1
|
Kamiya S, Nakamori Y, Takasawa A, Takasawa K, Kyuno D, Ono Y, Magara K, Osanai M. Vitamin D metabolism in cancer: potential feasibility of vitamin D metabolism blocking therapy. Med Mol Morphol 2023; 56:85-93. [PMID: 36749415 DOI: 10.1007/s00795-023-00348-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
In this review, we discuss the possibility of the vitamin D metabolizing enzyme CYP24A1 being a therapeutic target for various tumors including breast, colorectal and prostate tumors. Given the pleiotropic cellular activity of vitamin D, its deficiency impairs its physiological function in target cells and results in various pathologies including cancer. In addition, accumulated data have shown that elevated expression of CYP24A1 promotes carcinogenesis in various cancer subtypes by decreasing the bioavailability of vitamin D metabolites. Thus, we propose the potential feasibility of vitamin D metabolism-blocking therapy in various types of human malignancies that express constitutive CYP24A1.
Collapse
Affiliation(s)
- Sakura Kamiya
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan.,Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan.
| |
Collapse
|
2
|
Kouri MA, Spyratou E, Karnachoriti M, Kalatzis D, Danias N, Arkadopoulos N, Seimenis I, Raptis YS, Kontos AG, Efstathopoulos EP. Raman Spectroscopy: A Personalized Decision-Making Tool on Clinicians' Hands for In Situ Cancer Diagnosis and Surgery Guidance. Cancers (Basel) 2022; 14:1144. [PMID: 35267451 PMCID: PMC8909093 DOI: 10.3390/cancers14051144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate in situ diagnosis and optimal surgical removal of a malignancy constitute key elements in reducing cancer-related morbidity and mortality. In surgical oncology, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. Conventional imaging techniques have attempted to serve as adjuvant tools for in situ biopsy and surgery guidance. However, no single imaging modality has been proven sufficient in terms of specificity, sensitivity, multiplexing capacity, spatial and temporal resolution. Moreover, most techniques are unable to provide information regarding the molecular tissue composition. In this review, we highlight the potential of Raman spectroscopy as a spectroscopic technique with high detection sensitivity and spatial resolution for distinguishing healthy from malignant margins in microscopic scale and in real time. A Raman spectrum constitutes an intrinsic "molecular finger-print" of the tissue and any biochemical alteration related to inflammatory or cancerous tissue state is reflected on its Raman spectral fingerprint. Nowadays, advanced Raman systems coupled with modern instrumentation devices and machine learning methods are entering the clinical arena as adjunct tools towards personalized and optimized efficacy in surgical oncology.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside Street, Lowell, MA 01854, USA
| | - Ellas Spyratou
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Maria Karnachoriti
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Dimitris Kalatzis
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Danias
- 4th Department of Surgery, School of Medicine, Attikon University Hospital, University of Athens, 1 Rimini Street, 12462 Athens, Greece; (N.D.); (N.A.)
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, School of Medicine, Attikon University Hospital, University of Athens, 1 Rimini Street, 12462 Athens, Greece; (N.D.); (N.A.)
| | - Ioannis Seimenis
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Assias Street, 11527 Athens, Greece;
| | - Yannis S. Raptis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Athanassios G. Kontos
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
3
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Arisan ED, Rencuzogullari O, Keskin B, Grant GH, Uysal-Onganer P. Inhibition on JNK Mimics Silencing of Wnt-11 Mediated Cellular Response in Androgen-Independent Prostate Cancer Cells. BIOLOGY 2020; 9:biology9070142. [PMID: 32605008 PMCID: PMC7407974 DOI: 10.3390/biology9070142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial–mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze-Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Buse Keskin
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
5
|
Bozdogan O, Atasoy P, Bozdogan N, Erekul S, Batislam E, Yilmaz E, Başar MM. Bag-1 Expression in Hyperplastic and Neoplastic Prostate Tissue: Is There Any Relationship with BCL-Related Proteins and Androgen Receptor Status? TUMORI JOURNAL 2019; 91:539-45. [PMID: 16457154 DOI: 10.1177/030089160509100615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background To evaluate the function and distribution of BAG-1 protein in hyperplastic and neoplastic prostate tissue and establish the relationship between this protein and BCL-related proteins (BCL-2 and BAX), androgen receptor (AR) expression and chromogranin A. Methods Twenty-eight prostatic adenocarcinomas and 16 prostate hyperplasias were included in this retrospective study. BAG-1, BCL-2, BAX, androgen receptor and chromogranin A immunostaining was performed by means of standard avidin-biotin peroxidase methods. The M30 antibody was used to identify preapoptotic and apoptotic cells. The immunohistochemical histological score (HSCORE) semi-quantative system was used to evaluate immunohistochemical staining. Results Statistical analysis showed a significant difference in HSCOREs of BAX, M30 and AR between the carcinoma and hyperplasia groups. Carcinomas expressed higher HSCOREs of these markers than hyperplasias. There were significant differences in nuclear and cytoplasmic BAG-1 positivity between high and low-grade carcinomas. BAG-1 expression was higher in low-grade carcinomas. In the carcinoma group there was a positive correlation (Pearson) between BCL-2 and cytoplasmic/nuclear BAG-1. In the hyperplasia group there was a negative correlation between BAX and BCL-2, and between AR and M30. We also detected a positive correlation between AR and nuclear/cytoplasmic BAG-1 and between nuclear and cytoplasmic BAG-1 in hyperplasias. BAG-1 showed the same specific basal cell localization as BCL-2 in hyperplastic and normal glands. Conclusions The BAG-1 protein showed a distinct distribution pattern in hyperplastic and neoplastic prostate. BAG-1 in association with BCL-2 inhibits apoptosis and may prolong the life of neoplastic cells and give them a chance to gain new oncogenic features in early carcinogenesis.
Collapse
Affiliation(s)
- Onder Bozdogan
- Department of Pathology, Kirikkale University Medical School, Turkey.
| | | | | | | | | | | | | |
Collapse
|
6
|
Basir A. Methionine Synthase Reductase-A66G and -C524T Single Nucleotide Polymorphisms and Prostate Cancer: A Case-Control Trial. Asian Pac J Cancer Prev 2019; 20:1445-1451. [PMID: 31127906 PMCID: PMC6857893 DOI: 10.31557/apjcp.2019.20.5.1445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose: Some variations in the sequence of methionine synthase reductase (MTRR) gene can increase the risk of various cancers such as prostate cancer. The aim of this study was to investigate the association between prostate cancer and the MTRR A66G and C524T gene single nucleotide polymorphisms (SNPs) using an in silico analysis. Methods: In this case-control study, 218 Iranian men, including 108 men with prostate cancer and 110 prostate cancer-free men, were enrolled. The MTRR A66G and C524T genotyping was performed by PCR-RFLP. Some of the bioinformatics tools were employed for the evaluation of polymorphism on the molecular aspects of the MTRR. Results: With regard to the MTRR A66G polymorphism, the genotype AG (OR: 0.85, 95% CI: 0.47-1.54, p= 0.6014), genotype GG (OR: 0.89, 95% CI: 0.42-1.87, p= 0.7512), and allele G (OR: 0.92, 95% CI: 0.63-1.35, p= 0.6686) were not associated with prostate cancer risk. However, the data for C524T SNP showed that the genotype CT was associated with prostate cancer risk (OR: 1.92, 95% CI: 1.06-3.47, p= 0.0308). Further, carriers of the allele T (OR: 1.80, 95% CI: 1.04-3.13, p= 0.0358) were associated with high risk of prostate cancer. In addition, bioinformatics analysis revealed that C524T SNP could affect some molecular aspects of the protein structure, while having no effect on the mRNA structure. Conclusion: The MTRR C524T is a genetic risk factor for prostate cancer; however, the MTRR A66G is not suggested as a suitable biomarker for prostate cancer. To obtain more reliable results, further studies are recommended to use larger sample sizes and investigate the effects of environmental factors.
Collapse
Affiliation(s)
- Atefeh Basir
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| |
Collapse
|
7
|
Santos IP, Barroso EM, Bakker Schut TC, Caspers PJ, van Lanschot CGF, Choi DH, van der Kamp MF, Smits RWH, van Doorn R, Verdijk RM, Noordhoek Hegt V, von der Thüsen JH, van Deurzen CHM, Koppert LB, van Leenders GJLH, Ewing-Graham PC, van Doorn HC, Dirven CMF, Busstra MB, Hardillo J, Sewnaik A, Ten Hove I, Mast H, Monserez DA, Meeuwis C, Nijsten T, Wolvius EB, Baatenburg de Jong RJ, Puppels GJ, Koljenović S. Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics. Analyst 2018; 142:3025-3047. [PMID: 28726868 DOI: 10.1039/c7an00957g] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oncological applications of Raman spectroscopy have been contemplated, pursued, and developed at academic level for at least 25 years. Published studies aim to detect pre-malignant lesions, detect cancer in less invasive stages, reduce the number of unnecessary biopsies and guide surgery towards the complete removal of the tumour with adequate tumour resection margins. This review summarizes actual clinical needs in oncology that can be addressed by spontaneous Raman spectroscopy and it provides an overview over the results that have been published between 2007 and 2017. An analysis is made of the current status of translation of these results into clinical practice. Despite many promising results, most of the applications addressed in scientific studies are still far from clinical adoption and commercialization. The main hurdles are identified, which need to be overcome to ensure that in the near future we will see the first Raman spectroscopy-based solutions being used in routine oncologic diagnostic and surgical procedures.
