1
|
Ravenel JR, Perkins AE, Tomczik A, Defendini A, Strnad HK, Varlinskaya E, Deak T, Spencer RL. Age-related decline in social interaction is associated with decreased c-Fos induction in select brain regions independent of oxytocin receptor expression profiles. AGING BRAIN 2024; 5:100107. [PMID: 38313579 PMCID: PMC10837624 DOI: 10.1016/j.nbas.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024] Open
Abstract
Social behavior decreases with aging, and we have previously found a substantial decline in social investigative behavior of old female rats. In this study we examined the neural activation pattern (c-Fos mRNA) of young (3 month) and old (18 month) female rats after brief 10 min exposure to a novel female rat in order to identify forebrain regions that show selective age-related alterations in their neural response to social investigation. We also measured relative oxytocin receptor expression (Oxtr mRNA) as a possible factor in age-related declines in c-Fos induction after social interaction. Young rats exposed to a social partner had a greater c-Fos mRNA response than those exposed to novel context alone in the lateral septum and septohypothalamic area, with blunted increases evident in old rats. In addition, c-Fos mRNA levels in the lateral septum were positively correlated with social investigative behavior. Interestingly, age-related differences in c-Fos gene induction were unrelated to the local amount of Oxtr expression within specific brain regions, although we found an age-related decline in Oxtr expression in the ventromedial hypothalamus. This functional neuroanatomical characterization may point to certain brain regions that are especially sensitive to age-related declines associated with social interaction behavior.
Collapse
Affiliation(s)
- J. Russell Ravenel
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Amy E. Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Angela Tomczik
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ana Defendini
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Helen K. Strnad
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Elena Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Clark CD, Li J, Nipper MA, Helms ML, Finn DA, Ryabinin AE. Differential c-Fos Response in Neurocircuits Activated by Repeated Predator Stress in Male and Female C57BL/6J Mice with Stress Sensitive or Resilient Alcohol Intake Phenotypes. Neuroscience 2023; 535:168-183. [PMID: 37944582 PMCID: PMC10841633 DOI: 10.1016/j.neuroscience.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Comorbidity of post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) worsens the prognosis for each of these individual disorders. The current study aimed to identify neurocircuits potentially involved in regulation of PTSD-AUD comorbidity by mapping expression of c-Fos in male and female C57BL/6J mice following repeated predator stress (PS), modeled by exposure to dirty rat bedding. In experiment 1, the levels of c-Fos in the paraventricular nucleus of the hypothalamus (PVH) and the nucleus accumbens shell were higher after the second PS vs the first PS, indicating a sensitized response to this stressor. Additional brain regions showed varied sex-dependent and independent regulation by the two consecutive PS exposures. In experiment 2, mice that increased voluntary alcohol consumption following four exposures to PS (Sensitive subgroup) showed higher c-Fos induction in the PVH, piriform cortex and ventromedial hypothalamus than mice that decreased consumption following these exposures (Resilient subgroup). In contrast to these brain regions, c-Fos was higher in the anterior olfactory nucleus of Resilient vs Sensitive mice. Taken together, these data demonstrate that repeated PS exposure and voluntary alcohol consumption increase neuronal activity across neurocircuits in which specific components depend on the vulnerability of individual mice to these stressors. Increased PVH activity observed across both experiments suggests this brain area as a potential mediator of PS-induced increases in alcohol consumption. Future investigations of specific neuronal populations within the PVH activated by PS, and manipulation of these specific neuronal populations, could improve our understanding of the mechanisms leading to PTSD-AUD comorbidity.
Collapse
Affiliation(s)
- Crystal D Clark
- Department of Research, VA Portland Health Care System, Portland, OR 97239, USA
| | - Ju Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melinda L Helms
- Department of Research, VA Portland Health Care System, Portland, OR 97239, USA
| | - Deborah A Finn
- Department of Research, VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Male Stressed Mice Having Behavioral Control Exhibit Escalations in Dorsal Dentate Adult-Born Neurons and Spatial Memory. Int J Mol Sci 2023; 24:ijms24031983. [PMID: 36768303 PMCID: PMC9916676 DOI: 10.3390/ijms24031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
An escapable (ES)/inescapable stress (IS) paradigm was used to study whether behavioral control and repeated footshock stressors may affect adult neurogenesis and related cognitive function. Male stressed mice having behavioral control (ES) had a short-term escalation in dorsal dentate gyrus (DG) neurogenesis, while similarly stressed mice having no such control had unaltered neurogenesis as compared to control mice receiving no stressors. Paradoxically, ES and IS mice had comparable stress-induced corticosterone elevations throughout the stress regimen. Appetitive operant conditioning and forced running procedures were used to model learning and exercise effects in this escapable/inescapable paradigm. Further, conditioning and running procedures did not seem to affect the mice's corticosterone or short-term neurogenesis. ES and IS mice did not show noticeable long-term changes in their dorsal DG neurogenesis, gliogenesis, local neuronal density, apoptosis, autophagic flux, or heterotypic stress responses. ES mice were found to have a greater number of previously labeled and functionally integrated DG neurons as compared to IS and control mice 6 weeks after the conclusion of the stressor regimen. Likewise, ES mice outperformed IS and non-stressed control mice for the first two, but not the remaining two, trials in the object location task. Compared to non-stressed controls, temozolomide-treated ES and IS mice having a lower number of dorsal DG 6-week-old neurons display poor performance in their object location working memory. These results, taken together, prompt us to conclude that repeated stressors, albeit their corticosterone secretion-stimulating effect, do not necessary affect adult dorsal DG neurogenesis. Moreover, stressed animals having behavioral control may display adult neurogenesis escalation in the dorsal DG. Furthermore, the number of 6-week-old and functionally-integrated neurons in the dorsal DG seems to confer the quality of spatial location working memory. Finally, these 6-week-old, adult-born neurons seem to contribute spatial location memory in a use-dependent manner.
Collapse
|
4
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
5
|
Guo H, Hegab IM, Tan Y, Yao B, Wang C, Cai Z, Ji W, Su J. Exposure to eagle owl feces induces anti-predator behavior, physiology, and hypothalamic gene responses in a subterranean rodent, the plateau zokor (Eospalax baileyi). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Boorman DC, Brown R, Keay KA. Periaqueductal gray inputs to the paraventricular nucleus of the thalamus: Columnar topography and glucocorticoid (in)sensitivity. Brain Res 2020; 1750:147171. [PMID: 33132167 DOI: 10.1016/j.brainres.2020.147171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023]
Abstract
The ability to cope with a novel acute stressor in the context of ongoing chronic stress is of critical adaptive value. The hypothalamic-pituitary-adrenal (HPA) axis contributes to the integrated physiological and behavioural responses to stressors. Under conditions of chronic stress, the posterior portion of the paraventricular thalamic nucleus (pPVT) mediates the 'habituation' of HPA-axis responses, and also facilitates HPA-axis reactivation to novel acute stressors amidst this habituation. Since pPVT neurons are sensitive to the inhibitory effects of circulating glucocorticoids, a glucocorticoid-insensitive neural pathway to the pPVT is likely essential for this reactivation process. The pPVT receives substantial inputs from neurons of the periaqueductal gray (PAG) region, which is organised into longitudinal columns critical for processing acute and/or chronic stressors. We investigated the columnar organisation of PAG → pPVT projections and for the first time determined their glucocorticoid sensitivity. Retrograde tracer injections were made into different rostro-caudal regions of the pPVT, and their PAG columnar inputs compared. Glucocorticoid receptor immunoreactivity (GR-ir) was quantified in these projection neurons. We found that the dorsolateral PAG projected most strongly to rostral pPVT and the ventrolateral PAG most strongly to the caudal pPVT. Despite abundant GR-ir in the PAG, we report a striking absence of GR-ir in PAG → pPVT neurons. Our data suggests that these pathways, which are insensitive to the direct actions of circulating glucocorticoids, likely play an important role in both the habituation of HPA-axis to chronic stressors and its facilitation to acute stressors in chronically stressed rats.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Rebecca Brown
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Dhabhar FS, Meaney MJ, Sapolsky RM, Spencer RL. Reflections on Bruce S. McEwen's contributions to stress neurobiology and so much more. Stress 2020; 23:499-508. [PMID: 32851903 DOI: 10.1080/10253890.2020.1806228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The authors highlight, from a firsthand perspective, Bruce S. McEwen's seminal influence on the field of stress neurobiology and beyond, and how these investigations have yielded important insights, principles and critical questions that continue to guide stress research today. Featured are discussion of: 1) the important inverted-U relationship between stress/glucocorticoids and optimal physiological function, 2) stress adaptation and the role of adaptive stress responses, 3) mechanisms by which the short-term stress response promotes heightened immune function and immunity, and 4) the far reaching impact of the theoretical framework of allostasis and allostatic load-concepts that have created new bridges between stress physiology, biomedical sciences, health psychology and sociology.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Departments of Psychiatry & Behavioral Sciences, Microbiology & Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miama, FL, USA
