1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Rashidian P, Amini-Salehi E, Karami S, Nezhat C, Nezhat F. Exploring the Association Between Dietary Fruit Intake and Endometriosis: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:1246. [PMID: 40004777 PMCID: PMC11856688 DOI: 10.3390/jcm14041246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Endometriosis is a chronic gynecological disorder affecting up to 10% of women of reproductive age. The etiology of endometriosis remains unclear; however, there is growing interest in identifying modifiable risk factors, particularly dietary influences. The present study aims to systematically evaluate the association between fruit consumption and the incidence of endometriosis. Methods: A comprehensive systematic search was conducted across PubMed, Embase, Web of Science, and Google Scholar for studies published from 1 January 1990 to 30 September 2024. Relevant data were extracted and categorized, and the methodological quality of the included studies was assessed using the Joanna Briggs Institute (JBI) checklists. Additionally, meta-analyses were performed using STATA 18.0 to compare daily and weekly fruit consumption among women with and without endometriosis. Results: The analysis included six studies comprising 3689 women with endometriosis and 1463 controls. The meta-analysis revealed no significant association between daily fruit consumption and the risk of endometriosis (odds ratio (OR): 0.95; 95% confidence interval (CI): 0.90-1.01). Similarly, weekly fruit consumption did not demonstrate a significant link to endometriosis risk (OR 1.03, 95% CI: 0.78-1.35). The assessment of publication bias using Begg's and Egger's tests, along with contour-enhanced funnel plots, indicated the absence of publication bias in the data across both analysis groups. Conclusions: This study indicates that fruit consumption does not significantly influence the risk of developing endometriosis. Additional research is necessary to examine preferred dietary interventions for populations affected by this condition.
Collapse
Affiliation(s)
- Pegah Rashidian
- Vali-e-Asr Reproductive Health Research Center, Family Research Institute, Tehran University of Medical Sciences, Tehran 1417466191, Iran;
| | - Ehsan Amini-Salehi
- School of Medicine, Guilan University of Medical Science, Rasht 4144666949, Iran;
| | - Shaghayegh Karami
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran 1417466191, Iran;
| | - Camran Nezhat
- Stanford University Medical Center, Palo Alto, CA 94305, USA;
- University of California San Francisco, San Francisco, CA 94143, USA
- Camran Nezhat Institute, Center for Special Minimally Invasive and Robotic Surgery, Woodside, CA 94061, USA
| | - Farr Nezhat
- Nezhat Surgery for Gynecology/Oncology, New York City, NY 10128, USA
- Weill Cornell Medical College of Cornell University, New York City, NY 10065, USA
- NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Minimally Invasive Gynecologic Surgery and Robotics, NYU Langone Hospital, Long Island, NY 11501, USA
| |
Collapse
|
3
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
4
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Zhou T, Guo T, Wang Y, Wang A, Zhang M. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. CHEMOSPHERE 2023; 314:137723. [PMID: 36592835 DOI: 10.1016/j.chemosphere.2022.137723] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a highly effective benzimidazole fungicide and is widely used throughout the world. The effects of carbendazim contamination on the biology and environment should be paid more attention. We reviewed the published papers to evaluate the biological and environmental risks of carbendazim residues. The carbendazim has been frequently detected in the soil, water, air, and food samples and disrupted the soil and water ecosystem balances and functions. The carbendazim could induce embryonic, reproductive, developmental and hematological toxicities to different model animals. The carbendazim contamination can be remediated by photodegradation and chemical and microbial degradation. The carbendazim could enter into human body through food, drinking water and skin contact. Most of the existing studies were completed in the laboratory, and further studies should be conducted to reveal the effects of successive carbendazim applications in the field.
Collapse
Affiliation(s)
- Tangrong Zhou
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tao Guo
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yan Wang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Andong Wang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Manyun Zhang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
6
|
Arab A, Karimi E, Vingrys K, Kelishadi MR, Mehrabani S, Askari G. Food groups and nutrients consumption and risk of endometriosis: a systematic review and meta-analysis of observational studies. Nutr J 2022; 21:58. [PMID: 36138433 PMCID: PMC9503255 DOI: 10.1186/s12937-022-00812-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Dietary factors may play a role in the etiology of endometriosis and dietary intake of some food groups and nutrients could be associated with endometriosis risk. This systematic review and meta-analysis of observational studies was conducted to summarize the findings on the association between dietary intakes of selected food groups and nutrients (dairy, fats, fruits, vegetables, legumes, and animal-derived protein sources), and the risk of endometriosis among adult women. PubMed, Scopus, and ISI Web of Science were systematically searched up to September 2022. The inverse variance-weighted fixed-effect method was used to estimate the effect size and corresponding 95% CI. A total of 8 publications (4 studies) including 5 cohorts and 3 case-control with a sample size ranging from 156 to 116,607 were included in this study. A higher intake of total dairy [all low-fat and high-fat dairy foods] was associated with decreased risk of endometriosis (RR 0.90; 95% CI, 0.85 to 0.95; P < 0.001; I2 = 37.0%), but these associations were not observed with intakes of low or high-fat dairy, cheese or milk. Increased risk of endometriosis was associated with higher consumption of red meat (RR 1.17; 95% CI, 1.08 to 1.26; P < 0.001; I2 = 82.4%), trans fatty acids (TFA) (RR 1.12; 95% CI, 1.02 to 1.23; P = 0.019; I2 = 73.0%), and saturated fatty acids (SFA) (RR 1.06; 95% CI, 1.04 to 1.09; P < 0.001; I2 = 57.3%). The results of this meta-analysis suggest that there may be differing associations between dietary intake of dairy foods, red meat, SFAs, and TFAs and the risk of endometriosis. It may be useful to extend the analysis to other types of food groups and dietary patterns to obtain a complete picture. Additionally, further investigations are needed to clarify the role of diet in the incidence and progression of endometriosis.Trial registration: PROSPERO, CRD42020203939.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kristina Vingrys
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Zhang M, Bai X, Li Q, Zhang L, Zhu Q, Gao S, Ke Z, Jiang M, Hu J, Qiu J, Hong Q. Functional analysis, diversity, and distribution of carbendazim hydrolases MheI and CbmA, responsible for the initial step in carbendazim degradation. Environ Microbiol 2022; 24:4803-4817. [PMID: 35880585 DOI: 10.1111/1462-2920.16139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
Abstract
Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbor the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 μM-1 min-1 ) was 200 times more than that of CbmA (0.032-0.21 μM-1 min-1 ). The mheI gene (plasmid encoded) was highly conserved (> 99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xuekun Bai
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
8
|
Ebedy YA, Hassanen EI, Hussien AM, Ibrahim MA, Elshazly MO. Neurobehavioral Toxicity Induced by Carbendazim in Rats and the Role of iNOS, Cox-2, and NF-κB Signalling Pathway. Neurochem Res 2022; 47:1956-1971. [PMID: 35312909 DOI: 10.1007/s11064-022-03581-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Carbendazim (CBZ) is one of the most common fungicides used to fight plant fungal diseases, otherwise, it leaves residue on fruits, vegetables, and soil that contaminate the environment, water, animal, and human causing serious health problems. Several studies have reported the reproductive and endocrine pathological disorders induced by CBZ in several animal models, but little is known about its neurotoxicity. So that, the present study aimed to explain the possible mechanisms of CBZ induced neurotoxicity in rats. Sixty male Wistar rats were divided into 4 groups (n = 15). Group (1) received normal saline and was kept as the negative control group, whereas groups (2, 3, 4) received CBZ at 100, 300, 600 mg/kg b.wt respectively. All rats received the aforementioned materials daily via oral gavage. Brain tissue samples were collected at 7, 14, 28 days from the beginning of the experiment. CBZ induced oxidative stress damage manifested by increasing MDA levels and reducing the levels of TAC, GSH, CAT in some brain areas at 14 and 28 days. There were extensive neuropathological alterations in the cerebrum, hippocampus, and cerebellum with strong caspase-3, iNOS, Cox-2 protein expressions mainly in rats receiving 600 mg/kg CBZ at each time point. Moreover, upregulation of mRNA levels of NF-κB, TNF-α, IL-1B genes and downregulation of the transcript levels of both AchE and MAO genes were recorded in all CBZ receiving groups at 14 and 28 days especially those receiving 600 mg/kg CBZ. Our results concluded that CBZ induced dose- and time-dependent neurotoxicity via disturbance of oxidant/antioxidant balance and activation of NF-κB signaling pathway. We recommend reducing the uses of CBZ in agricultural and veterinary fields or finding other novel formulations to reduce its toxicity on non-target organisms and enhance its efficacy on the target organisms.
