1
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024; 47:100126. [PMID: 39426686 PMCID: PMC11577206 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however, it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1, serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells, are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut, as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Smith CA, O’Flaherty EAA, Guccio N, Punnoose A, Darwish T, Lewis JE, Foreman RE, Li J, Kay RG, Adriaenssens AE, Reimann F, Gribble FM. Single-cell transcriptomic atlas of enteroendocrine cells along the murine gastrointestinal tract. PLoS One 2024; 19:e0308942. [PMID: 39378212 PMCID: PMC11460673 DOI: 10.1371/journal.pone.0308942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Enteroendocrine cells (EECs) produce over 20 gut hormones which contribute to intestinal physiology, nutrient metabolism and the regulation of food intake. The objective of this study was to generate a comprehensive transcriptomic map of mouse EECs from the stomach to the rectum. METHODS EECs were purified by flow-cytometry from the stomach, upper small intestine, lower small intestine, caecum and large intestine of NeuroD1-Cre mice, and analysed by single cell RNA sequencing. Regional datasets were analysed bioinformatically and combined into a large cluster map. Findings were validated by L-cell calcium imaging and measurements of CCK secretion in vitro. RESULTS 20,006 EECs across the full gastrointestinal tract could be subdivided based on their full transcriptome into 10 major clusters, each exhibiting a different pattern of gut hormone expression. EECs from the stomach were largely distinct from those found more distally, even when expressing the same hormone. Cell clustering was also observed when performed only using genes related to GPCR cell signalling, revealing GPCRs predominating in different EEC populations. Mc4r was expressed in 55% of Cck-expressing cells in the upper small intestine, where MC4R agonism was found to stimulate CCK release in primary cultures. Many individual EECs expressed more than one hormone as well as machinery for activation by multiple nutrients, which was supported by the finding that the majority of L-cells exhibited calcium responses to multiple stimuli. CONCLUSIONS This comprehensive transcriptomic map of mouse EECs reveals patterns of GPCR and hormone co-expression that should be helpful in predicting the effects of nutritional and pharmacological stimuli on EECs from different regions of the gut. The finding that MC4R agonism stimulates CCK secretion adds to our understanding of the melanocortin system.
Collapse
Affiliation(s)
- Christopher A. Smith
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elisabeth A. A. O’Flaherty
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nunzio Guccio
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Austin Punnoose
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tamana Darwish
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jo E. Lewis
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel E. Foreman
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Joyce Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard G. Kay
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alice E. Adriaenssens
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Fiona M. Gribble
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
3
|
Apuschkin M, Burm HB, Schmidt JH, Skov LJ, Andersen RC, Bowin CF, Støier JF, Jensen KL, Posselt LP, Dmytriyeva O, Sørensen AT, Egerod KL, Holst B, Rickhag M, Schwartz TW, Gether U. An atlas of GPCRs in dopamine neurons: Identification of the free fatty acid receptor 4 as a regulator of food and water intake. Cell Rep 2024; 43:114509. [PMID: 39003735 DOI: 10.1016/j.celrep.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Midbrain dopaminergic neurons (DANs) are subject to extensive metabotropic regulation, but the repertoire of G protein-coupled receptors (GPCRs) present in these neurons has not been mapped. Here, we isolate DANs from Dat-eGFP mice to generate a GPCR atlas by unbiased qPCR array expression analysis of 377 GPCRs. Combined with data mining of scRNA-seq databases, we identify multiple receptors in DAN subpopulations with 38 of these receptors representing the majority of transcripts. We identify 41 receptors expressed in midbrain DANs but not in non-DAN midbrain cells, including the free fatty acid receptor 4 (FFAR4). Functional expression of FFAR4 is validated by ex vivo Ca2+ imaging, and in vivo experiments support that FFAR4 negatively regulates food and water intake and bodyweight. In addition to providing a critical framework for understanding metabotropic DAN regulation, our data suggest fatty acid sensing by FFAR4 as a mechanism linking high-energy intake to the dopamine-reward pathway.
Collapse
Affiliation(s)
- Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hayley B Burm
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jan H Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise J Skov
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rita C Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carl-Fredrik Bowin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leonie P Posselt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer L Egerod
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology and Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Lou N, Zhai M, Su Z, Chu F, Li Y, Chen Y, Liao M, Li P, Bo R, Meng X, Zhang P, Ding X. Pharmacodynamics and pharmacological mechanism of Moluodan concentrated pill in the treatment of atrophic gastritis: A network pharmacological study and in vivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116937. [PMID: 37480968 DOI: 10.1016/j.jep.2023.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moluodan concentrated pill (MLD) is a traditional herbal formula used in China for the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism of action remains unclear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic effect and mechanism of action of MLD in the treatment of CAG using network pharmacology and in vivo experiments. MATERIALS AND METHODS The active compounds of MLD were determined using network pharmacology, utilizing various Chinese medicine databases such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicine Integrated Database, Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine, and a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology. The compounds found in the root of Anemone altaica Fisch. were extracted from the China National Knowledge Infrastructure literature database. Additionally, the Swiss Target Prediction database and Similarity Ensemble Approach were employed to identify the potential targets of these components. CAG-related targets were gathered from the GeneCards and DisGeNET databases. Protein-protein interactions (PPIs) of the genes associated with the drug-disease crossover were examined, and a core PPI network was constructed using the STRING database (version 11.5) and Cytoscape (version 3.7.2). A gene-pathway network was established to identify significant target genes and pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, based on these findings and existing data, the tumor necrosis factor (TNF) signaling pathway was selected for further validation through in vivo experiments. RESULTS A total of 724 active molecules in MLD yielded 961 identified target genes, of which 179 were found to be potentially associated with CAG. From the common targets, a PPI network revealed ten core targets. Enrichment analysis suggested that MLD may primarily target TNF and AKT in the treatment of CAG. Essential signaling pathways, such as the PI3K-AKT and TNF pathways, were found to be crucial for the therapeutic effects of MLD on CAG. Furthermore, potential interactions and crosstalk between these pathways were identified. Moreover, we confirmed that MLD effectively improved gastric mucosa atrophy and cellular ultrastructural damage, while increasing pepsinogen secretion and decreasing gastrin, somatostatin, and motilin levels. Subsequent molecular biology studies in rat models of CAG demonstrated that MLD treatment significantly reduced the expression levels of TNF-α, phosphatidylinositol 3'-kinase (PI3K), and phosphorylated Akt (P < 0.05). Notably, the expression of nuclear factor kappa-B (NF-κB) exhibited a contrasting trend (P < 0.05), potentially associated with the crucial tumor suppressor role of NF-κB p105. CONCLUSION This study provides evidence that MLD effectively alleviates stomach mucosal atrophy through modulation of the TNF/PI3K/AKT signaling pathway. These findings establish a solid theoretical foundation for the practical management of CAG.