| | - Michael J Meaney
- Faculty of Medicine, McGill University, Montreal, Canada
- Translational Neuroscience Programme, Singapore Institute of Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Robert M Sapolsky
- John A. and Cynthia Fry Gunn Professor of Biological Sciences Departments of Biology, Neurology and Neurological Sciences, and Neurosurgery, Stanford University, Stanford, CA, USA
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Gorrell E, Shemery A, Kowalski J, Bodziony M, Mavundza N, Titus AR, Yoder M, Mull S, Heemstra LA, Wagner JG, Gibson M, Carey O, Daniel D, Harvey N, Zendlo M, Rich M, Everett S, Gavini CK, Almundarij TI, Lorton D, Novak CM. Skeletal muscle thermogenesis induction by exposure to predator odor. J Exp Biol 2020; 223:jeb218479. [PMID: 32165434 PMCID: PMC7174837 DOI: 10.1242/jeb.218479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023]
Abstract
Non-shivering thermogenesis can promote negative energy balance and weight loss. In this study, we identified a contextual stimulus that induces rapid and robust thermogenesis in skeletal muscle. Rats exposed to the odor of a natural predator (ferret) showed elevated skeletal muscle temperatures detectable as quickly as 2 min after exposure, reaching maximum thermogenesis of >1.5°C at 10-15 min. Mice exhibited a similar thermogenic response to the same odor. Ferret odor induced a significantly larger and qualitatively different response from that of novel or aversive odors, fox odor or moderate restraint stress. Exposure to predator odor increased energy expenditure, and both the thermogenic and energetic effects persisted when physical activity levels were controlled. Predator odor-induced muscle thermogenesis is subject to associative learning as exposure to a conditioned stimulus provoked a rise in muscle temperature in the absence of the odor. The ability of predator odor to induce thermogenesis is predominantly controlled by sympathetic nervous system activation of β-adrenergic receptors, as unilateral sympathetic lumbar denervation and a peripherally acting β-adrenergic antagonist significantly inhibited predator odor-induced muscle thermogenesis. The potential survival value of predator odor-induced changes in muscle physiology is reflected in an enhanced resistance to running fatigue. Lastly, predator odor-induced muscle thermogenesis imparts a meaningful impact on energy expenditure as daily predator odor exposure significantly enhanced weight loss with mild calorie restriction. This evidence signifies contextually provoked, centrally mediated muscle thermogenesis that meaningfully impacts energy balance.
Collapse
Affiliation(s)
- Erin Gorrell
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jesse Kowalski
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Miranda Bodziony
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Nhlalala Mavundza
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Amber R Titus
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Mark Yoder
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sarah Mull
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Jacob G Wagner
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Megan Gibson
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Olivia Carey
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Diamond Daniel
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Nicholas Harvey
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Meredith Zendlo
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Megan Rich
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Scott Everett
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Chaitanya K Gavini
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Tariq I Almundarij
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, PO Box 6622, Buraidah 51452, Saudi Arabia
| | - Diane Lorton
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Newsom RJ, Stafford J, Garcia RJ, Campeau S. Endocannabinoid signaling as an intrinsic component of the circuits mediating adaptive responses to repeated stress exposure in adult male sprague dawley rats. Stress 2020; 23:174-189. [PMID: 31506004 PMCID: PMC7054150 DOI: 10.1080/10253890.2019.1655538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence implicates the endocannabinoid (eCB) system as a negative modulator of neural and endocrine responses to acute stressors. Recently, eCB signaling was also reported to contribute to habituation of hypothalamo-pituitary-adrenal (HPA) axis responses to repeated homotypic stress. The present studies were initiated to distinguish a potential role of eCB signaling in the expression vs. the acquisition of habituation of the HPA axis response to repeated stress. In each of three experiments, adult male Sprague Dawley rats were exposed to daily, 30-minute sessions of loud white noise (95 dB), which resulted in a progressive decrease in HPA axis response over successive days. Cannabinoid receptor 1 (CB1) antagonist AM251 (0.5, 1.0 or 2.0 mg/kg, i.p.) was used to examine the role of eCB signaling in homotypic stressor habituation and heterotypic (novel) stressor cross-sensitization of neuroendocrine activity. Pretreatment with high dose (2.0 mg/kg) AM251 before each of 7 consecutive, daily loud noise exposures (acquisition of habituation) resulted in potentiation of stress-induced HPA axis activation and disruption of habituation. After an 8th loud noise exposure without AM251 pretreatment, the same group of rats displayed a habituated plasma corticosterone (CORT) level similar to that of controls, indicating that CB1 receptor antagonist pretreatments did not disrupt the acquisition of habituation. In two additional experiments, rats acquired habituation to loud noise drug free, then lower doses of AM251 (0.5 and 1.0 mg.kg) were administered before a final exposure (expression of habituation) to the homotypic stressor and/or a novel heterotypic stressor. CB1 receptor antagonism disrupted the expression of CORT response habituation and some of the c-fos mRNA reduction associated with it and facilitated novel stressor sensitization in doses that did not potentiate acute responses to these stressors. Collectively, these data suggest a progressive intensification of neural eCB signaling at CB1 receptors with repeated stress exposures.
Collapse
Affiliation(s)
- Ryan J. Newsom
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Robert J. Garcia
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Serge Campeau
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| |
Collapse
|
10
|
Rodríguez M, Ceric F, Murgas P, Harland B, Torrealba F, Contreras M. Interoceptive Insular Cortex Mediates Both Innate Fear and Contextual Threat Conditioning to Predator Odor. Front Behav Neurosci 2020; 13:283. [PMID: 31998093 PMCID: PMC6962178 DOI: 10.3389/fnbeh.2019.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022] Open
Abstract
The insular cortex (IC), among other brain regions, becomes active when humans experience fear or anxiety. However, few experimental studies in rats have implicated the IC in threat responses. We have recently reported that inactivation of the primary interoceptive cortex (pIC) during pre-training, or the intra-pIC blockade of protein synthesis immediately after training, impaired the consolidation of auditory fear conditioning. The present study was designed to investigate the role of the pIC in innate and learned defensive responses to predator odor. Freezing behavior was elicited by single or repetitive exposures to a collar that had been worn by a domestic cat. Sessions were video-recorded and later scored by video observation. We found that muscimol inactivation of the pIC reduced the expression of freezing reaction in response to a single or repeated exposure to cat odor. We also found that pIC inactivation with muscimol impaired conditioning of fear to the context in which rats were exposed to cat odor. Furthermore, neosaxitoxin inactivation of the pIC resulted in a prolonged and robust reduction in freezing response in subsequent re-exposures to cat odor. In addition, freezing behavior significantly correlated with the neural activity of the IC. The present results suggest that the IC is involved in the expression of both innate and learned fear responses to predator odor.
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Ceric
- Laboratorio de Neurociencia Afectiva, Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - Paola Murgas
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bruce Harland
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Fernando Torrealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Contreras
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Ogawa K, Ito M. Appetite-enhancing effects of nutmeg oil and structure-activity relationship of habituation to phenylpropanoids. J Nat Med 2019; 73:513-522. [PMID: 30919203 DOI: 10.1007/s11418-019-01295-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 11/27/2022]
Abstract
Nutmeg (Myristica fragrans) is widely used to flavour sweet and savoury foods and has been used as a herbal medicine to enhance appetite in Asian countries. Nutmeg oil contains compounds such as myristicin and methyl eugenol. Previously, we found that inhalation of phenylpropanoid compounds increased appetite in mice. These volatile aroma compounds with appetite-enhancing effects have attracted the attention of healthcare professionals who care for older people with dementia because many of these older people have hypophagia, which leads to frailty and becoming bedridden. Thus, appetite-enhancing agents that are inexpensive and easy to administer are particularly desirable. In this study, we showed that the inhalation of nutmeg oil, myristicin and methyl eugenol produced appetite-enhancing effects in mice. Methyl eugenol alone has shown appetite-enhancing effects and locomotor-reducing effects at the same dose. In a previous study, benzylacetone produced those two effects at the same dose and also increased the body weight of mice significantly; methyl eugenol, however, did not because the mice experienced olfactory habituation after repeated inhalations of methyl eugenol. A structure-activity study showed that a carbonyl group on the aliphatic chain prevented habituation to aroma compounds, which is important information for identifying suitable phenylpropanoid compounds for long-term treatment of loss of appetite.