Collapse
Affiliation(s)
- Yasmin A Ebedy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M O Elshazly
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| |
Collapse
|
9
|
Machado RM, da Silva SW, Bernardes AM, Ferreira JZ. Degradation of carbendazim in aqueous solution by different settings of photochemical and electrochemical oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114805. [PMID: 35240565 DOI: 10.1016/j.jenvman.2022.114805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The present study analyzed the performance of photochemical and electrochemical techniques in the degradation and mineralization of the pesticide carbendazim (CBZ). Direct photolysis (DP), heterogeneous photocatalysis (HP), photoelectrocatalysis (PEC), and electrochemical oxidation (EO) were tested, and the influence of UV radiation, current density (j), and supporting electrolyte concentration were evaluated. The results suggest that CBZ is only degraded by DP when UV-C254nm is used. For HP, the CBZ degradation was observed both when UV-A365nm or UV-C254nm were used, which is related to the reactive oxygen species (ROS) formed by the photocatalytic activity (photon-ROS). Neither DP nor HP were able to mineralize CBZ, demonstrating its resistance to photomediated processes. For EO, regardless of the j, there were higher CBZ degradation and mineralization than those observed when using DP and HP. The increase in the supporting electrolyte concentration (Na2SO4) did not affect the levels of degradation and mineralization of CBZ. Concerning the PEC, a CBZ mineralization of 52.2% was accomplished. These findings demonstrate that the EO is the main pathway for CBZ mineralization, suggesting an additional effect of the electro-ROS on the photon-ROS and UV-C254nm. The values of mineralization, kinetics, and half-life show that PEC UV-C254nm with a j of 15 mA cm-2 was the best setting for the degradation and mineralization of CBZ. However, when the values of specific energy consumption were considered for industrial applications, the use of EO with a j of 3 mA cm-2 and 4 g L-1 of Na2SO2 becomes more attractive. The assessment of by-products formed after this best cost-efficient treatment setting revealed the presence of aromatic and aliphatic compounds from CBZ degradation. Acute phytotoxicity results showed that the presence of sodium sulfate can be a representative factor regarding the toxicity of samples treated in electrochemical systems.
Collapse
Affiliation(s)
- R M Machado
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| | - S W da Silva
- UFRGS - Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| | - A M Bernardes
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| | - J Z Ferreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Ps-graduao em Engenharia de Minas, Metalrgica e de Materiais (PPGE3M), Av. Bento Gonalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Liu H, Wang Y, Fu R, Zhou J, Liu Y, Zhao Q, Yao J, Cui Y, Wang C, Jiao B, He Y. A multicolor enzyme-linked immunoassay method for visual readout of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4256-4265. [PMID: 34591948 DOI: 10.1039/d1ay01028j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) with high specificity and sensitivity is one of the most popular techniques for detecting carbendazim (CBD), a commonly used benzimidazole fungicide in agriculture. However, the traditional ELISA based on the horseradish peroxidase (HRP)-3,3',5,5'-tetramethylbenzidine (TMB) system for CBD only displays the yellow color of TMB2+ from deep to light, making it difficult for the naked eye to judge whether CBD in fruits and vegetables exceeds the maximum residue limit. In this article, we intend to improve the traditional ELISA method to establish a multicolor signal output ELISA to achieve visual semiquantitative detection of CBD. This method is based on the optical properties of gold nanorods (AuNRs). After introducing AuNRs into TMB2+ solution, which was produced by the HRP-TMB system of traditional ELISA, AuNRs were quickly etched by TMB2+. Consequently, the longitudinal localized surface plasmon resonance peak of AuNRs shows a clear blue shift and a vivid color change. Different concentrations of CBD generate different amounts of TMB2+, which in turn leads to different etching degrees of AuNRs, and ultimately results in a rainbow-like color change. As a result, CBD from 0.08 to 100 ng mL-1 can be easily distinguished by the naked eye, which does not require any large instruments. Moreover, the colors displayed by 0.49 ng mL-1 (purple) and 0 ng mL-1 (pink) are significantly different from each other. It should be noted that 0.49 ng mL-1 is far below the most stringent maximum residue limit of CBD in the world. Additionally, the quantitative determination of CBD spiked in canned citrus, citrus fruits, chives, and cabbage samples showed satisfactory recoveries. The good performance of the AuNR-based ELISA makes it have a wide range of application prospects in food safety and international trade.
Collapse
Affiliation(s)
- Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jingjing Yao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, P. R. China.
| | - Yongliang Cui
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Chengqiu Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| |
Collapse
|
12
|
Chronic exposure to low concentrations of chlorpyrifos affects normal cyclicity and histology of the uterus in female rats. Food Chem Toxicol 2021; 156:112515. [PMID: 34400204 DOI: 10.1016/j.fct.2021.112515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023]
Abstract
Chlorpyrifos (CPF), the most used insecticide in Argentina, can act as an endocrine disruptor at low doses. We previously demonstrated that chronic exposure to CPF induces hormonal imbalance in vivo. The aim of this work was to study the effects of low concentrations of CPF (0.01 and 1 mg/kg/day) on the reproductive system of virgin adult rats. In the ovary, we studied the effects of CPF on steroidogenesis by determining steroid hormone content by RIA and CYP11 and CYP19 enzyme expression by qRT-PCR. The estrous cycle was evaluated by microscopic observation of vaginal smear, as well as by changes in uterine histology. In endometrium, we determined the fractal dimension and expression of PCNA, ERα and PR by IHC. Our results showed that chronic exposure to CPF affects ovarian steroid synthesis, causing alterations in the normal cyclicity of animals. In addition, CPF induced proliferative changes in the uterus, suggesting that it could affect reproduction or act as a risk factor in the development of uterine proliferative pathologies.