Collapse
Affiliation(s)
- Inês P Santos
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fantus RJ, Helfand BT. Germline Genetics of Prostate Cancer: Time to Incorporate Genetics into Early Detection Tools. Clin Chem 2018; 65:74-79. [PMID: 30459162 DOI: 10.1373/clinchem.2018.286658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) remains the most common solid malignancy in men, and its prevalence makes understanding its heritability of paramount importance. To date, the most common factors used to estimate a man's risk of developing PCa are age, race, and family history. Despite recent advances in its utility in multiple malignancies (e.g., breast and colon cancer), genetic testing is still relatively underutilized in PCa. CONTENT Multiple highly penetrant genes (HPGs) and single-nucleotide polymorphisms (SNPs) have been show to increase a patient's risk of developing PCa. Mutations in the former, like DNA damage repair genes, can confer a 2- to 3-fold increased risk of developing PCa and can increase the risk of aggressive disease. Similarly, PCa-risk SNPs can be used to create risk scores (e.g., genetic or polygenic risk scores) that can be used to further stratify an individual's disease susceptibility. Specifically, these genetic risk scores can provide more specific estimates of a man's lifetime risk ranging up to >6-fold higher risk of PCa. SUMMARY It is becoming increasingly evident that in addition to the standard family history and race information, it is necessary to obtain genetic testing (including an assessment of HPG mutation status and genetic risk score) to provide a full risk assessment. The additional information derived thereby will improve current practices in PCa screening by risk-stratifying patients before initial prostate-specific antigen testing, determining a patient's frequency of visits, and even help identify potentially at-risk family members.
Collapse
Affiliation(s)
- Richard J Fantus
- Section of Urology, Department of Surgery, University of Chicago Medicine, Chicago, IL
| | - Brian T Helfand
- Division of Urology, Department of Surgery, NorthShore University Health System, Evanston, IL.
| |
Collapse
|
9
|
Costello LC, Franklin RB. Testosterone, prolactin, and oncogenic regulation of the prostate gland. A new concept: Testosterone-independent malignancy is the development of prolactin-dependent malignancy! Oncol Rev 2018; 12:356. [PMID: 30093983 PMCID: PMC6065049 DOI: 10.4081/oncol.2018.356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Hormone-independent malignancy is a major issue of morbidity and deaths that confronts prostate cancer. Despite decades of research, the oncogenic and hormonal implications in the development and progression of prostate malignancy remain mostly speculative. This is largely due to the absence and/or lack of consideration by contemporary clinicians and biomedical investigators regarding the established implications of the co-regulation of testosterone and prolactin in the development, maintenance, metabolism and functions of the prostate gland. Especially relevant is the major metabolic function of production of high levels of citrate by the peripheral zone acinar epithelial cells. Citrate production, along with growth and proliferation by these cells, is regulated by co-existing testosterone and prolactin signaling pathways; and by the oncogenic down-regulation of ZIP1 transporter/zinc/citrate in the development of malignancy. These relationships had not been considered in the issues of hormonedependent malignancy. This review provides the relevant background that has established the dual role of testosterone and prolactin regulation of the prostate gland; which is essential to address the implications in the oncogenic development and progression of hormone-dependent malignancy. The oncogenic factor along with testosterone-dependent and prolactin-dependent relationships leads to the plausible concept that androgen ablation for the treatment of testosteronedependent malignancy results in the development of prolactindependent malignancy; which is testosterone-independent malignancy. Consequently, both testosterone ablation and prolactin ablation are required to prevent and/or abort terminal hormonedependent prostate cancer.
Collapse
Affiliation(s)
- Leslie C. Costello
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry; and the University of Maryland Greenebaum Cancer Center, Baltimore, MD, USA
| | | |
Collapse
|
10
|
Maximov PY, Abderrahman B, Curpan RF, Hawsawi YM, Fan P, Jordan VC. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R83-R113. [PMID: 29162647 PMCID: PMC5771961 DOI: 10.1530/erc-17-0416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society.
Collapse
Affiliation(s)
- Philipp Y Maximov
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - Balkees Abderrahman
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | | | - Yousef M Hawsawi
- Department of GeneticsKing Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ping Fan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - V Craig Jordan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|
11
|
Exosomal microRNAs in liquid biopsies: future biomarkers for prostate cancer. Clin Transl Oncol 2017; 19:651-657. [PMID: 28054319 DOI: 10.1007/s12094-016-1599-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer is the second most diagnosed cancer in males in the world. Plasma quantification of prostate-specific antigen substantially improved the early detection of prostate cancer, but still lacks the required specificity. Clinical management of prostate cancer needs advances in the development of new non-invasive biomarkers, ameliorating current diagnosis and prognosis and guiding therapeutic decisions. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. These miRNAs are expressed in the cells and are also present in cell-derived extracellular vesicles such as exosomes. Exosomes have been shown to act as mediators for cell to cell communication because of the regulatory functions of their content. High levels of exosomes are found in several body fluids from cancer patients and could be a potential source of non-invasive biomarkers. In this review, we summarize the diagnostic and prognostic utility of exosomal miRNAs in prostate cancer.
Collapse
|
12
|
Henning JD, Bonachea LA, Bunker CH, Patrick AL, Jenkins FJ. Human herpesvirus 8 infection contributes to a T helper 2 immune response in men from Tobago with prostate cancer. Int J Urol 2016; 24:64-68. [PMID: 27734534 DOI: 10.1111/iju.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To compare the cytokine profile between human herpesvirus 8 seropositive and seronegative men with and without prostate cancer. METHODS The study sample was obtained from the Tobago Prostate Survey, an ongoing study of prostate cancer in the Caribbean island of Tobago. Participants in the study were recruited mostly by public service announcement and by word of mouth. For analyses of circulating levels of pro-inflammatory cytokines, participants with biopsy-confirmed prostate cancer (n = 79) were compared with control participants (n = 87). RESULTS Cytokine analyses showed a T helper 2 response with suppressed T helper 1 response in prostate cancer patients, as evidenced by significantly increased levels of interleukin-13 and reduced levels of interleukin-12p70. Herpesvirus 8 seropositive men showed significantly increased levels of interleukin-13 and interleukin-10. At logistic regression analyses, interleukin-12p70 predicted prostate cancer in 94.4% of human herpesvirus 8 seropositive men. CONCLUSIONS These findings show that prostate cancer elicits an antitumor, T helper 2 response with a suppressed T helper 1 response. Human herpesvirus 8 infection results in a similar immune response supporting the hypothesis that in Tobago, human herpesvirus 8 establishes a chronic infection that can contribute to an immune response favoring the formation and survival of prostate cancer.
Collapse
Affiliation(s)
- Jill D Henning
- Department of Biology, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania, USA
| | - Luis A Bonachea
- Department of Biology, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania, USA
| | - Clareann H Bunker
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan L Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago
| | - Frank J Jenkins
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Henning JD, Bunker CH, Patrick AL, Jenkins FJ. Human herpesvirus 8 establishes a latent infection in prostates of Tobago men resulting in increased macrophage infiltration. Prostate 2016; 76:735-43. [PMID: 26848067 DOI: 10.1002/pros.23163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 01/22/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND The Caribbean island of Tobago, which is 97% African ancestry, has one of the highest rates of prostate cancer in the world. We have previously reported that human herpesvirus 8 (HHV-8) infection is significantly associated with prostate cancer in Tobago. In this study, we extend those results testing the hypothesis that HHV-8 seropositive Tobagonian men have a chronic HHV-8 infection in their prostates that is associated with increased inflammation. METHODS Prostate sections were screened by immunohistochemistry for the expression of HHV-8 proteins K8.1 and LANA-1 and for presence of B cells (CD20) and macrophages (CD68). RESULTS HHV-8 antigen expression representing lytic and latent infections was seen in 73.9% of prostates from HHV-8 seropositive subjects. Latent infections were seen predominantly in glandular epithelia whereas lytic gene expression was seen mainly in macrophages in prostate stroma. Macrophage infiltrates were significantly increased in sections expressing HHV-8 proteins. CONCLUSION HHV-8 establishes a chronic latent infection in the prostate, which is associated with an increased macrophage infiltrate.
Collapse
Affiliation(s)
- Jill D Henning
- Department of Biology, University of Pittsburgh Johnstown, Johnstown, Pennsylvania
| | - Clareann H Bunker
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan L Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago, West Indies
| | - Frank J Jenkins
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Luna-Coronell JA, Vierlinger K, Gamperl M, Hofbauer J, Berger I, Weinhäusel A. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG. Proteomics 2016; 16:1204-14. [PMID: 27089054 DOI: 10.1002/pmic.201500378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
The study of the immunome of prostate cancer (PCa) and characterization of autoantibody signature from differentially reactive antigens can uncover disease stage proteins, reveal enriched networks and even expose aberrant cellular mechanisms during the disease process. By conducting plasma IgG profiling on protein microarrays presenting 5449 unique human proteins expressed in 15 417 E. coli human cDNA expression clones, we elucidated 471 (21 higher reactive in PCa) differentially reactive antigens in 50 PCa versus 49 patients with benign prostate hyperplasia (BPH) at initial diagnosis. Functional analyzes show that the immune-profile of PCa compared to BPH control samples is significantly enriched in features targeting Cellular assembly, Cell death and pathways involved in Cell cycle, translation, and assembly of proteins as EIF2 signaling, PCa related genes as AXIN1 and TP53, and ribosomal proteins (e.g. RPS10). An overlap of 61 (out of 471) DIRAGs with the published 1545 antigens from the SEREX database has been found, however those were higher reactive in BPH. Clinical relevance is shown when antibody-reactivities against eight proteins were significantly (p < 0.001) correlated with Gleason-score. Herewith we provide a biological and pathophysiological characterization of the immunological layer of cancerous (PCa) versus benign (BPH) disease, derived from antibody profiling on protein microarrays.
