1
|
Xiao Z, Zheng N, Chen H, Yang Z, Wang R, Liang Z. Identifying novel proteins underlying bipolar disorder via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. Transl Psychiatry 2024; 14:344. [PMID: 39191728 DOI: 10.1038/s41398-024-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Bipolar disorder (BD) presents a significant challenge due to its chronic and relapsing nature, with its underlying pathogenesis remaining elusive. This study employs Mendelian randomization (MR), a widely recognized genetic approach, to unveil intricate causal associations between proteins and BD, leveraging protein quantitative trait loci (pQTL) as key exposures. We integrate pQTL data from brain, cerebrospinal fluid (CSF), and plasma with genome-wide association study (GWAS) findings of BD within a comprehensive systems analysis framework. Our analyses, including two-sample MR, Steiger filtering, and Bayesian colocalization, reveal noteworthy associations. Elevated levels of AGRP, FRZB, and IL36A in CSF exhibit significant associations with increased BD_ALL risk, while heightened levels of CTSF and LRP8 in CSF, and FLRT3 in plasma, correlate with decreased BD_ALL risk. Specifically for Bipolar I disorder (BD_I), increased CSF AGRP levels are significantly linked to heightened BD_I risk, whereas elevated CSF levels of CTSF and LRP8, and plasma FLRT3, are associated with reduced BD_I risk. Notably, genes linked to BD-related proteins demonstrate substantial enrichment in functional pathways such as "antigen processing and presentation," "metabolic regulation," and "regulation of myeloid cell differentiation." In conclusion, our findings provide beneficial evidence to support the potential causal relationship between IL36A, AGRP, FRZB, LRP8 in cerebrospinal fluid, and FLRT3 in plasma, and BD and BD_I, providing insights for future mechanistic studies and therapeutic development.
Collapse
Affiliation(s)
- Zhehao Xiao
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nan Zheng
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haodong Chen
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhelun Yang
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zeyan Liang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Jiang LY, Tian J, Yang YN, Jia SH, Shu Q. Acupuncture for obesity and related diseases: Insight for regulating neural circuit. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:93-101. [PMID: 38519278 DOI: 10.1016/j.joim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/07/2023] [Indexed: 03/24/2024]
Abstract
Obesity is defined as abnormal or excessive fat accumulation that may impair health. Obesity is associated with numerous pathological changes including insulin resistance, fatty liver, hyperlipidemias, and other obesity-related diseases. These comorbidities comprise a significant public health threat. Existing anti-obesity drugs have been limited by side effects that include depression, suicidal thoughts, cardiovascular complications and stroke. Acupuncture treatment has been shown to be effective for treating obesity and obesity-related conditions, while avoiding side effects. However, the mechanisms of acupuncture in treating obesity-related diseases, especially its effect on neural circuits, are not well understood. A growing body of research has studied acupuncture's effects on the endocrine system and other mechanisms related to the regulation of neural circuits. In this article, recent research that was relevant to the use of acupuncture to treat obesity and obesity-related diseases through the neuroendocrine system, as well as some neural circuits involved, was summarized. Based on this, acupuncture's potential ability to regulate neural circuits and its mechanisms of action in the endocrine system were reviewed, leading to a deeper mechanistic understanding of acupuncture's effects and providing insight and direction for future research about obesity. Please cite this article as: Jiang LY, Tian J, Yang YN, Jia SH, Shu Q. Acupuncture for obesity and related diseases: insight for regulating neural circuit. J Integr Med. 2024; 22(2): 93-101.
Collapse
Affiliation(s)
- Lin-Yan Jiang
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ya-Nan Yang
- Department of Traditional Chinese Medicine, China Resources & Wu Gang General Hospital, Wuhan 430080, Hubei Province, China
| | - Shao-Hui Jia
- School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China.
| |
Collapse
|
3
|
Tezcan ME, Uğur C, Can Ü, Uçak EF, Ekici F, Duymuş F, Korucu AT. Are decreased cocaine- and amphetamine regulated transcript and Agouti- related peptide levels associated Eating behavior in medication-free children with attention deficit and hyperactivity disorder? Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110907. [PMID: 38043633 DOI: 10.1016/j.pnpbp.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
This study aimed to investigate plasma levels of cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP), cholecystokinin (CCK) and peptide YY (PYY) and their relationship with eating behaviors among children with attention deficit hyperactivity disorder (ADHD) and healthy controls. A total of 94 medication-free children with ADHD and 82 controls aged 8-14 years were included in this study. The Plasma levels of CART, AgRP, CCK and PYY were measured using enzyme-linked immunosorbent assay kits. The Children's Eating Behavior Questionnaire (CEBQ) was used to assess eating behaviors in children. CART and AgRP levels were found to be significantly lower in the ADHD group than in the control group, while CCK levels were found to be significantly higher in the ADHD group than in the control group. However, there was no significant difference in PYY levels between the groups. Compared to controls, those with ADHD demonstrated significantly higher scores on the CEBQ subscales of food responsiveness, emotional overeating, desire to drink, enjoyment of food, and food fussiness, and significantly lower scores on the slowness of eating subscale. CART was significantly correlated with emotional overeating and enjoyment of food scores, while AgRP was significantly correlated with emotional undereating scores. Covariance analysis was performed by controlling potential confounders such as body mass index, age and sex, and the results were found to be unchanged. It was concluded that CART, AgRP, and CCK may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey.
| | - Cüneyt Uğur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya, 42020, Turkey
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya, 42020, Turkey
| | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Fahrettin Duymuş
- Department of Medical Genetics, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Agah Tuğrul Korucu
- Faculty of Computer and Instructional Technologies, Necmettin Erbakan University, Meram-Konya, 42005, Turkey
| |
Collapse
|
4
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
5
|
Costa-e-Sousa RH, Rorato R, Hollenberg AN, Vella KR. Regulation of Thyroid Hormone Levels by Hypothalamic Thyrotropin-Releasing Hormone Neurons. Thyroid 2023; 33:867-876. [PMID: 37166378 PMCID: PMC10354708 DOI: 10.1089/thy.2023.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRβ) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRβ in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRβ signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.
