1
|
Yau B, Madsen S, Nelson ME, Cooke KC, Fritzen AM, Thorius IH, Stöckli J, James DE, Kebede MA. Genetics and diet shape the relationship between islet function and whole body metabolism. Am J Physiol Endocrinol Metab 2024; 326:E663-E672. [PMID: 38568150 PMCID: PMC11376487 DOI: 10.1152/ajpendo.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Andreas M Fritzen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Ida H Thorius
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Max-Harry IM, Hashmi WJ, List BP, Kantake N, Corbin KL, Toribio RE, Nunemaker CS, Rosol TJ. The nuclear localization sequence and C-terminus of parathyroid hormone-related protein regulate normal pancreatic islet development and function. Gen Comp Endocrinol 2023; 340:114309. [PMID: 37236490 PMCID: PMC10323322 DOI: 10.1016/j.ygcen.2023.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is a pleiotropic hormone essential for morphogenesis, tissue differentiation, as well as cell regulation and function. PTHrP is expressed by pancreatic beta cells which are responsible for insulin secretion. Previous studies have reported that N-terminal PTHrP stimulated proliferation in beta cells in rodents. We have developed a knockin mouse model (PTHrP Δ/Δ) lacking the C-terminal and nuclear localization sequence (NLS) of PTHrP. These mice die at ∼day 5, are severely stunted in growth, weigh 54% less than control mice at day 1-2 and eventually fail to grow. PTHrP Δ/Δ mice are also hypoinsulinemic and hypoglycemic yet have nutrient intake proportional to size. To characterize the pancreatic islets in these mice, islets (∼10-20) were isolated from 2 to 5 day-old-mice using collagenase digestion. Islets from PTHrP Δ/Δ mice were smaller in size but secreted more insulin than littermate controls. PTHrP Δ/Δ and control mice islets were exposed to various glucose concentrations and intracellular calcium, the trigger for insulin release, was elevated for glucose concentrations of 8-20 mM. Immunofluorescence staining showed less glucagon-stained area in islets from PTHrP Δ/Δ mice (∼250 µm2) compared to islets from control mice (∼900 µm2), and ELISA confirmed there was reduced glucagon content. These data collectively demonstrate increased insulin secretion and reduced glucagon at the islet level, which may contribute to the observed hypoglycemia and early death in PTHrP Δ/Δ mice. Thus, the C-terminus and NLS of PTHrP are crucial to life, including regulation of glucose homeostasis and islet function.
Collapse
Affiliation(s)
- Ibiagbani M Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA; Department of Biological Sciences, Ohio University, USA
| | - Waleed J Hashmi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA
| | - Brian P List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA.
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
3
|
Aslanoglou D, Bertera S, Friggeri L, Sánchez-Soto M, Lee J, Xue X, Logan RW, Lane JR, Yechoor VK, McCormick PJ, Meiler J, Free RB, Sibley DR, Bottino R, Freyberg Z. Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine. iScience 2022; 25:104771. [PMID: 35982797 PMCID: PMC9379584 DOI: 10.1016/j.isci.2022.104771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In β-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no β-arrestin2 recruitment. In contrast, D2R recruits G proteins and β-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on β-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and β-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Laura Friggeri
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, UK
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
- Imagine Pharma, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| |
Collapse
|
4
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
5
|
Oroojan AA. Eugenol Improves Insulin Secretion and Content of Pancreatic Islets from Male Mouse. Int J Endocrinol 2020; 2020:7416529. [PMID: 32831835 PMCID: PMC7426782 DOI: 10.1155/2020/7416529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Glucose homeostasis is required for control of insulin secretion. Phenolic compounds improved glucose-stimulated insulin secretion (GSIS). Eugenol is a phenolic compound that may increase GSIS. So, it was decided to investigate the effect of eugenol on the insulin secretion and content of pancreatic islets from the male mice. In this experimental study, 3-month-old NMRI mice (20-25 g) were prepared. The pancreatic islets of Langerhans were isolated using the collagenase digestion method and divided into 12 groups: glucose 2.8, 5.6, and 16.7 mM, glucose 2.8 mM + eugenol 50, 100, and 200 µM, glucose 5.6 mM + eugenol 50, 100, and 200 µM, and glucose 16.7 mM + eugenol 50, 100, and 200 µM. The islet's insulin secretion and content were measured after 1 hour and 24 hours incubation at 37°C, respectively, by the ELISA assays method and related commercial kit. Present results showed that all doses of eugenol increased islet's insulin secretion and content in the medium containing glucose concentrations 2.8, 5.6, and 16.7 mM (P < 0.05). In conclusion, eugenol as a phenolic compound increased insulin secretion and content of pancreatic islets. The moderate dose of this compound enhanced insulin secretion during hypo- and hyperglycemic conditions, as well as a high dose of eugenol, increased insulin content. Finally, present research suggested that the administration of eugenol 100 µM was suitable for the early stage of T2DM as well as eugenol 200 µM for the advanced stage of this disease.
Collapse
Affiliation(s)
- Ali Akbar Oroojan
- Department of Physiology, Faculty of Medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
6
|
Shyr ZA, Wang Z, York NW, Nichols CG, Remedi MS. The role of membrane excitability in pancreatic β-cell glucotoxicity. Sci Rep 2019; 9:6952. [PMID: 31061431 PMCID: PMC6502887 DOI: 10.1038/s41598-019-43452-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent hyperglycemia is causally associated with pancreatic β-cell dysfunction and loss of pancreatic insulin. Glucose normally enhances β-cell excitability through inhibition of KATP channels, opening of voltage-dependent calcium channels, increased [Ca2+]i, which triggers insulin secretion. Glucose-dependent excitability is lost in islets from KATP-knockout (KATP-KO) mice, in which β-cells are permanently hyperexcited, [Ca2+]i, is chronically elevated and insulin is constantly secreted. Mouse models of human neonatal diabetes in which KATP gain-of-function mutations are expressed in β-cells (KATP-GOF) also lose the link between glucose metabolism and excitation-induced insulin secretion, but in this case KATP-GOF β-cells are chronically underexcited, with permanently low [Ca2+]i and lack of glucose-dependent insulin secretion. We used KATP-GOF and KATP-KO islets to examine the role of altered-excitability in glucotoxicity. Wild-type islets showed rapid loss of insulin content when chronically incubated in high-glucose, an effect that was reversed by subsequently switching to low glucose media. In contrast, hyperexcitable KATP-KO islets lost insulin content in both low- and high-glucose, while underexcitable KATP-GOF islets maintained insulin content in both conditions. Loss of insulin content in chronic excitability was replicated by pharmacological inhibition of KATP by glibenclamide, The effects of hyperexcitable and underexcitable islets on glucotoxicity observed in in vivo animal models are directly opposite to the effects observed in vitro: we clearly demonstrate here that in vitro, hyperexcitability is detrimental to islets whereas underexcitability is protective.
