperlipidic diet affects body composition and induces anxiety-like behaviour in intrauterine growth-restricted adult mice. Exp Physiol 2020; 105:2061-2072. [PMID: 33098335 DOI: 10.1113/ep088859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect in male and female offspring of a protein-deficient diet producing intrauterine growth restriction (IUGR) in maternal mice on morphometric, metabolic and behavioural parameters before and after a challenge with a fat diet? What is the main finding and its importance? Male and female mice presented different growth trajectories after birth. IUGR favoured increased adiposity in male mice, and high-fat diet-induced anxiety-like behaviour in female mice. ABSTRACT As there is sexual dimorphism in the response to maternal manipulations, we aimed to analyse the effects of intrauterine growth restriction (IUGR) in both sexes on morphometric, metabolic and behavioural parameters throughout postnatal development, and after challenge with a hyperlipidic diet. Female Swiss mice (n = 59) were distributed into two groups (SD: standard diet, n = 26; and PDD: isocaloric protein-deficient diet, n = 33), 2 weeks before mating and during the gestational period. After birth, offspring from SD and PDD dams were cross-fostered and nurtured by SD dams until postnatal day (PND) 28. At PND 60 all animals were challenged with a hypercaloric diet for 4 weeks. Offspring birth weight was significantly reduced in the PDD group compared to the SD group (P = 0.0001), but only male offspring presented a rapid catch-up during the first 21 days of development. Although no differences in body weight were observed between groups after the challenge with the hyperlipidic diet, an increase in the relative perigonadal white adipose tissue (P = 0.009) and a decrease in gross gastrocnemius muscle weight (P = 0.010) were observed in the PDD males. In relation to behavioural tests, there was an increase in locomotion in both sexes (P = 0.0001), and a decrease in female grooming (P = 0.006) in the PDD group. Additionally, females from the PDD group showed increased hyperlipidic food intake. In conclusion, IUGR affected both sexes, with females showing prominent behavioural modifications and males presenting altered body composition elicited by a hyperlipidic diet.
Collapse
Affiliation(s)
| | | | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Szlapinski SK, King RT, Retta G, Yeo E, Strutt BJ, Hill DJ. A mouse model of gestational glucose intolerance through exposure to a low protein diet during fetal and neonatal development. J Physiol 2019; 597:4237-4250. [PMID: 31206692 DOI: 10.1113/jp277884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Pancreatic β-cell dysfunction is hypothesized to be the significant determinant of gestational diabetes pathogenesis, however pancreatic samples from patients are scarce. This study reports a novel mouse model of gestational glucose intolerance in pregnancy, originating from previous nutrition restriction in utero, in which glucose intolerance was restricted to late gestation as is seen in human gestational diabetes. Glucose intolerance was attributed to reduced β-cell proliferation, leading to impaired gestational β-cell mass expansion in maternal endocrine pancreas, in addition to reduced glucose-stimulated insulin secretion. This model reproduces some of the features of gestational diabetes and is suitable for testing safe therapeutic interventions that increase β-cell mass during pregnancy and prevent or reverse gestational glucose intolerance. ABSTRACT Gestational diabetes mellitus (GDM) is an increasingly prevalent form of diabetes that appears during pregnancy. Pathological studies link a failure to adaptively increase maternal pancreatic β-cell mass (BCM) in pregnancy to GDM. Due to the scarcity of pancreatic samples from GDM patients, we sought to develop a novel mouse model for impaired gestational glucose tolerance. Mature female C57Bl/6 mouse offspring (F1) born to dams fed either a control (C) or low-protein (LP) diet during gestation and lactation were randomly allocated into two subsequent study groups: pregnant (CP, LPP) or non-pregnant (CNP, LPNP). Glucose tolerance tests were performed at gestational day (GD) 9, 12 and 18. Subsequently, pancreata were removed for fluorescence immunohistochemistry to assess α-cell mass (ACM), BCM and β-cell proliferation. An additional group of animals was used to measure insulin secretion from isolated islets at GD18. LPP females displayed glucose intolerance compared to CP females at GD18 (P < 0.001). BCM increased threefold at GD18 in CP females. However, LPP females had reduced BCM expansion (P < 0.01) concurrent with reduced β-cell proliferation at GD12 (P < 0.05). LPP females also had reduced ACM expansion at GD18 (P < 0.01). LPP islets had impaired glucose-stimulated insulin secretion in vitro compared to CP islets (P < 0.01). Therefore, impaired glucose tolerance during pregnancy is associated with a failure to adequately adapt BCM, as a result of reduced β-cell proliferation, in addition to lower glucose-stimulated insulin secretion. This model could be used to evaluate novel interventions during pregnancy to increase BCM or function as a strategy to prevent/reverse GDM.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Renee T King