Collapse
Affiliation(s)
- Johana A Luna-Coronell
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology - AIT, Vienna, Austria
| | - Klemens Vierlinger
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology - AIT, Vienna, Austria
| | - Magdalena Gamperl
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology - AIT, Vienna, Austria
| | | | - Ingrid Berger
- Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology - AIT, Vienna, Austria
| |
Collapse
|
15
|
Liu H, An X, Li S, Wang Y, Li J, Liu H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2015; 11:3347-3354. [PMID: 26442831 DOI: 10.1039/c5mb00499c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
R-Bicalutamide is a first generation antiandrogen used to treat prostate cancer, which inhibits androgen action by competitively binding to the androgen receptor (AR). However, R-bicalutamide was discovered to exhibit some agonistic properties in clinical application. According to reports, the W741L AR mutation may lead to resistance towards R-bicalutamide. But the mechanism of the R-bicalutamide switch from an antagonist to an agonist due to the mutation of AR W741L is still not so clear. Another molecule, S-1, owing to a very similar structure to R-bicalutamide, is always agonistic to both the wild type and W741L AR. The main difference between these two chemicals is that S-1 has an ether linkage while R-bicalutamide has a sulfonyl group. To study the drug-resistant mechanism caused by W741L mutation and the opposite effects arising from subtle structure differences, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were employed to explore the interaction mechanisms between R-bicalutamide/S-1 and WT/W741L AR. The calculated binding free energies are in accordance with the reported experimental values. The obtained results indicate that M895 and W741 are vital amino acids in the antagonism of R-bicalutamide. The bulkier substitution of sulfonyl and tryptophan push aside M895, together with helix 12 (H12), to expose the ligand-binding domain resulting in the antagonistic conformation of the AR. If W741 is mutated to L741, the B-ring of these two chemicals would shift toward L741. At the same time, M895 dragging helix H12, would also move closer to L741. So H12 tends to cover the AR ligand-binding domain to a certain degree, changing the androgen receptor from an antagonistic to an agonistic conformation, which may explain the agonism of R-bicalutamide to the mutant W741L AR.
Collapse
Affiliation(s)
- Hongli Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd, 730000 Lanzhou, China.
| | | | | | | | | | | |
Collapse
|
16
|
Zeng YR, Han ZD, Wang C, Cai C, Huang YQ, Luo HW, Liu ZZ, Zhuo YJ, Dai QS, Zhao HB, Liang YX, Zhong WD. Overexpression of NIMA-related kinase 2 is associated with progression and poor prognosis of prostate cancer. BMC Urol 2015; 15:90. [PMID: 26320076 PMCID: PMC4553013 DOI: 10.1186/s12894-015-0085-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022] Open
Abstract
Background The NIMA-related kinase 2 (NEK2) is a serine/threonine kinase that is involved in regulation of centrosome duplication and spindle assembly during mitosis. Dysregulation of these processes causes chromosome instability and aneuploidy, which are hallmark changes of many solid tumors. However, whether aberrant expression of NEK2 is associated with outcome of prostate cancer (PCa) patients remains to be determined. Methods Expression of NEK2 in human PCa cells and primary PCa tissues was assessed by quantitative RT-PCR. Expression of NEK2 in human PCa cells was depleted with siRNA. Effects of the depletion on cell proliferation, survival, and tumorigenicity were assessed both in vitro with cell cultures and in vivo with subcutaneous implantation of xenografts. In silico analyses of the online Taylor dataset were carried out to determine whether the expression level of NEK2 correlated with the clinicopathological characteristics of prostate cancer. Results Compared with benign human prostatic epithelial cells and tissues, the expression of NEK2 was elevated in human PCa cells and primary PCa tissues. Depleting NEK2 expression inhibited human PCa cell proliferation in vitro and xenograft growth in vivo. Expression level of NEK2 in PCa positively correlated with the Gleason score and pathologic stage of the patient. Conclusion The results suggest that overexpression of NEK2 has the potential to serve as a biomarker for PCa prognosis. Further validation with large sample pool is warrant.
Collapse
Affiliation(s)
- Yan-Ru Zeng
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Cong Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Chao Cai
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Ya-Qiang Huang
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Hong-Wei Luo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Ze-Zhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Yang-Jia Zhuo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China. .,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China.
| | - Qi-Shan Dai
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Hai-Bo Zhao
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China. .,Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China. .,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China. .,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China. .,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China. .,Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
17
|
Saunders EJ, Dadaev T, Leongamornlert DA, Jugurnauth-Little S, Tymrakiewicz M, Wiklund F, Al Olama AA, Benlloch S, Neal DE, Hamdy FC, Donovan JL, Giles GG, Severi G, Gronberg H, Aly M, Haiman CA, Schumacher F, Henderson BE, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock S, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Nordestgaard BG, Canzian F, Campa D, Riboli E, Key TJ, Travis RC, Ingles SA, John EM, Hayes RB, Pharoah P, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park JY, Kaneva R, Batra J, Clements JA, Teixeira MR, Xu J, Mikropoulos C, Goh C, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, COGS-CRUK GWAS-ELLIPSE (Part of GAME-ON) Initiative, The UK Genetic Prostate Cancer Study Collaborators, The UK ProtecT Study Collaborators, The PRACTICAL Consortium, Easton DF, Muir K, Eeles RA, Kote-Jarai Z. Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer. PLoS Genet 2014; 10:e1004129. [PMID: 24550738 PMCID: PMC3923678 DOI: 10.1371/journal.pgen.1004129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 02/02/2023] Open
Abstract
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Collapse
Affiliation(s)
| | - Tokhir Dadaev
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Sara Benlloch
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - David E. Neal
- Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Addenbrooke's Hospital, Cambridge and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, and Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jenny L. Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Graham G. Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia and Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia and Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Susan Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, United States of America
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Demetrius Albanes
- Nutritional Epidemiology Branch, National Cancer Institute, NIH, EPS-3044, Bethesda, Maryland, United States of America
| | - Gerald Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Johanna Schleutker
- Department of Medic Biochemistry and Genetics, University of Turku, Turku and Institute of Biomedical Technology and BioMediTech, University of Tampere and FimLab Laboratories, Tampere, Finland
| | - Maren Weischer
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Tim J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, California, United States of America, and Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, NYU Langone Medical Center, NYU Cancer Institute, New York, New York, United States of America
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Janet L. Stanford
- Department of Epidemiology, School of Public Health, University of Washington and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa B. Signorello
- International Epidemiology Institute, Rockville, Maryland, and Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | | | - Daniel Schaid
- Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christiane Maier
- Department of Urology, University Hospital Ulm and Institute of Human Genetics University Hospital Ulm, Ulm, Germany
| | - Adam S. Kibel
- Division of Urologic Surgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine and George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Radka Kaneva
- Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Sofia, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Manuel R. Teixeira
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, and Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - Chee Goh
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | - Michelle Guy
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | - Emma J. Sawyer
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Angela Morgan
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Ken Muir
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
18
|
Campos SG, Gonçalves BF, Scarano WR, Góes RM, Taboga SR. Phenotypic and metabolic aspects of prostatic epithelial cells in aged gerbils after antisteroidal therapy: turnover in the state of chromatin condensation and androgen-independent cell replacement. Acta Histochem 2014; 116:204-13. [PMID: 23942056 DOI: 10.1016/j.acthis.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The gerbil is a rodent considered a good model for studies of prostatic morphophysiology under different experimental conditions. Studies involving castration and steroidal blockers of aged gerbils showed that the glandular epithelium persists after long-term therapy, preventing the organ atrophy. Thus, the objective of this study was to evaluate the phenotypic characteristics and behavior of prostatic epithelial cells that remained after different periods of hormone ablation in aged gerbils. The identification of elements that influenced the survival of this cell type was performed by morphometric, nuclear phenotypes, ultrastructural and immune histochemical analysis. The most significant responses to treatment, by analyzing morphometric features, were observed during the first three time points (day 1, day 3, and day 7), after which there appeared to be an adjustment of the gland to the hormone ablation. All treatments led to changes in the state of chromatin condensation, DNA methylation pattern and phenotypic changes indicated cell senescence. Additionally, an increase in the basal cells seemed to guarantee self-renewal properties to the epithelium. These data indicate that changes occur at many levels, including gene expression and nuclear architecture in the epithelial cells, when aging and steroidal blockade are associated. These aspects are important when considering castration-resistant prostate cancer, a malignant tumor posing difficult therapeutic intervention.
Collapse
|
19
|
Govindaraj V, Arya SV, Rao AJ. Differential action of glycoprotein hormones: significance in cancer progression. Discov Oncol 2013; 5:1-10. [PMID: 24129797 DOI: 10.1007/s12672-013-0164-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/02/2013] [Indexed: 01/16/2023] Open
Abstract
Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.