Collapse
Affiliation(s)
- Zeenat A Shyr
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Zhiyu Wang
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.,Endocrine Consultants Northwest, Franciscan Medical Group, 1628 South Mildred St. Suite 104, Tacoma, WA, 98465, USA
| | - Nathaniel W York
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA. .,Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
7
|
Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang K. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Jahan I, Corbin KL, Bogart AM, Whitticar NB, Waters CD, Schildmeyer C, Vann NW, West HL, Law NC, Wiseman JS, Nunemaker CS. Reducing Glucokinase Activity Restores Endogenous Pulsatility and Enhances Insulin Secretion in Islets From db/db Mice. Endocrinology 2018; 159:3747-3760. [PMID: 30239634 PMCID: PMC6202857 DOI: 10.1210/en.2018-00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
An early sign of islet failure in type 2 diabetes (T2D) is the loss of normal patterns of pulsatile insulin release. Disruptions in pulsatility are associated with a left shift in glucose sensing that can cause excessive insulin release in low glucose (relative hyperinsulinemia, a hallmark of early T2D) and β-cell exhaustion, leading to inadequate insulin release during hyperglycemia. Our hypothesis was that reducing excessive glucokinase activity in diabetic islets would improve their function. Isolated mouse islets were exposed to glucose and varying concentrations of the glucokinase inhibitor d-mannoheptulose (MH) to examine changes in intracellular calcium ([Ca2+]i) and insulin secretion. Acutely exposing islets from control CD-1 mice to MH in high glucose (20 mM) dose dependently reduced the size of [Ca2+]i oscillations detected by fura-2 acetoxymethyl. Glucokinase activation in low glucose (3 mM) had the opposite effect. We then treated islets from male and female db/db mice (age, 4 to 8 weeks) and heterozygous controls overnight with 0 to 10 mM MH to determine that 1 mM MH produced optimal oscillations. We then used 1 mM MH overnight to measure [Ca2+]i and insulin simultaneously in db/db islets. MH restored oscillations and increased insulin secretion. Insulin secretion rates correlated with MH-induced increases in amplitude of [Ca2+]i oscillations (R2 = 0.57, P < 0.01, n = 10) but not with mean [Ca2+]i levels in islets (R2 = 0.05, not significant). Our findings show that correcting glucose sensing can restore proper pulsatility to diabetic islets and improved pulsatility correlates with enhanced insulin secretion.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Avery M Bogart
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Christopher D Waters
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Cara Schildmeyer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nathan C Law
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | | | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
9
|
Guess ND. Dietary Interventions for the Prevention of Type 2 Diabetes in High-Risk Groups: Current State of Evidence and Future Research Needs. Nutrients 2018; 10:E1245. [PMID: 30200572 PMCID: PMC6163866 DOI: 10.3390/nu10091245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
A series of large-scale randomised controlled trials have demonstrated the effectiveness of lifestyle change in preventing type 2 diabetes in people with impaired glucose tolerance. Participants in these trials consumed a low-fat diet, lost a moderate amount of weight and/or increased their physical activity. Weight loss appears to be the primary driver of type 2 diabetes risk reduction, with individual dietary components playing a minor role. The effect of weight loss via other dietary approaches, such as low-carbohydrate diets, a Mediterranean dietary pattern, intermittent fasting or very-low-energy diets, on the incidence of type 2 diabetes has not been tested. These diets-as described here-could be equally, if not more effective in preventing type 2 diabetes than the tested low-fat diet, and if so, would increase choice for patients. There is also a need to understand the effect of foods and diets on beta-cell function, as the available evidence suggests moderate weight loss, as achieved in the diabetes prevention trials, improves insulin sensitivity but not beta-cell function. Finally, prediabetes is an umbrella term for different prediabetic states, each with distinct underlying pathophysiology. The limited data available question whether moderate weight loss is effective at preventing type 2 diabetes in each of the prediabetes subtypes.
Collapse
Affiliation(s)
- Nicola D Guess
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, Room 4.13, London SE1 9NH, UK.
| |
Collapse
|
10
|
van Raalte DH, Verchere CB. Improving glycaemic control in type 2 diabetes: Stimulate insulin secretion or provide beta-cell rest? Diabetes Obes Metab 2017; 19:1205-1213. [PMID: 28295962 DOI: 10.1111/dom.12935] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes (T2D) is characterized by a gradual decline in pancreatic beta cell function that determines the progressive course of the disease. While beta-cell failure is an important contributor to hyperglycaemia, chronic hyperglycaemia itself is also detrimental for beta-cell function, probably by inducing prolonged secretory stress on the beta cell as well as through direct glucotoxic mechanisms that have not been fully defined. For years, research has been carried out in search of therapies targeting hyperglycaemia that preserve long-term beta-cell function in T2D, a quest that is still ongoing. Current strategies aim to improve glycaemic control, either by promoting endogenous insulin secretion, such as sulfonylureas, or by mechanisms that may impact the beta cell indirectly, for example, providing beta-cell rest through insulin treatment. Although overall long-term success is limited with currently available interventions, in this review we argue that strategies that induce beta-cell rest have considerable potential to preserve long-term beta-cell function. This is based on laboratory-based studies involving human islets as well as clinical studies employing intensive insulin therapy, thiazolidinediones, bariatric surgery, short-acting glucagon-like peptide (GLP)-1 receptor agonists and a promising new class of diabetes drugs, sodium-glucose-linked transporter (SGLT)-2 inhibitors. Nevertheless, a lack of long-term clinical studies that focus on beta-cell function for the newer glucose-lowering agents, as well as commonly used combination therapies, preclude a straightforward conclusion; this gap in our knowledge should be a focus of future studies.
Collapse
Affiliation(s)
- Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Department of Surgery, The University of British Columbia and Research Institute, BC Children's Hospital, Vancouver, Canada
| | - C Bruce Verchere
- Department of Surgery, The University of British Columbia and Research Institute, BC Children's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia and Research Institute, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
11
|
Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab 2017; 6:958-973. [PMID: 28951821 PMCID: PMC5605729 DOI: 10.1016/j.molmet.2017.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the β-cell as a means of preserving functional β-cell mass. SCOPE OF REVIEW We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. MAJOR CONCLUSIONS Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Collapse
Key Words
- ATF6, Activating Transcription Factor 6
- CHOP, CCAAT/Enhancer-Binding Homologous Protein
- EPAC, Exchange Factor Directly Activated by cAMP
- EROβ1, ER-resident oxidoreductase β1
- GIP, Gastric Inhibitory Polypeptide
- GLP-1, Glucagon-like Peptide 1
- GLUT2, Glucose Transporter 2
- GSIS, Glucose Stimulated Insulin Secretion
- IREα, Inositol Requiring Enzyme α
- Insulin production
- NEFA, Non-esterified Fatty Acid
- PERK, Protein Kinase RNA-like Endoplasmic Reticulum Kinase
- PKA, Protein Kinase A
- PKC, Protein Kinase C
- PLC, Phospholipase C
- ROS, Reactive Oxygen Species
- SNAP-25, Soluble NSF Attachment Protein 25
- SNARE, Soluble NSF Attachment Protein Receptor
- STZ, Streptozotocin
- T2DM
- T2DM, Type 2 Diabetes Mellitus
- TRP, Transient Receptor Potential
- VAMP-2, Vehicle Associated Membrane Protein 2
- VDCC, Voltage Dependent Calcium Channel
- mTORC1, Mammalian Target of Rapamycin 1
- nH, Hill coefficient
- β-cell rest
Collapse
Affiliation(s)
- Brandon B. Boland
- MedImmune, Cardiovascular and Metabolic Disease Research, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | |
Collapse
|
12
|
Corbin KL, Waters CD, Shaffer BK, Verrilli GM, Nunemaker CS. Islet Hypersensitivity to Glucose Is Associated With Disrupted Oscillations and Increased Impact of Proinflammatory Cytokines in Islets From Diabetes-Prone Male Mice. Endocrinology 2016; 157:1826-38. [PMID: 26943366 PMCID: PMC4870867 DOI: 10.1210/en.2015-1879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile insulin release is the primary means of blood glucose regulation. The loss of pulsatility is thought to be an early marker and possible factor in developing type 2 diabetes. Another early adaptation in islet function to compensate for obesity is increased glucose sensitivity (left shift) associated with increased basal insulin release. We provide evidence that oscillatory disruptions may be linked with overcompensation (glucose hypersensitivity) in islets from diabetes-prone mice. We isolated islets from male 4- to 5-week-old (prediabetic) and 10- to 12-week-old (diabetic) leptin-receptor-deficient (db/db) mice and age-matched heterozygous controls. After an overnight incubation in media with 11 mM glucose, we measured islet intracellular calcium in 5, 8, 11, or 15 mM glucose. Islets from heterozygous 10- to 12-week-old mice were quiescent in 5 mM glucose and displayed oscillations with increasing amplitude and/or duration in 8, 11, and 15 mM glucose, respectively. Islets from diabetic 10- to 12-week-old mice, in contrast, showed robust oscillations in 5 mM glucose that declined with increasing glucose. Similar trends were observed at 4-5-weeks of age. A progressive left shift in maximal insulin release was also observed in islets as db/db mice aged. Reducing glucokinase activity with 1 mM D-mannoheptulose restored oscillations in 11 mM glucose. Finally, overnight low-dose cytokine exposure negatively impacted oscillations preferentially in high glucose in diabetic islets compared with heterozygous controls. Our findings suggest the following: 1) islets from frankly diabetic mice can produce oscillations, 2) elevated sensitivity to glucose prevents diabetic mouse islets from producing oscillations in normal postprandial (11-15 mM glucose) conditions, and 3) hypersensitivity to glucose may magnify stress effects from inflammation or other sources.