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Gabrielle Retta
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Erica Yeo
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Brenda J Strutt
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - David J Hill
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| |
Collapse
|
12
|
Offspring of Mice Exposed to a Low-Protein Diet in Utero Demonstrate Changes in mTOR Signaling in Pancreatic Islets of Langerhans, Associated with Altered Glucagon and Insulin Expression and a Lower β-Cell Mass. Nutrients 2019; 11:nu11030605. [PMID: 30871106 PMCID: PMC6471519 DOI: 10.3390/nu11030605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Low birth weight is a risk factor for gestational and type 2 diabetes (T2D). Since mammalian target of rapamycin (mTOR) controls pancreatic β-cell mass and hormone release, we hypothesized that nutritional insult in utero might permanently alter mTOR signaling. Mice were fed a low-protein (LP, 8%) or control (C, 20%) diet throughout pregnancy, and offspring examined until 130 days age. Mice receiving LP were born 12% smaller and β-cell mass was significantly reduced throughout life. Islet mTOR levels were lower in LP-exposed mice and localized predominantly to α-rather than β-cells. Incubation of isolated mouse islets with rapamycin significantly reduced cell proliferation while increasing apoptosis. mRNA levels for mTORC complex genes mTOR, Rictor and Raptor were elevated at 7 days in LP mice, as were the mTOR and Raptor proteins. Proglucagon gene expression was similarly increased, but not insulin or the immune/metabolic defense protein STING. In human and mouse pancreas STING was strongly associated with islet β-cells. Results support long-term changes in islet mTOR signaling in response to nutritional insult in utero, with altered expression of glucagon and insulin and a reduced β-cell mass. This may contribute to an increased risk of gestational or type 2 diabetes.
Collapse
|
13
|
Fu Z, Löfqvist CA, Liegl R, Wang Z, Sun Y, Gong Y, Liu CH, Meng SS, Burnim SB, Arellano I, Chouinard MT, Duran R, Poblete A, Cho SS, Akula JD, Kinter M, Ley D, Pupp IH, Talukdar S, Hellström A, Smith LE. Photoreceptor glucose metabolism determines normal retinal vascular growth. EMBO Mol Med 2019; 10:76-90. [PMID: 29180355 PMCID: PMC5760850 DOI: 10.15252/emmm.201707966] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neural cells and factors determining normal vascular growth are not well defined even though vision‐threatening neovessel growth, a major cause of blindness in retinopathy of prematurity (ROP) (and diabetic retinopathy), is driven by delayed normal vascular growth. We here examined whether hyperglycemia and low adiponectin (APN) levels delayed normal retinal vascularization, driven primarily by dysregulated photoreceptor metabolism. In premature infants, low APN levels correlated with hyperglycemia and delayed retinal vascular formation. Experimentally in a neonatal mouse model of postnatal hyperglycemia modeling early ROP, hyperglycemia caused photoreceptor dysfunction and delayed neurovascular maturation associated with changes in the APN pathway; recombinant mouse APN or APN receptor agonist AdipoRon treatment normalized vascular growth. APN deficiency decreased retinal mitochondrial metabolic enzyme levels particularly in photoreceptors, suppressed retinal vascular development, and decreased photoreceptor platelet‐derived growth factor (Pdgfb). APN pathway activation reversed these effects. Blockade of mitochondrial respiration abolished AdipoRon‐induced Pdgfb increase in photoreceptors. Photoreceptor knockdown of Pdgfb delayed retinal vascular formation. Stimulation of the APN pathway might prevent hyperglycemia‐associated retinal abnormalities and suppress phase I ROP in premature infants.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chatarina A Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivana Arellano
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rubi Duran
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Poblete
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Akula
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - David Ley