Collapse
|
20
|
Zhu H, Garcia JA. Targeting the adrenal gland in castration-resistant prostate cancer: a case for orteronel, a selective CYP-17 17,20-lyase inhibitor. Curr Oncol Rep 2013; 15:105-12. [PMID: 23371447 DOI: 10.1007/s11912-013-0300-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Androgen and the androgen receptor (AR) pathway remain the key targets for emerging new therapies against castration-resistant prostate cancer (CRPC). Adrenal androgens and intratumoral testosterone production appear to be sufficient to activate AR in the castration-resistant setting. This process re-engages AR and allows it to continue to be the primary target responsible for prostate cancer progression. Adrenal androgen production can be blocked by inhibiting cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17), a key enzyme for androgen synthesis in adrenal glands and peripheral tissues. Therapeutic CYP17 inhibition by ketoconazole or by the recently approved adrenal inhibitor abiraterone acetate is the only available choice to target this pathway in CRPC. A new CYP17 inhibitor, with more selective inhibition of 17,20-lyase over 17α-hydroxylase, orteronel (TAK-700), is currently undergoing phase III clinical trials in pre- and postchemotherapy CRPC. In a completed phase II trial in CRPC patients, orteronel demonstrated its efficacy by lowering the levels of circulating androgens, reducing prostate-specific antigen (PSA) levels, and decreasing the levels of circulating tumor cells. Ongoing studies evaluating orteronel in CRPC will further define its safety and role in the management of this disease.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Solid Tumor Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA.
| | | |
Collapse
|
21
|
Neves AF, Dias-Oliveira JDD, Araújo TG, Marangoni K, Goulart LR. Prostate cancer antigen 3 (PCA3) RNA detection in blood and tissue samples for prostate cancer diagnosis. Clin Chem Lab Med 2013; 51:881-7. [PMID: 23241599 DOI: 10.1515/cclm-2012-0392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/08/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND The non-coding prostate cancer antigen 3 (PCA3) RNA is currently the most specific biomarker for prostate cancer (PCa) diagnosis. Although its clinical value has been validated in a urine assay after intensive prostatic massage, few studies have been conducted to establish its diagnostic value in the peripheral blood (PBL). The aim of the present study was to examine the PCA3 expression in blood as a diagnostic tool, and to provide an additional strategy to improve PCa diagnosis. METHODS PCA3 transcripts were detected by RT-PCR in PBL and prostatic tissues from patients. PBL sampling also included a group of young healthy volunteers. The relationship between the PCA3 RNA detection and clinical characteristics was analyzed. RESULTS PCA3 detection in blood presented 94% specificity and 32% sensitivity, and its combined detection in tissues significantly improved diagnostic parameters. However, PCA3 RNA detection in blood was also associated with PSA levels ≥10 ng/mL, and their combination provided a sensitivity of 60% and specificity of 93%. CONCLUSIONS Detection of the PCA3 RNA in patients' blood is an efficient tool for PCa diagnosis because it allows a routine collection procedure, which is also supported by the ongoing screening marker, prostate-specific antigen (PSA). We propose its combined use with PSA levels ≥10 ng/mL, which improves accuracy, and prevents overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Adriana F Neves
- Molecular Genetics and Biotechnology Laboratory, Department of Biological Sciences, Federal University of Goias, 75.704 – 020, Catalao, GO, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Gowda PS, Deng JD, Mishra S, Bandyopadhyay A, Liang S, Lin S, Mahalingam D, Sun LZ. Inhibition of hedgehog and androgen receptor signaling pathways produced synergistic suppression of castration-resistant prostate cancer progression. Mol Cancer Res 2013; 11:1448-61. [PMID: 23989930 DOI: 10.1158/1541-7786.mcr-13-0278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Metastatic prostate cancer is initially treated with androgen ablation therapy, which causes regression of androgen-dependent tumors. However, these tumors eventually relapse resulting in recurrent castration-resistant prostate cancer (CRPC). Currently, there is no effective therapy for CRPC and the molecular mechanisms that lead to the development of CRPC are not well understood. Here, we evaluated the hypothesis that combined inhibition of Hedgehog (Hh) and androgen receptor (AR) signaling will synergistically attenuate the growth of CRPC in vitro and in vivo. Androgen deprivation induced full-length androgen receptor protein levels in CRPC cells, but decreased its nuclear localization and transcriptional activity. However, androgen deprivation also increased a truncated form of androgen receptor (lacking ligand-binding domain) that possessed transcriptional activity in CRPC cells. Androgen deprivation also promoted the expression of Hh signaling components in CRPC cells, xenograft tumors, and the prostate glands of castrated mice. Importantly, although inhibition of either Hh or androgen receptor signaling alone was only moderately effective in blocking CRPC cell growth, combination of an Hh pathway inhibitor and a noncompetitive androgen receptor inhibitor synergistically suppressed the growth of CRPC cells in vitro and in vivo. Finally, noncompetitive inhibition of androgen receptor, but not competitive inhibition, was effective at limiting the activity of truncated androgen receptor leading to the inhibition of CRPC. IMPLICATIONS Combined therapy using Hh inhibitors and a non-competitive AR inhibitor may limit CRPC growth.
Collapse
Affiliation(s)
- Pramod S Gowda
- Department of Cellular & Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7762, San Antonio, TX 78229-3900.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Iizuka T, Sawabe M, Takubo K, Liu M, Homma Y, Suzuki M, Arai T. hTERT promoter polymorphism, -1327C>T, is associated with the risk of epithelial cancer. SPRINGERPLUS 2013; 2:249. [PMID: 23762817 PMCID: PMC3676739 DOI: 10.1186/2193-1801-2-249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
Telomeres are repetitive nucleotide sequences that cap the end of eukaryotic chromosomes. Attrition of these structures has been associated with carcinogenesis in many tissues, and therefore, they are essential for chromosome stabilization. Telomeres are maintained by telomerase complexes, of which human telomerase reverse transcriptase (hTERT) is an essential component. A functional polymorphism, -1327C>T (rs2735940), located in the promoter of the hTERT gene is associated with telomere length in peripheral blood leukocytes. We hypothesized that this polymorphism might affect susceptibility to various epithelial malignancies. The -1327C>T polymorphism was examined in 1,551 consecutive autopsy cases (mean age, 80.3 years), and we focused on its effect on the risks of overall and each primary malignancies. The polymorphism was further studied in 391 clinical prostate cancer patients who were diagnosed via prostate biopsy, using autopsy cases as controls. In the autopsy cases, the risk of epithelial malignancy, after adjusting for age, sex, smoking, and drinking habits, was significantly lower for the TT genotype than the CC (reference) genotype (adjusted odds ratio = 0.61, 95% CI = 0.42-0.90). Among primary malignancies, latent prostate cancer, colorectal cancer, and lung cancer were the most strongly associated with the polymorphism. In the study using clinical prostate cancer patients, susceptibility to clinical prostate cancer was lower for -1327 T carriers than for -1327 T non-carriers, but this finding was not significant. The data suggest that the hTERT promoter polymorphism, -1327C>T, is an independent factor influencing the risk of various epithelial malignancies in elderly Japanese.
Collapse
Affiliation(s)
- Toshihiko Iizuka
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan ; Department of Diagnostic Pathology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655 Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Radhakrishnan D, He X, Peehl DM, Eng C. Transcription factor KLLN inhibits tumor growth by AR suppression, induces apoptosis by TP53/TP73 stimulation in prostate carcinomas, and correlates with cellular differentiation. J Clin Endocrinol Metab 2013; 98:E586-94. [PMID: 23386643 PMCID: PMC3678149 DOI: 10.1210/jc.2012-3490] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT KLLN is a newly identified gene with unknown function and shares a bidirectional promoter with PTEN. OBJECTIVE The objective of the study was to analyze the relationship between KILLIN (KLLN) expression and prostate cancer and the potential tumor suppressive effect. DESIGN We conducted an in silico analysis to compare KLLN expression in normal prostate and matched primary carcinoma tissues. We subsequently used immunohistochemistry to examine KLLN expression and association with Gleason grade and score in 109 prostatectomy samples. KLLN's tumor-suppressive effect was studied in androgen-dependent and androgen-independent cell models. PATIENTS Patients were diagnosed with peripheral zone prostate carcinomas without metastasis at the time of prostatectomy. Each patient's primary tumor comprised at least 2 tumoral regions with different Gleason grades. RESULTS KLLN expression decreased from normal prostate tissue to primary carcinomas (P < .0001). The loss of epithelial and stromal KLLN expression is associated with poor differentiation and high Gleason scores (P < .0001), consistent with our in vitro observation that KLLN inhibits tumor cell proliferation and invasiveness. KLLN decreases prostate-specific antigen levels and suppresses androgen-mediated cell growth by inhibiting androgen receptor (AR) transcription. As an androgen receptor-regulated target, KLLN also functions as a transcriptional activator, directly promoting the expression of TP53 and TP73, with consequent elevated apoptosis, regardless of AR status. CONCLUSIONS Our observations suggest that KLLN is a transcription factor directly regulating AR, TP53, and TP73 expression, with a role in prostate carcinogenesis. Loss of KLLN associates with high Gleason scores, suggesting that KLLN might be used as a potential prognostic marker for risk management and as a novel therapy target for advanced prostate carcinomas.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
25
|
Ahmed KA, Davis BJ, Wilson TM, Wiseman GA, Federspiel MJ, Morris JC. Progress in gene therapy for prostate cancer. Front Oncol 2012. [PMID: 23181221 PMCID: PMC3500761 DOI: 10.3389/fonc.2012.00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.
Collapse
Affiliation(s)
- Kamran A Ahmed
- Department of Radiation Oncology, Mayo Clinic Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
26
|
Trujillo MA, Oneal MJ, McDonough S, Qin R, Morris JC. A steep radioiodine dose response scalable to humans in sodium-iodide symporter (NIS)-mediated radiovirotherapy for prostate cancer. Cancer Gene Ther 2012; 19:839-44. [PMID: 23037808 PMCID: PMC3499676 DOI: 10.1038/cgt.2012.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sodium iodide symporter (NIS) directs the uptake and concentration of iodide in thyroid cells. We have extended the use of NIS-mediated radioiodine therapy to prostate cancer. We have developed a prostate tumor specific conditionally replicating adenovirus (CRAd) that expresses hNIS (Ad5PB_RSV-NIS). For radiovirotherapy to be effective in humans, the radioiodine dose administered in the pre-clinical animal model should scale to the range of acceptable doses in humans. We performed 131I dose-response experiments aiming to determine the dose required in mice to achieve efficient radiovirotherapy. Efficacy was determined by measuring tumor growth and survival times. We observed that individual tumors display disparate growth rates which preclude averaging within a treatment modality indicating heterogeneity of growth rate. We further show that a statistic and stochastic approach must be used when comparing the effect of an anti-cancer therapy on a cohort of tumors. Radiovirotherapy improves therapeutic value over virotherapy alone by slowing the rate of tumor growth in a more substantial manner leading to an increase in survival time. We also show that the radioiodine doses needed to achieve this increase scaled well within the current doses used for treatment of thyroid cancer in humans.