Collapse
Affiliation(s)
- Kathryn L Corbin
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Christopher D Waters
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Brett K Shaffer
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Gretchen M Verrilli
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| | - Craig S Nunemaker
- Department of Biomedical Sciences (K.L.C., C.S.N.), Heritage College of Osteopathic Medicine, and Diabetes Institute (K.L.C., C.S.N.), Ohio University, Athens, Ohio 45701; and Departments of Medicine (C.D.W., B.K.S., G.M.V.) and Biomedical Engineering (C.D.W.), University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
13
|
Alarcon C, Boland BB, Uchizono Y, Moore PC, Peterson B, Rajan S, Rhodes OS, Noske AB, Haataja L, Arvan P, Marsh BJ, Austin J, Rhodes CJ. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function. Diabetes 2016; 65:438-50. [PMID: 26307586 PMCID: PMC4747460 DOI: 10.2337/db15-0792] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes.
Collapse
Affiliation(s)
- Cristina Alarcon
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Brandon B Boland
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Yuji Uchizono
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Patrick C Moore
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Bryan Peterson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Suryalekha Rajan
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Olivia S Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Andrew B Noske
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland, Australia
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Bradly J Marsh
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland, Australia
| | - Jotham Austin
- Advanced Electron Microscope Core Facility, The University of Chicago, Chicago, IL
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| |
Collapse
|
14
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Wang Y, Wang S, Harvat T, Kinzer K, Zhang L, Feng F, Qi M, Oberholzer J. Diazoxide, a K(ATP) channel opener, prevents ischemia-reperfusion injury in rodent pancreatic islets. Cell Transplant 2013; 24:25-36. [PMID: 24070013 DOI: 10.3727/096368913x673441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diazoxide (DZ) is a pharmacological opener of ATP-sensitive K(+) channels that has been used for mimicking ischemic preconditioning and shows protection against ischemic damage. Here we investigated whether diazoxide supplementation to University of Wisconsin (UW) solution has cellular protection during islet isolation and improves in vivo islet transplant outcomes in a rodent ischemia model. C57/B6 mice pancreata were flushed with UW or UW + DZ solution and cold preserved for 6 or 10 h prior to islet isolation. Islet yield, in vitro and in vivo function, mitochondrial morphology, and apoptosis were evaluated. Significantly higher islet yields were observed in the UW + DZ group than in the UW group (237.5 ± 25.6 vs. 108.7 ± 49.3, p < 0.01). The islets from the UW + DZ group displayed a significantly higher glucose-induced insulin secretion (0.97 ng/ml ± 0.15 vs. 0.758 ng/ml ± 0.21, p = 0.009) and insulin content (60.96 ng/islet ± 13.94 vs. 42.09 ng/islet ± 8.15, p = 0.002). The DZ-treated islets had well-preserved mitochondrial morphology with superior responses of mitochondrial potentials, and calcium influx responded to glucose. A higher number of living cells and less late apoptotic cells were observed in the UW + DZ group (p < 0.05). Additionally, the islets from the UW + DZ group had a significantly higher cure rate and improved glucose tolerance. This study is the first to report mitoprotective effects of DZ for pancreas preservation and islet isolation. In the future, it will be necessary to further understand the underlying mechanism for the mitoprotection and to test this promising approach for pancreas preservation and the islet isolation process in nonhuman primates and ultimately humans.
Collapse
Affiliation(s)
- Yong Wang
- University of Illinois at Chicago Department of Transplant/Surgery, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1-27. [PMID: 22885162 DOI: 10.1016/j.mce.2012.08.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | | | | |
Collapse
|
17
|
Dufrane D, Gianello P. Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transplant Rev (Orlando) 2012; 26:183-8. [DOI: 10.1016/j.trre.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/28/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
|
18
|
Lynch CJ, Zhou Q, Shyng SL, Heal DJ, Cheetham SC, Dickinson K, Gregory P, Firnges M, Nordheim U, Goshorn S, Reiche D, Turski L, Antel J. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 K(ATP) channels. Am J Physiol Endocrinol Metab 2012; 302:E540-51. [PMID: 22167524 PMCID: PMC3311290 DOI: 10.1152/ajpendo.00250.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg⁻¹·day⁻¹) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated ³H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Allosteric Regulation
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/chemistry
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cell Line, Transformed
- Chlorocebus aethiops
- Cricetinae
- Glucose Intolerance/chemically induced
- Glucose Intolerance/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Ligands
- Male
- Membrane Transport Modulators/adverse effects
- Membrane Transport Modulators/chemistry
- Membrane Transport Modulators/pharmacology
- Membrane Transport Modulators/therapeutic use
- Mice
- Mice, Knockout
- Mice, Obese
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Stereoisomerism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Christopher J Lynch
- Dept. of Cellular & Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsuo K, Arai H, Muto K, Fukaya M, Sato T, Mizuno A, Sakuma M, Yamanaka-Okumura H, Sasaki H, Yamamoto H, Taketani Y, Doi T, Takeda E. The Anti-Obesity Effect of the Palatinose-Based Formula Inslow is Likely due to an Increase in the Hepatic PPAR-alpha and Adipocyte PPAR-gamma Gene Expressions. J Clin Biochem Nutr 2011; 40:234-41. [PMID: 18398502 PMCID: PMC2275770 DOI: 10.3164/jcbn.40.234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 09/03/2006] [Indexed: 11/22/2022] Open
Abstract
Abdominal obesity is a principal risk factor in the development of metabolic syndrome. Previously, we showed that a palatinose-based liquid formula, Inslow/MHN-01, suppressed postprandial plasma glucose level and reduced visceral fat accumulation better than the standard formula (SF). To elucidate the mechanism of Inslow-mediated anti-obesity effect, expression levels of genes involved in the glucose and lipid metabolism were compared in Inslow- and SF-fed rats. Both fasting plasma insulin level and average islet sizes were reduced in the Inslow group. We also found less abdominal fat accumulation and reduced hepatic triacylglycerol content in the Inslow group. Expression of the β-oxidation enzymes and uncoupling potein-2 (UCP-2) mRNAs in the liver of the Inslow group were higher than the SF group, which was due to a concomitant higher expression of the peroxisome proliferator-activated receptor (PPAR)-α mRNA in the former. Furthermore, expression of the UCP-2 and adiponectin mRNAs in the epididymal fat were higher in the Inslow group than the SF group, and were stimulated by a concomitant increase of the PPAR-γ gene expression in the former. These results strongly suggested that the anti-obesity effect of Inslow was due to an increase in the hepatic PPAR-α and adipocyte PPAR-γ gene expressions.