Collapse
Affiliation(s)
- Ricardo H. Costa-e-Sousa
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Rodrigo Rorato
- Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Anthony N. Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Kristen R. Vella
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
8
|
Singh O, Singh D, Mitra S, Kumar A, Lechan RM, Singru PS. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2023; 164:6845693. [PMID: 36423209 DOI: 10.1210/endocr/bqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Devraj Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Anal Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Ehrhardt RA, Giesy SL, Hileman SM, Houseknecht KL, Boisclair YR. Effects of the central melanocortin system on feed intake, metabolic hormones and insulin action in the sheep. J Anim Sci 2023; 101:skad398. [PMID: 38035762 PMCID: PMC10734672 DOI: 10.1093/jas/skad398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Voluntary feed intake is insufficient to meet the nutrient demands associated with late pregnancy in prolific ewes and early lactation in high-yielding dairy cows. Under these conditions, peripheral signals such as growth hormone and ceramides trigger adaptations aimed at preserving metabolic well-being. Recent work in rodents has shown that the central nervous system-melanocortin (CNS-MC) system, consisting of alpha-melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AGRP) acting respectively as agonist and antagonist on central MC receptors, contributes to the regulation of some of the same adaptations. To assess the effects of the CNC-MC on peripheral adaptations in ruminants, ewes were implanted with an intracerebroventricular cannula in the third ventricle and infused over days with artificial cerebrospinal fluid (aCSF), the α-MSH analog melanotan-I (MTI), or AGRP. Infusion of MTI at 0.03 nmol/h reduced intake, expressed as a fold of maintenance energy requirement (M), from 1.8 to 1.1 M (P < 0.0001), whereas AGRP at 0.3 nmol/h increased intake from 1.8 to 2.0 M (P < 0.01); these doses were used in all subsequent experiments. To assess the effect of MTI on plasma variables, sheep were fed ad libitum and infused with aCSF or MTI or pair-fed to MTI-treated sheep and infused with aCSF (aCSFPF). Feed intake of the MTI and aCSFPF groups was 40% lower than the aCSF group (P < 0.0001). MTI increased plasma triiodothyronine and thyroxine in an intake-independent manner (P < 0.05 or less) but was devoid of effects on plasma glucose, insulin, and cortisol. None of these variables were altered by AGRP infusion in sheep fed at a fixed intake of 1.6 M. To assess the effect of CNS-MC activation on insulin action, ewes were infused with aCSF or MTI over the last 3 d of a 14-d period when energy intake was limited to 0.3 M and studied under basal conditions and during hyperinsulinemic-euglycemic clamps. MTI had no effect on plasma glucose, plasma insulin, or glucose entry rate under basal conditions but blunted the ability of insulin to inhibit endogenous glucose production during hyperinsulinemic-euglycemic clamps (P < 0.0001). Finally, MTI tended to reduce plasma leptin in sheep fed at 0.3 M (P < 0.08), and this effect became significant at 0.6 M (P < 0.05); MTI had no effect on plasma adiponectin irrespective of feeding level. These data suggest a role for the CNC-MC in regulating metabolic efficiency and peripheral insulin action.
Collapse
Affiliation(s)
- Richard A Ehrhardt
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah L Giesy
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV 26506, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, University of New England, Portland, ME 04103, USA
| | - Yves R Boisclair
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Chávez J, Alcántara-Alonso V, García-Luna C, Soberanes-Chávez P, Grammatopoulos D, de Gortari P. Hypothalamic TRH mediates anorectic effects of serotonin in rats. eNeuro 2022; 9:ENEURO.0077-22.2022. [PMID: 35545425 PMCID: PMC9159524 DOI: 10.1523/eneuro.0077-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Among the modulatory functions of thyrotropin-releasing hormone (TRH), an anorectic behavior in rodents is observed when centrally injected. Hypothalamic PVN neurons receive serotonergic inputs from dorsal raphe nucleus and express serotonin (5HT) receptors such as 5HT1A, 5HT2A/2C, 5HT6, which are involved in 5HT-induced feeding regulation. Rats subjected to dehydration-induced anorexia (DIA) model show increased PVN TRH mRNA expression, associated with their decreased food intake. We analyzed whether 5HT input is implicated in the enhanced PVN TRH transcription that anorectic rats exhibit, given that 5HT increases TRH expression and release when studied in vitro By using mHypoA-2/30 hypothalamic cell cultures, we found that 5HT stimulated TRH mRNA, pCREB and pERK1/2 levels. By inhibiting basal PKA or PKC activities or those induced by 5HT, pCREB or pERK1/2 content did not increase suggesting involvement of both kinases in their phosphorylation. 5HT effect on TRH mRNA was not affected by PKA inhibition, but it diminished in the presence of PKCi suggesting involvement of PKC in 5HT-induced TRH increased transcription. This likely involves 5HT2A/2C and the activation of alternative transduction pathways than those studied here. In agreement with the in vitro data, we found that injecting 5HT2A/2C antagonists into the PVN of DIA rats reversed the increased TRH expression of anorectic animals, as well as their decreased food intake; also, the agonist reduced food intake of hungry restricted animals along with elevated PVN TRH mRNA levels. Our results support that the anorectic effects of serotonin are mediated by PVN TRH in this model.Significance statementInteraction between brain peptides and neurotransmitters' pathways regulates feeding behavior, but when altered it could lead to the development of eating disorders, such as anorexia. An abnormal increased TRH expression in hypothalamic PVN results in dehydration-induced anorectic rats, associated to their low food intake. The role of neurotransmitters in that alteration is unknown, and since serotonin inhibits feeding and has receptors in PVN, we analyzed its participation in increasing TRH expression and reducing feeding in anorectic rats. By antagonizing PVN serotonin receptors in anorectic rats, we identify decreased TRH expression and increased feeding, suggesting that the anorectic effects of serotonin are mediated by PVN TRH. Elucidating brain networks involved in feeding regulation would help to design therapies for eating disorders.