Collapse
|
13
|
Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms 2021; 9:1541. [PMID: 34361976 PMCID: PMC8307186 DOI: 10.3390/microorganisms9071541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Grapevine powdery mildew is a principal fungal disease of grapevine worldwide. Even though it usually does not cause plant death directly, heavy infections can lead to extensive yield losses, and even low levels of the disease can negatively affect the quality of the wine. Therefore, intensive spraying programs are commonly applied to control the disease, which often leads to the emergence and spread of powdery mildew strains resistant to different fungicides. In this review, we describe major fungicide classes used for grapevine powdery mildew management and the most common single nucleotide mutations in target genes known to confer resistance to different classes of fungicides. We searched the current literature to review the development of novel molecular methods for quick detection and monitoring of resistance to commonly used single-site fungicides against Erysiphe necator. We analyze and compare the developed methods. From our investigation it became evident that this research topic has been strongly neglected and we hope that effective molecular methods will be developed also for resistance monitoring in biotroph pathogens.
Collapse
Affiliation(s)
- Andrea Kunova
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (M.S.); (M.P.); (P.C.)
| | | | | | | | | |
Collapse
|
14
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
15
|
Almutairi M, Alsaleem T, Al Herbish H, Al Sayari AA, Alowaifeer AM. LC-MS/MS and GC-MS/MS analysis of pesticide residues in Ecuadorian and Filipino Cavendish bananas imported into Saudi Arabia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1376-1385. [PMID: 34077335 DOI: 10.1080/19440049.2021.1930199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The occurrence of pesticide residues in bananas imported from Ecuador and the Philippines into Saudi Arabia was investigated. Eighty-seven banana samples were purchased from various supermarkets around the country. The conventional QuEChERS method was used to extract 294 pesticides in whole bananas and the analysis was carried out using LC-MS/MS and GC-MS/MS. In total, nine pesticides were detected of which azoxystrobin, carbendazim, chlorpyrifos, imazalil, and thiabendazole were the most frequently found in bananas from both countries. The levels of these pesticides were complaint according to the Saudi Food & Drug Authority's (SFDA) maximum residue levels (MRLs), therefore they cannot be considered a public health problem. Detectable residues of these agrochemicals show that they are used extensively in banana cultivation. The Ecuadorian Agency for Agricultural Quality Assurance (Agrocalidad) and the Saudi Ministry of Environment, Water and Agriculture (MEWA) prohibit the use of carbendazim in agriculture, while the Filipino Fertiliser and Pesticide Authority (FPA) allows its use. A legislative comparison of pesticide approval status revealed a lack of consensus between banana exporting and importing countries that could affect food safety and trade.
Collapse
Affiliation(s)
- Mohammed Almutairi
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Turki Alsaleem
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Hatem Al Herbish
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah A Al Sayari
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah M Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Kumari S, Dcunha R, Sanghvi SP, Nayak G, Kalthur SG, Raut SY, Mutalik S, Siddiqui S, Alrumman SA, Adiga SK, Kalthur G. Organophosphorus pesticide quinalphos (Ekalux 25 E.C.) reduces sperm functional competence and decreases the fertilisation potential in Swiss albino mice. Andrologia 2021; 53:e14115. [PMID: 34014595 DOI: 10.1111/and.14115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quinalphos (QP) is one of the most commonly used organophosphate pesticide for agriculture. In this study, adult Swiss albino male mice were orally administered with 0.25, 0.5 and 1.0 mg/kg of QP (Ekalux 25 E.C.) for ten consecutive days and the reproductive function was assessed at 35 and 70 days after QP treatment. At highest dose (1.0 mg/kg), QP exposure resulted in significant decrease in motility and increase in sperm head defects and DNA damage. Pharmacokinetic data showed a threefold increase in concentration of QP in the testis as compared to serum. QP was detectable in testes even after 24 hr of administration indicating slow clearance from tissue. In addition, high oestradiol, low testosterone level with a parallel increase in aromatase and cytochrome P450 transcript levels was observed. Significant decrease in fertilisation, lower blastocyst rate and poor blastocyst quality was observed when spermatozoa collected from QP exposed mice were subjected to in vitro fertilisation. In conclusion, exposure of QP to male mice decreases the sperm functional competence and fertilising ability, which appears to be mediated through elevated oxidative stress and altered steroidogenesis in testes.
Collapse
Affiliation(s)
- Sandhya Kumari
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Reyon Dcunha
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sahil Piyush Sanghvi
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sushil Yadaorao Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Kingdom of Saudi Arabia, Abha
| | - Sulaiman A Alrumman
- Department of Biology, College of Sciences, King Khalid University, Kingdom of Saudi Arabia, Abha
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Benomyl induced oxidative stress related DNA damage and apoptosis in H9c2 cardiomyoblast cells. Toxicol In Vitro 2021; 75:105180. [PMID: 33930522 DOI: 10.1016/j.tiv.2021.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Benomyl, benzimidazole group pesticide, has been prohibited in Europe and USA since 2003 due to its toxic effects and it has been still determined as food and environmental contaminant. In the present study, the toxic effect mechanisms of benomyl were evaluated in rat cardiomyoblast (H9c2) cells. Cytotoxicity was determined by MTT and NRU assay and, oxidative stress potential was evaluated by reactive oxygen species (ROS) production and glutathione levels. DNA damage was assessed by alkaline comet assay. Relative expressions of apoptosis related genes were evaluated; furthermore, NF-κB and JNK protein levels were determined. At 4 μM concentration (at which cell viability was >70%), benomyl increased 2-fold of ROS production level and 2-fold of apoptosis as well as DNA damage. Benomyl down-regulated miR21, TNF-α and Akt1 ≥ 48.75 and ≥ 97.90; respectively. PTEN, JNK and NF-κB expressions were upregulated. The dramatic changes in JNK and NF-κB expression levels were not observed in protein levels. These findings showed the oxidative stress related DNA damage and apoptosis in cardiomyoblast cells exposed to benomyl. However, further mechanistic and in vivo studies are needed to understand the cardiotoxic effects of benomyl and benzimidazol fungucides.
Collapse
|
18
|
Liu T, Huang Y, Lin H. Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 2021; 47:73. [PMID: 33693952 PMCID: PMC7952251 DOI: 10.3892/ijmm.2021.4906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen-dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen-dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle-stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK). In addition, endocrine-disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Long Z, Wang X, Wang Y, Dai H, Li C, Xue Y, Deng Y, Zhang H, Yu Y, Fang H. Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142137. [PMID: 32916495 DOI: 10.1016/j.scitotenv.2020.142137] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/21/2023]
Abstract
The persistence and ecotoxicity of carbendazim residues pose a potential risk to environmental ecology and human health. Here, a novel and highly efficient carbendazim-degrading bacterium Rhodococcus sp. CX-1, capable of utilizing carbendazim as its sole source of carbon and energy, was isolated from contaminated soil. The biodegradation characteristics and metabolic pathways were studied by mass spectrometry, genomic annotation, and transcriptome analysis. The degradation rate of carbendazim by strain CX-1 was 3.98-9.90 mg/L/h under different conditions, and the optimum degradation conditions were 40 °C and pH 7.0. The addition of carbon sources (glucose, fructose, and sucrose, 100 mg/L) could accelerate carbendazim degradation. HPLC-MS/MS identification suggested that carbendazim is first hydrolyzed into 2-aminobenzimidazole and then to 2-hydroxybenzimidazole, and is ultimately mineralized to carbon dioxide. The genome of strain CX-1 contained 6,511,628 bp nucleotides, 2 linear plasmids, 2 circular plasmids, and 6437 protein coding genes. Genome annotation and transcriptome analysis indicated that carbendazim degradation may be regulated by the degradation genes harbored in the chromosome and in plasmid 2, and two different degradation pathways of carbendazim by imidazole ring cleavage or benzene ring cleavage were predicted. This study provided new insight to reveal the biodegradation mechanism of carbendazim; furthermore, strain CX-1 is a promising bioresource for carbendazim bioremediation.