Collapse
Affiliation(s)
- Kaoru Matsuo
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pharmacological modulation of dopamine receptor D2-mediated transmission alters the metabolic phenotype of diet induced obese and diet resistant C57Bl6 mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:928523. [PMID: 21603181 PMCID: PMC3096057 DOI: 10.1155/2011/928523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022]
Abstract
High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals.
C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks.
Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice.
These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype.
Collapse
|
21
|
Abstract
OBJECTIVES : The mechanisms by which correcting hyperglycemia with exogenous insulin improves mortality and morbidity in critically ill patients remain unclear. We designed this study to test the hypothesis that relative endogenous insulin deficiency is associated with adverse outcomes in critical illness related to hyperglycemia. DESIGN : Prospective controlled animal study. SETTING : University research laboratory. SUBJECTS : Male C57BL/6J mice, 8-12 wks old. INTERVENTIONS : Spontaneously breathing mice were instrumented with chronic indwelling arterial and venous catheters. After a postoperative recovery period, endotoxemia was initiated with intra-arterial lipopolysaccharide (1 mg/kg) in the presence of dextrose infusion (100 microL/hr). Insulin secretion was blocked with diazoxide (2.5-30 mg/kg/day). Mice were monitored continuously for 48 hrs with blood sampled serially for blood glucose and plasma insulin determinations. MEASUREMENTS AND MAIN RESULTS : In both saline- and glucose-infused mice, lipopolysaccharide administration induced transient hemodynamic instability without significant impact on mortality. In the saline-infused group, lipopolysaccharide administration caused a transient reduction in blood glucose and in circulating insulin. However, in glucose-infused mice, lipopolysaccharide induced a large and unexpected increase in circulating insulin without significant alteration in blood glucose. Blockade of insulin secretion in response to lipopolysaccharide in the presence of exogenous glucose precipitated marked hyperglycemia and resulted in >90% mortality. In a subanalysis of animals matched for the degree of hyperglycemia, nonsurvivors had markedly lower insulin levels compared with survivors (3.5 +/- 0.8 ng/dL vs. 9.3 +/- 1.4 ng/dL; p < .004). CONCLUSIONS : Endogenous insulin deficiency in the face of hyperglycemia is associated with mortality in a mouse model of lipopolysaccharide-induced critical illness.
Collapse
|
22
|
Leahy JL. Thiazolidinediones in prediabetes and early type 2 diabetes: what can be learned about that disease's pathogenesis. Curr Diab Rep 2009; 9:215-20. [PMID: 19490823 DOI: 10.1007/s11892-009-0035-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several clinical trials have shown a high success rate of thiazolidinediones (TZDs) in prediabetes and early type 2 diabetes. The presumed mechanism of this effect has shifted from the best known effect of these agents to improve insulin sensitivity, to preservation of beta-cell function. The common explanation for this effect is unloading of the islet beta cell from the insulin resistance-induced hyperstimulation that eventually leads to beta-cell failure, so-called beta-cell rest. However, a recent finding is powerful biological effects of peroxisome proliferator-activated receptor (PPAR)gamma signaling in islet beta cells. This article reviews this topic by first describing the TZD intervention studies. Then it provides an overview of the current concepts regarding the beta-cell overwork and rest hypotheses, and the recent information about PPARgamma signaling effects in beta cells.
Collapse
Affiliation(s)
- Jack L Leahy
- Colchester Research Facility, Colchester, VT 05446, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Jack L Leahy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
24
|
Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys J 2008; 95:4676-88. [PMID: 18708464 DOI: 10.1529/biophysj.107.125088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Individual mouse pancreatic islets exhibit oscillations in [Ca(2+)](i) and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, [Ca(2+)](i) changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent. The degree of synchronicity was quantified using a novel analytical approach that yields a parameter that we call the "Synchronization Index". Individual islets exhibited [Ca(2+)](i) oscillations with periods of 3-6 min, but were not synchronized under control conditions. However, raising islet [Ca(2+)](i) with a brief application of the cholinergic agonist carbachol (25 microM) or elevated KCl in glucose-containing saline rapidly synchronized islet [Ca(2+)](i) oscillations for >/=30 min, long after the synchronizing agent was removed. In contrast, the adrenergic agonists clonidine or norepinephrine, and the K(ATP) channel inhibitor tolbutamide, failed to synchronize islets. Partial synchronization was observed, however, with the K(ATP) channel opener diazoxide. The synchronizing action of carbachol depended on the glucose concentration used, suggesting that glucose metabolism was necessary for synchronization to occur. To understand how transiently perturbing islet [Ca(2+)](i) produced sustained synchronization, we used a mathematical model of islet oscillations in which complex oscillatory behavior results from the interaction between a fast electrical subsystem and a slower metabolic oscillator. Transient synchronization simulated by the model was mediated by resetting of the islet oscillators to a similar initial phase followed by transient "ringing" behavior, during which the model islets oscillated with a similar frequency. These results suggest that neurohormone release from intrapancreatic neurons could help synchronize islets in situ. Defects in this coordinating mechanism could contribute to the disrupted insulin secretion observed in Type 2 diabetes.
Collapse
|
25
|
Zhong L, Georgia S, Tschen SI, Nakayama K, Nakayama K, Bhushan A. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J Clin Invest 2007; 117:2869-76. [PMID: 17823659 PMCID: PMC1964513 DOI: 10.1172/jci32198] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/12/2007] [Indexed: 01/09/2023] Open
Abstract
Diabetes results from an inadequate mass of functional beta cells, due to either beta cell loss caused by immune assault or the lack of compensation to overcome insulin resistance. Elucidating the mechanisms that regulate beta cell mass has important ramifications for fostering beta cell regeneration and the treatment of diabetes. We report here that Skp2, a substrate recognition component of Skp1-Cul1-F-box (SCF) ubiquitin ligase, played an essential and specific role in regulating the cellular abundance of p27 and was a critical determinant of beta cell proliferation. In Skp2(-/-) mice, accumulation of p27 resulted in enlarged polyploid beta cells as a result of endoreduplication replacing proliferation. Despite beta cell hypertrophy, Skp2(-/-) mice exhibited diminished beta cell mass, hypoinsulinemia, and glucose intolerance. Increased insulin resistance resulting from diet-induced obesity caused Skp2(-/-) mice to become overtly diabetic, because beta cell growth in the absence of cell division was insufficient to compensate for increased metabolic demand. These results indicate that the Skp2-mediated degradation pathway regulating the cellular degradation of p27 is essential for establishing beta cell mass and to respond to increased metabolic demand associated with insulin resistance.