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | | | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Sanchez-Parra C, Jacovetti C, Dumortier O, Lee K, Peyot ML, Guay C, Prentki M, Laybutt DR, Van Obberghen E, Regazzi R. Contribution of the Long Noncoding RNA H19 to β-Cell Mass Expansion in Neonatal and Adult Rodents. Diabetes 2018; 67:2254-2267. [PMID: 30115652 DOI: 10.2337/db18-0201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate mass of insulin-secreting cells required to maintain blood glucose homeostasis later in life. Hence, defects in this process can predispose to diabetes development during adulthood. Global profiling of transcripts in pancreatic islets of newborn and adult rats revealed that the transcription factor E2F1 controls expression of the long noncoding RNA H19, which is profoundly downregulated during the postnatal period. H19 silencing decreased β-cell expansion in newborns, whereas its re-expression promoted proliferation of β-cells in adults via a mechanism involving the microRNA let-7 and the activation of Akt. The offspring of rats fed a low-protein diet during gestation and lactation display a small β-cell mass and an increased risk of developing diabetes during adulthood. We found that the islets of newborn rats born to dams fed a low-protein diet express lower levels of H19 than those born to dams that did not eat a low-protein diet. Moreover, we observed that H19 expression increases in islets of obese mice under conditions of increased insulin demand. Our data suggest that the long noncoding RNA H19 plays an important role in postnatal β-cell mass expansion in rats and contributes to the mechanisms compensating for insulin resistance in obesity.
Collapse
Affiliation(s)
- Clara Sanchez-Parra
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Olivier Dumortier
- University Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Kailun Lee
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Marie-Line Peyot
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Prentki
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Emmanuel Van Obberghen
- University Côte d'Azur, Centre Hospitalier Universitaire, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
16
|
Sullivan R, McGirr R, Hu S, Tan A, Wu D, Charron C, Lalonde T, Arany E, Chakrabarti S, Luyt L, Dhanvantari S. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice. J Endocr Soc 2017; 2:178-189. [PMID: 29450407 PMCID: PMC5799831 DOI: 10.1210/js.2017-00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are present in cardiac tissue. Activation of GHSR1a by ghrelin promotes cardiomyocyte contractility and survival, and changes in myocardial GHSR1a and circulating ghrelin track with end-stage heart failure, leading to the hypothesis that GHSR1a is a biomarker for heart failure. We hypothesized that GHSR1a could also be a biomarker for diabetic cardiomyopathy (DCM). We used two models of streptozotocin (STZ)-induced DCM: group 1, adult mice treated with 35 mg/kg STZ for 3 days; and group 2, neonatal mice treated with 70 mg/kg STZ at days 2 and 5 after birth. In group 1, mild fasting hyperglycemia (11 mM) was first detected 8 weeks after the last injection, and in group 2, severe fasting hyperglycemia (20 mM) was first detected 1 to 3 weeks after the last injection. In group 1, left ventricular function was slightly impaired as measured by echocardiography, and Western blot analysis showed a significant decrease in myocardial GHSR1a. In group 2, GHSR1a levels were also decreased as assessed by Cy5-ghrelin(1–19) fluorescence microscopy, and there was a significant negative correlation between GHSR1a levels and glucose tolerance. There were significant positive correlations between GHSR1a and ghrelin and between GHSR1a and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), a marker for contractility, but not between GHSR1a and B-type natriuretic peptide, a marker for heart failure. We conclude that the subclinical stage of DCM is accompanied by alterations in the myocardial ghrelin-GHSR1a system, suggesting the possibility of a biomarker for DCM.
Collapse
Affiliation(s)
- Rebecca Sullivan
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Rebecca McGirr
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Shirley Hu
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Alice Tan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Derek Wu
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Carlie Charron
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Tyler Lalonde
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Edith Arany
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Leonard Luyt
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.,Departments of Oncology and Medical Imaging, Western University, London, Ontario N6A 4L6, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada.,Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
17
|
Gao H, Ho E, Balakrishnan M, Yechoor V, Yallampalli C. Decreased insulin secretion in pregnant rats fed a low protein diet. Biol Reprod 2017; 97:627-635. [PMID: 29025046 PMCID: PMC9630396 DOI: 10.1093/biolre/iox100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/07/2023] Open
Abstract
Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring.