Collapse
Affiliation(s)
- Jorge Chávez
- Molecular Neurophysiology laboratory, Department of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico 14370
| | - Viridiana Alcántara-Alonso
- Molecular Neurophysiology laboratory, Department of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico 14370
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom CV4 7HL
| | - Cinthia García-Luna
- Molecular Neurophysiology laboratory, Department of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico 14370
| | - Paulina Soberanes-Chávez
- Molecular Neurophysiology laboratory, Department of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico 14370
| | - Dimitris Grammatopoulos
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom CV4 7HL
- Institute of Precision Diagnostics and Translational Medicine, Division of Pathology, UHCW NHS Trust, Coventry, United Kingdom CV2 2DX
| | - Patricia de Gortari
- Molecular Neurophysiology laboratory, Department of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico 14370.
| |
Collapse
|
11
|
Derkach KV, Bakhtyukov AA, Basova NE, Zorina II, Shpakov AO. The Restorative Effect of Combined Insulin and C-Peptide Intranasal Administration on Hormonal Status and Hypothalamic Signaling in the Male Rat Model of Severe Short-Term Streptozotocin-Induced Diabetes. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302203005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Oliveira LDC, Morais GP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, de Freitas EC, Rorato R, da Silva ASR. Using Intermittent Fasting as a Non-pharmacological Strategy to Alleviate Obesity-Induced Hypothalamic Molecular Pathway Disruption. Front Nutr 2022; 9:858320. [PMID: 35445066 PMCID: PMC9014844 DOI: 10.3389/fnut.2022.858320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Intermittent fasting (IF) is a popular intervention used to fight overweight/obesity. This condition is accompanied by hypothalamic inflammation, limiting the proper signaling of molecular pathways, with consequent dysregulation of food intake and energy homeostasis. This mini-review explored the therapeutic modulation potential of IF regarding the disruption of these molecular pathways. IF seems to modulate inflammatory pathways in the brain, which may also be correlated with the brain-microbiota axis, improving hypothalamic signaling of leptin and insulin, and inducing the autophagic pathway in hypothalamic neurons, contributing to weight loss in obesity. Evidence also suggests that when an IF protocol is performed without respecting the circadian cycle, it can lead to dysregulation in the expression of circadian cycle regulatory genes, with potential health damage. In conclusion, IF may have the potential to be an adjuvant treatment to improve the reestablishment of hypothalamic responses in obesity.
Collapse
Affiliation(s)
- Luciana da Costa Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Gustavo Paroschi Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Ellen C. de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Postgraduate Program in Molecular Biology, Laboratory of Stress Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
- Rodrigo Rorato,
| | - Adelino Sanchez R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- *Correspondence: Adelino Sanchez R. da Silva,
| |
Collapse
|
13
|
Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic-pituitary-thyroid axis. Proc Natl Acad Sci U S A 2021; 118:2107943118. [PMID: 34544870 DOI: 10.1073/pnas.2107943118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Fasting induces profound changes in the hypothalamic-pituitary-thyroid (HPT) axis. After binding thyroid hormone (TH), the TH receptor beta 2 isoform (THRB2) represses Trh and Tsh subunit genes and is the principle negative regulator of the HPT axis. Using mass spectrometry, we identified a major phosphorylation site in the AF-1 domain of THRB2 (serine 101, S101), which is conserved among many members of the nuclear hormone receptor superfamily. More than 50% of THRB2 is phosphorylated at S101 in cultured thyrotrophs (TαT1.1) and in the mouse pituitary. All other THR isoforms lack this site and exhibit limited overall levels of phosphorylation. To determine the importance of THRB2 S101 phosphorylation, we used the TαT1.1 cell line and S101A mutant knock-in mice (Thrb2 S101A ). We found that TH promoted S101 THRB2 phosphorylation and was essential for repression of the axis at physiologic TH concentrations. In mice, THRB2 phosphorylation was also increased by fasting and mimicked Trh and Tshb repression by TH. In vitro studies demonstrated that a master metabolic sensor, AMP-activated kinase (AMPK) induced phosphorylation at the same site and caused Tshb repression independent of TH. Furthermore, we identified cyclin-dependent kinase 2 (CDK2) as a direct kinase phosphorylating THRB2 S101 and propose that AMPK or TH increase S101 phosphorylation through the activity of CDK2. This study provides a physiologically relevant function for THR phosphorylation, which permits nutritional deprivation and TH to use a common mechanism for acute suppression of the HPT axis.
Collapse
|
14
|
Abstract
µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.
Collapse
Affiliation(s)
- Christian J Kinney
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| | - Robert J Bloch
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| |
Collapse
|
15
|
Deal CK, Volkoff H. Response of the thyroid axis and appetite-regulating peptides to fasting and overfeeding in goldfish (Carassius auratus). Mol Cell Endocrinol 2021; 528:111229. [PMID: 33662475 DOI: 10.1016/j.mce.2021.111229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The thyroid axis is a major regulator of metabolism and energy homeostasis in vertebrates. There is conclusive evidence in mammals for the involvement of the thyroid axis in the regulation of food intake, but in fish, this link is unclear. In order to assess the effects of nutritional status on the thyroid axis in goldfish, Carassius auratus, we examined brain and peripheral transcripts of genes associated with the thyroid axis [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptors (TRH-R type 1 and 2), thyroid stimulating hormone beta (TSHβ), deiodinase enzymes (DIO2, DIO3) and UDP-glucoronsyltransferase (UGT)] and appetite regulators [neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related peptide (AgRP) and cholecystokinin (CCK)] in fasted and overfed fish for 7 and 14 day periods. We show that the thyroid axis responds to overfeeding, with an increase of brain TRH and TSHβ mRNA expression after 14 days, suggesting that overfeeding might activate the thyroid axis. In fasted fish, hepatic DIO3 and UGT transcripts were downregulated from 7 to 14 days, suggesting a time-dependent inhibition of thyroid hormone degradation pathways. Nutritional status had no effect on circulating levels of thyroid hormone. Central appetite-regulating peptides exhibited temporal changes in mRNA expression, with decreased expression of the appetite-inhibiting peptide POMC from 7 to 14 days for both fasted and overfed fish, with no change in central NPY or AgRP, or intestinal CCK transcript expression. Compared to control fish, fasting increased AgRP mRNA expression at both 7 and 14 days, and POMC expression was higher than controls only at 7 days. Our results indicate that nutritional status time-dependently affects the thyroid axis and appetite regulators, although no clear correlation between thyroid physiology and appetite regulators could be established. Our study helps to fill a knowledge gap in current fish endocrinological research on the effects of energy balance on thyroid metabolism and function.
Collapse
Affiliation(s)
- Cole K Deal
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
16
|
HECHT FABIO, CAZARIN JULIANA, ROSSETTI CAMILAL, ROSENTHAL DORIS, ARAUJO RENATAL, CARVALHO DENISEP. Leptin negatively regulates thyroid function of Wistar rats. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120201551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- FABIO HECHT
- Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Yang Y, Xu Y. The central melanocortin system and human obesity. J Mol Cell Biol 2020; 12:785-797. [PMID: 32976556 PMCID: PMC7816681 DOI: 10.1093/jmcb/mjaa048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.