Collapse
Affiliation(s)
- Ni Lou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Mengyin Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Fuhao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Yuan Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Mengting Liao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Rongqiang Bo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Xiangmei Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Xia Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| |
Collapse
|
5
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
6
|
Calderon RM, Golczak M, Paik J, Blaner WS. Dietary Vitamin A Affects the Function of Incretin-Producing Enteroendocrine Cells in Male Mice Fed a High-Fat Diet. J Nutr 2023; 153:2901-2914. [PMID: 37648113 PMCID: PMC10613727 DOI: 10.1016/j.tjnut.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Retinol-binding protein 2 (RBP2) is an intracellular carrier for vitamin A in the absorptive enterocytes. Mice lacking RBP2 (Rbp2-/-) display an unexpected phenotype of obesity, glucose intolerance, and elevated glucose-dependent insulinotropic polypeptide (GIP) levels. GIP and glucagon-like peptide 1 (GLP-1) are incretin hormones secreted by enteroendocrine cells (EECs). We recently demonstrated the presence of RBP2 and other retinoid-related proteins in EECs. OBJECTIVES Given RBP2's role in intracellular retinoid trafficking, we aimed to evaluate whether dietary vitamin A affects incretin-secreting cell function and gene expression. METHODS Male Rbp2-/- mice and sex- and age-matched controls (n = 6-9) were fed a high-fat diet (HFD) for 18 wk containing normal (VAN, 4000 IU/kg of diet) or low (VAL, 25% of normal) vitamin A concentrations. Body weight was recorded biweekly. Plasma GIP and GLP-1 levels were obtained fasting and 30 min after an oral fat gavage at week 16. Glucose tolerance tests were also performed. Mice were killed at week 18, and blood and tissue samples were obtained. RESULTS Rbp2-/- mice displayed greater weight gain on the VAN compared with the VAL diet from week 7 of the intervention (P ≤ 0.01). Stimulated GIP levels were elevated in Rbp2-/- mice compared with their controls fed the VAN diet (P = 0.02), whereas their GIP response was lower when fed the VAL diet (P = 0.03). Although no differences in GLP-1 levels were observed in the VAN diet group, a lower GLP-1 response was seen in Rbp2-/- mice fed the VAL diet (P = 0.02). Changes in incretin gene expression and that of other genes associated with EEC lineage and function were consistent with these observations. Circulating and hepatic retinoid levels revealed no systemic vitamin A deficiency across dietary groups. CONCLUSIONS Our data support a role for RBP2 and dietary vitamin A in incretin secretion and gene expression in mice fed a HFD.
Collapse
Affiliation(s)
- Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
7
|
How Arrestins and GRKs Regulate the Function of Long Chain Fatty Acid Receptors. Int J Mol Sci 2022; 23:ijms232012237. [PMID: 36293091 PMCID: PMC9602559 DOI: 10.3390/ijms232012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with β-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of β-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how β-arrestins and GRKs regulate the function of long chain fatty acid receptors.
Collapse
|
8
|
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R, Emran TB. Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Australia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
9
|
L’intestin un organe endocrine : de la physiologie aux implications thérapeutiques en nutrition. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Liu XY, Zheng LF, Fan YY, Shen QY, Qi Y, Li GW, Sun Q, Zhang Y, Feng XY, Zhu JX. Activation of dopamine D 2 receptor promotes pepsinogen secretion by suppressing somatostatin release from the mouse gastric mucosa. Am J Physiol Cell Physiol 2022; 322:C327-C337. [PMID: 34986020 DOI: 10.1152/ajpcell.00385.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.