Collapse
Affiliation(s)
- M A Trujillo
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Kim J, Yu J. Interrogating genomic and epigenomic data to understand prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:186-96. [PMID: 22240201 PMCID: PMC3307852 DOI: 10.1016/j.bbcan.2011.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/23/2011] [Accepted: 12/25/2011] [Indexed: 12/31/2022]
Abstract
Major breakthroughs at the beginning of this century in high-throughput technologies have profoundly transformed biological research. Significant knowledge has been gained regarding our biological system and its disease such as malignant transformation. In this review, we summarize leading discoveries in prostate cancer research derived from the use of high-throughput approaches powered by microarrays and massively parallel next-generation sequencing (NGS). These include the seminal discovery of chromosomal translocations such as TMPRSS2-ERG gene fusions as well as the identification of critical oncogenes exemplified by the polycomb group protein EZH2. We then demonstrate the power of interrogating genomic and epigenomic data in understanding the plethora of mechanisms of transcriptional regulation. As an example, we review how androgen receptor (AR) binding events are mediated at multiple levels through protein-DNA interaction, histone and DNA modifications, as well as high-order chromatin structural changes.
Collapse
Affiliation(s)
- Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
28
|
Aschelter AM, Giacinti S, Caporello P, Marchetti P. Genomic and epigenomic alterations in prostate cancer. Front Endocrinol (Lausanne) 2012; 3:128. [PMID: 23133437 PMCID: PMC3490108 DOI: 10.3389/fendo.2012.00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer (PC) is the second most frequently diagnosed cancer and the second leading cause of cancer deaths in man. The treatment of localized PC includes surgery or radiation therapy. In case of relapse after a definitive treatment or in patients with locally advanced or metastatic disease, the standard treatment includes the androgen-deprivation therapy (ADT). By reducing the levels of testosterone and dihydrotestosterone under the castration threshold, the ADT acts on the androgen receptor (AR), even if indirectly. The effects of the ADT are usually temporary and nearly all patients, initially sensitive to the androgen ablation therapy, have a disease progression after an 18-24 months medium term. This is probably due to the selection of the cancer cell clones and to their acquisition of critical somatic genome and epigenomic changes. This review aims to provide an overview about the genetic and epigenetic alterations having a crucial role in the carcinogenesis and in the disease progression toward the castration resistant PC. We focused on the role of the AR, on its signaling cascade and on the clinical implications that the knowledge of these aspects would have on hormonal therapy, on its failure and its toxicity.
Collapse
Affiliation(s)
| | | | | | - Paolo Marchetti
- *Correspondence: Paolo Marchetti, Department of Oncology, Sant’Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035–1039, 00189 Rome, Italy. e-mail:
| |
Collapse
|
29
|
Swami S, Krishnan AV, Feldman D. Vitamin D metabolism and action in the prostate: implications for health and disease. Mol Cell Endocrinol 2011; 347:61-9. [PMID: 21664249 PMCID: PMC3189327 DOI: 10.1016/j.mce.2011.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide. Epidemiological, molecular, and cellular studies have implicated vitamin D deficiency as a risk factor for the development and/or progression of PCa. Studies using cell culture systems and animal models suggest that vitamin D acts to reduce the growth of PCa through regulation of cellular proliferation and differentiation. However, although preclinical studies provide a strong indication for anti-cancer activity, proof of therapeutic benefits in men is still lacking. The anti-proliferative and pro-differentiating properties of vitamin D have been attributed to calcitriol [1,25(OH)(2)D(3)], the hormonally active form of vitamin D, acting through the vitamin D receptor (VDR). Metabolism of vitamin D in target tissues is mediated by two key enzymes: 1α-hydroxylase (CYP27B1), which catalyzes the synthesis of calcitriol from 25(OH)D and 24-hydroxylase (CYP24), which catalyzes the initial step in the conversion of calcitriol to less active metabolites. Many factors affect the balance of calcitriol synthesis and catabolism and several maneuvers, like combination therapy of calcitriol with other drugs, have been explored to treat PCa and reduce its risk. The current paper is an overview addressing some of the key factors that influence the biological actions of vitamin D and its metabolites in the treatment and/or prevention of PCa.
Collapse
Affiliation(s)
- Srilatha Swami
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
30
|
How can food extracts consumed in the Mediterranean and East Asia suppress prostate cancer proliferation? Br J Nutr 2011; 108:424-30. [PMID: 22067725 DOI: 10.1017/s0007114511005770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a blend of food extracts commonly consumed in the Mediterranean and East Asia, named blueberry punch (BBP), with the ultimate aim to formulate a chemoprevention strategy to inhibit prostate cancer progression in men on active surveillance protocol. We demonstrated previously that BBP inhibited prostate cancer cell proliferation in vitro and in vivo. The purpose of this study was to determine the molecular mechanism responsible for the suppression of prostate cancer cell proliferation by BBP. Treatment of lymph node-metastasised prostate cancer cells (LNCaP) and bone-metastasised prostate cancer cells (PC-3 and MDA-PCa-2b) with BBP (up to 0·8 %) for 72 h increased the percentage of cells at the G0/G1 phase and decreased those at the S and G2/M phases. The finding was supported by the reduction in the percentage of Ki-67-positive cells and of DNA synthesis measured by the incorporation of 5-ethynyl-2'-deoxyuridine. Concomitantly, BBP treatment decreased the protein levels of phosphorylated retinoblastoma, cyclin D1 and E, cyclin-dependent kinase (CDK) 4 and 2, and pre-replication complex (CDC6 and MCM7) in LNCaP and PC-3 cells, whereas CDK inhibitor p27 was elevated in these cell lines. In conclusion, BBP exerts its anti-proliferative effect on prostate cancer cells by modulating the expression and phosphorylation of multiple regulatory proteins essential for cell proliferation.
Collapse
|
31
|
Chen ACH, Waterboer T, Keleher A, Morrison B, Jindal S, McMillan D, Nicol D, Gardiner RA, McMillan NAJ, Antonsson A. Human papillomavirus in benign prostatic hyperplasia and prostatic adenocarcinoma patients. Pathol Oncol Res 2011; 17:613-7. [PMID: 21240663 DOI: 10.1007/s12253-010-9357-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study was to determine the prevalence of human papillomavirus (HPV) types in tissue and HPV antibodies in prostatic disease. Prostate tissue samples were collected from 51 patients diagnosed with adenocarcinoma and 11 with benign prostatic hyperplasia (BPH). All tissue samples were confirmed by histology. Plasma samples were available for 52 prostate patients. We investigated HPV DNA prevalence by PCR, and PCR positive samples were HPV type determined by sequencing. Prevalence of antibodies against twenty-seven HPV proteins from fourteen different HPV types was assessed in the plasma samples. The HPV DNA prevalence in the tissue samples was 14% (7/51) for prostate cancer samples and 27% (3/11) for BPHs. HPV-18 was the only type detected in tissue samples (10/62). No significant difference in HPV prevalence between the prostate cancer and BPH samples was found. HPV-positive cells were identified in eight of our thirteen prostate tissue slides (3/3 BPH and 5/10 adenocarcinoma) by in situ hybridisation, and the positive cells were found in epithelial cells and peripheral blood cells. Serology data showed no significant increase in levels of antibodies against any of the HPV-18 proteins tested for in prostatic disease patients. Antibodies against HPV-1, HPV-4, HPV-6 and HPV-11 were significantly higher in the group of males with prostatic disease. Our study did not show an association between prostatic disease and either presence of HPV DNA in samples or previous exposure of high-risk HPV.
Collapse
Affiliation(s)
- Alice C-H Chen
- The University of Queensland, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Campos SGP, Gonçalves BF, Scarano WR, Corradi LS, Santos FCA, Custodio AMG, Vilamaior PSL, Góes RM, Taboga SR. Tissue changes in senescent gerbil prostate after hormone deprivation leads to acquisition of androgen insensitivity. Int J Exp Pathol 2010; 91:394-407. [PMID: 20353424 DOI: 10.1111/j.1365-2613.2010.00706.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The present study examined the response of the prostate epithelium of senescent gerbils submitted to orchiectomy and with or without steroidal blockade. Animals were divided into five groups, all surgically castrated except the control group composed of intact animals. In the experimental groups, doses of flutamide and/or tamoxifen were applied for 1, 3, 7 and 30 days postcastration. The structural methods applied reveal that castration, whether associated or not with anti-steroidal drugs, promoted short- and long-term decrease in wet and relative weights of the prostate. The quantitative decline of epithelial compartment proportion observed at the end of treatment was due to the sum of slight changes in the epithelium and lumen. The apoptotic index had risen significantly at 1 day and declined at 7 days postcastration. Androgen receptor (AR) expression decreased after 3 days of hormonal ablation, coinciding with the highest levels of apoptosis and cell proliferation observed in all treated groups. The majority of cells remained differentiated in all groups due to CK 8/18 expression. Some animals remained with injuries such as carcinomas and adenocarcinomas after hormonal ablation. In the latter a mixture of AR-positive and AR-negative cells was identified. Microinvasive carcinomas found in the group treated for 30 days consisted of PCNA-positive, inflammatory and non-proliferating cells. Low apoptosis incidence and bcl-2 positive cells were observed in these lesions. The treatments promoted a reduction of lesions in older gerbils, but treatment-resistant tumours will improve understanding of the events that lead to hormone resistance.