Collapse
Affiliation(s)
- Kakuyou Ogawa
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Natural Medicines, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
12
|
Neuroendocrine and neuroimmune adaptation to Chronic Escalating Distress (CED): A novel model of chronic stress. Neurobiol Stress 2018; 9:74-83. [PMID: 30450375 PMCID: PMC6234279 DOI: 10.1016/j.ynstr.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
Acute and chronic stress challenges have a profound influence on the development and expression of subsequent affective disorders, alcohol use disorders, and natural aging processes. These experiments examined adaptation in neuroimmune and neuroendocrine responses that occurred as a result of exposure to a novel model of chronic stress, termed chronic escalating distress (CED). This model involves exposure to highly predictable daily stress challenges involving a systematic escalation in both the intensity and length of daily stress challenges, and has recently been shown to profoundly alter alcohol sensitivity. Male Sprague-Dawley rats were exposed to an 11 day procedure where days 1-5 consisted of 60 min of restraint, days 6-10 consisted of 60 min of restraint immediately followed by 30 min of forced swim, and on day 11 subjects were exposed to a 2 h session of intermittent footshock. Experiment 1 examined adaptation in the corticosterone (CORT) response at key points in the 11 day procedure, and found that the escalation in stressors disrupted habituation to restraint, whereas the CORT response to daily forced swim exposure increased across days. Experiment 2 investigated the impact of this stress paradigm on the expression of several cytokine (IL-1β, IL-6, TNF-α) and cellular activation marker (c-Fos, CD14, CD200R) genes in key brain regions (PVN, HPC, & PFC) known to be influenced by stress. Interestingly, a history of CED had no effect on footshock-induced neuroimmune changes (increased IL-1 in the PVN; increased IL-6 in the HPC and PFC). In addition, acute footshock and CED produced similar c-fos induction within the PVN whereas CED led to enhanced c-fos induction in both the HPC and PFC. These findings support recent work indicating that neuroimmune responses to acute stress challenges persisted in rats with a recent history of repeated stress exposure, and that these effects occurred contemporaneously with ongoing changes in HPA axis reactivity. Overall, this CED model may serve as a highly tractable model for studying adaptation to chronic stress, and may have implications for understanding stress-induced alterations in alcohol sensitivity and natural aging processes.
Collapse
|
13
|
Lee JH, Kimm S, Han JS, Choi JS. Chasing as a model of psychogenic stress: characterization of physiological and behavioral responses. Stress 2018; 21:323-332. [PMID: 29577783 DOI: 10.1080/10253890.2018.1455090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Being chased by a predator or a dominant conspecific can induce significant stress. However, only a limited number of laboratory studies have employed chasing by itself as a stressor. In this study, we developed a novel stress paradigm in which rats were chased by a fast-moving object in an inescapable maze. In Experiment 1, defensive behaviors and stress hormone changes induced by chasing stress were measured. During the chasing stress, the chasing-stress group (n = 9) froze and emitted 22-kHz ultrasonic vocalizations (USVs), but the no-chasing control group (n = 10) did not. Plasma corticosterone levels significantly increased following the chasing and were comparable to those of the restraint-stress group (n = 6). In Experiment 2, the long-lasting memory of the chasing event was tested after three weeks. The chasing-stress group (n = 15) showed higher levels of freezing and USV than the no-chasing group (n = 14) when they were presented with the tone associated with the object's chasing action. Subsequently, the rats were subjected to Pavlovian threat conditioning with a tone as a conditioned stimulus and footshock as an unconditioned stimulus. The chasing-stress group showed higher levels of freezing and USV during the conditioning session than the no-chasing group, indicating sensitized defensive reactions in a different threat situation. Taken together, the current results suggest that chasing stress can induce long-lasting memory and sensitization of defensive responses to a new aversive event as well as immediate, significant stress responses.
Collapse
Affiliation(s)
- Ji-Hye Lee
- a Department of Psychology , Korea University , Seoul , South Korea
| | - Sunwhi Kimm
- a Department of Psychology , Korea University , Seoul , South Korea
| | - Jung-Soo Han
- b Department of Biological Sciences , Konkuk University , Seoul , South Korea
| | - June-Seek Choi
- a Department of Psychology , Korea University , Seoul , South Korea
| |
Collapse
|
14
|
O'Brien CE, Jozet-Alves C, Mezrai N, Bellanger C, Darmaillacq AS, Dickel L. Maternal and Embryonic Stress Influence Offspring Behavior in the Cuttlefish Sepia officinalis. Front Physiol 2017; 8:981. [PMID: 29249984 PMCID: PMC5717421 DOI: 10.3389/fphys.2017.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stress experienced during prenatal development-either applied to reproducing females (maternal stress), directly to developing offspring (embryonic stress) or in combination-is associated with a range of post-natal behavioral effects in numerous organisms. We conducted an experiment to discern if maternal and embryonic stressors affect the behavior of hatchlings of the cuttlefish Sepia officinalis, a species with features that allow for the examination of these stress types in isolation. Separating the impact of stress transmitted through the mother vs. stress experienced by the embryo itself will help clarify the behavioral findings in viviparous species for which it is impossible to disentangle these effects. We also compared the effect of a naturally-occurring (predator cue) and an "artificial" (bright, randomly-occurring LED light) embryonic stressor. This allowed us to test the hypothesis that a threat commonly faced by a species (natural threat) would be met with a genetically-programmed and adaptive response while a novel one would confound innate defense mechanisms and lead to maladaptive effects. We found that the maternal stressor was associated with significant differences in body patterning and activity patterns. By contrast, embryonic exposure to stressors increased the proportion of individuals that pursued prey. From these results, it appears that in cuttlefish, maternal and embryonic stressors affect different post-natal behavior in offspring. In addition, the effect of the artificial stressor suggests that organisms can sometimes react adaptively to a stressor even if it is not one that has been encountered during the evolutionary history of the species.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Nawel Mezrai
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | - Cécile Bellanger
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Ludovic Dickel
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| |
Collapse
|
15
|
Optimizing laboratory animal stress paradigms: The H-H* experimental design. Psychoneuroendocrinology 2017; 75:5-14. [PMID: 27768983 DOI: 10.1016/j.psyneuen.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations. As an example, the H-H* experimental design incorporates control, homotypic (H), and heterotypic (H*) groups and allows for comparisons across groups, where each animal is exposed to the same stressor, but that stressor has vastly different biological and behavioral effects depending upon each animal's prior stress history. Implementation of the H-H* experimental paradigm makes possible a delineation of transcriptional changes and neural, endocrine, and immune pathways that are activated in precisely defined stressor contexts.