Collapse
Affiliation(s)
- Lingwen Zhong
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Senta Georgia
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Shuen-ing Tschen
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Keiko Nakayama
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Keiichi Nakayama
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Anil Bhushan
- Larry Hillblom Islet Research Center and
Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| |
Collapse
|
26
|
Ng B, Kang Y, Elias CL, He Y, Xie H, Hansen JB, Wahl P, Gaisano HY. The actions of a novel potent islet beta-cell specific ATP-sensitive K+ channel opener can be modulated by syntaxin-1A acting on sulfonylurea receptor 1. Diabetes 2007; 56:2124-34. [PMID: 17496234 DOI: 10.2337/db07-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet beta-cell-specific ATP-sensitive K(+) (K(ATP)) channel openers thiadiazine dioxides induce islet rest to improve insulin secretion, but their molecular basis of action remains unclear. We reported that syntaxin-1A binds nucleotide binding folds of sulfonylurea receptor 1 (SUR1) in beta-cells to inhibit K(ATP) channels. As a strategy to elucidate the molecular mechanism of action of these K(ATP) channel openers, we explored the possibility that 6-chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC55-0462) might influence syntaxin-1A-SUR1 interactions or vice versa. Whole-cell and inside-out patch-clamp electrophysiology was used to examine the effects of glutathione S-transferase (GST)-syntaxin-1A dialysis or green fluorescence protein/syntaxin-1A cotransfection on NNC55-0462 actions. In vitro pull-down binding studies were used to examine NNC55-0462 influence on syntaxin-1A-SUR1 interactions. Dialysis of GST-syntaxin-1A into the cell cytoplasm reduced both potency and efficacy of extracellularly perfused NNC55-0462 in a HEK cell line stably expressing Kir6.2/SUR1 (BA8 cells) and in rat islet beta-cells. Moreover, inside-out membrane patches excised from BA8 cells showed that both GST-syntaxin-1A and its H3 domain inhibited K(ATP) channels previously activated by NNC55-0462. This action on K(ATP) channels is isoform-specific to syntaxin-1A because syntaxin-2 was without effect. Furthermore, the parent compound diazoxide showed similar sensitivity to GST-syntaxin-1A inhibition. NNC55-0462, however, did not influence syntaxin-1A-SUR1 binding interaction. Our results demonstrated that syntaxin-1A interactions with SUR1 at its cytoplasmic domains can modulate the actions of the K(ATP) channel openers NNC55-0462 and diazoxide on K(ATP) channels. The reduced levels of islet syntaxin-1A in diabetes would thus be expected to exert a positive influence on the therapeutic effects of this class of K(ATP) channel openers.
Collapse
Affiliation(s)
- Betty Ng
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ma Z, Portwood N, Brodin D, Grill V, Björklund A. Effects of diazoxide on gene expression in rat pancreatic islets are largely linked to elevated glucose and potentially serve to enhance beta-cell sensitivity. Diabetes 2007; 56:1095-106. [PMID: 17229937 DOI: 10.2337/db06-0322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diazoxide enhances glucose-induced insulin secretion from beta-cells through mechanisms that are not fully elucidated. Here, we used microarray analysis (Affymetrix) to investigate effects of diazoxide. Pancreatic islets were cultured overnight at 27, 11, or 5.5 mmol/l glucose with or without diazoxide. Inclusion of diazoxide upregulated altogether 211 genes (signal log(2) ratio > or =0.5) and downregulated 200 genes (signal log(2) ratio -0.5 or lower), and 92% of diazoxide's effects (up- and downregulation) were observed only after coculture with 11 or 27 mmol/l glucose. We found that 11 mmol/l diazoxide upregulated 97 genes and downregulated 21 genes. Increasing the glucose concentration to 27 mmol/l markedly shifted these proportions toward downregulation (101 genes upregulated and 160 genes downregulated). At 27 mmol/l glucose, most genes downregulated by diazoxide were oppositely affected by glucose (80%). Diazoxide influenced expression of several genes central to beta-cell metabolism. Diazoxide downregulated genes of fatty acid oxidation, upregulated genes of fatty acid synthesis, and downregulated uncoupling protein 2 and lactic acid dehydrogenase. Diazoxide upregulated certain genes known to support beta-cell functionality, such as NKX6.1 and PDX1. Long-term elevated glucose is permissive for most of diazoxide's effects on gene expression, the proportion of effects shifting to downregulation with increasing glucose concentration. Effects of diazoxide on gene expression could serve to enhance beta-cell functionality during continuous hyperglycemia.
Collapse
Affiliation(s)
- Zuheng Ma
- Endocrine and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Abstract
The insulin-producing beta cell in the islet of Langerhans is central in glucose homeostasis. Its dysfunction is part of the pathogenesis of both Type 1 and 2 diabetes mellitus. In both forms of the disease, there is a cytotoxic component either induced by cytokines, as in Type 1 diabetes, or by elevated levels of glucose and fatty acids, as in Type 2 diabetes. To find the mechanisms responsible for the cytotoxic effects of these compounds proteomic approaches with 2D gel electrophoresis and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry have been undertaken. In this article, we describe these methods, and other methodological aspects of protein profiling of pancreatic islets, and summarize the results obtained with these methods.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Uppsala University, Department of Medical Cell Biology, Biomedical Center Box 571, SE-751 23 Uppsala, Sweden.
| | | |
Collapse
|
29
|
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S, Wang F. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 2007; 148:81-91. [PMID: 17053028 DOI: 10.1210/en.2006-0738] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased apoptosis of pancreatic beta-cells plays an important role in the occurrence and development of type 2 diabetes. We examined the effect of diazoxide on pancreatic beta-cell apoptosis and its potential mechanism in Otsuka Long Evans Tokushima Fatty (OLETF) rats, an established animal model of human type 2 diabetes, at the prediabetic and diabetic stages. We found a significant increase with age in the frequency of apoptosis, the sequential enlargement of islets, and the proliferation of the connective tissue surrounding islets, accompanied with defective insulin secretory capacity and increased blood glucose in untreated OLETF rats. In contrast, diazoxide treatment (25 mg.kg(-1).d(-1), administered ip) inhibited beta-cell apoptosis, ameliorated changes of islet morphology and insulin secretory function, and increased insulin stores significantly in islet beta-cells whether diazoxide was used at the prediabetic or diabetic stage. Linear regression showed the close correlation between the frequency of apoptosis and hyperglycemia (r = 0.913; P < 0.0001). Further study demonstrated that diazoxide up-regulated Bcl-2 expression and p38beta MAPK, which expressed at very low levels due to the high glucose, but not c-jun N-terminal kinase and ERK. Hence, diazoxide may play a critical role in protection from apoptosis. In this study, we demonstrate that diazoxide prevents the onset and development of diabetes in OLETF rats by inhibiting beta-cell apoptosis via increasing p38beta MAPK, elevating Bcl-2/Bax ratio, and ameliorating insulin secretory capacity and action.