Collapse
Affiliation(s)
- Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
19
|
Parlak N, Görgülü Y, Köse Çinar R, Sönmez MB, Parlak E. Serum agouti-related protein (AgRP) levels in bipolar disorder: Could AgRP be a state marker for mania? Psychiatry Res 2018; 260:36-40. [PMID: 29172096 DOI: 10.1016/j.psychres.2017.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/21/2017] [Accepted: 11/04/2017] [Indexed: 11/28/2022]
Abstract
Orexigenic and anorexigenic peptides, especially agouti-related protein (AgRP) and leptin, play important roles in the regulation of energy homeostasis in bipolar disorder. AgRP regulates energy metabolism by increasing appetite and decreasing energy expenditure. The resting energy expenditures of patients with manic bipolar disorder are higher than those of controls. Due to the effects of AgRP on energy expenditure and the increased physical activity of manic patients, we hypothesised that serum AgRP levels may be lower in manic patients than in euthymic patients and controls. There was a total of 112 participants, including 47 patients in the manic group, 35 patients in the euthymic group and 30 healthy controls. For this study, serum AgRP, leptin, cholesterol, and cortisol levels were measured and compared between the groups. The serum AgRP, leptin, and cholesterol levels were significantly different between the groups. The serum AgRP levels of manic group were significantly lower than those of euthymic and control groups. The lower serum AgRP levels of manic patients could be indicators of impaired energy homeostasis during manic episodes. Since the serum AgRP levels of manic patients are lower than those of euthymic patients and controls, AgRP could be a state marker for manic episodes.
Collapse
Affiliation(s)
- Naci Parlak
- Department of Psychiatry, Izzet Baysal Mental Health and Disease Training and Research Hospital, Bolu 14030, Turkey.
| | - Yasemin Görgülü
- Department of Psychiatry, Trakya University Faculty of Medicine, Edirne 22030, Turkey.
| | - Rugül Köse Çinar
- Department of Psychiatry, Trakya University Faculty of Medicine, Edirne 22030, Turkey.
| | - Mehmet Bülent Sönmez
- Department of Psychiatry, Trakya University Faculty of Medicine, Edirne 22030, Turkey.
| | - Ebru Parlak
- Department of Psychiatry, Izzet Baysal Mental Health and Disease Training and Research Hospital, Bolu 14030, Turkey.
| |
Collapse
|
20
|
García-Luna C, Soberanes-Chávez P, de Gortari P. Impaired hypothalamic cocaine- and amphetamine-regulated transcript expression in lateral hypothalamic area and paraventricular nuclei of dehydration-induced anorexic rats. J Neuroendocrinol 2017; 29. [PMID: 28984394 DOI: 10.1111/jne.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022]
Abstract
Negative energy balance promotes physiological adaptations that ensure the survival of animals. The hypothalamic-pituitary-thyroid axis regulates basal energy expenditure and its down-regulating adaptation to negative energy balance is well described: in fasting, the serum content of thyrotrophin (TSH) and thyroid hormones (TH) decreases, enhancing the survival odds of individuals. By contrast, dehydration-induced anorexic (DIA) rats present an impaired hypothalamic-pituitary-thyroid (HPT) axis adaptation despite their negative energy balance: increased circulating TSH levels. The implication of cocaine- and amphetamine-regulated transcript (CART), an anorexic peptide, in HPT axis function impairment and food-avoidance behaviour displayed by DIA animals is unknown. Because CART is co-expressed with the peptide that regulates the HPT axis in hypophysiotrophic paraventricular nucleus (PVN) neurones (TSH-releasing hormone), we analysed CART expression and possible implications with respect to high TSH levels of DIA animals. We examined whether changes in CART expression from the lateral hypothalamic area (LHA) and arcuate nucleus (ARC) could participate in food-avoidance of DIA rats. DIA and forced-food restricted (FFR) animals reduced their body weight and food intake. FFR rats had a down-regulation of their HPT axis (reduced serum TH and TSH content), whereas DIA animals had reduced TH but increased TSH levels. CART mRNA expression in the ARC decreased similarly between experimental groups and diminished in anterior, medial PVN and in LHA of FFR animals, whereas DIA animals showed unchanged levels. This impaired CART mRNA expression in the anterior PVN and LHA could be related to the aberrant feeding behaviour of DIA rats but not to their deregulated HPT axis function.
Collapse
Affiliation(s)
- C García-Luna
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P Soberanes-Chávez
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
21
|
Barington M, Brorson MM, Hofman-Bang J, Rasmussen ÅK, Holst B, Feldt-Rasmussen U. Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo. PLoS One 2017; 12:e0184992. [PMID: 28931076 PMCID: PMC5607171 DOI: 10.1371/journal.pone.0184992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/04/2017] [Indexed: 02/05/2023] Open
Abstract
Ghrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate several physiological functions including gut motility, adipose tissue accumulation and hunger sensation leading to increased bodyweight. Studies have found a correlation between the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thyroid has never been investigated even though ghrelin receptors are present in the thyroid. The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone (TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a primary culture of human thyroid cells obtained from paranodular tissue. Accordingly, a trend was noted for an inhibition of TSH-stimulated expression of the sodium-iodine symporter and the TSH-receptor. Thus, this study suggests an effect of ghrelin on human thyrocytes and thereby emphasizes the relevance of examining whether ghrelin also influences the metabolic homeostasis through altered thyroid hormone production.
Collapse
Affiliation(s)
- Maria Barington
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Marianne Møller Brorson
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Jacob Hofman-Bang
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Åse Krogh Rasmussen
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
22
|
Cai M, Marelli UK, Mertz B, Beck JG, Opperer F, Rechenmacher F, Kessler H, Hruby VJ. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry 2017; 56:4201-4209. [PMID: 28715181 DOI: 10.1021/acs.biochem.7b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Johannes G Beck
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Baltaci AK, Mogulkoc R. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc. Biochem Genet 2017; 55:223-233. [PMID: 28097455 DOI: 10.1007/s10528-017-9791-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/08/2017] [Indexed: 01/15/2023]
Abstract
Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT3, FT4, TT3, and TT4) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.