Collapse
|
16
|
Spencer RL, Deak T. A users guide to HPA axis research. Physiol Behav 2016; 178:43-65. [PMID: 27871862 DOI: 10.1016/j.physbeh.2016.11.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/19/2016] [Accepted: 11/16/2016] [Indexed: 12/18/2022]
Abstract
Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Terrence Deak
- Department of Psychology, Binghamton University - SUNY, Binghamton, NY, USA
| |
Collapse
|
17
|
Brachetta V, Schleich CE, Zenuto RR. Source Odor, Intensity, and Exposure Pattern Affect Antipredatory Responses in the Subterranean RodentCtenomys talarum. Ethology 2016. [DOI: 10.1111/eth.12568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Valentina Brachetta
- Laboratorio de Ecofisiología; Instituto de Investigaciones Marinas y Costeras (IIMyC); Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Mar del Plata Argentina
| | - Cristian E. Schleich
- Laboratorio de Ecofisiología; Instituto de Investigaciones Marinas y Costeras (IIMyC); Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Mar del Plata Argentina
| | - Roxana R. Zenuto
- Laboratorio de Ecofisiología; Instituto de Investigaciones Marinas y Costeras (IIMyC); Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Mar del Plata Argentina
| |
Collapse
|
18
|
Anxiety response and restraint-induced stress differentially affect ethanol intake in female adolescent rats. Neuroscience 2016; 334:259-274. [DOI: 10.1016/j.neuroscience.2016.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
19
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
20
|
Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output. Sci Rep 2016; 6:31244. [PMID: 27511270 PMCID: PMC4980629 DOI: 10.1038/srep31244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022] Open
Abstract
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Collapse
|
21
|
Assari S, Lankarani MM. Association Between Stressful Life Events and Depression; Intersection of Race and Gender. J Racial Ethn Health Disparities 2016. [DOI: 10.1007/s40615-015-0160-5 10.1007/s40615-015-0160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
22
|
Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology 2016; 68:163-70. [PMID: 26974501 PMCID: PMC5656452 DOI: 10.1016/j.psyneuen.2016.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
Exposure to chronic stress often elevates basal circulating glucocorticoids during the circadian nadir and leads to exaggerated glucocorticoid production following exposure to subsequent stressors. While glucocorticoid production is primarily mediated by the hypothalamic-pituitary-adrenal (HPA) axis, there is evidence that the sympathetic nervous system can affect diurnal glucocorticoid production by direct actions at the adrenal gland. Experiments here were designed to examine the role of the HPA and sympathetic nervous system in enhancing corticosterone production following chronic stress. Rats were exposed to a four-day stress paradigm or control conditions then exposed to acute restraint stress on the fifth day to examine corticosterone and ACTH responses. Repeated stressor exposure resulted in a small increase in corticosterone, but not ACTH, during the circadian nadir, and also resulted in exaggerated corticosterone production 5, 10, and 20min following restraint stress. While circulating ACTH levels increased after 5min of restraint, levels were not greater in chronic stress animals compared to controls until following 20min. Administration of astressin (a CRH antagonist) prior to restraint stress significantly reduced ACTH responses but did not prevent the sensitized corticosterone response in chronic stress animals. In contrast, administration of chlorisondamine (a ganglionic blocker) returned basal corticosterone levels in chronic stress animals to normal levels and reduced early corticosterone production following restraint (up to 10min) but did not block the exaggerated corticosterone response in chronic stress animals at 20min. These data indicate that increased sympathetic nervous system tone contributes to elevated basal and rapid glucocorticoid production following chronic stress, but HPA responses likely mediate peak corticosterone responses to stressors of longer duration.
Collapse
|
23
|
Harris BN, Carr JA. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 2016; 230-231:110-42. [PMID: 27080550 DOI: 10.1016/j.ygcen.2016.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
24
|
Nyhuis TJ, Masini CV, Taufer KL, Day HE, Campeau S. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats. Stress 2016; 19:248-59. [PMID: 26998558 PMCID: PMC4957647 DOI: 10.3109/10253890.2016.1160281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.
Collapse
Affiliation(s)
- Tara J. Nyhuis
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Cher V. Masini
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Kirsten L. Taufer
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Heidi E.W. Day
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Serge Campeau
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
- Corresponding Author: Serge Campeau, Department of Psychology and Neuroscience, University of Colorado, Muenzinger D244; UCB 345, Boulder, CO 80309, USA, Phone: 1-303-492-5693, Fax: 1-303-492-2967,
| |
Collapse
|
25
|
Assari S, Lankarani MM. Association Between Stressful Life Events and Depression; Intersection of Race and Gender. J Racial Ethn Health Disparities 2015; 3:349-56. [PMID: 27271076 DOI: 10.1007/s40615-015-0160-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although stressful life events (SLEs) and depression are associated, we do not know if the intersection of race and gender modifies the magnitude of this link. Using a nationally representative sample of adults in the USA, we tested if the association between SLE and major depressive episode (MDE) depends on the intersection of race and gender. METHODS Data came from the National Survey of American Life (NSAL), 2003, a cross-sectional survey that enrolled 5899 adults including 5008 Blacks (African-Americans or Caribbean Blacks), and 891 Non-Hispanic Whites. Logistic regression was used for data analysis. Stressful life events (past 30 days) was the independent variable, 12-month MDE was the dependent variable, and age, educational level, marital status, employment, and region of country were controls. RESULTS In the pooled sample, SLE was associated with MDE above and beyond all covariates, without the SLE × race interaction term being significant. Among men, the SLE × race interaction was significant, suggesting a stronger association between SLE and MDE among White men compared to Black men. Such interaction between SLE × race could not be found among women. CONCLUSIONS The association between SLE and depression may be stronger for White men than Black men; however, this link does not differ between White and Black women. More research is needed to better understand the mechanism behind race by gender variation in the stress-depression link.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd., Ann Arbor, MI, 48109-2700, USA.
- Center for Research on Ethnicity, Culture and Health (CRECH), School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Maryam Moghani Lankarani
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd., Ann Arbor, MI, 48109-2700, USA
- Center for Research on Ethnicity, Culture and Health (CRECH), School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Rabasa C, Gagliano H, Pastor-Ciurana J, Fuentes S, Belda X, Nadal R, Armario A. Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective. Neurosci Biobehav Rev 2015; 56:35-49. [PMID: 26112129 DOI: 10.1016/j.neubiorev.2015.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023]
Abstract
Repeated exposure to a wide range of stressors differing in nature and intensity results in a reduced response of prototypical stress markers (i.e. plasma levels of ACTH and adrenaline) after an acute challenge with the same (homotypic) stressor. This reduction has been considered to be a habituation-like phenomenon. However, direct experimental evidence for this assumption is scarce. In the present work we demonstrate in adult male rats that adaptation of the hypothalamus-pituitary-adrenal (HPA) axis to repeated stress does not follow some of the critical rules of habituation. Briefly, adaptation was stronger and faster with more severe stressors, maximally observed even with a single exposure to severe stressors, extremely long-lasting, negatively related to the interval between the exposures and positively related to the length of daily exposure. We offer a new theoretical view to explain adaptation to daily repeated stress.
Collapse
Affiliation(s)
- Cristina Rabasa
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Jordi Pastor-Ciurana
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Silvia Fuentes
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Roser Nadal
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain.
| |
Collapse
|
27
|
Belda X, Fuentes S, Daviu N, Nadal R, Armario A. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18:269-79. [PMID: 26300109 DOI: 10.3109/10253890.2015.1067678] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.
Collapse
Affiliation(s)
- Xavier Belda
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Silvia Fuentes
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Nuria Daviu
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Roser Nadal
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Antonio Armario
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| |
Collapse
|
28
|
Greenwood BN, Thompson RS, Opp MR, Fleshner M. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor. Front Psychiatry 2014; 5:146. [PMID: 25368585 PMCID: PMC4202708 DOI: 10.3389/fpsyt.2014.00146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/30/2014] [Indexed: 01/29/2023] Open
Abstract
Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.
Collapse
Affiliation(s)
| | - Robert S. Thompson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
29
|
Thompson RS, Strong PV, Clark PJ, Maslanik TM, Wright KP, Greenwood BN, Fleshner M. Repeated fear-induced diurnal rhythm disruptions predict PTSD-like sensitized physiological acute stress responses in F344 rats. Acta Physiol (Oxf) 2014; 211:447-65. [PMID: 24447583 DOI: 10.1111/apha.12239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/25/2013] [Accepted: 01/13/2014] [Indexed: 01/13/2023]
Abstract
AIM To identify objective factors that can predict future sensitized stress responses, thus allowing for effective intervention prior to developing sensitization and subsequent stress-related disorders, including post-traumatic stress disorder (PTSD). METHODS Adult male F344 rats implanted with biotelemetry devices were exposed to repeated conditioned fear or control conditions for 22 days followed by exposure to either no, mild or severe acute stress on day 23. Diurnal rhythms of locomotor activity (LA), heart rate (HR) and core body temperature (CBT) were biotelemetrically monitored throughout the study. In a subset of rat not implanted, corticosterone and indices of chronic stress were measured immediately following stress. RESULTS Rats exposed to repeated fear had fear-evoked increases in behavioural freezing and HR/CBT during exposure to the fear environment and displayed indices of chronic stress. Repeated fear produced flattening of diurnal rhythms in LA, HR and CBT. Repeated fear did not sensitize the corticosterone response to acute stress, but produced sensitized HR/CBT responses following acute stress, relative to the effect of acute stress in the absence of a history of repeated fear. Greater diurnal rhythm disruptions during repeated fear predicted sensitized acute stress-induced physiological responses. Rats exposed to repeated fear also displayed flattened diurnal LA and basal increases in HR. CONCLUSIONS Exposure to repeated fear produces outcomes consistent with those observed in PTSD. The results suggest that diurnal rhythm disruptions during chronic stressors may help predict sensitized physiological stress responses following traumatic events. Monitoring diurnal disruptions during repeated stress may thus help predict susceptibility to PTSD.