Collapse
Affiliation(s)
- Haijun Gao
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Eric Ho
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Meena Balakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Vijay Yechoor
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
18
|
Beamish CA, Mehta S, Strutt BJ, Chakrabarti S, Hara M, Hill DJ. Decrease in Ins +Glut2 LO β-cells with advancing age in mouse and human pancreas. J Endocrinol 2017; 233:229-241. [PMID: 28348115 DOI: 10.1530/joe-16-0475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022]
Abstract
The presence and location of resident pancreatic β-cell progenitors is controversial. A subpopulation of insulin-expressing but glucose transporter-2-low (Ins+Glut2LO) cells may represent multipotent pancreatic progenitors in adult mouse and in human islets, and they are enriched in small, extra-islet β-cell clusters (<5 β cells) in mice. Here, we sought to identify and compare the ontogeny of these cells in mouse and human pancreata throughout life. Mouse pancreata were collected at postnatal days 7, 14, 21, 28, and at 3, 6, 12, and 18 months of age, and in the first 28 days after β-cell mass depletion following streptozotocin (STZ) administration. Samples of human pancreas were examined during fetal life (22-30 weeks gestation), infancy (0-1 year), childhood (2-9), adolescence (10-17), and adulthood (18-80). Tissues were analyzed by immunohistochemistry for the expression and location of insulin, GLUT2 and Ki67. The proportion of β cells within clusters relative to that in islets was higher in pancreas of human than of mouse at all ages examined, and decreased significantly at adolescence. In mice, the total number of Ins+Glut2LO cells decreased after 7 days concurrent with the proportion of clusters. These cells were more abundant in clusters than in islets in both species. A positive association existed between the appearance of new β cells after the STZ treatment of young mice, particularly in clusters and smaller islets, and an increased proportional presence of Ins+Glut2LO cells during early β-cell regeneration. These data suggest that Ins+Glut2LO cells are preferentially located within β-cell clusters throughout life in pancreas of mouse and human, and may represent a source of β-cell plasticity.
Collapse
Affiliation(s)
- Christine A Beamish
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Physiology & PharmacologyWestern University, London, Ontario, Canada
| | - Sofia Mehta
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
| | - Brenda J Strutt
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
| | - Subrata Chakrabarti
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Pathology and Laboratory MedicineWestern University, London, Ontario, Canada
| | - Manami Hara
- Department of MedicineUniversity of Chicago, Chicago, Illinois, USA
| | - David J Hill
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Physiology & PharmacologyWestern University, London, Ontario, Canada
- Department of MedicineWestern University, London, Ontario, Canada
| |
Collapse
|
19
|
Xie L, Zhang K, Rasmussen D, Wang J, Wu D, Roemmich JN, Bundy A, Johnson WT, Claycombe K. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS One 2017; 12:e0169581. [PMID: 28141871 PMCID: PMC5283658 DOI: 10.1371/journal.pone.0169581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein) diet followed by a postnatal high fat energy diet (HE, 45% fat) or low fat normal energy diet (NE, 10% fat) for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP) fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.
Collapse
Affiliation(s)
- Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| | - Ke Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Dane Rasmussen
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Junpeng Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - James N. Roemmich
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Amy Bundy
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - W. Thomas Johnson
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Kate Claycombe
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| |
Collapse
|
20
|
Whitehead R, Guan H, Arany E, Cernea M, Yang K. Prenatal exposure to bisphenol A alters mouse fetal pancreatic morphology and islet composition. Horm Mol Biol Clin Investig 2016; 25:171-9. [PMID: 26812801 DOI: 10.1515/hmbci-2015-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/06/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an endocrine disrupting chemical, during gestation is associated with a variety of metabolic dysfunctions in adulthood, including hyperinsulinemia, glucose intolerance and insulin resistance. These modifications in glucose homeostasis largely stem from alterations in pancreatic function. However, the effects of BPA on the fetal pancreas have never been explored. The present study addressed this important question by examining the effects of prenatal BPA exposure on the mouse fetal pancreatic development. MATERIALS AND METHODS Pregnant mice were fed a BPA diet (25 mg BPA/kg diet) from embryonic day 7.5 (E7.5) to E18.5. At E18.5, fetal pancreata were collected and analyzed for morphological changes in the endocrine pancreas such as islet size, number and β and α cell distribution. RESULTS We showed that BPA exposed fetal pancreata had a greater number of islet-cell clusters (ICCs; <300 μm(2); p<0.05) compared with controls. Furthermore, immunohistochemical analysis revealed that prenatal BPA exposure increased both glucagon expression in islets and the numbers of glucagon-expressing islet-cell clusters (p<0.05). CONCLUSION Considering that ICCs represent the initial stages of islet development in the fetal pancreas, our findings suggest that BPA promotes islet differentiation or delays the conversion of ICCs into mature islets. Moreover, the increase in glucagon expression suggests a potential alteration in the α:β-cell ratio in islets, which may have significant implications for the fetal pancreas both structurally and functionally. This study provides novel insight into the effects of BPA exposure on the fetal pancreata, indicating alterations in glucagon expression in islets and ICCs.