Collapse
Affiliation(s)
- Silvana G P Campos
- Laboratory of Microscopy and Microanalysis, Department of Biology, Institute of Biosciences, Humanities and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Trujillo MA, Oneal MJ, McDonough S, Qin R, Morris JC. A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiovirotherapy of prostate cancer. Gene Ther 2010; 17:1325-32. [PMID: 20428214 PMCID: PMC2914818 DOI: 10.1038/gt.2010.63] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/28/2010] [Accepted: 02/28/2010] [Indexed: 12/11/2022]
Abstract
The sodium iodide symporter (NIS) directs the uptake and concentration of iodide in thyroid cells. We have extended the use of NIS-mediated radioiodine therapy to other types of cancer, we transferred and expressed the NIS gene into prostate, colon and breast cancer cells using adenoviral vectors. To improve vector efficiency we have developed a conditionally replicating adenovirus (CRAd) in which the E1a gene is driven by the prostate-specific promoter, Probasin and the cassette RSV promoter human NIScDNA-bGH polyA replaces the E3 region (CRAd Ad5PB_RSV-NIS). In vitro infection of the prostate cancer cell line LnCaP resulted in virus replication, cytolysis and release of infective viral particles. Conversely, the prostate cancer cell line PC-3 (androgen receptor negative) and the pancreatic cancer cell line Panc-1 were refractory to the viral cytopathic effect and did not support viral replication. Radioiodine uptake was readily measurable in LnCaP cells infected with Ad5PB_RSV-NIS 24 h post-infection, confirming NIS expression. In vivo, LnCaP tumor xenografts in nude-mice injected intratumorally with Ad5PB_RSV_NIS CRAd expressed NIS actively as evidenced by ⁹⁹Tc uptake and imaging. Administration of therapeutic ¹³¹I after virus injection significantly increased survival probability in mice carrying xenografted LnCaP tumors compared with virotherapy alone. These data indicate that Ad5PB_RSV_NIS replication is stringently restricted to androgen-positive prostate cancer cells and results in effective NIS expression and uptake of radioiodine. This construct may allow multimodal therapy, combining cytolytic virotherapy with radioiodine treatment, to be developed as a novel treatment for prostate cancer.
Collapse
Affiliation(s)
- Miguel A. Trujillo
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, MN
| | - Michael J. Oneal
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN Rochester, Minnesota 55905
| | - Samantha McDonough
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, MN
| | - Rui Qin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - John C. Morris
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, MN
| |
Collapse
|
34
|
Singh J, Xie C, Yao M, Hua S, Vignarajan S, Jardine G, Hambly BD, Sved P, Dong Q. Food extracts consumed in Mediterranean countries and East Asia reduce protein concentrations of androgen receptor, phospho-protein kinase B, and phospho-cytosolic phospholipase A(2)alpha in human prostate cancer cells. J Nutr 2010; 140:786-91. [PMID: 20164368 DOI: 10.3945/jn.109.118745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active surveillance is an emerging management option for the rising number of men with low-grade, clinically localized prostate cancer. However, 30-40% of men on active surveillance will progress to high-grade disease over 5 y. With the ultimate aim of developing a food-based chemoprevention strategy to retard cancer progression in these otherwise healthy men, we have developed a blend of food extracts commonly consumed in Mediterranean countries and East Asia. The effect of the food extracts known as Blueberry Punch (BBP) on prostate cancer cell growth and key signaling pathways were examined in vitro and in vivo. BBP reduced prostate cancer cell growth in a dose-dependent manner (0.08-2.5%) at 72 h in vitro due to the reduction in cell proliferation and viability. Prostate cancer cell xenograft-bearing mice, administered 10% BBP in drinking water for 2 wk, had a 25% reduction in tumor volume compared with the control (water only). In vitro, BBP reduced protein concentrations in 3 signaling pathways necessary for the proliferation and survival of prostate cancer cells, namely androgen receptor, phospho-protein kinase B/protein kinase B, and phospho-cytosolic phospholipase A(2)alpha. The downstream effectors of these pathways, including prostate-specific antigen and glycogen synthase kinase 3beta, were also reduced. Thus, this palatable food supplement is a potential candidate for testing in clinical trials and may ultimately prove effective in retarding the progression of low-grade, early-stage prostate cancer in men managed by active surveillance.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Medicine, The University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Terada N, Shimizu Y, Yoshida T, Maeno A, Kamba T, Inoue T, Nakamura E, Kamoto T, Ogawa O. Antiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the W741C mutant androgen receptor in a novel prostate cancer xenograft. Prostate 2010; 70:252-61. [PMID: 19790238 DOI: 10.1002/pros.21058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mechanisms underlying antiandrogen withdrawal syndrome (AWS) and alternative antiandrogen therapy (AAT) effectiveness were assumed to be mutations in the androgen receptor (AR), which resulted in an altered response to antiandrogens. The aim of the present study was to test this assumption using the novel prostate cancer xenograft model KUCaP-1 harboring the W741C mutant AR (Yoshida et al., Cancer Res 2005; 65(21): 9611-9616). METHODS Mice bearing xenograft tumors were castrated, and the long-term sequential changes in tumor volume were observed. To determine whether AWS was observed in this model, bicalutamide (BCL) was orally administered to the castrated mice and then withdrawn. The effect of flutamide (FLT) on the W741C mutant AR was examined with transactivation assays in vitro and with the oral administration of FLT to non-castrated mice harboring KUCaP-1 in vivo. The AAT efficacy against KUCaP-1 was evaluated by changing BCL with FLT. RESULTS KUCaP-1 regressed significantly after castration and did not re-grow. KUCaP-1 treated with BCL continued to grow even after castration and started regressing 2 months after BCL withdrawal, replicating clinically recognized AWS. The antagonistic effect of FLT against the W741C mutant AR was revealed in vitro and in vivo. AAT with FLT suppressed tumor growth after BCL withdrawal. CONCLUSIONS KUCaP-1 was an entirely androgen-dependent xenograft and mimicked the clinical phenomena of AWS and AAT caused by the agonistic and antagonistic activity of BCL and FLT, respectively. KUCaP-1 could be an in vivo model for screening novel antiandrogens for the treatment of BCL resistant prostate cancer harboring the W741C mutation in the AR.
Collapse
Affiliation(s)
- Naoki Terada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zharinov G, Zimin A, Samoilova K, Neklasova N, Volodina L, Ovsyannikov V. LATE RADIATION LESIONS OF URINARY BLADDER AND RECTUM IN PATIENTS WITH PROSTATE CANCER AFTER EXTERNAL RADIATION THERAPY AND PHOTOTHERAPY WITH LOW POWER NEAR INFRARED LASER. Laser Ther 2010. [DOI: 10.5978/islsm.19.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- G.M. Zharinov
- Russian Research Center of Radiology and Surgical Technologies of the Rosmedtechnologies
| | - A.A. Zimin
- Institute of Cytology, Russian Academy of Sciences
| | | | - N.Yu. Neklasova
- Russian Research Center of Radiology and Surgical Technologies of the Rosmedtechnologies
| | - L.A. Volodina
- Russian Research Center of Radiology and Surgical Technologies of the Rosmedtechnologies
| | | |
Collapse
|
37
|
Gupta D, Lammersfeld CA, Trukova K, Lis CG. Vitamin D and prostate cancer risk: a review of the epidemiological literature. Prostate Cancer Prostatic Dis 2009; 12:215-26. [PMID: 19350051 DOI: 10.1038/pcan.2009.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in the United States. Prostate cells contain vitamin D receptors as well as enzymes necessary for vitamin D metabolism. Vitamin D metabolites have an antiproliferative and a pro-differentiating effect on prostate cancer cell lines in vitro and in vivo. As a result, there has been an emerging interest in the potential role of vitamin D in the etiology of prostate cancer. This review summarizes all available epidemiological literature on the association between dietary vitamin D, circulating levels of vitamin D and sunlight exposure in relation to prostate cancer risk. To place these studies in context, we also provide some background information on vitamin D, such as its dietary sources, metabolism, optimal levels, hypovitaminosis and relationship with the prostate.