Collapse
Affiliation(s)
- R. S. Thompson
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - P. V. Strong
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - P. J. Clark
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
| | - T. M. Maslanik
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
| | - K. P. Wright
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - B. N. Greenwood
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - M. Fleshner
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| |
Collapse
|
30
|
Daviu N, Rabasa C, Nadal R, Armario A. Comparison of the effects of single and daily repeated immobilization stress on resting activity and heterotypic sensitization of the hypothalamic-pituitary-adrenal axis. Stress 2014; 17:176-85. [PMID: 24397592 DOI: 10.3109/10253890.2014.880834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute exposure to severe stressors causes marked activation of the hypothalamic-pituitary-adrenal (HPA) axis that is reflected on the day after higher resting levels of HPA hormones and sensitization of the HPA response to novel (heterotypic) stressors. However, whether a single exposure to a severe stressor or daily repeated exposure to the same (homotypic) stressor modifies these responses to the same extent has not been studied. In this experiment, we studied this issue in adult male Sprague-Dawley rats daily exposed for seven days to a severe stressor such as immobilization on boards (IMO). A first exposure to 1 h IMO resulted in a marked activation of the HPA axis as reflected in plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone, and such activation was significantly reduced after the seventh IMO. On the day after the first IMO, higher resting levels of ACTH and corticosterone and sensitization of their responses to a short exposure to an open-field (OF) were observed, together with a marked hypoactivity in this environment. Repeated exposure to IMO partially reduced hypoactivity, the increase in resting levels of HPA hormones and the ACTH responsiveness to the OF on the day after the last exposure to IMO. In contrast, corticosterone response was gradually increased, suggesting partial dissociation from ACTH. These results indicate that daily repeated exposure to the same stressor partially reduced the HPA response to the homotypic stressor as well as the sensitization of HPA axis activity observed the day after chronic stress cessation.
Collapse
Affiliation(s)
- Núria Daviu
- Institut de Neurociències, Red de trastornos Adictivos (RTA) , Bellaterra , Spain
| | | | | | | |
Collapse
|
31
|
Sasse SK, Nyhuis TJ, Masini CV, Day HEW, Campeau S. Central gene expression changes associated with enhanced neuroendocrine and autonomic response habituation to repeated noise stress after voluntary wheel running in rats. Front Physiol 2013; 4:341. [PMID: 24324441 PMCID: PMC3839297 DOI: 10.3389/fphys.2013.00341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/05/2013] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls. Stress habituation has been attributed to modifications of brain circuits, but the specific sites of adaptation and the molecular changes driving its expression remain unclear. Here, in situ hybridization histochemistry was used to examine regulation of select stress-associated signaling systems in brain regions representing likely candidates to underlie exercise-enhanced stress habituation. Analyzed brains were collected from active (6 weeks of wheel running) and sedentary rats following control, acute, or repeated noise exposures that induced a significantly faster rate of glucocorticoid response habituation in active animals but preserved acute noise responsiveness. Nearly identical experimental manipulations also induce a faster rate of cardiovascular response habituation in exercised, repeatedly stressed rats. The observed regulation of the corticotropin-releasing factor and brain-derived neurotrophic factor systems across several brain regions suggests widespread effects of voluntary exercise on central functions and related adaptations to stress across multiple response modalities.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | | | | | | | | |
Collapse
|
32
|
Tomaszycki ML, Aulerich KE, Bowen SE. Repeated toluene exposure increases c-Fos in catecholaminergic cells of the nucleus accumbens shell. Neurotoxicol Teratol 2013; 40:28-34. [PMID: 24036183 DOI: 10.1016/j.ntt.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/26/2022]
Abstract
Toluene is a frequently abused solvent. Previous studies have suggested that toluene acts like other drugs of abuse, specifically on the dopaminergic system in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of the mesolimbic pathway. Although changes in dopamine (DA) levels and c-Fos have been observed in both acute and repeated exposure paradigms, the extent to which c-Fos is localized to catecholaminergic cells is unknown. The present study tested the effects of repeated toluene exposure (1000-4000ppm) on locomotor activity and cells containing c-Fos, tyrosine hydroxylase (TH), or both in the core and shell of the NAc, as well as the anterior and posterior VTA. We focused our study on adolescents, since adolescence is a time of great neural change and a time when individuals tend to be more susceptible to drug abuse. In early tests, toluene dose-dependently increased locomotor activity. Repeated exposure to the highest concentration of toluene resulted in sensitization to toluene's effects on locomotor activity. Although the number of cells immunopositive for c-Fos or TH did not significantly differ across groups, cells immunopositive for TH+c-Fos were higher in the NAc shell of animals exposed to 4000ppm than in animals exposed to air (control) or 1000ppm. Taken together, these findings demonstrate that repeated high dose toluene exposure increases locomotor activity as well as activation of catecholaminergic cells in the shell of the NAc.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology, Wayne State University, Detroit, MI, United States; The Behavioral Neuroscience of Social Relationships Laboratory, Wayne State University, Detroit, MI, United States.
| | | | | |
Collapse
|
33
|
Kearns RR, Spencer RL. An unexpected increase in restraint duration alters the expression of stress response habituation. Physiol Behav 2013; 122:193-200. [PMID: 23566924 DOI: 10.1016/j.physbeh.2013.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
While habituation develops to a repeated psychological stressor, manipulating certain parameters of the stress challenge experience may lead to dishabituation of the stress response. In this experiment, we investigated whether the behavioral, endocrine, and neural responses (c-fos mRNA immediate early gene expression) to a psychological stressor (restraint) differ when the duration of the stressor given on the test day violates expectations based on prior stress experience. Rats experienced 10 min of daily restraint on Days 1-4 followed by a challenge with either the same duration (10 min) or a longer duration (30 min) of restraint on Day 5. Rats' behavior was video recorded during the Day 5 restraint episode, and trunk blood and brain tissue were collected 30 min following restraint onset. Struggling behavior was manually scored as active attempts to escape the restraint device. Rats who experienced the same duration of repeated restraint showed a significant decrease of plasma corticosterone (CORT) compared to the 10 min acute restraint group (habituation). In addition, these rats showed decreased active struggling over repeated restraint trials. Conversely, the rats showed an increased CORT response (dishabituation) when they experienced a longer duration of restraint on Day 5 than they had previously. These rats showed a habituated behavioral response during the first 10 min of restraint, however struggling behavior increased once the duration of restraint exceeded the expected duration (with a peak at 12 min). This peak in struggling behavior did not occur during 30 min acute restraint, indicating that the effect was related to the memory of previous restraint experience and not due to a longer duration of restraint. In contrast, these animals showed habituated c-fos mRNA expression in the paraventricular nucleus (PVN), lateral septum (LS), and medial prefrontal cortex (mPFC) in response to the increased stressor duration. Thus, there was a dissociation between c-fos mRNA expression in key stress responsive brain regions and the behavioral and endocrine response to increased stressor duration. This dissociation may have been due to a greater lag time for c-fos mRNA responses to reflect the impact of a dishabituation response. In conclusion, habituation of the endocrine and behavioral stress response occurred when the duration of the stressor matches the previous experience, while dishabituation of the stress response was triggered (with remarkable temporal precision) by an unexpected increase in stress duration.
Collapse
Affiliation(s)
- Rachael R Kearns
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Campus Box 345, Boulder, CO 80309 USA.
| | | |
Collapse
|
34
|
Horii Y, Nagai K, Nakashima T. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response. Behav Brain Res 2013; 243:109-17. [PMID: 23318462 DOI: 10.1016/j.bbr.2012.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research.