Collapse
Affiliation(s)
| | - Rasim Mogulkoc
- Medical School, Department of Physiology, Selcuk University, Konya, Turkey.
| |
Collapse
|
24
|
Hill JW, Faulkner LD. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances. Neuroendocrinology 2017; 104:330-346. [PMID: 27728914 PMCID: PMC5724371 DOI: 10.1159/000450649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022]
Abstract
Obesity is increasing in prevalence across all sectors of society, and with it a constellation of associated ailments including hypertension, type 2 diabetes, and eating disorders. The melanocortin system is a critical neural system underlying the control of body weight and other functions. Deficits in the melanocortin system may promote or exacerbate the comorbidities of obesity. This system has therefore generated great interest as a potential target for treatment of obesity. However, drugs targeting melanocortin receptors are plagued by problematic side effects, including undesirable increases in sympathetic nervous system activity, heart rate, and blood pressure. Circumnavigating this roadblock will require a clearer picture of the precise neural circuits that mediate the functions of melanocortins. Recent, novel experimental approaches have significantly advanced our understanding of these pathways. We here review the latest advances in our understanding of the role of melanocortins in food intake, reward pathways, blood pressure, glucose control, and energy expenditure. The evidence suggests that downstream melanocortin-responsive circuits responsible for different physiological actions do diverge. Ultimately, a more complete understanding of melanocortin pathways and their myriad roles should allow treatments tailored to the mix of metabolic disorders in the individual patient.
Collapse
Affiliation(s)
- Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
25
|
Rabaglino MB, Moreira-Espinoza MJ, Lopez JP, Garcia NH, Beltramo D. Maternal Triclosan consumption alters the appetite regulatory network on Wistar rat offspring and predispose to metabolic syndrome in the adulthood. Endocr J 2016; 63:1007-1016. [PMID: 27569689 DOI: 10.1507/endocrj.ej16-0257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objectives of this study were to evaluate the effects of maternal oral exposure to the antibacterial Triclosan (TCS) during gestation and lactation on the metabolic status of the adult offspring and on the expression of main genes controlling the appetite regulatory network. Pregnant rats were fed ad-libitum with ground food + TCS (1 mg/kg) from day 14 of gestation to day 20 of lactation (n=3) or ground food (n=3). After litter reduction, 12 males and 12 females born from the TCS exposed rats (TCS, n=24) or not (Control, n=24) were used to evaluate monthly body weight, food intake, plasma levels of cholesterol, glucose and triglycerides, and the hypothalamic mRNA expression of agouti-related protein (Agrp), neuropeptide Y (Npy) and propiomelanocortin (Pomc). Body weight for rats in the TCS group was 12.5% heavier for males at 4 months (p<0.001) and 19% heavier for females at 8 months (p=0.01). Food intake was significantly higher for rats in the TCS group at 5 months of age (p<0.01). Cholesterol and glucose levels were significantly higher for rats in the TCS group at 8 months (p<0.05). mRNA expression of Npy and Agrp were significantly increased in hypothalami of rats in the TCS group at 2 months for males or 8 months for females (p<0.05). In conclusion, low doses of oral TCS consumption by the pregnant and lactating dam increase the hypothalamic expression of the orexigenic neuropeptides Npy and Agrp in the offspring and alter their metabolic status during adulthood, resembling development of the metabolic syndrome.
Collapse
Affiliation(s)
- María Belén Rabaglino
- Centro de Excelencia en Procesos y Productos de Córdoba (CEPROCOR), CONICET, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
26
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
27
|
Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS One 2015; 10:e0120776. [PMID: 25799180 PMCID: PMC4370574 DOI: 10.1371/journal.pone.0120776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation.
Collapse
|
28
|
Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 2015; 9:56. [PMID: 25759638 PMCID: PMC4338676 DOI: 10.3389/fnins.2015.00056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.
Collapse
Affiliation(s)
- Anne Drougard
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| | | | | | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| |
Collapse
|
29
|
Miler M, Sošić-Jurjević B, Nestorović N, Ristić N, Medigović I, Savin S, Milošević V. Morphological and functional changes in pituitary-thyroid axis following prolonged exposure of female rats to constant light. J Morphol 2014; 275:1161-72. [PMID: 24797691 DOI: 10.1002/jmor.20293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/28/2014] [Accepted: 04/13/2014] [Indexed: 01/16/2023]
Abstract
Light regulates numerous physiological functions and synchronizes them with the environment, in part by adjusting secretion of different hormones. We hypothesized that constant light (CL) would disturb pituitary-thyroid axis. Our aim was to determine morphological and functional changes in this endocrine system in such extreme conditions and, based on the obtained results, to propose the underlying mechanism(s). Starting from the thirtieth postnatal day, female Wistar rats were exposed to CL (600 lx) for the following 95 days. The controls were maintained under the regular laboratory lighting conditions. After decapitation, pituitaries and thyroids were prepared for further histomorphometric, immunohistochemical, and immunofluorescence examinations. Concentration of thyroid stimulating hormone (TSH), total T4 and T3 (TH) were determined. Thyroid tissue of light-treated rats was characterized by microfollicular structure. We detected no change in total thyroid volume, localization and accumulation of thyroglobulin, thyroid peroxidase, and sodium-iodide symporter in the follicular epithelium of CL rats. The volume of follicular epithelium and activation index were increased, while volume of the colloid and serum levels of TH decreased. In the pituitary, the relative intensity of TSH β-immunofluorescence signal within the cytoplasm of thyrotrophs increased, but their average cell volume and the relative volume density decreased. Serum TSH was unaltered. We conclude that exposure of female rats to CL induced alterations in pituitary-thyroid axis. Thyroid tissue was characterized by microfollicular structure. Serum TH levels were reduced without accompanying increase in serum TSH. We hypothesize that increased secretion and clearance of TH together with unchanged or even decreased hormonal synthesis, resulted in decreased serum TH levels in CL group. We assume this decrease consequently led to increased synthesis and/or accumulation of pituitary TSH. However, decreased average TSH cell volume and relative volume density, together with unchanged serum TSH, point to additional, negative regulation of thyrotrophs.