Collapse
Affiliation(s)
- Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Yingjun Wang
- Zibo Tobacco Limited Liability Company, Shandong, China
| | - Huawei Dai
- Zibo Tobacco Limited Liability Company, Shandong, China
| | - Changhao Li
- Zibo Tobacco Limited Liability Company, Shandong, China
| | - Yongfei Xue
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanfei Deng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
|
21
|
Cabry R, Merviel P, Madkour A, Lefranc E, Scheffler F, Desailloud R, Bach V, Benkhalifa M. The impact of endocrine disruptor chemicals on oocyte/embryo and clinical outcomes in IVF. Endocr Connect 2020; 9:R134-R142. [PMID: 32380469 PMCID: PMC7354731 DOI: 10.1530/ec-20-0135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
The negative impact of endocrine-disrupting pesticides on human fertility is now a key issue in reproductive health. There are much fewer literature data about the impact of pesticide exposure on women than on men and very few studies of women participating in an in vitro fertilization (IVF) programme. In the present review, we found that (1) various pesticides with an endocrine-disrupting action are associated with poor oocyte maturation and competency, embryonic defects and poor IVF outcomes, and (2) some pesticide compounds are linked to specific causes of female infertility, such as premature ovarian insufficiency, polycystic ovarian syndrome, and endometriosis. IVF participants living in agricultural regions should be informed about the fertility decline, low ongoing pregnancy rates, and elevated risk of miscarriage associated with exposure to high doses of pesticides.
Collapse
Affiliation(s)
| | | | - Aicha Madkour
- Mohammed V University of Rabat, Reproductive Medicine, Rabat, Morocco
| | | | | | | | | | - Moncef Benkhalifa
- Amiens University, Amiens, Haut-de-France, France
- Correspondence should be addressed to M Benkhalifa:
| |
Collapse
|
22
|
Werder EJ, Engel LS, Satagopan J, Blair A, Koutros S, Lerro CC, Alavanja MC, Sandler DP, Beane Freeman LE. Herbicide, fumigant, and fungicide use and breast cancer risk among farmers' wives. Environ Epidemiol 2020; 4:e097. [PMID: 32613154 PMCID: PMC7289136 DOI: 10.1097/ee9.0000000000000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence from epidemiologic and laboratory studies relating pesticides to breast cancer risk is inconsistent. Women engaging in agricultural work or living in agricultural areas may experience appreciable exposures to a wide range of pesticides, including herbicides, fumigants, and fungicides. METHODS We examined exposure to herbicides, fumigants, and fungicides in relation to breast cancer risk among farmers' wives with no prior history of breast cancer in the Agricultural Health Study. Women provided information on pesticide use, demographics, and reproductive history at enrollment (1993-1997) and at a 5-year follow-up interview. We used Cox proportional hazards regression to estimate associations (hazard ratios [HRs] and 95% confidence intervals [CIs]) between the women's and their husbands' self-reported use of individual pesticides and incident breast cancer risk. RESULTS Out of 30,594 women, 38% reported using herbicides, fumigants, or fungicides and 1,081 were diagnosed with breast cancer during a median 15.3 years of follow-up. We found elevated risk in relation to women's ever use of the fungicide benomyl (HR = 1.6; 95% CI = 0.9, 2.7) and the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) (HR = 1.6; 95% CI = 0.8, 3.1) and to their husbands' use of the herbicide 2-(2,4,5-trichlorophenoxy) propionic acid (2,4,5-TP) (HR = 1.5; 95% CI = 0.9, 2.7). We observed few other chemical associations and little evidence of differential risk by tumor estrogen receptor status or linear exposure-response relationships. CONCLUSION We did not observe clear excesses between use of specific pesticides and breast cancer risk across exposure metrics, although we did observe elevated risk associated with women's use of benomyl and 2,4,5-T and husbands' use of 2,4,5-TP.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Catherine C. Lerro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Michael C. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| |
Collapse
|
23
|
Transgenerational impairment of ovarian induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) associated with Igf2 and H19 in adult female rat. Toxicology 2019; 428:152311. [PMID: 31629011 DOI: 10.1016/j.tox.2019.152311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
2,3,7,8-Tetrachlorobenze-p-dioxin (TCDD), one of representive Endocrine Disrupting Chemicals (EDCs), has potential adverse effects on human health. Direct exposure to TCDD has been implicated in ovarian follicles development and functions deficits in adulthood. However, it is rarely reported whether indirect exposure to TCDD can cause similar negative impact on F3. The aim of our study was to evaluate the effect of ancestral TCDD exposure on ovarian toxicity in offspring rats (F3), focusing on the Igf2/H19 pathway which was important for follicular development. Pregnant Sprague-Dawley female rats (F0) were given with either vehicle or TCDD (100 or 500 ng/kg BW/day) by gavages during days 8-14 of gestation. Ovarian development and functions of F3 generation was assessed using the ovary coefficient, the vaginal opening time, and regularity of estrous cycle, ovarian pathology, follicles counts and apoptosis of granular cells. The level of E2, FSH and LH in the serum was also detected. Results showed that in the F3 generation 500 ng/kg BW/day TCDD group, ovarian coefficient, LH concentration in serum and number of primary follicles were decreased, and the apoptosis of granular cells was significantly increased. The abnormal rate of estrous cycle and advance rate of vaginal opening time displayed a significantly increase in TCDD-treated groups. RT-PCR analysis showed that the expression level of H19 mRNA in ovary of TCDD treated F3 female rats was increased, compared to the control. Our data showed that ancestral TCDD exposure may impair transgenerational adult ovary development and functions, which may be related to an inhibition of the Igf2/H19 pathway in the ovarian.