Collapse
Affiliation(s)
- Yuko Horii
- Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan.
| | | | | |
Collapse
|
35
|
Yoshihara T, Yawaka Y. Differential effects of repeated immobilization stress in early vs. late postnatal period on stress-induced corticosterone response in adult rats. Neurosci Lett 2012; 534:30-4. [PMID: 23262084 DOI: 10.1016/j.neulet.2012.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 11/27/2022]
Abstract
This study was performed in order to determine how immobilization stress in the early postnatal period or in the late postnatal period affects growth in the developing rat, and the response of the hypothalamus-pituitary-adrenocortical (HPA) axis in adult rats subjected to subsequent novel stresses. In addition, the effects of maternal deprivation (MD) within the same period of exposure to immobilization stress were also examined. We used two different types of immobilization stress and two different types of MD: immobilization stress for 30min per day from postnatal day 7 (P7) to P13 (IS-E group); immobilization stress for 30min from P15 to P21 (IS-L group); MD for 30min per day from P7 to P13 (MD-E group); and MD for 30min per day from P15 to P21 (MD-L group). The IS-E group showed a significant reduction in body weight that was maintained until at least P40 when compared with the control group. On the other hand, the IS-L group showed a significant reduction in body weight at only postnatal day (P) 20 when compared with the control group. Furthermore, the IS-E group showed a larger HPA response to novel stress than the IS-L and control groups in adulthood. The MD-E group showed a significant reduction in body weight that was maintained until at least P20 when compared with the control group, but did not show a larger HPA response to novel stress, except at T30 (30min after exposure to novel stress) than the control group in adulthood. The MD-L group did not show a significant reduction in body weight or increased HPA response when compared with control rats. These results suggest that repeated immobilization stress, but not MD, in the early postnatal period induces long-term effects on growth and HPA response to novel stress in adulthood.
Collapse
Affiliation(s)
- Toshihiro Yoshihara
- Division of Pediatric Dentistry, Department of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, North 13, West 7, Kita-ku, Sapporo 060-8586, Japan.
| | | |
Collapse
|
36
|
Delgado-Morales R, del Río E, Gómez-Román A, Bisagno V, Nadal R, de Felipe C, Armario A. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice. Physiol Behav 2011; 105:669-75. [PMID: 22019828 DOI: 10.1016/j.physbeh.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/15/2022]
Abstract
Brain substance P and its receptor (neurokinin-1, NK1) have a widespread brain distribution and are involved in an important number of behavioural and physiological responses to emotional stimuli. However, the role of NK1 receptors in the consequences of exposure to chronic stress has not been explored. The present study focused on the role of these receptors in the hypothalamic-pituitary-adrenal (HPA) response to daily repeated restraint stress (evaluated by plasma corticosterone levels), as well as on the effect of this procedure on anxiety-like behaviour, spatial learning and memory in the Morris water maze (MWM), a hippocampus-dependent task. Adult null mutant NK1-/- mice, with a C57BL/6J background, and the corresponding wild-type mice showed similar resting corticosterone levels and, also, did not differ in corticosterone response to a first restraint. Nevertheless, adaptation to the repeated stressor was faster in NK1-/- mice. Chronic restraint modestly increased anxiety-like behaviour in the light-dark test, irrespective of genotype. Throughout the days of the MWM trials, NK1-/- mice showed a similar learning rate to that of wild-type mice, but had lower levels of thigmotaxis and showed a better retention in the probe trial. Chronic restraint stress did not affect these variables in either genotype. These results indicate that deletion of the NK1 receptor does not alter behavioural susceptibility to chronic repeated stress in mice, but accelerates adaptation of the HPA axis. In addition, deletion may result in lower levels of thigmotaxis and improved short-term spatial memory, perhaps reflecting a better learning strategy in the MWM.
Collapse
|
37
|
Baisley SK, Cloninger CL, Bakshi VP. Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats. Physiol Behav 2011; 104:796-803. [PMID: 21843541 DOI: 10.1016/j.physbeh.2011.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022]
Abstract
Stress is suggested to exacerbate symptoms and contribute to relapse in patients with schizophrenia and several other psychiatric disorders. A prominent feature of many of these illnesses is an impaired ability to filter information through sensorimotor gating processes. Prepulse inhibition (PPI) is a functional measure of sensorimotor gating, and known to be deficient in schizophrenia and sometimes in post-traumatic stress disorder (PTSD), both of which are also sensitive to stress-induced symptom deterioration. We previously found that a psychological stressor (exposure to a ferret without physical contact), but not footshock, disrupted PPI in rats, suggesting that intense psychological stress/trauma may uniquely model stress-induced sensorimotor gating abnormalities. In the present experiment, we sought to recreate the conditions where we found this behavioral difference, and to explore possible underlying neural substrates. Rats were exposed acutely to ferret stress, footshock, or no stress (control). 90 min later, tissue was obtained for Fos immunohistochemistry to assess neuronal activation. Several brain regions (prelimbic, infralimbic, and cingulate cortices, the paraventricular hypothalamic nucleus, the paraventricular thalamic nucleus, and the lateral periaqueductal gray) were equally activated following exposure to either stressor. Interestingly, the medial amygdala and dorsomedial periaqueductal gray had nearly twice as much Fos activation in the ferret-exposed rats as in the footshock-exposed rats, suggesting that higher activation within these structures may contribute to the unique behavioral effects induced by predator stress. These results may have implications for understanding the neural substrates that could participate in sensorimotor gating abnormalities seen in several psychiatric disorders after psychogenic stress.
Collapse
Affiliation(s)
- Sarah K Baisley
- Neuroscience Training Program, Department of Psychiatry, University of Wisconsin-Madison, 7225 Medical Sciences Center, 1300 University Ave, Madison, WI 53706, USA.
| | | | | |
Collapse
|
38
|
Rabasa C, Muñoz-Abellán C, Daviu N, Nadal R, Armario A. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic–pituitary–adrenal axis. Physiol Behav 2011; 103:125-33. [DOI: 10.1016/j.physbeh.2011.02.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 01/29/2023]
|
39
|
Grissom NM, Bhatnagar S. The basolateral amygdala regulates adaptation to stress via β-adrenergic receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience 2011; 178:108-22. [PMID: 21256934 PMCID: PMC3049959 DOI: 10.1016/j.neuroscience.2010.12.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/13/2010] [Accepted: 12/24/2010] [Indexed: 12/28/2022]
Abstract
The reactivity of physiological systems and behavior to psychological stress is reduced with increasing familiarity with a repeated stressor. This reduced reactivity, termed habituation, is a crucial adaptation limiting negative health consequences of stress and can be disrupted in psychopathology. We hypothesized that the ability to habituate physiologically and behaviorally to previously experienced stressors depends on β-adrenergic receptor activation (β-AR) in the basolateral amygdala (BLA), a specific neural substrate important for the consolidation of multiple types of memories. We observed that administration of the β-AR antagonist propranolol into the BLA after each of four daily exposures to restraint stress prevented the normal development of neuroendocrine and behavioral habituation measured during the fifth restraint in adult male rats. In contrast, the β-AR agonist clenbuterol administered into the BLA after each restraint on days 1-4 enhanced neuroendocrine habituation at the lowest dose but attenuated behavioral habituation at high doses. We then explored intracellular signaling mechanisms in the BLA that might be a target of β-AR activation during stress. β-AR activation post restraint is necessary for the alteration in basal phosphorylated ERK (pERK) levels, as daily post-stress β-AR blockade on days 1-4 prevented repeated stress from leading to decreased pERK in the BLA on day 5. Finally, we examined the effect of blocking ERK phosphorylation in the BLA after each restraint on days 1-4 with the MEK (MAPK/ERK kinase) inhibitor U0126, and found that this was sufficient to both mimic neuroendocrine habituation in stress-naive animals and to enhance it in repeatedly stressed animals during restraint on day 5. Together, the results suggest that an individual's ability to habituate to repeated stress is regulated by activation of BLA β-AR, which may have these effects by transducing subsequent reductions in pERK. Individual variations in β-AR activation and intracellular signaling in the BLA may contribute significantly to adaptation to psychological stress and consequent resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Nicola M. Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48104
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
40
|
Adaptation to potential threat: The evolution, neurobiology, and psychopathology of the security motivation system. Neurosci Biobehav Rev 2011; 35:1019-33. [DOI: 10.1016/j.neubiorev.2010.08.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/21/2010] [Accepted: 08/04/2010] [Indexed: 12/29/2022]
|
41
|
Activation of phenotypically-distinct neuronal subpopulations of the rat amygdala following exposure to predator odor. Neuroscience 2010; 175:133-44. [PMID: 21146592 DOI: 10.1016/j.neuroscience.2010.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 01/28/2023]
Abstract
Exposure of rats to an odor of a predator can elicit an innate fear response. In addition, such exposure has been shown to activate limbic brain regions such as the amygdala. However, there is a paucity of data on the phenotypic characteristics of the activated amygdalar neurons following predator odor exposure. In the current experiments, rats were exposed to cloth which contained either ferret odor, butyric acid, or no odor for 30 min. Ferret odor-exposed rats displayed an increase in defensive burying versus control rats. Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), parvalbumin, or calbindin were made in the basolateral (BLA), central (CEA), and medial (MEA) nucleus of the amygdala. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CaMKII-positive neurons also immunoreactive for c-Fos in the BLA, CEA and MEA of ferret odor-exposed rats compared to control and butyric acid-exposed groups. Further results showed a significant decrease in calbindin-immunoreactive neurons that were also c-Fos-positive in the anterior portion of the BLA of ferret odor-exposed rats compared to control and butyric acid-exposed rats, whereas the MEA expressed a significant decrease in calbindin/c-Fos dual-labeled neurons in butyric acid-exposed rats compared to controls and ferret odor-exposed groups. These results enhance our understanding of the functioning of the amygdala following exposure to predator threats by showing phenotypic characteristics of activated amygdalar neurons. With this knowledge, specific neuronal populations could be targeted to further elucidate the fundamental underpinnings of anxiety and could possibly indicate new targets for the therapeutic treatment of anxiety.