Collapse
Affiliation(s)
- D Gupta
- Cancer Treatment Centers of America, Midwestern Regional Medical Center, Zion, IL 60099, USA.
| | | | | | | |
Collapse
|
38
|
Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457:910-4. [PMID: 19212411 PMCID: PMC2724746 DOI: 10.1038/nature07762] [Citation(s) in RCA: 1657] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/06/2009] [Indexed: 12/11/2022]
Abstract
Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
Collapse
Affiliation(s)
- Arun Sreekumar
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Laila M Poisson
- Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Thekkelnaycke M. Rajendiran
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Amjad P. Khan
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Qi Cao
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jindan Yu
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bharathi Laxman
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rohit Mehra
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Robert J. Lonigro
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Yong Li
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Mukesh K. Nyati
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Aarif Ahsan
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Shanker Kalyana-Sundaram
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bo Han
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Xuhong Cao
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jaemun Byun
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Gilbert S. Omenn
- Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Debashis Ghosh
- Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Subramaniam Pennathur
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | - Alvin Berger
- Metabolon, Inc. 800 Capitola Drive, Suite 1, Durham, NC 27713
| | | | - John T. Wei
- Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sooryanarayana Varambally
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Christopher Beecher
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Arul M. Chinnaiyan
- The Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
39
|
Ogawa Y, Hai E, Matsumoto K, Ikeda K, Tokunaga S, Nagahara H, Sakurai K, Inoue T, Nishiguchi Y. Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol 2008; 13:431-5. [PMID: 18946753 DOI: 10.1007/s10147-008-0770-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/18/2008] [Indexed: 10/21/2022]
|
40
|
Hosoya T, Monden T, Fukabori Y, Hashimoto K, Satoh T, Kasai K, Yamada M, Mori M. A novel splice variant of the nuclear coactivator p120 functions strongly for androgen receptor: characteristic expression in prostate disease. Endocr J 2008; 55:657-65. [PMID: 18560202 DOI: 10.1507/endocrj.k07e-133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We cloned a novel splicing variant for nuclear coactivator p120(alpha), designated as p120beta and studied its function and expression in several human prostate diseases. Transfection assays demonstrated that p120beta functions as a strong coactivator for androgen receptor (AR), but weakly for other nuclear receptors. GST-pull down assay showed that a glutamine-rich region of the p120 bound to the ligand-binding domain of AR. Interestingly, p120beta mRNAs were expressed predominantly in the normal prostate, androgen-responsive prostate cancers and an androgen-sensitive prostate cancer cell line, LNCaP, but weakly in recurrent cancers and the androgen-insensitive prostate cancer cell lines PC3 and DU145. Furthermore, knockdown of p120alpha by siRNA abolished coactivator activity on thyroid hormone receptors (TR) and PPARgamma, but did not affect that of ARs in PC3 cells. In addition, competitive assay with other nuclear receptors demonstrated that TR and PPARgamma did not inhibit p120beta-induced stimulation. These findings suggested that while p120alpha was essential for ligand-dependent stimulation of TRs and PPARgamma, p120beta acted as a coactivating protein predominantly for AR.
Collapse
Affiliation(s)
- Takeshi Hosoya
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol 2008; 53:1129-37. [PMID: 18262723 DOI: 10.1016/j.eururo.2008.01.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
This review is triggered by recent developments that offer new explanations for the mechanism of progression of prostate cancer to androgen independence. Established and hypothetical mechanisms, which have been described in the past, are put into perspective with recent progress in the field. A total of seven mechanisms can be identified that relate to progression to androgen independence. Five of those are dependent on the androgen receptor, which is present or over-expressed in androgen-independent prostate cancer tissue. Probably due to selective pressure, AIPC cells have the capability to escape from the effect of castration and antiandrogens; exclusion of the androgen receptor activity by inhibition of dimerisation or inhibition of DNA binding seem to be the logical next steps. Although androgen levels and androgen synthesis are suppressed in prostatic tissues during the phase of response to endocrine treatment, androgen levels and, specifically, 5-alpha-dihydrotestosterone (DHT) were elevated in tissues derived from metastases of AIPC. In addition, all enzymes needed to synthesise androgens from the level of pregnenolone on are present or over-expressed in such tissue. This offers new potential for treatment.
Collapse
|
42
|
Inoue T, Kobayashi T, Terada N, Shimizu Y, Kamoto T, Ogawa O, Nakamura E. Roles of androgen-dependent and -independent activation of signal transduction pathways for cell proliferation of prostate cancer cells. Expert Rev Endocrinol Metab 2007; 2:689-704. [PMID: 30736131 DOI: 10.1586/17446651.2.5.689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate cancer is one of the most frequently diagnosed cancers in the western world and this malignant neoplasm is the second-leading cause of cancer death among men in the USA. In the early 1940s, Huggins and Hodges demonstrated that growth and survival of prostate cancer depends on androgens. The mainstay of treatment for advanced prostate cancer is currently androgen ablation. Over the past few decades, several compounds, such as luteinizing hormone-releasing hormone analogues and anti-androgens, were developed and widely used in clinics. Then, the new treatment strategy, maximum androgen blockade (MAB) was introduced. In fact, MAB improved the prognosis of patients with advanced prostate cancer to some extent; however, most of those patients finally relapse after a period of initial response to this therapy, developing androgen-independent prostate cancer (AIPC). Once patients develop AIPC, effective therapeutic modalities are extremely limited and, therefore, the prognosis of this disease is very poor. It is strongly desirable to explore novel therapeutic concepts for AIPC, based on detailed molecular mechanisms for progression to androgen independency. As for the molecular mechanisms involved in the emergence of AIPC, mutations in the androgen receptor have been examined most extensively. These days, evidence is accumulating that demonstrates activation of signal transduction pathways, such as Src, PI3K and mTOR/S6K, are involved in the acquisition of the androgen-independent cell proliferation of prostate cancer cells. In addition, animal models using transgenic and gene-knockout techniques have confirmed these results. The development of therapies targeting against the signal transduction pathways is critical for the improvement of the prognosis of patients with AIPC. In this article, we review recent understandings on molecular mechanisms of androgen-dependent proliferation of prostate cancer cells, whose aberrant activation is proposed as a critical event for progression to AIPC.
Collapse
Affiliation(s)
- Takahiro Inoue
- a Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takashi Kobayashi
- b Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Naoki Terada
- c Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yosuke Shimizu
- d Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Toshiyuki Kamoto
- e Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Osamu Ogawa
- f Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Eijiro Nakamura
- g Department of Urology, University Graduate School of Medicine, Kyoto, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
43
|
Tuohimaa P, Tenkanen L, Syvälä H, Lumme S, Hakulinen T, Dillner J, Hakama M. Interaction of factors related to the metabolic syndrome and vitamin D on risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:302-7. [PMID: 17301263 DOI: 10.1158/1055-9965.epi-06-0777] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Factors related to the metabolic syndrome and low levels of vitamin D have been implicated as risk factors for prostate cancer. Insofar, no studies have assessed their joint effects on prostate cancer risk. METHODS We studied (a) the associations of vitamin D with the metabolic syndrome factors body mass index, systolic and diastolic blood pressure, and high-density lipoprotein cholesterol (HDL-C) and (b) the prostate cancer risk associated with these factors and especially their joint effects with vitamin D on risk of prostate cancer. We did a longitudinal nested case-control study on 132 prostate cancer cases and 456 matched controls from a cohort of 18,939 Finnish middle-aged men from the Helsinki Heart Study. The odds ratios (OR) of prostate cancer were assessed via conditional logistic regression analysis. RESULTS Apart from HDL-C, there was no linear association between the metabolic syndrome factors and vitamin D levels. In univariate analysis, men in the highest quartiles of body mass index (>28 kg/m(2)) and systolic blood pressure (>150 mmHg) showed a modest increase in risks of prostate cancer, with ORs of 1.37 (P = 0.16) and 1.53 (P = 0.05) when compared with the three lower quartiles, but low HDL-C entailed no prostate cancer risk. However, with all three factors present, the OR was 3.36 (P = 0.02), and jointly with low vitamin D (<or=40 nmol/L), the OR was 8.03 (P = 0.005) compared with those with no metabolic syndrome factors and intermediate levels of vitamin D. There was an interaction between vitamin D and the metabolic syndrome factors so that a clustering of these factors entailed high risk of prostate cancer but only if vitamin D level was low (<or=40 nmol/L). If it was at intermediate levels, the metabolic syndrome factors entailed no prostate cancer risk. CONCLUSIONS We conclude that the prostate cancer risk associated with factors related to the metabolic syndrome is strongly conditioned by levels of vitamin D.
Collapse
Affiliation(s)
- Pentti Tuohimaa
- Medical School, University of Tampere, Department of Clinical Chemistry, Tampere University Hospital, Finland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hsu JC, Dev A, Wing A, Brew CT, Bjeldanes LF, Firestone GL. Indole-3-carbinol mediated cell cycle arrest of LNCaP human prostate cancer cells requires the induced production of activated p53 tumor suppressor protein. Biochem Pharmacol 2006; 72:1714-23. [PMID: 16970927 DOI: 10.1016/j.bcp.2006.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/14/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Indole-3-carbinol (I3C), a dietary compound found naturally in cruciferous vegetables of the Brassica genus such as broccoli and brussels sprouts, induces a G1 growth arrest of human reproductive cancer cells. We previously reported that in LNCaP prostate cancer cells, I3C down-regulated cyclin-dependent kinase (CDK) 2 activity. In our current study, Western blotting and quantitative RT-PCR demonstrated that I3C treatment increased both the transcripts and protein levels of the CDK2 inhibitor p21(waf1/cip1) (p21). Transfection of luciferase reporter plasmids containing wild-type and mutated p21 promoter fragments revealed that I3C induced p21 gene transcription through a p53 DNA binding element. Oligonucleotide precipitation showed that I3C increased the level of activated p53 nuclear protein that is competent to bind its DNA target site on the p21 promoter. Ablation of p53 production using short interfering RNA (siRNA) prevented that the I3C induced G1 arrest and up-regulation of p21 expression. Western blots using p53 phospho-specific antibodies revealed that I3C treatment increased the levels of three phosphorylated forms of p53 (Ser15, Ser37, Ser392) that are known to contribute to p53 protein stability and greater transactivation potential. Taken together, our results establish that the I3C induced G1 arrest of human prostate cancer cells requires the induced production of the activated phosphorylated forms of p53, which stimulate transcription of the CDK2 inhibitor p21.