Collapse
|
24
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
25
|
Lu SY, Lin P, Tsai WR, Weng CY. The Pragmatic Strategy to Detect Endocrine-Disrupting Activity of Xenobiotics in Food. Med Chem 2019. [DOI: 10.5772/intechopen.81030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Chen W, Yang X, Wang B, Wang L, Yu X. The effects and possible mechanisms of triclosan on steroidogenesis in primary rat granulosa cells. Reprod Toxicol 2018; 83:28-37. [PMID: 30447264 DOI: 10.1016/j.reprotox.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Triclosan (TCS) has been detected in human tissues. It can disrupt steroidogenesis in vivo. The study on the effects of TCS on ovarian granulosa cells was lacking. METHODS Primary rat granulosa cells (rGCs) were treated with TCS. Concentrations of estradiol (E2), progesterone (P4) in the cell culture supernatants were measured. Microarray was used to measure gene expression profiles. Pathway analysis was performed to identify signaling networks that linked differentially expressed genes (DEGs). Genes related with steroidogenesis were analyzed. RESULTS TCS increased E2 and P4 production. A total of 2006 DEGs were identified. Pathway analysis revealed that ovarian steroidogenesis pathway was upregulated. Both PCR and Western-blot demonstrated that the expressions of key genes involved in this pathway were significantly increased. CONCLUSIONS TCS co-administered with follicle-stimulating hormone (FSH) could increase E2 and P4 production in rGCs and up-regulate ovarian steroidogenesis pathway. StAR and aromatase protein were increased by TCS, while P450scc protein wasn't changed significantly.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Xin Yang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Bin Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Lei Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China.
| |
Collapse
|
27
|
Rendic SP, Guengerich FP. Development and Uses of Offline and Web-Searchable Metabolism Databases - The Case of Benzo[a]pyrene. Curr Drug Metab 2018; 19:3-46. [PMID: 29219051 DOI: 10.2174/1389200219666171207123939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/04/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present work describes development of offline and web-searchable metabolism databases for drugs, other chemicals, and physiological compounds using human and model species, prompted by the large amount of data published after year 1990. The intent was to provide a rapid and accurate approach to published data to be applied both in science and to assist therapy. METHODS Searches for the data were done using the Pub Med database, accessing the Medline database of references and abstracts. In addition, data presented at scientific conferences (e.g., ISSX conferences) are included covering the publishing period beginning with the year 1976. RESULTS Application of the data is illustrated by the properties of benzo[a]pyrene (B[a]P) and its metabolites. Analysis show higher activity of P450 1A1 for activation of the (-)- isomer of trans-B[a]P-7,8-diol, while P4501B1 exerts higher activity for the (+)- isomer. P450 1A2 showed equally low activity in the metabolic activation of both isomers. CONCLUSION The information collected in the databases is applicable in prediction of metabolic drug-drug and/or drug-chemical interactions in clinical and environmental studies. The data on the metabolism of searched compound (exemplified by benzo[a]pyrene and its metabolites) also indicate toxicological properties of the products of specific reactions. The offline and web-searchable databases had wide range of applications (e.g. computer assisted drug design and development, optimization of clinical therapy, toxicological applications) and adjustment in everyday life styles.
Collapse
Affiliation(s)
| | - Frederick P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
28
|
Merel S, Benzing S, Gleiser C, Di Napoli-Davis G, Zwiener C. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:512-521. [PMID: 29684878 DOI: 10.1016/j.envpol.2018.04.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 05/24/2023]
Abstract
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r2 of 0.32 for cyproconazole and r2 of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r2 of 0.86 for carbamazepine and r2 of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Collapse
Affiliation(s)
- Sylvain Merel
- Environmental Analytical Chemistry, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Saskia Benzing
- Environmental Analytical Chemistry, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Carolin Gleiser
- Environmental Analytical Chemistry, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Gina Di Napoli-Davis
- Environmental Analytical Chemistry, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Christian Zwiener
- Environmental Analytical Chemistry, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| |
Collapse
|
29
|
Verma S, Srivastava A. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:238. [PMID: 29564638 DOI: 10.1007/s10661-018-6616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg-1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| |
Collapse
|
30
|
Pogrmic-Majkic K, Samardzija D, Stojkov-Mimic N, Vukosavljevic J, Trninic-Pjevic A, Kopitovic V, Andric N. Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovulatory genes through PDE-cAMP signaling pathway in human cumulus granulosa cells. Mol Cell Endocrinol 2018; 461:79-88. [PMID: 28859905 DOI: 10.1016/j.mce.2017.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
Atrazine (ATR) alters female reproductive functions in different animal species. Here, we analyzed whether ATR disturbs steroidogenic and ovulatory processes in hormone-stimulated human cumulus granulosa cells and mechanism of its action. Results showed that treatment of human cumulus granulosa cells with 20 μM ATR for 48 h resulted in lower FSH-stimulated estradiol and progesterone production. ATR reduced mRNA levels of aromatase (CYP19A1), steroidogenic acute regulatory protein (STAR) and luteinizing hormone/choriogonadotropin receptor (LHCGR). Addition of hCG 48 h after FSH and ATR treatment did not trigger maximal expression of the ovulatory genes amphiregulin (AREG) and epiregulin (EREG). Mechanistic experiments showed that ATR activated cPDE and decreased cAMP level. Addition of total PDE and specific PDE4 inhibitors, IBMX and rolipram, prevented ATR's action on CYP19A1 and STAR mRNA expression in FSH-stimulated human cumulus granulosa cells. This study suggests that ATR alters steroidogenesis and ovulatory process in human cumulus granulosa cells jeopardizing female reproduction.
Collapse
Affiliation(s)
| | - Dragana Samardzija
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Natasa Stojkov-Mimic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Jelena Vukosavljevic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Vesna Kopitovic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| |
Collapse
|
31
|
Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, Sifakis S, Docea AO, Tsiaoussis J, Makrigiannakis A, Tsatsakis AM. Endocrine Disruptors Leading to Obesity and Related Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1282. [PMID: 29064461 PMCID: PMC5664782 DOI: 10.3390/ijerph14101282] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
The review aims to comprehensively present the impact of exposure to endocrine disruptors (EDs) in relation to the clinical manifestation of obesity and related diseases, including diabetes mellitus, metabolic syndrome, cardiovascular diseases, carcinogenesis and infertility. EDs are strong participants in the obesity epidemic scenery by interfering with cellular morphological and biochemical processes; by inducing inflammatory responses; and by presenting transcriptional and oncogenic activity. Obesity and lipotoxicity enhancement occur through reprogramming and/or remodeling of germline epigenome by exposure to EDs. Specific population groups are vulnerable to ED exposure due to current dietary and environmental conditions. Obesity, morbidity and carcinogenicity induced by ED exposure are an evolving reality. Therefore, a new collective strategic approach is deemed essential, for the reappraisal of current global conditions pertaining to energy management.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Loukia Vassilopoulou
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Christos Psycharakis
- Department of Obstetrics and Gynecology, Venizeleio-Pananio General Hospital of Heraklion, 71409 Heraklion, Crete, Greece.
| | - Aliki Anifantaki
- Crete Fertility Center, 56, Arch. Makariou & Sof. Venizelou Str., 71202 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania.
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
32
|
Bai N, Wang S, Abuduaini R, Zhang M, Zhu X, Zhao Y. Rhamnolipid-aided biodegradation of carbendazim by Rhodococcus sp. D-1: Characteristics, products, and phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:343-351. [PMID: 28279530 DOI: 10.1016/j.scitotenv.2017.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
We successfully isolated Rhodococcus sp. D-1, an efficient carbendazim-degrading bacterium that degraded 98.20% carbendazim (200ppm) within 5days. Carbendazim was first processed into 2-aminobenzimidazole, converted to 2-hydroxybenzimidazole, and then further mineralized by subsequent processing. After genomic analysis, we hypothesized that D-1 may express a new kind of enzyme capable of hydrolyzing carbendazim. In addition, the effect of the biodegradable biosurfactant rhamnolipid on the rate and extent of carbendazim degradation was assessed in batch analyses. Notably, rhamnolipid affected carbendazim biodegradation in a concentration-dependent manner with maximum biodegradation efficiency at 50ppm (at the critical micelle concentration, CMC) (97.33% degradation within 2days), whereas 150ppm (3 CMC) rhamnolipid inhibited initial degradation (0.01%, 99.26% degradation within 2 and 5days, respectively). Both carbendazim emulsification and favorable changes in cell surface characteristics likely facilitated its direct uptake and subsequent biodegradation. Moreover, rhamnolipid facilitated carbendazim detoxification. Collectively, these results offer preliminary guidelines for the biological removal of carbendazim from the environment.