Collapse
|
42
|
Predator odor avoidance as a rodent model of anxiety: Learning-mediated consequences beyond the initial exposure. Neurobiol Learn Mem 2010; 94:435-45. [DOI: 10.1016/j.nlm.2010.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/28/2010] [Accepted: 09/18/2010] [Indexed: 02/05/2023]
|
43
|
Campeau S, Nyhuis TJ, Sasse SK, Kryskow EM, Herlihy L, Masini CV, Babb JA, Greenwood BN, Fleshner M, Day HEW. Hypothalamic pituitary adrenal axis responses to low-intensity stressors are reduced after voluntary wheel running in rats. J Neuroendocrinol 2010; 22:872-88. [PMID: 20406350 PMCID: PMC4469265 DOI: 10.1111/j.1365-2826.2010.02007.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regular physical exercise is beneficial for both physical and mental health. By contrast, stress is associated with deleterious effects on health and there is growing evidence that regular physical exercise counteracts some of the effects of stress. However, most previous studies have suggested that prior exercise does not alter the acute hypothalamic pituitary adrenal (HPA) axis responses to stress. The present series of studies provides evidence that in rats, 6 weeks (but not 1 or 3 weeks) of voluntary wheel running reduces the HPA axis responses to lower-intensity stressors such as an i.p. saline injection, exposure to a novel environment or exposure to moderate intensity noise, but not to more intense stressors such as predator odour exposure or restraint. Daily exercise does not appear to be necessary for the reduction in HPA axis responses, with intermittent access (24 h out of each 72-h period) to a running wheel for 6 weeks, resulting in similar decrements in adrenocorticotrophic hormone and corticosterone release in response to 85 dBA noise exposure. Data from in situ hybridisation for c-fos mRNA are consistent with the hypothesis that voluntary exercise results in a decrease in HPA axis responsiveness to a low-intensity stressor at a central level, with no changes in primary sensory processing. Together, these data suggest that 6 weeks of daily or intermittent exercise constrains the HPA axis response to mild, but not more intense stressors, and that this regulation may be mediated at a central level beyond the primary sensory input.
Collapse
Affiliation(s)
- S Campeau
- University of Colorado, Department of Psychology and Neuroscience, Muenzinger, Boulder, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Weinberg MS, Johnson DC, Bhatt AP, Spencer RL. Medial prefrontal cortex activity can disrupt the expression of stress response habituation. Neuroscience 2010; 168:744-56. [PMID: 20394807 PMCID: PMC2881953 DOI: 10.1016/j.neuroscience.2010.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Recent findings suggest that the expression of hypothalamic-pituitary-adrenal (HPA) axis stress response adaptation in rats depends on top-down neural control. We therefore examined whether the medial prefrontal cortex (mPFC) modulates expression of stress response habituation. We transiently suppressed (muscimol microinfusion) or stimulated (picrotoxin microinfusion) mPFC neural activity in rats and studied the consequence on the first time response to psychological stress (restraint) or separately on the development and expression of habituation to repeated restraint. We monitored both the hormonal (corticosterone) and neural (forebrain c-fos mRNA) response to stress. Inactivation of the mPFC had no effect on the HPA-axis response to first time restraint, however increased mPFC activity attenuated stress-induced HPA-axis activity. In a three day repeated restraint stress regimen, inactivation of the mPFC on days 1 and 2, but not day 3, prevented the expression of HPA-axis hormone response habituation. In these same rats, the mPFC activity on day 3 interfered with the expression of c-fos mRNA habituation selectively within the mPFC, lateral septum and hypothalamic paraventricular nucleus. In contrast, inactivation of the mPFC only on day 3, or on all 3 days did not interfere with the expression of habituation. We conclude that the mPFC can permit or disrupt expression of HPA-axis stress response habituation, and this control depends on alteration of neural activity within select brain regions. A possible implication of these findings is that the dysregulation of PFC activity associated with depression and post-traumatic stress disorder may contribute to impaired expression of stress-response adaptation and consequently exacerbation of those disorders.
Collapse
Affiliation(s)
- Marc S. Weinberg
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Drew C. Johnson
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Aadra P. Bhatt
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
45
|
Inescapable but not escapable stress leads to increased struggling behavior and basolateral amygdala c-fos gene expression in response to subsequent novel stress challenge. Neuroscience 2010; 170:138-48. [PMID: 20600641 DOI: 10.1016/j.neuroscience.2010.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/11/2010] [Accepted: 06/22/2010] [Indexed: 11/23/2022]
Abstract
Control over an aversive experience can greatly impact the organism's response to subsequent stressors. We compared the effects of escapable (ES) and yoked inescapable (IS) electric tail shocks on the hypothalamic-pituitary-adrenal (HPA) axis hormonal (corticosterone and adrenocorticotropic hormone (ACTH)), neural (c-fos mRNA) and behavioral (struggling) response to subsequent restraint. We found that although the HPA axis response during restraint of both previously stressed groups were higher than stress-naïve rats and not different from each other, lack of control over the tailshock experience led to an increase in restraint-induced struggling behavior of the IS rats compared to both stress-naïve and ES rats. Additionally, c-fos expression in the basolateral amygdala was increased selectively in the IS group, and relative c-fos mRNA expression in the basolateral amygdala positively correlated with struggling behavior. Restraint-induced c-fos expression in the medial prefrontal cortex, a brain area critical for mediating some of the differential neurochemical and behavioral effects of ES and IS, was surprisingly similar in both ES and IS groups, lower than that of stress-naïve rats, and did not correlate with struggling behavior. Our findings indicate that basolateral amygdala activity may be connected with the differential effects of ES and IS on subsequent behavioral responses to restraint, without contributing to the concurrent HPA axis hormone response.