Collapse
Affiliation(s)
- Qin Huang
- Department of Endocrinology, Changhai Hospital, Shanghai 200433, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Pancreatic islets were isolated from 16 nondiabetic organ donors and, after culture for approximately 2 days in 5 mmol/l glucose, were perifused to characterize nutrient-induced insulin secretion in human islets. Stepwise increases from 0 to 30 mmol/l glucose (eight 30-min steps) evoked concentration-dependent insulin secretion with a threshold at 3-4 mmol/l glucose, K(m) at 6.5 mmol/l glucose, and V(max) at 15 mmol/l glucose. An increase from 1 to 15 mmol/l glucose induced biphasic insulin secretion with a prominent first phase (peak increase of approximately 18-fold) and a sustained, flat second phase ( approximately 10-fold increase), which were both potentiated by forskolin. The central role of ATP-sensitive K(+) channels in the response to glucose was established by abrogation of insulin secretion by diazoxide and reversible restoration by tolbutamide. Depolarization with tolbutamide or KCl (plus diazoxide) triggered rapid insulin secretion in 1 mmol/l glucose. Subsequent application of 15 mmol/l glucose further increased insulin secretion, showing that the amplifying pathway is operative. In control medium, glutamine alone was ineffective, but its combination with leucine or nonmetabolized 2-amino-bicyclo [2,2,1]-heptane-2-carboxylic acid (BCH) evoked rapid insulin secretion. The effect of BCH was larger in low glucose than in high glucose. In contrast, the insulin secretion response to arginine or a mixture of four amino acids was potentiated by glucose or tolbutamide. Palmitate slightly augmented insulin secretion only at the supraphysiological palmitate-to-albumin ratio of 5. Inosine and membrane-permeant analogs of pyruvate, glutamate, or succinate increased insulin secretion in 3 and 10 mmol/l glucose, whereas lactate and pyruvate had no effect. In conclusion, nutrient-induced insulin secretion in normal human islets is larger than often reported. Its characteristics are globally similar to those of insulin secretion by rodent islets, with both triggering and amplifying pathways. The pattern of the biphasic response to glucose is superimposable on that in mouse islets, but the concentration-response curve is shifted to the left, and various nutrients, in particular amino acids, influence insulin secretion within the physiological range of glucose concentrations.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unité d'Endocrinologie et Métabolisme, UCL 55.30, Ave. Hippocrate 55, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
31
|
Won JGS, Tseng HS, Yang AH, Tang KT, Jap TS, Lee CH, Lin HD, Burcus N, Pittenger G, Vinik A. Clinical features and morphological characterization of 10 patients with noninsulinoma pancreatogenous hypoglycaemia syndrome (NIPHS). Clin Endocrinol (Oxf) 2006; 65:566-78. [PMID: 17054456 DOI: 10.1111/j.1365-2265.2006.02629.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Noninsulinoma pancreatogenous hypoglycaemia syndrome (NIPHS), characterized by postprandial neuroglycopaenia, negative prolonged fasts and negative perioperative localization studies for insulinoma, but positive selective arterial calcium stimulation tests and nesidioblastosis in the gradient-guided resected pancreas, is a rare hypoglycaemic disorder of undetermined aetiology. We analysed the clinical, morphological and immunohistological features to further clarify the aetiology and pathogenesis of this rare disease. PATIENTS Ten consecutive patients with NIPHS (nine men and one woman, aged 29-78 years) were included in the study. Six of the 10 received a gradient-guided subtotal (70%) or distal (50%) pancreatectomy. In the remaining four patients, diazoxide treatment was initiated and the precise mechanism of its action was assessed by meal tests. RESULTS All of the patients showed a combination of postprandial neuroglycopaenia, negative prolonged fasts (except one patient) and negative localization studies for insulinoma, but positive calcium stimulation tests and nesidioblastosis in the gradient-guided resected pancreas. Immunohistological studies of the resected pancreatic tissues revealed neither an increased rate of proliferation of beta-cells nor an abnormal synthesis and/or processing of either proinsulin or amylin. Evidence of overexpression of the two pancreatic differentiation factors, PDX-1 and Nkx-6.1, as well as the calcium sensing receptor (CaSR) was absent. Nevertheless, abnormal expression of islet neogenesis-associated protein (INGAP), a human cytokine expressed only in the presence of islet neogenesis, in ducts and/or islets, was identified in three of the five patients studied. All of the six patients who received a surgical operation were relieved of further neuroglycopaenic attacks, but one patient who received a subtotal pancreatectomy developed diabetes. In the remaining four patients who received diazoxide treatment, hypoglycaemic episodes were satisfactorily controlled with an attenuated response of beta-cell peptides to meal stimulation. CONCLUSIONS Our results strengthen the existence of this unique clinical hypoglycaemic syndrome from beta-cell hyperfunction as well as the value of the selective arterial calcium stimulation test in its correct diagnosis and localization. The mechanisms underlying beta-cell hyperfunction and release of insulin to calcium, however, remain poorly characterized. Nevertheless, in a subset of patients with NIPHS, there exists some, as yet undefined, pancreatic humoral/paracrine factor(s) other than proinsulin, amylin, PDX-1, Nkx-6.1 and possibly glucagon-like peptide-1 (GLP-1) that are capable of inducing the INGAP gene and, if activated, will initiate ductal proliferation and islet neogenesis. As for the treatment, we recommend that diazoxide be tried first in each patient and, should it fail, a gradient-guided subtotal or distal pancreatectomy be attempted.
Collapse
Affiliation(s)
- Justin G S Won
- Department of Medicine, Veterans General Hospital - Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matveyenko AV, Veldhuis JD, Butler PC. Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatectomy. Diabetes 2006; 55:2347-56. [PMID: 16873700 DOI: 10.2337/db06-0345] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) often coexist and as such represent a potent risk factor for subsequent development of type 2 diabetes. beta-Cell mass is approximately 50% deficient in IFG and approximately 65% deficient in type 2 diabetes. To establish the effect of a approximately 50% deficit in beta-cell mass on carbohydrate metabolism, we performed a approximately 50% partial pancreatectomy versus sham surgery in 14 dogs. Insulin secretion was quantified from insulin concentrations measured in the portal vein at 1-min sampling intervals under basal conditions, after a 30-g oral glucose, and during a hyperglycemic clamp. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp combined with isotope dilution. Partial pancreatectomy resulted in IFG and IGT. After partial pancreatectomy both basal and glucose-stimulated insulin secretion were decreased through the mechanism of a selective approximately 50 and approximately 80% deficit in insulin pulse mass, respectively (P < 0.05). These defects in insulin secretion were partially offset by decreased hepatic insulin clearance (P < 0.05). Partial pancreatectomy also caused a approximately 40% decrease in insulin-stimulated glucose disposal (P < 0.05), insulin sensitivity after partial pancreatectomy being related to insulin pulse amplitude (r = 0.9, P < 0.01). We conclude that a approximately 50% deficit in beta-cell mass can recapitulate the alterations in glucose-mediated insulin secretion and insulin action in humans with IFG and IGT. These data support a mechanistic role of a deficit in beta-cell mass in the evolution of IFG/IGT and subsequently type 2 diabetes.
Collapse
Affiliation(s)
- Aleksey V Matveyenko
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900A Weyburn Place, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Matalliotakis I, Kourtis A, Koukoura O, Panidis D. Polycystic ovary syndrome: etiology and pathogenesis. Arch Gynecol Obstet 2006; 274:187-97. [PMID: 16685527 DOI: 10.1007/s00404-006-0171-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/13/2006] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide a review of the pathogenesis of polycystic ovary syndrome. DESIGN Literature survey. RESULT(S) Three major pathophysiologic hypotheses have been proposed to explain the clinical findings of polycystic ovary syndrome (PCOS) related to three major laboratory findings: the LH hypothesis, the insulin hypothesis and the ovarian hypothesis. Although the presence of many small follicles with a high androgen to estrogen ratio was first thought to represent a high rate of follicular atresia in polycystic ovaries, recent studies have demonstrated that the granulosa cells are viable and able to respond to FSH stimulation with normal increases in estradiol production. Thus, a new hypothesis has arisen that FSH activity is somehow blocked at the ovarian level. CONCLUSION(S) PCOS is a syndrome involving defects in primary cellular control mechanisms that result in the expression of chronic anovulation and hyperandrogenism. In this syndrome, the relation between the various parameters is of particular interest. These relations constitute the cornerstone of the pathogenesis of PCOS. The fact that the pathogenesis of PCOS has not yet been clarified, despite the plethora of relative information, may be the result of a general way of thinking in the interpretation of several scientific data, and especially those that refer to biochemical phenomena. The use of the various models of the theory of chaos, that permits a concrete approach for the interpretation of data, may constitute an optional procedure for the future understanding of the association of different parameters and their disturbances in the pathogenesis of the polycystic ovary syndrome.