Collapse
MESH Headings
- Animals
- Chief Cells, Gastric/drug effects
- Chief Cells, Gastric/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Pepsinogen A/metabolism
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Secretory Pathway
- Somatostatin/metabolism
- Somatostatin-Secreting Cells/drug effects
- Somatostatin-Secreting Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Yan Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qian-Ying Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Guang-Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|
12
|
Zhao YF. Free fatty acid receptors in the endocrine regulation of glucose metabolism: Insight from gastrointestinal-pancreatic-adipose interactions. Front Endocrinol (Lausanne) 2022; 13:956277. [PMID: 36246919 PMCID: PMC9554507 DOI: 10.3389/fendo.2022.956277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose metabolism is primarily controlled by pancreatic hormones, with the coordinated assistance of the hormones from gastrointestine and adipose tissue. Studies have unfolded a sophisticated hormonal gastrointestinal-pancreatic-adipose interaction network, which essentially maintains glucose homeostasis in response to the changes in substrates and nutrients. Free fatty acids (FFAs) are the important substrates that are involved in glucose metabolism. FFAs are able to activate the G-protein coupled membrane receptors including GPR40, GPR120, GPR41 and GPR43, which are specifically expressed in pancreatic islet cells, enteroendocrine cells as well as adipocytes. The activation of FFA receptors regulates the secretion of hormones from pancreas, gastrointestine and adipose tissue to influence glucose metabolism. This review presents the effects of the FFA receptors on glucose metabolism via the hormonal gastrointestinal-pancreatic-adipose interactions and the underlying intracellular mechanisms. Furthermore, the development of therapeutic drugs targeting FFA receptors for the treatment of abnormal glucose metabolism such as type 2 diabetes mellitus is summarized.
Collapse
|
13
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
Tian M, Wu Z, Heng J, Chen F, Guan W, Zhang S. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance. Nutr Rev 2021; 80:187-199. [PMID: 34027989 DOI: 10.1093/nutrit/nuab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.
Collapse
Affiliation(s)
- Min Tian
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
15
|
Ghazvini Zadeh EH, Huang Z, Xia J, Li D, Davidson HW, Li WH. ZIGIR, a Granule-Specific Zn 2+ Indicator, Reveals Human Islet α Cell Heterogeneity. Cell Rep 2021; 32:107904. [PMID: 32668245 DOI: 10.1016/j.celrep.2020.107904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous mammalian cells contain abundant Zn2+ in their secretory granules, yet available Zn2+ sensors lack the desired specificity and sensitivity for imaging granular Zn2+. We developed a fluorescent zinc granule indicator, ZIGIR, that possesses numerous desired properties for live cell imaging, including >100-fold fluorescence enhancement, membrane permeability, and selective enrichment to acidic granules. The combined advantages endow ZIGIR with superior sensitivity and specificity for imaging granular Zn2+. ZIGIR enables separation of heterogenous β cells based on their insulin content and sorting of mouse islets into pure α cells and β cells. In human islets, ZIGIR facilitates sorting of endocrine cells into highly enriched α cells and β cells, reveals unexpectedly high Zn2+ activity in the somatostatin granule of some δ cells, and uncovers variation in the glucagon content among human α cells. We expect broad applications of ZIGIR for studying Zn2+ biology and Zn2+-rich secretory granules and for engineering β cells with high insulin content for treating diabetes.
Collapse
Affiliation(s)
- Ebrahim H Ghazvini Zadeh
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - ZhiJiang Huang
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Jing Xia
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Daliang Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| |
Collapse
|
16
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Croze ML, Guillaume A, Ethier M, Fergusson G, Tremblay C, Campbell SA, Maachi H, Ghislain J, Poitout V. Combined Deletion of Free Fatty-Acid Receptors 1 and 4 Minimally Impacts Glucose Homeostasis in Mice. Endocrinology 2021; 162:6128704. [PMID: 33543237 DOI: 10.1210/endocr/bqab002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/16/2022]
Abstract
The free fatty-acid receptors FFAR1 (GPR40) and FFAR4 (GPR120) are implicated in the regulation of insulin secretion and insulin sensitivity, respectively. Although GPR120 and GPR40 share similar ligands, few studies have addressed possible interactions between these 2 receptors in the control of glucose homeostasis. Here we generated mice deficient in gpr120 (Gpr120KO) or gpr40 (Gpr40KO), alone or in combination (Gpr120/40KO), and metabolically phenotyped male and female mice fed a normal chow or high-fat diet. We assessed insulin secretion in isolated mouse islets exposed to selective GPR120 and GPR40 agonists singly or in combination. Following normal chow feeding, body weight and energy intake were unaffected by deletion of either receptor, although fat mass increased in Gpr120KO females. Fasting blood glucose levels were mildly increased in Gpr120/40KO mice and in a sex-dependent manner in Gpr120KO and Gpr40KO animals. Oral glucose tolerance was slightly reduced in male Gpr120/40KO mice and in Gpr120KO females, whereas insulin secretion and insulin sensitivity were unaffected. In hyperglycemic clamps, the glucose infusion rate was lower in male Gpr120/40KO mice, but insulin and c-peptide levels were unaffected. No changes in glucose tolerance were observed in either single or double knock-out animals under high-fat feeding. In isolated islets from wild-type mice, the combination of selective GPR120 and GPR40 agonists additively increased insulin secretion. We conclude that while simultaneous activation of GPR120 and GPR40 enhances insulin secretion ex vivo, combined deletion of these 2 receptors only minimally affects glucose homeostasis in vivo in mice.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | - Mélanie Ethier
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | | | - Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Croze ML, Flisher MF, Guillaume A, Tremblay C, Noguchi GM, Granziera S, Vivot K, Castillo VC, Campbell SA, Ghislain J, Huising MO, Poitout V. Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Mol Metab 2021; 45:101166. [PMID: 33484949 PMCID: PMC7873385 DOI: 10.1016/j.molmet.2021.101166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. METHODS Glucose tolerance tests were performed in mice after administration of selective GPR120 agonist Compound A. Insulin, glucagon, and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knock-out of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β, and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. RESULTS Acute exposure to Compound A increased glucose tolerance, circulating insulin, and glucagon levels in vivo. Endogenous and/or pharmacological GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. CONCLUSIONS Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part by mitigating somatostatin release.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Marcus F Flisher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | | | - Glyn M Noguchi