Collapse
|
46
|
Radulovic J, Tronson NC. Molecular specificity of multiple hippocampal processes governing fear extinction. Rev Neurosci 2010; 21:1-17. [PMID: 20458884 DOI: 10.1515/revneuro.2010.21.1.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over many years, fear extinction has been conceptualized as one dominant process, new inhibitory learning, which serves to dampen previously acquired fear. Here we present an alternative view, that brain region-specific processing of representations, expectations and emotional attributes of the fear-provoking event, recruits unique mechanisms that interdependently contribute to the conditioning and extinction of fear. The co-occurrence of these mechanisms within the fear circuit can thus be tracked and differentiated at a molecular and cellular level. Among others, the transcriptional regulators cFos, cAMP-dependent response element binding protein (CREB), Zif268, and extracellular signal-regulated kinases (Erk) stand out as hippocampal nuclear markers signaling novelty, arousal, retrieval, and prediction error, respectively. Consistent with evidence from human studies, these findings indicate that, beyond inhibitory learning, fear extinction requires modification of the emotional attributes and expectations that define the threatening context. Given the likely dysregulation of one or more of these processes in anxiety disorders, a key research challenge for the future is the identification and enhancement of individual extinction mechanisms to target the specific components of fear. Environmental stimuli lacking affective properties (conditioned stimuli, CS) rapidly become threatening if presented with stressful events (unconditioned stimuli, US). Consequently, based on a CS-US association, the presentation of the CS triggers species-specific fear responses until the US consistently stops occurring. At that point, new learning takes place and the fear response declines, a phenomenon termed extinction. The view that extinction occurs because a new, inhibitory CS-noUS association gains control over behavior, has remained dominant in the field. The implications of impaired fear regulation in the development of anxiety disorders have stimulated intense research in this area. Rodent studies identified the circuits involved in the conditioning and extinction of fear of salient cues, generating data that were confirmed in humans with brain imaging approaches. Nevertheless, research with experimental animals has not fully taken advantage of human data in order to better interpret extinction mechanisms in the framework of learning, expectation and emotion governing fear-motivated behavior. The present article aims to summarize recent molecular evidence on fear extinction, focusing on hippocampal mechanisms and experimental models of contextual fear, and compare the results with other relevant fear paradigms and human imaging studies. Instead of conceptualizing extinction learning as one process, such as CS-noUS association or inhibitory learning, we propose that fear extinction reflects the behavioral output of several region-specific learning processes that modify different components of the conditioning memory. The significance of these findings is discussed in the framework of fear regulation and anxiety disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
47
|
Vorobyov V, Janać B, Pesić V, Prolić Z. Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study. Int J Radiat Biol 2010; 86:376-83. [PMID: 20397842 DOI: 10.3109/09553000903567938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To compare the effects of repeated exposure to extremely low frequency-modulated microwaves (ELF-MW) on cortical and hypothalamic electroencephalograms (EEG). MATERIALS AND METHODS In 10 freely moving rats with carbon electrodes implanted into the cortex and dorsomedial hypothalamus, averaged frequency spectra (0.5-30 Hz) of the EEG were studied for five consecutive days either under sham exposures (five rats) or under mixed sham/MW-exposures (five rats). The rats were exposed to ELF-MW (915 MHz, 20-ms pulse duration, approximately 0.3 mW/cm(2), 4 Hz) intermittently (1-min 'On', 1-min 'Off') for 10 min (specific absorption rate, SAR, approximately 0.7 mW/g on average) several times per day, with 10-min pre- and post-exposure periods. RESULTS In baseline EEG, the activities of 3.2-6.0 Hz and 17.8-30.5 Hz dominated in the cortex and of 6.0-17.8 Hz in the hypothalamus. This cortical-hypothalamic imbalance was relatively stable at sham-exposures and insensitive to ELF-MW in all frequency ranges but one. ELF-MW increased the beta(2) (17.8-30.5 Hz) level in the hypothalamus to a greater extent than in the cortex, causing significant diminishing of the initial EEG bias between them. Moreover, a cumulative phenomenon under repeated exposures to ELF-MW was revealed. CONCLUSIONS These results are in line with evidence that repeated low-level exposure to ELF-MW affects brain functioning and provide an additional approach when analysing underlying mechanisms.
Collapse
|
48
|
Devall AJ, Lovick TA. Differential activation of the periaqueductal gray by mild anxiogenic stress at different stages of the estrous cycle in female rats. Neuropsychopharmacology 2010; 35:1174-85. [PMID: 20072120 PMCID: PMC3055401 DOI: 10.1038/npp.2009.222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of acute exposure to mild anxiogenic stress on cutaneous nociceptive threshold was investigated in female Wistar rats at different stages of the estrous cycle. Baseline tail flick latencies did not change significantly during the cycle. However after brief exposure to vibration stress (4 Hz for 5 min), rats in late diestrus, but not at other cycle stages, developed a hyperalgesia (decrease in tail flick latency). Animals in late diestrus revealed a more than fivefold increase in the density of Fos-like immunoreactive nuclei in the dorsolateral, lateral, and ventrolateral columns in the caudal half of the periaqueductal gray matter (PAG). There was no change in the density of Fos-like immunoreactive nuclei in the PAG in rats in estrus and early diestrus, although rats in proestrus showed a smaller (50%) but significant increase. Rats undergoing withdrawal from a progesterone dosing regimen (5 mg/kg i.p. twice daily for 6 days) designed to mimic the fall in progesterone that occurs naturally during late diestrus, exhibited a stress-induced hyperalgesia that was similar to animals in late diestrus and a significant increase in Fos-positive cells in the PAG. We suggest that falling levels of progesterone during late diestrus may be a predisposing factor for the development of stress-induced hyperalgesia, which is linked to differential activation of descending pain control circuits in the PAG. Similar changes in women, when progesterone levels fall during the late luteal phase of the menstrual cycle, may contribute to the development of premenstrual symptoms that include increased anxiety and hyperalgesia.
Collapse
Affiliation(s)
- Adam J Devall
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Thelma A Lovick
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Tel: 44 121 414 6929, Fax: 44 121 414 6919, E-mail:
| |
Collapse
|
49
|
Majkutewicz I, Cecot T, Jerzemowska G, Myślińska D, Plucińska K, Trojniar W, Wrona D. Lesion of the ventral tegmental area amplifies stimulation-induced Fos expression in the rat brain. Brain Res 2010; 1320:95-105. [PMID: 20079346 DOI: 10.1016/j.brainres.2010.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 11/17/2022]
Abstract
Unilateral lesions of the ventral tegmental area (VTA), the key structure of the mesolimbic system, facilitate behavioral responses induced by electrical stimulation of the VTA in the contralateral hemisphere. In search of the neuronal mechanism behind this phenomenon, Fos expression was used to measure neuronal activation of the target mesolimbic structures in rats subjected to unilateral electrocoagulation and simultaneously to contralateral electrical stimulation of the VTA (L/S group). These were compared to the level of mesolimbic activation after unilateral electrocoagulation of the VTA (L group), unilateral electrical stimulation of the VTA (S group) and bilateral electrode implantation into the VTA in the sham (Sh) group. We found that unilateral stimulation of the VTA alone increased the density of Fos containing neurons in the ipsilateral mesolimbic target structures: nucleus accumbens, lateral septum and amygdala in comparison with the sham group. However, unilateral lesion of the VTA was devoid of effect in non-stimulated (L) rats and it significantly amplified the stimulation-induced Fos-immunoreactivity (L/S vs S group). Stimulation of the VTA performed after contralateral lesion (L/S) evoked strong bilateral induction of Fos expression in the mesolimbic structures involved in motivation and reward (nucleus accumbens and lateral septum) and the processing of the reinforcing properties of olfactory stimuli (anterior cortical amygdaloid nucleus) in parallel with facilitation of behavioral function measured as shortened latency of eating or exploration. Our data suggest that VTA lesion sensitizes mesolimbic system to stimuli by suppressing an inhibitory influence of brain areas afferenting the VTA.
Collapse
Affiliation(s)
- Irena Majkutewicz
- Department of Animal Physiology, University of Gdańsk, 24 Kładki St., 80-822 Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
Kohman RA, Crowell B, Urbach-Ross D, Kusnecov AW. Influence of age on behavioral, immune and endocrine responses to the T-cell superantigen staphylococcal enterotoxin A. Eur J Neurosci 2009; 30:1329-38. [PMID: 19788578 DOI: 10.1111/j.1460-9568.2009.06921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aged subjects are more vulnerable to administration of the endotoxin lipopolysaccharide, but research on age-associated sensitivity to other immune stimulants has been limited. The current study examined the effects of administering the superantigen, staphylococcal enterotoxin A (SEA), to young (4-month-old) and aged (20-month-old) male C57BL/6J mice on consumption of a novel liquid, cytokine production, corticosterone levels, and expression of central mRNA levels of cytokines and corticotropin-releasing hormone. SEA produced exaggerated hypophagia in aged mice, as they showed decreased consumption that persisted for 24 h. SEA increased hypothalamic mRNA levels of interleukin-1beta in the aged, but not the young, mice 2 h after administration. No differences in cytokine expression were observed 24 h after SEA. Both age groups showed increased plasma corticosterone levels 2 h after SEA administration. However, 24 h after SEA exposure the aged, but not the young, mice showed an augmented corticosterone response to the consumption test. Collectively, these data show that aging may exacerbate the behavioral and neuroinflammatory response to superantigen exposure. Further, the present study suggests that immune activation may result in delayed alterations in stress-induced corticosterone production in aged subjects.
Collapse
Affiliation(s)
- Rachel A Kohman
- Department of Pharmacy and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|