Collapse
|
21
|
Su Y, Jiang X, Li Y, Li F, Cheng Y, Peng Y, Song D, Hong J, Ning G, Cao Y, Wang W. Maternal Low Protein Isocaloric Diet Suppresses Pancreatic β-Cell Proliferation in Mouse Offspring via miR-15b. Endocrinology 2016; 157:4782-4793. [PMID: 27754789 DOI: 10.1210/en.2016-1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism underlying the increased susceptibility of type 2 diabetes in offspring of maternal malnutrition is poorly determined. Here we tested the hypothesis that functional microRNAs (miRNAs) mediated the maternal low-protein (LP) isocaloric diet induced pancreatic β-cell impairment. We performed miRNA profiling in the islets from offspring of LP and control diet mothers to explore the potential functional miRNAs responsible for β-cell dysfunction. We found that LP offspring exhibited impaired glucose tolerance due to decreased β-cell mass and insulin secretion. Reduction in the β-cell proliferation rate and cell size contributed to the decreased β-cell mass. MiR-15b was up-regulated in the islets of LP offspring. The up-regulated miR-15b inhibited pancreatic β-cell proliferation via targeting cyclin D1 and cyclin D2. Inhibition of miR-15b in LP islet cells restored β-cell proliferation and insulin secretion. Our findings demonstrate that miR-15b is critical for the regulation of pancreatic β-cells in offspring of maternal protein restriction, which may provide a further insight for β-cell exhaustion originated from intrauterine growth restriction.
Collapse
Affiliation(s)
- Yutong Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiuli Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yulong Cheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Peng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Hong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Stolovich-Rain M, Enk J, Vikesa J, Nielsen FC, Saada A, Glaser B, Dor Y. Weaning triggers a maturation step of pancreatic β cells. Dev Cell 2015; 32:535-45. [PMID: 25662175 DOI: 10.1016/j.devcel.2015.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/26/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023]
Abstract
Because tissue regeneration deteriorates with age, it is generally assumed that the younger the animal, the better it compensates for tissue damage. We have examined the effect of young age on compensatory proliferation of pancreatic β cells in vivo. Surprisingly, β cells in suckling mice fail to enter the cell division cycle in response to a diabetogenic injury or increased glycolysis. The potential of β cells for compensatory proliferation is acquired following premature weaning to normal chow, but not to a diet mimicking maternal milk. In addition, weaning coincides with enhanced glucose-stimulated oxidative phosphorylation and insulin secretion from islets. Transcriptome analysis reveals that weaning increases the expression of genes involved in replication licensing, suggesting a mechanism for increased responsiveness to the mitogenic activity of high glucose. We propose that weaning triggers a discrete maturation step of β cells, elevating both the mitogenic and secretory response to glucose.
Collapse
Affiliation(s)
- Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Jonatan Enk
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Jonas Vikesa
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and the Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Alejandro EU, Gregg B, Wallen T, Kumusoglu D, Meister D, Chen A, Merrins MJ, Satin LS, Liu M, Arvan P, Bernal-Mizrachi E. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 2014; 124:4395-410. [PMID: 25180600 DOI: 10.1172/jci74237] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
A maternal diet that is low in protein increases the susceptibility of offspring to type 2 diabetes by inducing long-term alterations in β cell mass and function. Nutrients and growth factor signaling converge through mTOR, suggesting that this pathway participates in β cell programming during fetal development. Here, we revealed that newborns of dams exposed to low-protein diet (LP0.5) throughout pregnancy exhibited decreased insulin levels, a lower β cell fraction, and reduced mTOR signaling. Adult offspring of LP0.5-exposed mothers exhibited glucose intolerance as a result of an insulin secretory defect and not β cell mass reduction. The β cell insulin secretory defect was distal to glucose-dependent Ca2+ influx and resulted from reduced proinsulin biosynthesis and insulin content. Islets from offspring of LP0.5-fed dams exhibited reduced mTOR and increased expression of a subset of microRNAs, and blockade of microRNA-199a-3p and -342 in these islets restored mTOR and insulin secretion to normal. Finally, transient β cell activation of mTORC1 signaling in offspring during the last week of pregnancy of mothers fed a LP0.5 rescued the defect in the neonatal β cell fraction and metabolic abnormalities in the adult. Together, these findings indicate that a maternal low-protein diet alters microRNA and mTOR expression in the offspring, influencing insulin secretion and glucose homeostasis.