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent C Castillo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Son SE, Kim NJ, Im DS. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol Ther (Seoul) 2021; 29:22-30. [PMID: 33372166 PMCID: PMC7771848 DOI: 10.4062/biomolther.2020.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Till the 21st century, fatty acids were considered as merely building blocks for triglycerides, phospholipids, or cholesteryl esters. However, the discovery of G protein-coupled receptors (GPCRs) for free fatty acids at the beginning of the 21st century challenged that idea and paved way for a new field of research, merged into the field of receptor pharmacology for intercellular lipid mediators. Among the GPCRs for free fatty acids, free fatty acid receptor 4 (FFA4, also known as GPR120) recognizes long-chain polyunsaturated fatty acids such as DHA and EPA. It is significant in drug discovery because it regulates obesity-induced metaflammation and GLP-1 secretion. Our study reviews information on newly developed FFA4 agonists and their application in pathophysiologic studies and drug discovery. It also offers a potency comparison of the FFA4 agonists in an AP-TGF-α shedding assay.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Shamsi BH, Chatoo M, Xu XK, Xu X, Chen XQ. Versatile Functions of Somatostatin and Somatostatin Receptors in the Gastrointestinal System. Front Endocrinol (Lausanne) 2021; 12:652363. [PMID: 33796080 PMCID: PMC8009181 DOI: 10.3389/fendo.2021.652363] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Somatostatin (SST) and somatostatin receptors (SSTRs) play an important role in the brain and gastrointestinal (GI) system. SST is produced in various organs and cells, and the inhibitory function of somatostatin-containing cells is involved in a range of physiological functions and pathological modifications. The GI system is the largest endocrine organ for digestion and absorption, SST-endocrine cells and neurons in the GI system are a critical effecter to maintain homeostasis via SSTRs 1-5 and co-receptors, while SST-SSTRs are involved in chemo-sensory, mucus, and hormone secretion, motility, inflammation response, itch, and pain via the autocrine, paracrine, endocrine, and exoendocrine pathways. It is also a power inhibitor for tumor cell proliferation, severe inflammation, and post-operation complications, and is a first-line anti-cancer drug in clinical practice. This mini review focuses on the current function of producing SST endocrine cells and local neurons SST-SSTRs in the GI system, discusses new development prognostic markers, phosphate-specific antibodies, and molecular imaging emerging in diagnostics and therapy, and summarizes the mechanism of the SST family in basic research and clinical practice. Understanding of endocrines and neuroendocrines in SST-SSTRs in GI will provide an insight into advanced medicine in basic and clinical research.
Collapse
Affiliation(s)
- Bilal Haider Shamsi
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Mahanand Chatoo
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xiao Kang Xu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xun Xu
- College of Renji, Wenzhou Medical University, Wenzhou, China
| | - Xue Qun Chen
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
- National Health Commission (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Ministry of Education (MOE), Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue Qun Chen,
| |
Collapse
|
22
|
Husted AS, Ekberg JH, Tripp E, Nissen TAD, Meijnikman S, O'Brien SL, Ulven T, Acherman Y, Bruin SC, Nieuwdorp M, Gerhart-Hines Z, Calebiro D, Dragsted LO, Schwartz TW. Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT. Mol Metab 2020; 42:101103. [PMID: 33091626 PMCID: PMC7683346 DOI: 10.1016/j.molmet.2020.101103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Long-chain fatty acids (LCFAs) released from adipocytes inhibit lipolysis through an unclear mechanism. We hypothesized that the LCFA receptor, FFAR4 (GPR120), which is highly expressed in adipocytes, may be involved in this feedback regulation. METHODS AND RESULTS Liquid chromatography mass spectrometry (LC-MS) analysis of conditioned media from isoproterenol-stimulated primary cultures of murine and human adipocytes demonstrated that most of the released non-esterified free fatty acids (NEFAs) are known agonists for FFAR4. In agreement with this, conditioned medium from isoproterenol-treated adipocytes stimulated signaling strongly in FFAR4 transfected COS-7 cells as opposed to non-transfected control cells. In transfected 3T3-L1 cells, FFAR4 agonism stimulated Gi- and Go-mini G protein binding more strongly than Gq, effects which were blocked by the selective FFAR4 antagonist AH7614. In primary cultures of murine white adipocytes, the synthetic, selective FFAR4 agonist CpdA inhibited isoproterenol-induced intracellular cAMP accumulation in a manner similar to the antilipolytic control agent nicotinic acid acting through another receptor, HCAR2. In vivo, oral gavage with the synthetic, specific FFAR4 agonist CpdB decreased the level of circulating NEFAs in fasting lean mice to a similar degree as nicotinic acid. In agreement with the identified anti-lipolytic effect of FFAR4, plasma NEFAs and glycerol were increased in FFAR4-deficient mice as compared to littermate controls despite having elevated insulin levels, and cAMP accumulation in primary adipocyte cultures was augmented by treatment with the FFAR4 antagonist conceivably by blocking the stimulatory tone of endogenous NEFAs on FFAR4. CONCLUSIONS In white adipocytes, FFAR4 functions as an NEFA-activated, autocrine, negative feedback regulator of lipolysis by decreasing cAMP though Gi-mediated signaling.
Collapse
Affiliation(s)
- Anna Sofie Husted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Jeppe H Ekberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Emma Tripp
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Tinne A D Nissen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Stijn Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Yair Acherman
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands.
| | - Sjoerd C Bruin
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands.
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, 1958, Denmark.