Collapse
Affiliation(s)
- Naling Bai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Sheng Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rexiding Abuduaini
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Meinan Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xufen Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuhua Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
33
|
Jabłońska-Trypuć A, Wołejko E, Wydro U, Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:483-494. [PMID: 28541098 DOI: 10.1080/03601234.2017.1303322] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- a Faculty of Civil Engineering and Environmental Engineering, Department of Sanitary Biology and Biotechnology , Bialystok University of Technology , Białystok , Poland
| | - Elżbieta Wołejko
- a Faculty of Civil Engineering and Environmental Engineering, Department of Sanitary Biology and Biotechnology , Bialystok University of Technology , Białystok , Poland
| | - Urszula Wydro
- a Faculty of Civil Engineering and Environmental Engineering, Department of Sanitary Biology and Biotechnology , Bialystok University of Technology , Białystok , Poland
| | - Andrzej Butarewicz
- a Faculty of Civil Engineering and Environmental Engineering, Department of Sanitary Biology and Biotechnology , Bialystok University of Technology , Białystok , Poland
| |
Collapse
|
34
|
Xie M, Li M, Zhou J, Ding X, Shao Y, Jing J, Liu Y, Yao B. Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway. Sci Rep 2017; 7:180. [PMID: 28282971 PMCID: PMC5428030 DOI: 10.1038/s41598-017-00203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and FSH receptor (FSHR) are expressed in ovarian granulosa cells, and play important roles in regulating follicle growth and oocyte maturation. Studies have linked the BDNF-associated signaling pathway to FSHR mRNA expression in the regulation of follicle development, but the mechanisms remain unknown. In the current study, we found that BDNF stimulated the secretion of estradiol and progesterone, and increased the proliferation of KGN cells (human granulosa-like tumor cell line). BDNF treatment also increased phosphorylated and ubiquitinated FSHR, and activated cAMP/PKA/CREB signaling pathway. Moreover, inhibition of BDNF expression by siRNA markedly reduced the estradiol secretion and down-regulated FSHR, aromatase and phosphorylated CREB; meanwhile, FSH treatment partly alleviated the effects of BDNF siRNA on KGN cells. These findings suggested that BDNF modulates graunlosa cell functions and the action probably mediated by FSHR-coupled signaling pathway, to affect aromatase-mediated steroidogenesis. These results provide an alternative target to optimize ovarian granulosa cell function.
Collapse
Affiliation(s)
- Min Xie
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meiling Li
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Ji Zhou
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaomeng Ding
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yidan Shao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jun Jing
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuxiu Liu
- Department of Medical Statistics, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Martínez-Ibarra A, Morimoto S, Cerbón M, Prado-Flores G. Effects on the reproductive parameters of two generations of Rattus norvegicus offspring from dams exposed to heptachlor during gestation and lactation. ENVIRONMENTAL TOXICOLOGY 2017; 32:856-868. [PMID: 27240701 DOI: 10.1002/tox.22285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Heptachlor has been targeted for global elimination because of its toxicity and environmental persistence, in accordance with the Stockholm Convention on Persistent Organic Pollutants (POPs). However, there is no regulation of heptachlor use in Mexico, where relatively high levels have been found in maternal breast milk. The aim of this study was to determine the effects of heptachlor on the reproductive system of offspring of two consecutive generations of rats (F1 and F2) from dams orally administered heptachlor during midgestation and lactation. Female offspring were analyzed for different phenotypic, reproductive, and molecular parameters. In the F1 generation, heptachlor treatment induced decreased body weight at weaning, increased female anogenital distance, and delayed vaginal opening. In both generations, serum progesterone levels decreased and estradiol levels remained unchanged, while overexpression of the progesterone receptor was observed in uterine epithelial cells on estrus day. In the F2 generation, expression of the estrogen receptor α increased in the glandular epithelium. Finally, heptachlor treatment did not affect apoptosis in the uterine epithelial cells. Overall, the results indicate that heptachlor induced female reproductive alterations when administered to dams during the perinatal period. Accordingly, exposure to heptachlor may represent a risk for the reproductive health of humans. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 856-868, 2017.
Collapse
Affiliation(s)
- Alejandra Martínez-Ibarra
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, D.F, México, México
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y de la Nutrición S.Z, D.F, México, México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, D.F, México, México
| | - Guadalupe Prado-Flores
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, D.F, México, México
| |
Collapse
|
36
|
2-Phenylbenzo[b]furans: Synthesis and promoting activity on estrogen biosynthesis. Bioorg Med Chem Lett 2016; 26:5497-5500. [PMID: 27765509 DOI: 10.1016/j.bmcl.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 11/21/2022]
Abstract
Estrogen biosynthesis is pivotal to many physiological processes of human. Aberrant estrogen level is closely related to a variety of diseases, including breast cancer and osteoporosis. Previously we found that 2-phenylbenzo[b]furan glycosides could promote estrogen biosynthesis. To find high active 2-phenylbenzo[b]furans, fifty-four 2-phenylbenzo[b]furans were prepared via four strategies according to corresponding substrate scopes. Biological evaluation in HEK293A cells showed that some compounds exhibited promotive activity on estrogen biosynthesis. 2-(4-Chlorophenyl)-7-methoxybenzo[b]furan possessed the highest activity with EC50 value of 14.68μM. Furthermore, these compounds did not affect aromatase expression in HEK292A cells, indicating that these 2-phenylbenzo[b]furans might enhance estrogen biosynthesis via directly allosteric regulation of aromatase or indirectly via posttranslational modification.
Collapse
|
37
|
Zhang X, Dong S, Wang Y, Niu X, Li Z, Zhang G. Selenium-Catalyzed Carbonylation of 2-Aminobenzimidazole with Alcohols to 2-Benzimidazolecarbamates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaopeng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| | - Shuxiang Dong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| | - Yan Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| | - Xueli Niu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| | - Zhengwei Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 P. R. of China
| |
Collapse
|
38
|
The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:183-203. [PMID: 27894686 DOI: 10.1016/j.mrrev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
Pesticides are widely used around the world, and hundreds of millions of people are exposed annually in occupational and environmental settings. Numerous studies have demonstrated relationships between pesticide exposure and increased risk of cancers, neurodegenerative and neurodevelopmental disorders, respiratory diseases and diabetes. Assessment of genotoxicity of pesticides and biomonitoring their effect in exposed populations is critical for a better regulation and protection, but it can be complicated because pesticides are often used as complex mixtures. The cytokinesis-block micronucleus assay in human lymphocytes (L-CBMN) is a validated method of assessment of DNA damage induced by clastogenic and aneuploidogenic mechanisms. The goal of this review is to provide an updated summary of publications on biomonitoring studies using this assay in people exposed to pesticides in different settings, and to identify gaps in knowledge, and future directions. A literature search was conducted through MedLine/PubMed and TOXLINE electronic databases up to December 2015. A total of 55 full-text articles, related to 49 studies, excluding reviews, were selected for in depth analysis, divided by the settings where exposures occurred, such as chemical plant workers, pesticide sprayers, floriculturists, agricultural workers and non-occupationally exposed groups. Majority of studies (36 out of 49) reported positive findings with L-CBMN assay. However, most of the studies of professional applicators that used single pesticide or few compounds in the framework of specific programs did not show significant increases in MN frequency. A decreased level of pesticide-induced genotoxicity was associated with the proper use of personal protection. In contrast, subjects working in greenhouses or during intensive spraying season and having acute exposure, showed consistent increases in MN frequency. Overall, this analysis confirmed that L-CBMN is an excellent tool for pesticide biomonitoring, and can validate the effects of educational and intervention programs on reducing exposure and genetic damage.