Collapse
|
24
|
Goosse K, Bouckenooghe T, Sisino G, Aurientis S, Remacle C, Reusens B. Increased susceptibility to streptozotocin and impeded regeneration capacity of beta-cells in adult offspring of malnourished rats. Acta Physiol (Oxf) 2014; 210:99-109. [PMID: 23701924 DOI: 10.1111/apha.12121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Epidemiological studies related poor maternal nutrition and subsequent growth retardation in the progeny to the development of diabetes later in life. Low-protein diet during gestation altered the beta-cell development of the rat progeny by decreasing beta-cell proliferation and increasing their sensitivity to nitric oxide and cytokines in the foetus. This disturbed maternal environment had long-lasting consequences because the higher beta-cell vulnerability was maintained at adulthood. AIM The aim of this study was to determine whether early malnutrition influences the vulnerability and the regeneration capacity of beta-cells after streptozotocin (STZ) damage at adulthood. METHODS Gestating rats were fed either a control or a low-protein diet until weaning. Adult female offspring received injections of Freund's adjuvant weekly for 5 weeks followed 24 h later by STZ. Half of the cohort was killed at d34, whereas the other half was maintained until d48 to analyse the regeneration capacity of the beta-cells. RESULTS Although control and low-protein rats had equivalent pancreatic insulin content and beta-cell volume density at d34, hyperglycaemia appeared earlier and was more dramatic in low-protein rats than in control rats. STZ treatment increased beta-cell proliferation similarly in both groups. At d48, apoptotic rate was higher in the low-protein group. Regeneration appeared in control, but not in the low-protein rats, where beta-cell aggregates/surface area and Reg1-positive area were decreased compared to control. CONCLUSION Maternal malnutrition programmes a more vulnerable endocrine pancreas in the progeny which is unable to regenerate after injury, therefore predisposing it to develop glucose intolerance and diabetes later in life.
Collapse
Affiliation(s)
- K. Goosse
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - T. Bouckenooghe
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - G. Sisino
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - S. Aurientis
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - C. Remacle
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - B. Reusens
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
25
|
Gillespie JR, Bush JR, Bell GI, Aubrey LA, Dupuis H, Ferron M, Kream B, DiMattia G, Patel S, Woodgett JR, Karsenty G, Hess DA, Beier F. GSK-3β function in bone regulates skeletal development, whole-body metabolism, and male life span. Endocrinology 2013; 154:3702-18. [PMID: 23904355 PMCID: PMC5053811 DOI: 10.1210/en.2013-1155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or "brake" on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in perinatal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes.