Collapse
Affiliation(s)
- Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
30
|
Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 2014; 35:159-94. [PMID: 24423980 PMCID: PMC3963261 DOI: 10.1210/er.2013-1087] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Endocrine Neurobiology (C.F.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (C.F., R.M.L.), Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
31
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
32
|
Beloosesky R, Gayle DA, Amidi F, Ahanya SN, Desai M, Ross MG. Ontogenic expression of putative feeding peptides in the rat fetal brain and placenta. Nutr Neurosci 2013; 9:33-40. [PMID: 16910168 DOI: 10.1080/10284150600630676] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The well-demonstrated "fetal programming" paradigm is based on the observation that environmental changes can reset the developmental path and thus, gene expression during intrauterine development. As appetite-regulatory neural pathways develop in utero, we sought to determine the ontogenic expression of putative orexigenic and anorexigenic feeding-regulatory peptides in the fetal rat brain and placenta during the last third of gestation. Pregnant Sprague-Dawley rats (n = 12) at D14, D16 and D18 were sacrificed and fetal whole brain and placenta removed and examined for mRNA levels of orexigenic (neuropeptide Y (NPY), agouti-related peptide (AgRP)) and anorexigenic (cocaine and amphetamine regulated transcript (CART), pro-opiomelanocortin (POMC)) peptides and leptin receptor (OB-Rb) using real-time reverse transcription polymerase chain reactions (RT-PCR). For adult comparisons, the hypothalamus, cortex and cerebellum from male rats were also examined for feeding peptides. In the fetal brain and placenta, mRNA levels of AgRP decreased 10-fold from D14 to D16 and was undetectable at D18. Appetite inhibitory factors OB-Rb and CART mRNA levels increased from D14 to D18 in the brain and placenta. NPY and POMC expression remained unchanged from D14 to D18. The pattern of expression of feeding regulatory peptides in the fetal brain most closely resembled the expression profile of the adult cerebral cortex. The continued maturation of feeding regulatory mechanisms in late gestation indicates the potential for in utero programming of ingestive behavior.
Collapse
Affiliation(s)
- R Beloosesky
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS One 2013; 8:e65317. [PMID: 23762342 PMCID: PMC3675096 DOI: 10.1371/journal.pone.0065317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/28/2013] [Indexed: 12/15/2022] Open
Abstract
Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.
Collapse
|
34
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Cyr NE, Toorie AM, Steger JS, Sochat MM, Hyner S, Perello M, Stuart R, Nillni EA. Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. Am J Physiol Endocrinol Metab 2013; 304:E640-50. [PMID: 23321476 PMCID: PMC3602689 DOI: 10.1152/ajpendo.00448.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/12/2013] [Indexed: 01/24/2023]
Abstract
Protein posttranslational processing is a cellular mechanism fundamental to the generation of bioactive peptides, including the anorectic α-melanocyte-stimulating hormone (α-MSH) and thyrotropin-releasing hormone (TRH) peptides produced in the hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, respectively. Neuropeptide Y (NPY) promotes positive energy balance in part by suppressing α-MSH and TRH. The mechanism by which NPY regulates α-MSH output, however, is not well understood. Our results reveal that NPY inhibited the posttranslational processing of α-MSH's inactive precursor proopiomelanocortin (POMC) by decreasing the prohormone convertase-2 (PC2). We also found that early growth response protein-1 (Egr-1) and NPY-Y1 receptors mediated the NPY-induced decrease in PC2. NPY given intra-PVN also decreased PC2 in PVN samples, suggesting a reduction in PC2-mediated pro-TRH processing. In addition, NPY attenuated the α-MSH-induced increase in TRH production by two mechanisms. First, NPY decreased α-MSH-induced CREB phosphorylation, which normally enhances TRH transcription. Second, NPY decreased the amount of α-MSH in the PVN. Collectively, these results underscore the significance of the interaction between NPY and α-MSH in the central regulation of energy balance and indicate that posttranslational processing is a mechanism that plays a specific role in this interaction.
Collapse
Affiliation(s)
- Nicole E Cyr
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chiappini F, Ramadoss P, Vella KR, Cunha LL, Ye FD, Stuart RC, Nillni EA, Hollenberg AN. Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 2013; 365:84-94. [PMID: 23000398 PMCID: PMC3572472 DOI: 10.1016/j.mce.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023]
Abstract
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T₄ and T₃ levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T₃ in vivo likely occurs independently of the CREB/CREM family.
Collapse
Affiliation(s)
- Franck Chiappini
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Lucas L. Cunha
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Felix D. Ye
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Ronald C. Stuart
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Eduardo A. Nillni
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| |
Collapse
|
37
|
Begriche K, Girardet C, McDonald P, Butler AA. Melanocortin-3 receptors and metabolic homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:109-46. [PMID: 23317784 DOI: 10.1016/b978-0-12-386933-3.00004-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Attenuated activity of the central nervous melanocortin system causes obesity and insulin resistance. Obese rodents treated with melanocortins exhibit improvements in obesity and metabolic homeostasis that are not mutually dependent, suggesting metabolic actions that are independent of weight changes. These responses are generally thought to involve G-protein-coupled receptors expressed in the brain. Melanocortin-4 receptors (MC4Rs) regulate satiety and autonomic nervous system and thyroid function. MC3Rs are expressed in hypothalamic and limbic regions involved in controlling ingestive behaviors and autonomic function. Mc3r-/- mice exhibit increased adiposity and an accelerated diet-induced obesity. While this phenotype is not dependent on hyperphagia, data on the regulation of food intake by MC3Rs are inconsistent. Recent investigations by our laboratory suggest a unique combination of behavioral and metabolic disorders in Mc3r-/- mice. MC3Rs are critical for the expression of the anticipatory response and metabolic homeostasis when food intake occurs outside the normal voluntary rhythms driven by photoperiod. Using a Cre-Lox strategy, we can now investigate MC3Rs expressed in different brain regions and organ systems in the periphery. While focusing on the functions of neural MC3Rs, early results suggest an additional layer of complexity with central and peripheral MC3Rs involved in the defense of body weight.
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
38
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
39
|
Kim GW, Lin JE, Valentino MA, Colon-Gonzalez F, Waldman SA. Regulation of appetite to treat obesity. Expert Rev Clin Pharmacol 2012; 4:243-59. [PMID: 21666781 DOI: 10.1586/ecp.11.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity has escalated into a pandemic over the past few decades. In turn, research efforts have sought to elucidate the molecular mechanisms underlying the regulation of energy balance. A host of endogenous mediators regulate appetite and metabolism, and thereby control both short- and long-term energy balance. These mediators, which include gut, pancreatic and adipose neuropeptides, have been targeted in the development of anti-obesity pharmacotherapy, with the goal of amplifying anorexigenic and lipolytic signaling or blocking orexigenic and lipogenic signaling. This article presents the efficacy and safety of these anti-obesity drugs.