Collapse
Affiliation(s)
- I Matalliotakis
- Department of Obstetrics and Gynecology, University of Crete, 7 Giannikou Street, 71201 Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
34
|
Ritzel RA, Veldhuis JD, Butler PC. The mass, but not the frequency, of insulin secretory bursts in isolated human islets is entrained by oscillatory glucose exposure. Am J Physiol Endocrinol Metab 2006; 290:E750-6. [PMID: 16278244 DOI: 10.1152/ajpendo.00381.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin is secreted in discrete insulin secretory bursts. Regulation of insulin release is accomplished almost exclusively by modulation of insulin pulse mass, whereas the insulin pulse interval remains stable at approximately 4 min. It has been reported that in vivo insulin pulses can be entrained to a pulse interval of approximately 10 min by infused glucose oscillations. If oscillations in glucose concentration play an important role in the regulation of pulsatile insulin secretion, abnormal or absent glucose oscillations, which have been described in type 2 diabetes, might contribute to the defective insulin secretion. Using perifused human islets exposed to oscillatory vs. constant glucose, we questioned 1) whether the interval of insulin pulses released by human islets is entrained to infused glucose oscillations and 2) whether the exposure of islets to oscillating vs. constant glucose confers an increased signal for insulin secretion. We report that oscillatory glucose exposure does not entrain insulin pulse frequency, but it amplifies the mass of insulin secretory bursts that coincide with glucose oscillations (P < 0.001). Dose-response analyses showed that the mode of glucose drive does not influence total insulin secretion (P = not significant). The apparent entrainment of pulsatile insulin to infused glucose oscillations in nondiabetic humans in vivo might reflect the amplification of underlying insulin secretory bursts that are detected as entrained pulses at the peripheral sampling site, but without changes in the underlying pacemaker activity.
Collapse
Affiliation(s)
- R A Ritzel
- Larry Hillblom Islet Research Center, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California 90095-7073, USA
| | | | | |
Collapse
|
35
|
Abstract
The pathological sequence for type 2 diabetes is complex and entails many different elements that act in concert to cause that disease. This review proposes a sequence of events and how they interact by a careful analysis of the human and animal model literature. A genetic predisposition must exist, although to date very little is known about specific genetic defects in this disease. Whether the diabetes phenotype will occur depends on many environmental factors that share an ability to stress the glucose homeostasis system, with the current explosion of obesity and sedentary lifestyle being a major cause of the worldwide diabetes epidemic. We also propose that a lowered beta-cell mass either through genetic and/or beta-cell cytotoxic factors predisposes for glucose intolerance. As the blood glucose level rises even a small amount above normal, then acquired defects in the glucose homeostasis system occur--initially to impair the beta cell's glucose responsiveness to meals by impairing the first phase insulin response--and cause the blood glucose level to rise into the range of impaired glucose tolerance (IGT). This rise in blood glucose, now perhaps in concert with the excess fatty acids that are a typical feature of obesity and insulin resistance, cause additional deterioration in beta-cell function along with further insulin resistance, and the blood glucose levels rise to full-blown diabetes. This sequence also provides insight into how to better prevent or treat type 2 diabetes, by studying the molecular basis for the early defects, and developing targeted therapies against them.
Collapse
Affiliation(s)
- Jack L Leahy
- University of Vermont College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
36
|
Park KH, Akaike T. Probing of specific binding of synthetic sulfonylurea with the insulinoma cell line MIN6. J Biochem 2005; 138:21-5. [PMID: 16046444 DOI: 10.1093/jb/mvi103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To overcome the limitation of conventional sulfonylurea (SU) for investigation of biological mechanisms related to KATP channels, a hypoglycemic sulfonylurea (SU) was conjugated with a non-reducing glucose bearing polystyrene (PS) derivative to provide enhanced interaction with an insulinoma cell line (MIN6). The specific interaction between the SU (K+ channel closer)-conjugated copolymer and MIN6 cells was confirmed by confocal laser microscopic images using rhodamine B isothiocyanate (RITC)-labeled SU-conjugated polymer, which revealed the specific interaction between SU-conjugated polymer and MIN6 cells. Moreover, the location of labeled polymer and the site of Ca2+ ion mobilization obtained from the same MIN6 cells were identical. Based on the specificity and insulinotropic activity, the SU-conjugated polymer is expected to be useful tool for the study of biological mechanisms of KATP channels.
Collapse
Affiliation(s)
- Keun-Hong Park
- College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute 605, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Korea
| | | |
Collapse
|
37
|
Ball AJ, Flatt PR, McClenaghan NH. Alterations of insulin secretion following long-term manipulation of ATP-sensitive potassium channels by diazoxide and nateglinide. Biochem Pharmacol 2005; 69:59-63. [PMID: 15588714 DOI: 10.1016/j.bcp.2004.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 09/09/2004] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that prolonged exposure to drugs, which act via blocking KATP channels, can desensitize the insulinotropic effects of drugs and nutrients acting via KATP channels. In this study, effects of prolonged exposure to diazoxide, a KATP channel opener, on beta cell function were examined using clonal BRIN-BD11 cells. The findings were compared to the long-term effects of KATP channel blockers nateglinide and tolbutamide. Following 18 h exposure to 200 microM diazoxide, the amounts of insulin secreted in response to glucose, amino acids and insulinotropic drugs were increased. Secretory responsiveness to a variety of agents acting via KATP channels was retained following prolonged diazoxide exposure. In contrast, 18 h exposure to 100 microM nateglinide significantly attenuated the insulin secretory responses to tolbutamide, nateglinide and BTS 67 582. Glucose- and L-alanine-stimulated insulin release were unaffected by prolonged nateglinide exposure, however responsiveness to L-leucine and L-arginine was diminished. Prolonged exposure to nateglinide had no effect on forskolin- and PMA-stimulated insulin release, and the overall pattern of desensitization was similar to that induced by 100 microM tolbutamide. We conclude that in contrast to chronic long-term KATP channel blockade, long-term diazoxide treatment is not harmful to KATP channel mediated insulin secretion and may have beneficial protective effects on beta cell function.
Collapse
Affiliation(s)
- Andrew J Ball
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK; UCSD Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0816, USA.
| | | | | |
Collapse
|
38
|
Kaiser N, Yuli M, Uçkaya G, Oprescu AI, Berthault MF, Kargar C, Donath MY, Cerasi E, Ktorza A. Dynamic changes in {beta}-cell mass and pancreatic insulin during the evolution of nutrition-dependent diabetes in psammomys obesus: impact of glycemic control. Diabetes 2005; 54:138-45. [PMID: 15616021 DOI: 10.2337/diabetes.54.1.138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies ascribe a major role to pancreatic beta-cell loss in type 2 diabetes. We investigated the dynamics of beta-cell mass during diabetes evolution in Psammomys obesus, a model for nutrition-dependent type 2 diabetes, focusing on the very early and the advanced stages of the disease. P. obesus fed a high-calorie diet for 26 days developed severe hyperglycemia, beta-cell degranulation, and markedly reduced pancreatic insulin content. Reducing calories for 7 days induced normoglycemia in 90% of the animals, restoring beta-cell granulation and insulin content. To dissociate effects of diet from blood glucose reduction, diabetic animals received phlorizin for 2 days, which normalized glycemia and increased the pancreatic insulin reserve to 50% of control, despite a calorie-rich diet. During diabetes progression, beta-cell mass decreased initially but recovered spontaneously to control levels, despite persistent hyperglycemia. Strikingly, however, beta-cell mass did not correlate with degree of hyperglycemia or pancreatic insulin content. We conclude that reduced insulin reserve is the main cause of diabetes progression, whereas irreversible beta-cell mass reduction is a late event in P. obesus. The rapid recovery of the pancreas by phlorizin-induced normoglycemia implies a causal relationship between hyperglycemia and islet dysfunction. Similar mechanisms could be operative during the evolution of type 2 diabetes in humans.