Collapse
|
39
|
Zhong S, Liu S, Chen S, Lin H, Wang W, Qin X. Zeranol stimulates proliferation and aromatase activation in human breast preadipocytes. Mol Med Rep 2016; 14:1014-8. [PMID: 27220457 DOI: 10.3892/mmr.2016.5293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Aromatase is a crucial enzyme for the biosynthesis of estrogens and is involved in the process of breast carcinogenesis. Concerns have been raised regarding the effects of environmental estrogens as potential regulators of aromatase expression in human breast cells. Zeranol is a non‑steroidal agent with potent estrogenic activity, which is widely used as a growth promoter for cattle in certain countries. The present study hypothesized that aromatase expression and activity may be elevated by low dose zeranol exposure, providing a source of estrogens that may stimulate cell proliferation. In the present study, primary cultured human breast preadipocytes were used as an in vitro model. The effects of zeranol on cell proliferation were measured using the MTS assay, aromatase expression levels were determined by immunocytochemical staining and reverse transcription‑polymerase chain reaction, and aromatase enzyme activity and estrogen production were analyzed using corresponding assay kits. The results demonstrated that low dose zeranol (2‑50 nM) was able to significantly promote cell proliferation, aromatase mRNA expression, aromatase activity and estrogen production in primary cultured human breast preadipocytes, thus suggesting that zeranol may act as an aromatase activator. The findings of the present study suggest that zeranol promotes breast cancer cell growth by stimulating aromatase activation and increasing estrogen biosynthesis in adipose tissue.
Collapse
Affiliation(s)
- Saiyi Zhong
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Shouchun Liu
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, P.R. China
| | - Suhua Chen
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Huajuan Lin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Weimin Wang
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Xiaoming Qin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| |
Collapse
|
40
|
Chayata H, Lassalle Y, Nicol É, Manolikakes S, Souissi Y, Bourcier S, Gosmini C, Bouchonnet S. Characterization of the ultraviolet-visible photoproducts of thiophanate-methyl using high performance liquid chromatography coupled with high resolution tandem mass spectrometry-Detection in grapes and tomatoes. J Chromatogr A 2016; 1441:75-82. [PMID: 26961913 DOI: 10.1016/j.chroma.2016.02.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/25/2023]
Abstract
UV-visible irradiation of thiophanate-methyl (TM) led to the formation of nine photoproducts that were characterized by high performance liquid chromatography coupled with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Although carbendazime has been reported in the literature to be the major metabolite and photoproduct of thiophanate-methyl, it was not detected in this study. However, an isomer of carbendazime referred as PP2, which was unambiguously characterized owing to CID experiments, was found in great abundance. Grape berries and cherry tomatoes treated with aqueous solutions of thiophanate-methyl were submitted to irradiation under laboratory conditions. TM and PP2 were detected in both peel and flesh of berries. The ability of TM and PP2 to pass through the fruit skin has been shown to be highly compound and matrix dependent. In vitro bioassays on Vibrio fischeri bacteria showed that the global ecotoxicity of the TM solution increases significantly with the irradiation time. PP2 should likely contribute to this ecotoxicity enhancement since in silico estimations for Daphnia magna provide a LC50 value seven times lower for PP2 than for the parent molecule.
Collapse
Affiliation(s)
- Houda Chayata
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Yannick Lassalle
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Édith Nicol
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Sophia Manolikakes
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Yasmine Souissi
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Sophie Bourcier
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Corinne Gosmini
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Stéphane Bouchonnet
- LCM, CNRS, École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France.
| |
Collapse
|
41
|
Bányiová K, Nečasová A, Kohoutek J, Justan I, Čupr P. New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure. CHEMOSPHERE 2016; 145:148-156. [PMID: 26688251 DOI: 10.1016/j.chemosphere.2015.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Due to their widespread usage, people are exposed to pesticides on a daily basis. Although these compounds may have adverse effects on their health, there is a gap in the data and the methodology needed to reliably quantify the risks of non-occupational human dermal exposure to pesticides. We used Franz cells and human skin in order to measure the dermal absorption kinetics (steady-state flux, lag time and permeability coefficient) of Carbendazim and Simazine. These parameters were then used to refine the dermal exposure model and a probabilistic simulation was used to quantify risks resulting from exposure to pesticide-polluted waters. The experimentally derived permeability coefficient was 0.0034 cm h(-1) for Carbendazim and 0.0047 cm h(-1) for Simazine. Two scenarios (varying exposure duration and concentration, i.e. environmentally relevant and maximum solubility) were used to quantify the human health risks (hazard quotients) for Carbendazim and Simazine. While no risks were determined in the case of either scenario, the permeability coefficient, which is concentration independent and donor, formulation, compound and membrane specific, may be used in other scenarios and exposure models to quantify more precisely the dermally absorbed dose during exposure to polluted water. To the best of our knowledge, the dermal absorption kinetics parameters defined here are being published for the first time. The usage of experimental permeability parameters in combination with probabilistic risk assessment thus provides a new tool for quantifying the risks of human dermal exposure to pesticides.
Collapse
Affiliation(s)
- Katarína Bányiová
- RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Anežka Nečasová
- RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jiří Kohoutek
- RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Ivan Justan
- RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Pavel Čupr
- RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
42
|
Gomes J, Roche G. The Role of Estrogens and Estrogenic Metabolites and Male Reproductive Health Disorders. IMPLICATIONS AND CONSEQUENCES OF ANTHROPOGENIC POLLUTION IN POLAR ENVIRONMENTS 2016. [DOI: 10.1007/978-3-642-12315-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Carette D, Blondet A, Martin G, Montillet G, Janczarski S, Christin E, Pointis G, Durand P, Perrard MH. Endocrine Disrupting Effects of Noncytotoxic Doses of Carbendazim on the Pubertal Rat Seminiferous Epithelium: An Ex Vivo Study. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Jiang J, Wu S, Wang Y, An X, Cai L, Zhao X, Wu C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol In Vitro 2015; 29:1473-81. [DOI: 10.1016/j.tiv.2015.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
45
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
46
|
Wang Q, Yang J, Dong Y, Zhang L. One-Step Fabrication of a Multifunctional Magnetic Nickel Ferrite/Multi-walled Carbon Nanotubes Nanohybrid-Modified Electrode for the Determination of Benomyl in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4746-4753. [PMID: 25947038 DOI: 10.1021/acs.jafc.5b00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benomyl, as one kind of agricultural pesticide, has adverse impact on human health and the environment. It is urgent to develop effective and rapid methods for quantitative determination of benomyl. A simple and sensitive electroanalytical method for determination of benomyl using a magnetic nickel ferrite (NiFe2O4)/multi-walled carbon nanotubes (MWCNTs) nanohybrid-modified glassy carbon electrode (GCE) was presented. The electrocatalytic properties and electroanalysis of benomyl on the modified electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In the phosphate-buffered saline (PBS) of pH 6.0, this constructed biosensor exhibited two linear relationships with the benomyl concentration range from 1.00 × 10(-7) to 5.00 × 10(-7) mol/L and from 5.00 × 10(-7) to 1.00 × 10(-5) mol/L, respectively. The detection limit was 2.51 × 10(-8) mol/L (S/N = 3). Moreover, the proposed method was successfully applied to determine benomyl in real samples with satisfactory results. The NiFe2O4/MWCNTs/GCE showed good reproducibility and stability, excellent catalytic activity, and anti-interference.