Collapse
Affiliation(s)
- Gilbert W Kim
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 S. 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
40
|
Necdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. J Neurosci 2012; 32:5562-72. [PMID: 22514318 DOI: 10.1523/jneurosci.0142-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The forkhead transcription factor Foxo1 regulates energy homeostasis by modulating gene expression in the hypothalamus. Foxo1 undergoes post-translational modifications such as phosphorylation and acetylation, which modulate its functional activities. Sirtuin1 (Sirt1), a nicotinamide adenine dinucleotide-dependent protein deacetylase, regulates the acetylation status of Foxo1 in mammalian cells. Necdin, a pleiotropic protein required for neuronal development and survival, interacts with both Sirt1 and p53 to facilitate p53 deacetylation. The necdin gene (Ndn), an imprinted gene transcribed only from the paternal allele, is strongly expressed in hypothalamic neurons. Here, we demonstrate that necdin controls the acetylation status of Foxo1 in vivo in hypothalamic arcuate neurons to modulate the thyroid function. Necdin forms a stable ternary complex with Sirt1 and Foxo1, diminishes Foxo1 acetylation, and suppresses the transcriptional activity of Foxo1 in vitro. Paternal Ndn mutant mice express high levels of acetylated Foxo1 and mRNAs encoding agouti-related protein and neuropeptide Y in the hypothalamus in vivo during the juvenile period. The mutant mice exhibit endocrine dysfunction characteristic of hypothalamic hypothyroidism. Chemically induced hyperthyroidism and hypothyroidism lead to hypothalamic responses similar to those under necdin-deficient and excessive conditions, respectively, suggesting that thyroid hormone serves as a negative regulator of this system. These results suggest that necdin regulates Foxo1 acetylation and neuropeptide gene expression in the arcuate neurons to modulate the hypothalamic-pituitary-thyroid axis during development.
Collapse
|
41
|
Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, O'Neill NF, Maratos-Flier E, Hollenberg AN. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab 2011; 14:780-90. [PMID: 22100407 PMCID: PMC3261758 DOI: 10.1016/j.cmet.2011.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 10/15/2022]
Abstract
Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T(4) during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.
Collapse
Affiliation(s)
- Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Preston E, Cooney GJ, Wilks D, Baran K, Zhang L, Kraegen EW, Sainsbury A. Central neuropeptide Y infusion and melanocortin 4 receptor antagonism inhibit thyrotropic function by divergent pathways. Neuropeptides 2011; 45:407-15. [PMID: 21862125 DOI: 10.1016/j.npep.2011.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022]
Abstract
Weight loss inhibits thyrotropic function and reduces metabolic rate, thereby contributing to weight regain. Under negative energy balance there is an increase in the hypothalamic expression of both neuropeptide Y (NPY) and agouti related peptide (AgRP), the endogenous antagonist of melanocortin 4 (MC4) receptors. Both NPY and MC4 receptor antagonism reduce thyrotropic function centrally, but it is not known whether these pathways operate by similar or distinct mechanisms. We compared the time-course of effects of acute or chronic intracerebroventricular (ICV) administration of NPY (1.2 nmol acute bolus, or 3.5 nmol/day for 6 days) or the MC4 receptor antagonist HS014 (1.5 nmol bolus, or 4.8 nmol/day) on plasma concentrations of thyroid stimulating hormone (TSH) or free thyroxine (T4) in male rats pair-fed with vehicle-infused controls. These doses equipotently induced hyperphagia in acute studies, reduced latency to feed, and increased white adipose tissue mass after 6 days of infusion. Acute central NPY but not HS014 administration significantly reduced plasma TSH concentrations within 30-60 min and plasma free T4 levels within 90-120 min. These inhibitory effects were sustained for up to 5-6 days of continuous NPY infusion. HS014 induced a transient decrease in plasma free T4 levels that was observed only after 1-2 days of continuous ICV infusion. While both NPY and HS014 significantly increased corticosteronemia within an hour after ICV injection, the effect of NPY was significantly more pronounced and was sustained for up to 4 days of administration. Both NPY and HS014 significantly decreased the brown adipose tissue protein levels of uncoupling protein-3. We conclude that central NPY and MC4 antagonism decrease thyrotropic function via partially distinct mechanisms with different time courses, possibly involving glucocorticoid effects of NPY. MC4 receptor antagonism increases adiposity via pathways independent of increased food intake or changes in circulating concentrations of TSH, free T4 or corticosterone.
Collapse
Affiliation(s)
- Elaine Preston
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Central NPY-Y5 receptors activation plays a major role in fasting-induced pituitary–thyroid axis suppression in adult rat. ACTA ACUST UNITED AC 2011; 171:43-7. [DOI: 10.1016/j.regpep.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/06/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
|
44
|
Wiedmer P, Chaudhary N, Rath M, Yi CX, Ananthakrishnan G, Nogueiras R, Wirth EK, Kirchner H, Schweizer U, Jonas W, Veyrat-Durebex C, Rohner-Jeanrenaud F, Schürmann A, Joost HG, Tschöp MH, Perez-Tilve D. The HPA axis modulates the CNS melanocortin control of liver triacylglyceride metabolism. Physiol Behav 2011; 105:791-9. [PMID: 22061427 DOI: 10.1016/j.physbeh.2011.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/10/2011] [Accepted: 10/20/2011] [Indexed: 11/16/2022]
Abstract
The central melanocortin system regulates lipid metabolism in peripheral tissues such as white adipose tissue. Alterations in the activity of sympathetic nerves connecting hypothalamic cells expressing melanocortin 3/4 receptors (MC3/4R) with white adipocytes have been shown to partly mediate these effects. Interestingly, hypothalamic neurons producing corticotropin-releasing hormone and thyrotropin-releasing hormone co-express MC4R. Therefore we hypothesized that regulation of hypothalamo-pituitary adrenal (HPA) and hypothalamo-pituitary thyroid (HPT) axes activity by the central melanocortin system could contribute to its control of peripheral lipid metabolism. To test this hypothesis, we chronically infused rats intracerebroventricularly (i.c.v.) either with an MC3/4R antagonist (SHU9119), an MC3/4R agonist (MTII) or saline. Rats had been previously adrenalectomized (ADX) and supplemented daily with 1mg/kg corticosterone (s.c.), thyroidectomized (TDX) and supplemented daily with 10 μg/kgL-thyroxin (s.c.), or sham operated (SO). Blockade of MC3/4R signaling with SHU9119 increased food intake and body mass, irrespective of gland surgery. The increase in body mass was accompanied by higher epididymal white adipose tissue (eWAT) weight and higher mRNA content of lipogenic enzymes in eWAT. SHU9119 infusion increased triglyceride content in the liver of SO and TDX rats, but not in those of ADX rats. Concomitantly, mRNA expression of lipogenic enzymes in liver was increased in SO and TDX, but not in ADX rats. We conclude that the HPA and HPT axes do not play an essential role in mediating central melanocortinergic effects on white adipose tissue and liver lipid metabolism. However, while basal hepatic lipid metabolism does not depend on a functional HPA axis, the induction of hepatic lipogenesis due to central melanocortin system blockade does require a functional HPA axis.