Collapse
Affiliation(s)
- Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alemzadeh R, Tushaus KM. Modulation of adipoinsular axis in prediabetic zucker diabetic fatty rats by diazoxide. Endocrinology 2004; 145:5476-84. [PMID: 15319354 DOI: 10.1210/en.2003-1523] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dysregulation of the adipoinsular axis in male obese Zucker diabetic fatty (ZDF; fa/fa) rats, a model of type 2 diabetes, results in chronic hyperinsulinemia and increased de novo lipogenesis in islets, leading to beta-cell failure and diabetes. Diazoxide (DZ; 150 mg/kg.d), an inhibitor of insulin secretion, was administered to prediabetic ZDF animals for 8 wk as a strategy for prevention of diabetes. DZ reduced food intake (P < 0.02) and rate of weight gain only in ZDF rats (P < 0.01). Plasma insulin response to glucose load was attenuated in DZ-Zucker lean rats (ZL; P < 0.01), whereas DZ-ZDF had higher insulin response to glucose than controls (P < 0.001). DZ improved hemoglobin A1c (P < 0.001) and glucose tolerance in ZDF (P < 0.001), but deteriorated hemoglobin A1c in ZL rats (P < 0.02) despite normal tolerance in the fasted state. DZ lowered plasma leptin (P < 0.001), free fatty acid, and triglyceride (P < 0.001) levels, but increased adiponectin levels (P < 0.02) only in ZDF rats. DZ enhanced beta3-adrenoreceptor mRNA (P < 0.005) and adenylate cyclase activity (P < 0.01) in adipose tissue from ZDF rats only, whereas it enhanced islet beta3- adrenergic receptor mRNA (P < 0.005) but paradoxically decreased islet adenylate cyclase activity (P < 0.005) in these animals. Islet fatty acid synthase mRNA (P < 0.03), acyl coenzyme A carboxylase mRNA (P < 0.01), uncoupling protein-2 mRNA (P < 0.01), and triglyceride content (P < 0.005) were only decreased in DZ-ZDF rats, whereas islet insulin mRNA and insulin content were increased in DZ-ZDF (P < 0.01) and DZ-ZL rats (P < 0.03). DZ-induced beta-cell rest improved the lipid profile, enhanced the metabolic efficiency of insulin, and prevented beta-cell dysfunction and diabetes in diabetes-prone animals. This therapeutic strategy may be beneficial in preventing beta-cell failure and progression to diabetes in humans.
Collapse
Affiliation(s)
- Ramin Alemzadeh
- Department of Pediatrics, Section of Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
40
|
Pawlak DB, Kushner JA, Ludwig DS. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 2004; 364:778-85. [PMID: 15337404 DOI: 10.1016/s0140-6736(04)16937-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Clinical studies suggest a role for dietary glycaemic index (GI) in bodyweight regulation and diabetes risk. However, partly because manipulation of GI can produce changes in potentially confounding dietary factors such as fibre content, palatability, and energy density, its relevance to human health remains controversial. This study examined the independent effects of GI in animals. METHODS Partially pancreatectomised male Sprague-Dawley rats were given diets with identical nutrients, except for the type of starch: high-GI (n=11) or low-GI (n=10). The animals were fed in a controlled way to maintain the same mean bodyweight in the two groups for 18 weeks. Further experiments examined the effects of GI in rats in a cross-over design and C57BL/6J mice in a parallel design. FINDINGS Despite having similar mean bodyweight (547.9 [SE 13.4] vs 549.2 [15.2] g), rats given high-GI food had more body fat (97.8 [13.6] vs 57.3 [7.2] g; p=0.0152) and less lean body mass (450.1 [9.6] vs 491.9 [11.7] g; p=0.0120) than those given low-GI food. The high-GI group also had greater increases over time in the areas under the curve for blood glucose and plasma insulin after oral glucose, lower plasma adiponectin concentrations, higher plasma triglyceride concentrations, and severe disruption of islet-cell architecture. Mice on the high-GI diet had almost twice the body fat of those on the low-GI diet after 9 weeks. INTERPRETATION These findings provide a mechanistic basis for interpretation of studies of GI in human beings. RELEVANCE TO PRACTICE The term GI describes how a food, meal, or diet affects blood sugar during the postprandial period. GI as an independent factor can cause obesity and increase risks of diabetes and heart disease in animals. Use of low-GI diets in prevention and treatment of human disease merits thorough examination.
Collapse
Affiliation(s)
- Dorota B Pawlak
- Department of Medicine, Children's Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
41
|
Alemzadeh R, Fledelius C, Bodvarsdottir T, Sturis J. Attenuation of hyperinsulinemia by NN414, a SUR1/Kir6.2 selective K-adenosine triphosphate channel opener, improves glucose tolerance and lipid profile in obese Zucker rats. Metabolism 2004; 53:441-7. [PMID: 15045689 DOI: 10.1016/j.metabol.2003.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic attenuation of hyperinsulinemia by diazoxide (DZ), a K-adenosine triphosphate (ATP) channel opener and an inhibitor of glucose-mediated insulin secretion, improved glucose tolerance and lipid profile and decreased the rate of weight gain in obese Zucker rats. To determine whether suppression of hyperinsulinemia alters daily food consumption, rate of weight gain, glucose tolerance, and lipid profile, we compared the effects of NN414, a potent and SUR1/Kir6.2 selective K(atp)() channel opener, with DZ in obese and lean Zucker rats. DZ (150 mg/kg/d), low-dose (LDNN414: 10 mg/kg/d), high-dose (HDNN414: 30 mg/kg/d), and vehicle (C) were administered to 7-week-old obese and lean female Zucker rats for a period of 6 weeks. Each animal underwent an intraperitoneal glucose tolerance test (IPGTT) at the end of study period. While NN414 treatment did not affect food intake and rate of weight gain in any of the strains, DZ treatment reduced food intake (P <.001) and rate of weight gain (P <.001) in obese rats. The fasting plasma insulin levels and area under the curve (AUC) insulin response to IPGTT were significantly attenuated in LDNN414 (P <.05), HDNN414 (P <.01), and DZ (P <.01) obese and lean rats compared with their controls. This was accompanied by a significant reduction in AUC glucose only in LDNN414 (P <.05), HDNN414 (P <.01), and DZ (P <.01) obese rats compared with controls. While hemoglobin A(1c) (HbA(1c)) was not affected in LDNN414 obese rats, it was higher in HDNN414 obese animals (P <.001), LD-, HDNN414 (P <.001), and DZ (P <.005) lean rats compared with their respective controls. DZ obese rats showed lower HbA(1c) levels than C obese rats (P <.02). The plasma free fatty acid (FFA) levels were only decreased in HDNN414 (P <.05) and DZ (P <.002) obese rats, whereas plasma triglyceride (TG) levels were decreased in LDNN414 (P <.05), HDNN414 (P <.001), and DZ (P <.001) obese rats compared with controls. Finally, plasma leptin level was only decreased in DZ obese rats compared with controls (P <.001). The new SUR1/Kir6.2 selective K(atp)() channel opener, NN414, reduced hyperinsulinemia in a dose-dependent manner without a significant effect on food consumption and rate of weight gain. NN414-induced beta-cell rest in obese rats was associated with a significant improvement in glucose responsiveness, suggesting an increase in insulin sensitivity after its withdrawal. There was an overall deterioration in glycemic control at the high dose as measured by HbA(1c). There was a dose-dependent improvement in lipid profiles of obese Zucker rats. These results suggest that pharmacologic attenuation of hyperinsulinemic state by low-dose NN414 may be therapeutically beneficial in insulin-resistant states without any deterioration in overall glycemic control.
Collapse
Affiliation(s)
- Ramin Alemzadeh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|