Collapse
Affiliation(s)
- Jocelyn C Hsu
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, The University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kelavkar UP, Parwani AV, Shappell SB, Martin WD. Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia 2006; 8:510-22. [PMID: 16820097 PMCID: PMC1601466 DOI: 10.1593/neo.06202] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The incidence and mortality of prostate cancer (PCa) vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1), which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP)]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt), FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC), and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN) according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN). In summary, targeted overexpression of h15-LO-1 (a gene overexpressed in human PCa and HGPIN) to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression.
Collapse
Affiliation(s)
- Uddhav P Kelavkar
- Department of Urology and Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
46
|
Dolloff NG, Shulby SS, Nelson AV, Stearns ME, Johannes GJ, Thomas JD, Meucci O, Fatatis A. Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by alpha platelet-derived growth factor receptor. Oncogene 2005; 24:6848-54. [PMID: 16007172 PMCID: PMC2712354 DOI: 10.1038/sj.onc.1208815] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate adenocarcinoma metastasizes to the skeleton more frequently than any other organ. An underlying cause of this phenomenon may be the ability of bone-produced factors to specifically select disseminated prostate cancer cells that are susceptible to their trophic effects. Platelet-derived growth factor (PDGF), a potent mitogen for both normal and tumor cells, is produced in several tissues including bone, where it is synthesized by both osteoblasts and osteoclasts. Here, we show that PDGF causes a significantly stronger activation of the Akt/PKB survival pathway in bone-metastatic prostate cancer cells compared to nonmetastatic cells. Normal prostate epithelial cells and DU-145 prostate cells, originally derived from a brain metastasis, are not responsive to PDGF. In contrast, epidermal growth factor stimulates Akt to the same extent in all prostate cells tested. This difference in PDGF responsiveness depends on the higher expression of alpha-PDGFR in bone-metastatic compared to nonmetastatic prostate cells and the lack of alpha-PDGFR expression in normal and metastatic prostate cells derived from tissues other than bone. Thus, alpha-PDGFR expression might identify prostate cancer cells with the highest propensity to metastasize to the skeleton.
Collapse
Affiliation(s)
- Nathan G Dolloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Shannon S Shulby
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Autumn V Nelson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mark E Stearns
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gregg J Johannes
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Jeff D Thomas
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Correspondence: A Fatatis, Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, New College Building MS488, Philadelphia, PA 19102, USA; E-mail:
| |
Collapse
|
47
|
Leiros GJ, Galliano SR, Sember ME, Kahn T, Schwarz E, Eiguchi K. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol 2005; 5:15. [PMID: 16307686 PMCID: PMC1314892 DOI: 10.1186/1471-2490-5-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022] Open
Abstract
Background Infections with high-risk human papillomaviruses (HPVs), causatively linked to cervical cancer, might also play a role in the development of prostate cancer. Furthermore, the polymorphism at codon 72 (encoding either arginine or proline) of the p53 tumor-suppressor gene is discussed as a possible determinant for cancer risk. The HPV E6 oncoprotein induces degradation of the p53 protein. The aim of this study was to analyse prostate carcinomas and hyperplasias of patients from Argentina for the presence of HPV DNA and the p53 codon 72 polymorphism genotype. Methods HPV DNA detection and typing were done by consensus L1 and type-specific PCR assays, respectively, and Southern blot hybridizations. Genotyping of p53 codon 72 polymorphism was performed both by allele specific primer PCRs and PCR-RFLP (Bsh1236I). Fischer's test with Woolf's approximation was used for statistical analysis. Results HPV DNA was detected in 17 out of 41 (41.5 %) carcinoma samples, whereas all 30 hyperplasia samples were HPV-negative. Differences in p53 codon 72 allelic frequencies were not observed, neither between carcinomas and hyperplasias nor between HPV-positive and HPV-negative carcinomas. Conclusion These results indicate that the p53 genotype is probably not a risk factor for prostate cancer, and that HPV infections could be associated with at least a subset of prostate carcinomas.
Collapse
Affiliation(s)
- Gustavo J Leiros
- Catedra de Bioquimica e Inmunologia, Facultad de Medicina-Universidad del Salvador, Buenos Aires, Argentina
| | - Silvia R Galliano
- Catedra de Bioquimica e Inmunologia, Facultad de Medicina-Universidad del Salvador, Buenos Aires, Argentina
| | - Mario E Sember
- Servicio de patología, Hospital Israelita, Buenos Aires, Argentina
| | - Tomas Kahn
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Expert Team Life Sciences, Deutsche Bank AG, Frankfurt, Germany
| | | | - Kumiko Eiguchi
- Catedra de Bioquimica e Inmunologia, Facultad de Medicina-Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
48
|
Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 2005; 19:2943-54. [PMID: 16081517 DOI: 10.1210/me.2005-0231] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The androgen receptor (AR) signaling pathway is a major therapeutic target in the treatment of prostate cancer. The AR functions as a ligand-activated transcription factor in the presence of the cognate hormone ligands testosterone and dihydrotestosterone (DHT). We have characterized a highly conserved sequence at the C-terminal end of helix 10/11 in the ligand-binding domain (LBD), which is prone to receptor point mutations in prostate cancer. This sequence includes threonine 877 that is involved in hydrogen bonding to the D ring of the steroid molecule and leads to promiscuous ligand activation of the AR when mutated to alanine or serine. A second mutation in this region, H874Y, also results in a receptor protein that has broadened ligand-binding specificity, but retains an affinity for DHT (K(d) = 0.77 nm) similar to that of the wild-type receptor. The structure of the mutant LBD, expressed in Escherichia coli, is not dramatically altered compared with the wild-type AR-LBD in the presence of DHT, but shows a modestly increased sensitivity to protease digestion in the absence of hormone. This mutant AR showed wild-type AR-LBD/N-terminal domain interactions, but significantly enhanced binding and transactivation activity with all three members of the p160 family of coactivator proteins. Together, these phenotypic changes are likely to confer a selective advantage for tumor cells in a low androgen environment resulting from hormone therapy.
Collapse
Affiliation(s)
- Jennifer Duff
- School of Medical Sciences, Institute of Medical Sciences Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | |
Collapse
|
49
|
Hsu JC, Zhang J, Dev A, Wing A, Bjeldanes LF, Firestone GL. Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis 2005; 26:1896-904. [PMID: 15958518 DOI: 10.1093/carcin/bgi155] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Indole-3-carbinol (I3C), a naturally occurring compound found in vegetables of the Brassica genus, such as broccoli and cabbage, is a promising anticancer agent previously shown to induce a G(1) cell-cycle arrest in the cells of human lymph node carcinoma of prostate (LNCaP) through regulation of specific G(1)-acting cell-cycle components. Since the androgen receptor (AR) mediates proliferation and differentiation in the prostate and is expressed in nearly all human prostate cancers, the effects of I3C on AR expression and function were examined in LNCaP cells. Immunoblot and quantitative RT-PCR assays revealed that I3C inhibited the expression of AR protein and mRNA levels within 12 h of indole treatment. I3C downregulated the reporter activity of LNCaP cells transiently transfected with an AR promoter-luciferase plasmid, demonstrating that a unique response to I3C is the inhibition of AR promoter activity. In contrast to I3C, the natural I3C dimerization product 3,3'-diindolylmethane, which acts as an androgen antagonist, had no effect on AR expression. To determine the functional significance of the I3C-inhibited expression of AR, the AR-regulated prostate specific antigen (PSA) was utilized as a downstream indicator. I3C downregulated the expression of PSA transcripts and protein levels and inhibited PSA promoter activity, as well as that of a minimal androgen responsive element containing reporter plasmid. Expression of exogenous AR prevented the I3C disruption of androgen-induced PSA expression. Taken together, our results demonstrate that I3C represses AR expression and responsiveness in LNCaP cells as a part of its antiproliferative mechanism.
Collapse
Affiliation(s)
- Jocelyn C Hsu
- Department of Molecular and Cell Biology, The University of California at Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
50
|
Binnie MC, Alexander FE, Heald C, Habib FK. Polymorphic forms of prostate specific antigen and their interaction with androgen receptor trinucleotide repeats in prostate cancer. Prostate 2005; 63:309-15. [PMID: 15599941 DOI: 10.1002/pros.20178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent data has suggested that polymorphisms in the prostate specific antigen (PSA) may increase prostate cancer (PC) risk. The PSA gene contains a G/A substitution in the androgen response element (ARE) 1 region. The androgen receptor (AR) gene has polymorphic regions containing variable length glutamine and glycine repeats and these are believed to be associated with PC risk. The effect on PC risks from PSA polymorphisms alone and synergistically with the AR gene was examined in this report. METHODS One hundred PC patients and an age matched cohort of 79 benign prostate hyperplasia and 67 population controls were entered in this study. DNA was extracted from blood and PSA/ARE promoter region amplified by PCR. PCR products were cut with Nhe 1 restriction enzyme to distinguish G/A alleles. AR/CAG and GGC repeat length was detected by automated fluorescence from PCR products. RESULTS We found a significantly higher PSA/GG distribution in PC (30%) than either benign prostatic hyperplasia (BPH) (18%) or population controls (16%) (P = 0.025). Furthermore the GG distribution within cases was even greater in younger men (< 65 years; 42%; P = 0.012). Additionally, when PSA genotype was cross classified with CAG repeat, significantly more cases than both BPH and population controls were observed to have a short (< 22) CAG/GG genotype (P = 0.006). CONCLUSIONS Our results indicate that the PSA/ARE GG genotype confers an increased risk of PC especially among younger men. Moreover, we confirm previous results that a short glutamine repeat in conjunction with GG genotype significantly increases the risk of malignant disease.
Collapse
Affiliation(s)
- Margaret C Binnie
- Prostate Research Group, Division of Oncology, School of Molecular and Clinical Medicine, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|