Collapse
MESH Headings
- Animals
- Bone Development
- Bone and Bones/enzymology
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Crosses, Genetic
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Susceptibility
- Energy Metabolism
- Female
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Insulin Resistance
- Male
- Male Urogenital Diseases/complications
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Promoter Regions, Genetic
- Sex Characteristics
- Survival Analysis
- Urogenital System/pathology
- Weaning
Collapse
Affiliation(s)
- J R Gillespie
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada; N6A 5C1.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cox AR, Beamish CA, Carter DE, Arany EJ, Hill DJ. Cellular mechanisms underlying failed beta cell regeneration in offspring of protein-restricted pregnant mice. Exp Biol Med (Maywood) 2013; 238:1147-59. [PMID: 23986224 DOI: 10.1177/1535370213493715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low birth weight and poor foetal growth following low protein (LP) exposure are associated with altered islet development and glucose intolerance in adulthood. Additionally, LP-fed offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ) in contrast to control-fed offspring that restore β-cell mass. Our objective was to identify signalling pathways and cellular functions that may be critically altered in LP offspring rendering them susceptible to developing long-term glucose intolerance and decreased β-cell plasticity. Pregnant Balb/c mice were fed a control (C; 20% protein) or an isocaloric LP (8% protein) diet throughout gestation and C diet thereafter. Female offspring were injected intraperitoneally with 35 mg/kg STZ or vehicle on days 1 to 5 for each dietary treatment. At 30 days of age, total RNA was extracted from pancreatic tissue for microarray analysis using the Affymetrix GeneChip Mouse Genome 430 2.0. Gene and protein expression were quantified from isolated islets. Finally, β-cell proliferation was determined in vitro following REG1α treatment. The microarray data and GO enrichment analysis indicated that foetal protein restriction alters the early expression of genes necessary for many cell functions, such as oxidative phosphorylation and free radical scavenging. Expression of Reg1 was upregulated following STZ, whereas protein content was decreased in LP + STZ islets. Furthermore, REG1α failed to stimulate β-cell proliferation in vitro in LP + STZ islets. Therefore, early nutritional insults may programme the Reg1 pathway resulting in a limited ability to increase β-cell mass during metabolic stress. In conclusion, this study implicates the Reg1 pathway in β-cell regeneration and describes altered programming of gene expression in LP offspring, which underlies later development of cell dysfunction and glucose intolerance in adulthood.
Collapse
Affiliation(s)
- Aaron R Cox
- Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada, N6A 4V2
| | | | | | | | | |
Collapse
|
27
|
van Straten EME, Bloks VW, van Dijk TH, Baller JFW, Huijkman NCA, Kuipers I, Verkade HJ, Plösch T. Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction. ACTA ACUST UNITED AC 2012; 9:166-179.e13. [PMID: 22361840 DOI: 10.1016/j.genm.2012.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. OBJECTIVE We aimed to establish a mouse model of metabolic programming focusing on the sex-specific effects of a maternal low-protein diet during gestation on glucose and lipid metabolism in the adult offspring. METHODS Pregnant C57BL/6 mice received a control or a low-protein diet (18% vs 9% casein) throughout gestation. Male and female offspring received a low-fat or a high-fat diet from 6 to 22 weeks of age. RESULTS Maternal low-protein diet during gestation led to deteriorated insulin sensitivity on high-fat feeding in female offspring, as determined by biochemical and microarray analyses. Female offspring of control diet-fed dams were relatively resistant to high-fat diet-induced metabolic dysregulation. In contrast, maternal low-protein diet did not specifically affect the metabolic parameters addressed in male offspring. In males, the high-fat diet led to insulin insensitivity regardless of the diet of the dam. CONCLUSIONS Our findings show that fetal malnutrition has a limited impact on male mouse offspring, yet it does influence the metabolic response to a high-fat diet in females. These findings may have implications for future early diagnostics in metabolic syndrome and for the development of sex-specific treatment regimens.
Collapse
Affiliation(s)
- Esther M E van Straten
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Reusens B, Theys N, Dumortier O, Goosse K, Remacle C. Maternal malnutrition programs the endocrine pancreas in progeny. Am J Clin Nutr 2011; 94:1824S-1829S. [PMID: 21562089 DOI: 10.3945/ajcn.110.000729] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes arises when the endocrine pancreas fails to secrete sufficient insulin to cope with metabolic demands resulting from β cell secretory dysfunction, decreased β cell mass, or both. Epidemiologic studies have shown strong relations between poor fetal and early postnatal nutrition and susceptibility to diabetes later in life. Animal models have been established, and studies have shown that a reduction in the availability of nutrients during fetal development programs the endocrine pancreas and insulin-sensitive tissues. We investigated several modes of early malnutrition in rats. Regardless of the type of diet investigated, whether there was a deficit in calories or protein in food or even in the presence of a high-fat diet, malnourished pups were born with a defect in their β cell population, with fewer β cells that did not secrete enough insulin and that were more vulnerable to oxidative stress; such populations of β cells will never completely recover. Despite the similar endpoint, the cellular and physiologic mechanisms that contribute to alterations in β cell mass differ depending on the nature of the nutritional insult. Hormones that are operative during fetal life, such as insulin, insulin-like growth factors, and glucocorticoids; specific molecules, such as taurine; and islet vascularization have been implicated as possible factors in amplifying this defect. The molecular mechanisms responsible for intrauterine programming of β cells are still elusive, but among them the programming of mitochondria may be a strong central candidate.