Collapse
Affiliation(s)
- Petra Wiedmer
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu XY, Shi JH, DU WH, Fan YP, Hu XL, Zhang CC, Xu HB, Miao YJ, Zhou HY, Xiang P, Chen FL. Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Exp Ther Med 2011; 2:977-984. [PMID: 22977608 DOI: 10.3892/etm.2011.292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of glucocorticoids (GCs) on appetite and gene expression of the hypothalamic appetite regulatory peptides, neuropeptide Y (NPY), agouti-related protein (AGRP) and cocaine and amphetamine-regulated transcript (CART), in non-obese and obese rats. Both non-obese and obese rats were randomly assigned to three groups: normal saline, low- and high-dose GC groups (NSG, LDG and HDG, respectively), which received an intraperitoneal injection with normal saline (0.2 ml/100 g) or hydrocortisone sodium succinate at 5 and 15 mg/kg, respectively, for 20 days. The expression levels of NPY, AGRP and CART mRNA in the hypothalamus were measured by real-time quantitative PCR. Non-obese and obese rats were found to undergo weight loss after GC injection, and a higher degree of weight loss was observed in the HDG rats. The average and cumulative food intakes in the obese and non-obese rats injected with high-dose GC were lower compared to that in the NSG (p<0.05). mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and the anorexigenic neuropeptide, CART, were significantly lower in the HDG than levels in the NSG for both the obese and non-obese rats (p<0.05). GC treatment decreased appetite and body weight, induced apparent glucolipid metabolic disturbances and hyperinsulinemia, while down-regulated mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and anorexigenic neuropeptide, CART, in the hypothalamus in the rats. The mechanism which induces this neuropeptide expression requires further study.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Endocrinology, No. 3 People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 201900
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
47
|
Cheng CYY, Chu JYS, Chow BKC. Central and peripheral administration of secretin inhibits food intake in mice through the activation of the melanocortin system. Neuropsychopharmacology 2011; 36:459-71. [PMID: 20927047 PMCID: PMC3055665 DOI: 10.1038/npp.2010.178] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretin (Sct) is released into the circulation postprandially from the duodenal S-cells. The major functions of Sct originated from the gastrointestinal system are to delay gastric emptying, stimulate fluid secretion from pancreas and liver, and hence optimize the digestion process. In recent years, Sct and its receptor (Sctr) have been identified in discrete nuclei of the hypothalamus, including the paraventricular nucleus (PVN) and the arcuate nucleus (Arc). These nuclei are the primary brain sites that are engaged in regulating body energy homeostasis, thus providing anatomical evidence to support a functional role of Sct in appetite control. In this study, the effect of Sct on feeding behavior was investigated using wild-type (wt), Sct(-/-), and secretin receptor-deficient (Sctr(-/-)) mice. We found that both central and peripheral administration of Sct could induce Fos expression in the PVN and Arc, suggesting the activation of hypothalamic feeding centers by this peptide. Consistent with this notion, Sct was found to increase thyrotropin-releasing hormone and melanocortin-4 receptor (Mc4r) transcripts in the PVN, and augment proopiomelanocortin, but reduces agouti-related protein mRNA expression in the Arc. Injection of Sct was able to suppress food intake in wt mice, but not in Sctr(-/-) mice, and that this effect was abolished upon pretreatment with SHU9119, an antagonist for Mc4r. In summary, our data suggest for the first time that Sct is an anorectic peptide, and that this function is mediated by the melanocortin system.
Collapse
Affiliation(s)
- Carrie Yuen Yee Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Yan Shuen Chu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Billy Kwok Chong Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,School of Biological Sciences, The University of Hong Kong, 4N01, Kadoorie Biological Sciences Building, Pokfulam, Hong Kong SAR, China, Tel: +852 22990850, Fax: 852 25599114, E-mail:
| |
Collapse
|
48
|
Valentino MA, Colon-Gonzalez F, Lin JE, Waldman SA. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity. Expert Rev Endocrinol Metab 2010; 5:765-783. [PMID: 21297878 PMCID: PMC3032596 DOI: 10.1586/eem.10.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development programs aimed at either amplifying endogenous anorexigenic/lipolytic signaling or blocking endogenous orexigenic/lipogenic signaling. Here, we discuss the efficacy and safety of targeting these pathways for the pharmacologic treatment of obesity.
Collapse
Affiliation(s)
- Michael A Valentino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Francheska Colon-Gonzalez
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| |
Collapse
|
49
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
50
|
Freitas BC, Gereben B, Castillo M, Kalló I, Zeöld A, Egri P, Liposits Z, Zavacki AM, Maciel RM, Jo S, Singru P, Sanchez E, Lechan RM, Bianco AC. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 2010; 120:2206-17. [PMID: 20458138 PMCID: PMC2877954 DOI: 10.1172/jci41977] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/17/2010] [Indexed: 12/26/2022] Open
Abstract
Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.
Collapse
Affiliation(s)
- Beatriz C.G. Freitas
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Balázs Gereben
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Melany Castillo
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Imre Kalló
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Anikó Zeöld
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Péter Egri
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Zsolt Liposits
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ann Marie Zavacki
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rui M.B. Maciel
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Sungro Jo
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Praful Singru
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Edith Sanchez
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ronald M. Lechan
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Antonio C. Bianco
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA.
Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
Tupper Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|