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Nunez-Salces M, Li H, Feinle-Bisset C, Young RL, Page AJ. Nutrient-sensing components of the mouse stomach and the gastric ghrelin cell. Neurogastroenterol Motil 2020; 32:e13944. [PMID: 32666613 DOI: 10.1111/nmo.13944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The ability of the gut to detect nutrients is critical to the regulation of gut hormone secretion, food intake, and postprandial blood glucose control. Ingested nutrients are detected by specific gut chemosensors. However, knowledge of these chemosensors has primarily been derived from the intestine, while available information on gastric chemosensors is limited. This study aimed to investigate the nutrient-sensing repertoire of the mouse stomach with particular emphasis on ghrelin cells. METHODS Quantitative RT-PCR was used to determine mRNA levels of nutrient chemosensors (protein: G protein-coupled receptor 93 [GPR93], calcium-sensing receptor [CaSR], metabotropic glutamate receptor type 4 [mGluR4]; fatty acids: CD36, FFAR2&4; sweet/umami taste: T1R3), taste transduction components (TRPM5, GNAT2&3), and ghrelin and ghrelin-processing enzymes (PC1/3, ghrelin O-acyltransferase [GOAT]) in the gastric corpus and antrum of adult male C57BL/6 mice. Immunohistochemistry was performed to assess protein expression of chemosensors (GPR93, T1R3, CD36, and FFAR4) and their co-localization with ghrelin. KEY RESULTS Most nutrient chemosensors had higher mRNA levels in the antrum compared to the corpus, except for CD36, GNAT2, ghrelin, and GOAT. Similar regional distribution was observed at the protein level. At least 60% of ghrelin-positive cells expressed T1R3 and FFAR4, and over 80% expressed GPR93 and CD36. CONCLUSIONS AND INFERENCES The cellular mechanisms for the detection of nutrients are expressed in a region-specific manner in the mouse stomach and gastric ghrelin cells. These gastric nutrient chemosensors may play a role modulating gastrointestinal responses, such as the inhibition of ghrelin secretion following food intake.
Collapse
Affiliation(s)
- Maria Nunez-Salces
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard L Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
24
|
Zhao YF, Li XC, Liang XY, Zhao YY, Xie R, Zhang LJ, Zhang XC, Chen C. GPR120 Regulates Pancreatic Polypeptide Secretion From Male Mouse Islets via PLC-Mediated Calcium Mobilization. Endocrinology 2020; 161:5900686. [PMID: 32877513 DOI: 10.1210/endocr/bqaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023]
Abstract
The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891-stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891-stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Cheng Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiang-Yan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yan-Yan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Rong Xie
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Li-Jun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Chun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Gasbjerg LS, Bergmann NC, Stensen S, Christensen MB, Rosenkilde MM, Holst JJ, Nauck M, Knop FK. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 2020; 125:170183. [PMID: 31693916 DOI: 10.1016/j.peptides.2019.170183] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) potentiate glucose-induced insulin secretion and are therefore thought to be responsible for the incretin effect. The magnitude of the incretin effect, defined as the fraction of postprandial insulin secretion stimulated by intestinal factors, has been reported to be up to ∼60% in healthy individuals. In several pathological conditions but especially in patients with type 2 diabetes, the incretin effect is severely reduced or even absent. In line with this, the insulinotropic effects of GIP and GLP-1 are impaired in patients with type 2 diabetes, even when administered in supraphysiological doses. In healthy individuals, GIP has been proposed to be the most important incretin hormone of the two, but the individual contribution of the two is difficult to determine. However, using incretin hormone receptor antagonists: the novel GIP receptor antagonist GIP(3-30)NH2 and the widely used GLP-1 receptor antagonist exendin(9-39)NH2, we can now distinguish between the effects of the two hormones. In this review, we present and discuss studies in which the individual contribution of GIP and GLP-1 to the incretin effect in healthy individuals have been estimated and discuss the limitations of using incretin hormone receptor antagonists.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nauck
- Diabetes Division, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Jepsen SL, Grunddal KV, Wewer Albrechtsen NJ, Engelstoft MS, Gabe MBN, Jensen EP, Ørskov C, Poulsen SS, Rosenkilde MM, Pedersen J, Gribble FM, Reimann F, Deacon CF, Schwartz TW, Christ AD, Martin RE, Holst JJ. Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. Am J Physiol Endocrinol Metab 2019; 317:E1081-E1093. [PMID: 31503512 PMCID: PMC6962500 DOI: 10.1152/ajpendo.00239.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DPP-4 inhibitors, used for treatment of type 2 diabetes, act by increasing the concentrations of intact glucagon-like peptide-1 (GLP-1), but at the same time, they inhibit secretion of GLP-1, perhaps by a negative feedback mechanism. We hypothesized that GLP-1 secretion is feedback regulated by somatostatin (SS) from neighboring D-cells, and blocking this feedback circuit results in increased GLP-1 secretion. We used a wide range of experimental techniques, including gene expression analysis, immunohistochemical approaches, and the perfused mouse intestine to characterize the paracrine circuit controlling GLP-1 and SS. We show that 1) antagonizing the SS receptor (SSTr) 2 and SSTr5 led to increased GLP-1 and SS secretion in the mouse, 2) SS exhibits strong tonic inhibition of GLP-1 secretion preferentially through SSTr5, and 3) the secretion of S was GLP-1 receptor dependent. We conclude that SS is a tonic inhibitor of GLP-1 secretion, and interventions in the somatostain-GLP-1 paracrine loop lead to increased GLP-1 secretion.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Maja S Engelstoft
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria B N Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Christ
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
30
|