Collapse
Affiliation(s)
- Brigitte Reusens
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
29
|
Hill DJ. Nutritional programming of pancreatic β-cell plasticity. World J Diabetes 2011; 2:119-26. [PMID: 21954415 PMCID: PMC3180528 DOI: 10.4239/wjd.v2.i8.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/07/2011] [Accepted: 08/14/2011] [Indexed: 02/05/2023] Open
Abstract
Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and functional capacity of the endocrine pancreas, and in the supporting islet microvasculature. Pancreatic β-cells possess a plastic potential and can partially recover from catastrophic loss. This is partly due to the existence of progenitors within the islets and the ability to generate new islets by neogenesis from the pancreatic ducts. This regenerative capacity is induced by bone marrow-derived stem cells, including endothelial cell progenitors and is associated with increased angiogenesis within the islets. Nutritional insults in early life, such as feeding a low protein diet to the mother, impair the regenerative capacity of the β-cells. The mechanisms underlying this include a reduced ability of β-cells to differentiate from the progenitor population, changes in the inductive signals from the microvasculature and an altered presence of endothelial progenitors. Statin treatment within animal models was associated with angiogenesis in the islet microvasculature, improved vascular function and an increase in β-cell mass. This demonstrates that reversal of the impaired β-cell phenotype observed following nutritional insult in early life is potentially possible.
Collapse
Affiliation(s)
- David J Hill
- David J Hill, Department of Medicine, Physiology and Pharmacology, and Paediatrics, University of Western Ontario, London, Ontario N6A 5B8, Canada
| |
Collapse
|
30
|
Transgenerational endocrine pancreatic adaptation in mice from maternal protein restriction in utero. Mech Ageing Dev 2011; 132:110-6. [DOI: 10.1016/j.mad.2011.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 11/18/2022]
|
31
|
Chamson-Reig A, Arany EJ, Hill DJ. Lineage tracing and resulting phenotype of haemopoietic-derived cells in the pancreas during beta cell regeneration. Diabetologia 2010; 53:2188-97. [PMID: 20585934 DOI: 10.1007/s00125-010-1835-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/04/2010] [Indexed: 02/07/2023]
Abstract
AIMS Transplantation of bone marrow-derived haemopoietic stem cells following streptozotocin (STZ) treatment to induce pancreatic beta cell loss in mice causes the partial regeneration of beta cell mass, with many haemopoietic cells demonstrating endothelial cell markers. This study used genetically tagged haemopoietic lineage-derived cells to determine how endogenous cells are mobilised following beta cell loss and subsequent replacement. METHODS A double transgenic mouse model, Vav-iCre; R26R-enhanced yellow fluorescent protein (YFP), was used where only haemopoietic lineage cells expressed the Vav1 gene promoter allowing expression of the YFP reporter gene. Between postnatal days 2 and 4 mice were injected with STZ or vehicle (control) and body weight and glycaemia were monitored. Mice were killed between days 10 and 130, and the pancreases were examined by immunofluorescence microscopy. RESULTS YFP-expressing cells infiltrated the pancreas at all ages, being present around newly forming islets at the pancreatic ducts, and within larger islets. Small numbers of YFP-positive cells (<5%) co-stained for the macrophage markers F4/80 or Mac1, for cytokeratin 19, or for the transcription factor pancreatic and duodenal homeobox 1 (PDX-1), but no co-localisation was seen with insulin or other endocrine hormones. Within islets approximately 30% of YFP-positive cells co-stained for the endothelial cell marker CD31, and following STZ the number of haemopoietic-derived cells, and the proportion that were CD31-positive, both significantly increased after 21 and 40 days, coincident with a partial replacement of beta cells. CONCLUSIONS Our results suggest that following beta cell loss endogenous haemopoietic-lineage cells contribute to intra-islet angiogenesis, which supports a partial recovery of beta cell mass.
Collapse
Affiliation(s)
- A Chamson-Reig
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor Street, London, ON, Canada N6A 4V2
| | | | | |
Collapse
|