Collapse
Affiliation(s)
- Qiong Wang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Jichun Yang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Yuanyuan Dong
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| |
Collapse
|
47
|
Sharma D, Sangha GK, Khera KS. Triazophos-induced oxidative stress and histomorphological changes in ovary of female Wistar rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 117:9-18. [PMID: 25619906 DOI: 10.1016/j.pestbp.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
Triazophos (TZ), a non-systemic broad spectrum organophosphate (OP), is being extensively used against a wide range of pests in agricultural practices. The present study was carried out to investigate the toxic effects of triazophos (TZ) in female Wistar rats. Three sub-chronic dose levels of TZ corresponding to 1/10th, 1/20th and 1/40th of LD50 were given for 30 days to adult female Wistar rats through oral intubation. During the treatment period estrous cycle was significantly altered. Activity levels of different oxidative stress (OS) parameters viz. catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and lipid peroxidation (LPO) were differentially altered in the ovary of treated rats. Estradiol levels were significantly high while progesterone levels were significantly reduced in plasma of 1/10th and 1/20th of LD50 TZ-treated rats. Histomorphological studies of ovary revealed increased follicular atresia and increased ovarian surface epithelial height in 1/10th and 1/20th of LD50 TZ-treated rats. Enhanced apoptosis and necrosis were also observed in ovarian granulosa cells at dose-dependent manner. Results infer that TZ exposure may lead to the number of pathophysiological conditions in female rats and severity increases at high doses.
Collapse
Affiliation(s)
- Dharmender Sharma
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Kuldeep Singh Khera
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
48
|
Kawaratani Y, Matsuoka T, Hirata Y, Fukata N, Nagaoka Y, Uesato S. Influence of the carbamate fungicide benomyl on the gene expression and activity of aromatase in the human breast carcinoma cell line MCF-7. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:292-299. [PMID: 25543211 DOI: 10.1016/j.etap.2014.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
The carbamate fungicide benomyl reportedly inhibited the growth of the human breast cancer cell line MCF-7 by inducing apoptosis. However, influence of benomyl on the expression and activity of aromatase of MCF-7 cells remains to be examined, since benomyl was identified as an endocrine disruptor. We here confirmed through cell cycle analysis and immunofluorescence staining that benomyl damaged microtubules and caused apoptosis. We also found that benomyl inhibited histone deacetylase (HDAC) 1 and accumulated acetylated histone H3 in MCF-7 cells. Additionally, benomyl enhanced the levels of aromatase protein and mRNA, albeit at high concentrations. It is thus likely that benomyl enhanced the promoter activity of the aromatase gene via acetylation of histone H3 as does the HDAC inhibitor Vorinostat. In conclusion, benomyl remains to be a risk factor as an endocrine disruptor for breast cancer.
Collapse
Affiliation(s)
- Yasuyuki Kawaratani
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| | - Takeshi Matsuoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| | - Yoshiyuki Hirata
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| | - Naofumi Fukata
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| | - Shinichi Uesato
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
49
|
Santos RR, Schoevers EJ, Roelen BAJ. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol 2014; 12:117. [PMID: 25427762 PMCID: PMC4258035 DOI: 10.1186/1477-7827-12-117] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Women presenting fertility problems are often helped by Assisted Reproductive Techniques (ART), such as in vitro fertilization (IVF) programs. However, in many cases the etiology of the in/subfertility remains unknown even after treatment. Although several aspects should be considered when assisting a woman with problems to conceive, a survey on the patients' exposure to contaminants would help to understand the cause of the fertility problem, as well as to follow the patient properly during IVF. Daily exposure to toxic compounds, mainly environmental and dietary ones, may result in reproductive impairment. For instance, because affects oocyte developmental competence. Many of these compounds, natural or synthetic, are endocrine disruptors or endocrine active substances that may impair reproduction. To understand the risks and the mechanism of action of such chemicals in human cells, the use of proper in vitro models is essential. The present review proposes the bovine and porcine models to evaluate toxic compounds on oocyte maturation, fertilization and embryo production in vitro. Moreover, we discuss here the species-specific differences when mice, bovine and porcine are used as models for human.
Collapse
Affiliation(s)
- Regiane R Santos
- />Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University,TD Utrecht,, P.O Box 80152, 3508 The Netherlands
- />Laboratory of Wild Animal Biology and Medicine, Federal University of Pará,, Rua Augusto Corrêa,Belém, CEP 66075-110 Pará Brazil
| | - Eric J Schoevers
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| | - Bernard AJ Roelen
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
- />Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
50
|
Rama EM, Bortolan S, Vieira ML, Gerardin DCC, Moreira EG. Reproductive and possible hormonal effects of carbendazim. Regul Toxicol Pharmacol 2014; 69:476-86. [PMID: 24863245 DOI: 10.1016/j.yrtph.2014.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
This study aimed to better elucidate reproductive and possible hormonal effects of the fungicide carbendazim (CBZ) through a review of published toxicological studies as well as an evaluation of this fungicide in the Hershberger and uterotrophic assays, which are designed to detect in vivo effects of the sex hormones. The literature review indicates that CBZ induces reproductive and developmental toxicity through alteration of many key events which are important to spermatogenesis. The lower dose of CBZ (100mg/kg) evaluated in the Hershberger test increased prostate weight compared to control group but did not alter the weight of other testosterone-dependent tissues. In the uterotrophic assay, CBZ did not induce an estrogenic or an antiestrogenic effect. In the literature, it has been reported that CBZ may: (1) alter the levels of various hormones (testosterone, LH, FSH, GnRH); (2) negatively influence testicular steroidogenesis; (3) have androgenic effects acting directly in the androgenic receptors and/or increasing the expression of androgen receptors. Despite the contradictory results reported by the different studies that investigated a possible endocrine mode of action of CBZ, it seems that this fungicide may influence the hypothalamus-pituitary-gonad axis in addition to being a testicular toxicant.
Collapse
Affiliation(s)
- Elkiane Macedo Rama
- Brazilian National Health Surveillance Agency (ANVISA), Brasília, DF, Brazil
| | - Simone Bortolan
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Milene Leivas Vieira
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | | |
Collapse
|