Wang Q, Liszt KI, Deloose E, Canovai E, Thijs T, Farré R, Ceulemans LJ, Lannoo M, Tack J, Depoortere I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut. FASEB J 2019; 33:4907-4920. [PMID: 30629462 DOI: 10.1096/fj.201801661rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemosensory signaling in organs such as the mouth and gut contributes to the mechanisms that control metabolism. We investigated the chemosensory pathways that regulate secretion of the hunger hormone ghrelin in response to neurotransmitters, bitter and sweet tastants at the cellular level in the human gut mucosa, and the disturbances in this regulatory pathway induced by obesity. Obesity impaired ghrelin protein production and adrenalin-induced ghrelin secretion in fundic cells, which was counterbalanced by somatostatin. Bitter agonists selective for taste receptor type 2 (TAS2Rs), TAS2R5 and TAS2R10 stimulated ghrelin secretion in fundic cells. The stimulatory effect of the broadly tuned bitter agonist, denatonium benzoate, was selectively blunted by obesity in the small intestine but not in the fundus. Luminal glucose concentrations inhibited ghrelin secretion via sodium-dependent glucose cotransporter and taste receptor type 1 member 3. Obesity altered the sensitivity of the ghrelin cell to glucose in the small intestine but not in the fundus. Sweet taste receptor activation inhibited bitter taste signaling of the ghrelin cell. In conclusion, obesity impairs the sympathetic drive that controls ghrelin release in the fundus and affects the sensitivity of the ghrelin cell to bitter and sweet stimuli in the small intestine but not in the fundus. Region-selective targeting of gut taste receptors in obesity is indicated.-Wang, Q., Liszt, K. I., Deloose, E., Canovai, E., Thijs, T., Farré, R., Ceulemans, L. J., Lannoo, M., Tack, J., Depoortere, I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Emilio Canovai
- Department of Abdominal Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium; and
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Abdominal Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium; and
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB. Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 2018; 376:37-49. [PMID: 30467709 DOI: 10.1007/s00441-018-2957-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Gastric endocrine cell hormones contribute to the control of the stomach and to signalling to the brain. In other gut regions, enteroendocrine cells (EECs) exhibit extensive patterns of colocalisation of hormones. In the current study, we characterise EECs in the human gastric fundus and corpus. We utilise immunohistochemistry to investigate EECs with antibodies to ghrelin, serotonin (5-HT), somatostatin, peptide YY (PYY), glucagon-like peptide 1, calbindin, gastrin and pancreastatin, the latter as a marker of enterochromaffin-like (ECL) cells. EECs were mainly located in regions of the gastric glands populated by parietal cells. Gastrin cells were absent and PYY cells were very rare. Except for about 25% of 5-HT cells being a subpopulation of ECL cells marked by pancreastatin, colocalisation of hormones in gastric EECs was infrequent. Ghrelin cells were distributed throughout the fundus and corpus; most were basally located in the glands, often very close to parietal cells and were closed cells i.e., not in contact with the lumen. A small proportion had long processes located close to the base of the mucosal epithelium. The 5-HT cells were of at least three types: small, round, closed cells; cells with multiple, often very long, processes; and a subgroup of ECL cells. Processes were in contact with their surrounding cells, including parietal cells. Mast cells had very weak or no 5-HT immunoreactivity. Somatostatin cells were a closed type with long processes. In conclusion, four major chemically defined EEC types occurred in the human oxyntic mucosa. Within each group were cells with distinct morphologies and relationships to other mucosal cells.
Collapse
Affiliation(s)
- Josiane Fakhry
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Martin J Stebbing
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kent C Sasse
- School of Medicine, Universiity of Nevada, Reno, NV, 89557, USA.,Renown Regional Medical Center, Reno, NV, 89502, USA
| | - Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
32
|
Fothergill LJ, Furness JB. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 2018; 150:693-702. [PMID: 30357510 DOI: 10.1007/s00418-018-1746-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Enteroendocrine cells were historically classified by a letter code, each linked to a single hormone, deduced to be the only hormone produced by the cell. One type, the L cell, was recognised to store and secrete two products, peptide YY (PYY) and glucagon-related peptides. Many other exceptions to the one-cell one-hormone classifications have been reported over the last 40 years or so, and yet the one-hormone dogma has persisted. In the last 6 years, a plethora of data has appeared that makes the concept unviable. Here, we describe the evidence that multiple hormone transcripts and their products reside in single cells and evidence that the hormones are often, but not always, processed into separate storage vesicles. It has become clear that most enteroendocrine cells contain multiple hormones. For example, most secretin cells contain 5-hydroxytryptamine (5-HT), and in mouse many of these also contain cholecystokinin (CCK). Furthermore, CCK cells also commonly store ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), neurotensin, and PYY. Several hormones, for example, secretin and 5-HT, are in separate storage vesicles at a subcellular level. Hormone patterns can differ considerably between species. Another complication is that relative levels of expression vary substantially. This means that data are significantly influenced by the sensitivities of detection techniques. For example, a hormone that can be detected in storage vesicles by super-resolution microscopy may not be above threshold for detection by conventional fluorescence microscopy. New nomenclature for cell clusters with common attributes will need to be devised and old classifications abandoned.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
33
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Lu VB, Gribble FM, Reimann F. Free Fatty Acid Receptors in Enteroendocrine Cells. Endocrinology 2018; 159:2826-2835. [PMID: 29688303 DOI: 10.1210/en.2018-00261] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023]
Abstract
Free fatty acid receptors (FFAs) are highly enriched in enteroendocrine cells providing pathways to link dietary fats and microbially generated short-chain fatty acids (SCFAs) to the secretion of a variety of gut hormones. FFA1 and FFA4 are receptors for long-chain fatty acids that have been linked to the elevation of plasma gut hormones after fat ingestion. FFA2 and FFA3 are receptors for SCFA, which are generated at high concentrations by microbial fermentation of dietary fiber and have also been implicated in enhancement of gut hormone secretion. FFAs are candidate drug targets for increasing the secretion of intestinal hormones such as glucagon-like peptide-1 and peptide YY as potential new treatments for type 2 diabetes and obesity. This review will examine aspects of intestinal physiology and pharmacology related to the function of FFAs in enteroendocrine cells.
Collapse
Affiliation(s)
- Van B Lu
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
35
|
Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites. Mol Metab 2018; 11:70-83. [PMID: 29576437 PMCID: PMC6001397 DOI: 10.1016/j.molmet.2018.03.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
Objectives 5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear. Methods and results TPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCR sensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1 (TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistry using a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometric method. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132. Conclusion Nutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1. Pure intestinal 5-HT cells are obtained through antibody-based FACS sorting. Small intestinal 5-HT cells do not express sensors for nutrient metabolites. Colonic 5-HT cells express multiple types of receptors for gut microbial metabolites. GLP-1 stimulates 5-HT release from ex vivo intestinal preparations. GLP-1 and 5-HT act in series and synergy to control GI-tract and metabolism.
Collapse
Affiliation(s)
- Mari L Lund
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Kristoffer L Egerod
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Maja S Engelstoft
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Elvar Theodorsson
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bhavik A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Moodaley R, Smith DM, Tough IR, Schindler M, Cox HM. Agonism of free fatty acid receptors 1 and 4 generates peptide YY-mediated inhibitory responses in mouse colon. Br J Pharmacol 2017; 174:4508-4522. [PMID: 28971469 DOI: 10.1111/bph.14054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Free fatty acid receptors FFA1 and FFA4 are located on enteroendocrine L cells with the highest gastrointestinal (GI) expression in descending colon. Their activation causes the release of glucagon-like peptide 1 and peptide YY (PYY) from L cells. Additionally, FFA1 agonism releases insulin from pancreatic β cells. As these receptors are modulators of nutrient-stimulated glucose regulation, the aim of this study was to compare the pharmacology of commercially available agonists (TUG424, TUG891, GW9508) with proven selective agonists (JTT, TAK-875, AZ423, Metabolex-36) in mice. EXPERIMENTAL APPROACH Mouse mucosa was mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc ) was recorded continuously. Pretreatments included antagonists of FFA1, Y1 or Y2 receptors. Glucose sensitivity was investigated by mannitol replacement apically, and colonic and upper GI transit was assessed in vitro and in vivo. KEY RESULTS FFA1 and FFA4 agonism required glucose and reduced Isc in a PYY-Y1 receptor-dependent manner. The novel compounds were more potent than GW9508. The FFA1 antagonists (GW1100 and ANT825) blocked FFA1 activity only and revealed FFA1 tonic activity. The FFA4 agonist, Metabolex-36, slowed colonic transit in vitro but increased small intestinal transit in vivo. CONCLUSIONS AND IMPLICATIONS The selective FFA1 and FFA4 agonists were more potent at reducing Isc than GW9508, a dual FFA1 and FFA4 agonist. A paracrine epithelial mechanism involving PYY-stimulated Y1 receptors mediated their responses, which were glucose sensitive, potentially limiting hypoglycaemia. ANT825 revealed tonic activity and the possibility of endogenous FFA1 ligands causing PYY release. Finally, FFA4 agonism induced regional differences in transit.
Collapse
Affiliation(s)
- Runisha Moodaley
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines & Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Iain R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Marcus Schindler
- AstraZeneca Mölndal, Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, Mölndal, Sweden
| | - Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
37
|
Briant LJB, Reinbothe TM, Spiliotis I, Miranda C, Rodriguez B, Rorsman P. δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J Physiol 2017; 596:197-215. [PMID: 28975620 PMCID: PMC5767697 DOI: 10.1113/jp274581] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022] Open
Abstract
Key points We used a mouse expressing a light‐sensitive ion channel in β‐cells to understand how α‐cell activity is regulated by β‐cells. Light activation of β‐cells triggered a suppression of α‐cell activity via gap junction‐dependent activation of δ‐cells. Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose on glucagon secretion is mediated by β‐cells via gap junction‐dependent activation of δ‐cells/somatostatin secretion.
Abstract Glucagon, the body's principal hyperglycaemic hormone, is released from α‐cells of the pancreatic islet. Secretion of this hormone is dysregulated in type 2 diabetes mellitus but the mechanisms controlling secretion are not well understood. Regulation of glucagon secretion by factors secreted by neighbouring β‐ and δ‐cells (paracrine regulation) have been proposed to be important. In this study, we explored the importance of paracrine regulation by using an optogenetic strategy. Specific light‐induced activation of β‐cells in mouse islets expressing the light‐gated channelrhodopsin‐2 resulted in stimulation of electrical activity in δ‐cells but suppression of α‐cell activity. Activation of the δ‐cells was rapid and sensitive to the gap junction inhibitor carbenoxolone, whereas the effect on electrical activity in α‐cells was blocked by CYN 154806, an antagonist of the somatostatin‐2 receptor. These observations indicate that optogenetic activation of the β‐cells propagates to the δ‐cells via gap junctions, and the consequential stimulation of somatostatin secretion inhibits α‐cell electrical activity by a paracrine mechanism. To explore whether this pathway is important for regulating α‐cell activity and glucagon secretion in human islets, we constructed computational models of human islets. These models had detailed architectures based on human islets and consisted of a collection of >500 α‐, β‐ and δ‐cells. Simulations of these models revealed that this gap junctional/paracrine mechanism accounts for up to 23% of the suppression of glucagon secretion by high glucose. We used a mouse expressing a light‐sensitive ion channel in β‐cells to understand how α‐cell activity is regulated by β‐cells. Light activation of β‐cells triggered a suppression of α‐cell activity via gap junction‐dependent activation of δ‐cells. Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose on glucagon secretion is mediated by β‐cells via gap junction‐dependent activation of δ‐cells/somatostatin secretion.
Collapse
Affiliation(s)
- L J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK.,Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - T M Reinbothe
- Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - I Spiliotis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - C Miranda
- Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - B Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - P Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK.,Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
38
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
39
|
Abstract
The digestion, absorption and utilisation of dietary triglycerides are controlled by gut hormones, released from enteroendocrine cells along the length of the gastrointestinal tract. Major players in the detection of ingested lipids are the free fatty acid receptors FFA1 and FFA4, which are highly expressed on enteroendocrine cells. These receptors are activated when free fatty acids (FFA) are absorbed across the intestinal epithelium, and provide a dynamic hormonal signal indicating that lipids are arriving in the bloodstream from the gut. This review addresses our current knowledge of how ingested triglycerides modulate gut hormone release via FFA1 and FFA4.
Collapse
|
40
|
Widmayer P, Kusumakshi S, Hägele FA, Boehm U, Breer H. Expression of the Fatty Acid Receptors GPR84 and GPR120 and Cytodifferentiation of Epithelial Cells in the Gastric Mucosa of Mouse Pups in the Course of Dietary Transition. Front Physiol 2017; 8:601. [PMID: 28871231 PMCID: PMC5566962 DOI: 10.3389/fphys.2017.00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
During weaning, the ingested food of mouse pups changes from exclusively milk to solid food. In contrast to the protein- and carbohydrate-rich solid food, high fat milk is characterized primarily by fatty acids of medium chain length particularly important for the suckling pups. Therefore, it seems conceivable that the stomach mucosa may be specialized for detecting these important nutrients during the suckling phase. Here, we analyzed the expression of the G protein coupled receptors GPR84 and GPR120 (FFAR4), which are considered to be receptors for medium and long chain fatty acids (LCFAs), respectively. We found that the mRNA levels for GPR84 and GPR120 were high during the suckling period and progressively decreased in the course of weaning. Visualization of the receptor-expressing cells in 2-week-old mice revealed a high number of labeled cells, which reside in the apical as well as in the basal region of the gastric glands. At the base of the gastric glands, all GPR84-immunoreactive cells and some of the GPR120-positive cells also expressed chromogranin A (CgA), suggesting that they are enteroendocrine cells. We demonstrate that the majority of the CgA/GPR84 cells are X/A-like ghrelin cells. The high degree of overlap between ghrelin and GPR84 decreased post-weaning, whereas the overlap between ghrelin and GPR120 increased. At the apical region of the glands the fatty acid receptors were mainly expressed in unique cell types. These contain lipid-filled vacuole- and vesicle-like structures and may have absorptive functions. We detected decreased immunoreactivity for GPR84 and no lipid droplets in surface cells post-weaning. In conclusion, expression of GPR84 in ghrelin cells as well as in surface cells suggests an important role of medium chain fatty acids (MCFAs) in the developing gastric mucosa of suckling mice.
Collapse
Affiliation(s)
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of MedicineHomburg, Germany
| | | | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of MedicineHomburg, Germany
| | - Heinz Breer
- Institute of Physiology, University of HohenheimStuttgart, Germany
| |
Collapse
|
41
|
Li Q, Cui M, Yang F, Li N, Jiang B, Yu Z, Zhang D, Wang Y, Zhu X, Hu H, Li PS, Ning SL, Wang S, Qi H, Song H, He D, Lin A, Zhang J, Liu F, Zhao J, Gao L, Yi F, Xue T, Sun JP, Gong Y, Yu X. A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions. J Clin Invest 2017; 127:2631-2646. [PMID: 28604389 DOI: 10.1172/jci91348] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
Somatostatin secreted by pancreatic δ cells mediates important paracrine interactions in Langerhans islets, including maintenance of glucose metabolism through the control of reciprocal insulin and glucagon secretion. Disruption of this circuit contributes to the development of diabetes. However, the precise mechanisms that control somatostatin secretion from islets remain elusive. Here, we found that a super-complex comprising the cullin 4B-RING E3 ligase (CRL4B) and polycomb repressive complex 2 (PRC2) epigenetically regulates somatostatin secretion in islets. Constitutive ablation of CUL4B, the core component of the CRL4B-PRC2 complex, in δ cells impaired glucose tolerance and decreased insulin secretion through enhanced somatostatin release. Moreover, mechanistic studies showed that the CRL4B-PRC2 complex, under the control of the δ cell-specific transcription factor hematopoietically expressed homeobox (HHEX), determines the levels of intracellular calcium and cAMP through histone posttranslational modifications, thereby altering expression of the Cav1.2 calcium channel and adenylyl cyclase 6 (AC6) and modulating somatostatin secretion. In response to high glucose levels or urocortin 3 (UCN3) stimulation, increased expression of cullin 4B (CUL4B) and the PRC2 subunit histone-lysine N-methyltransferase EZH2 and reciprocal decreases in Cav1.2 and AC6 expression were found to regulate somatostatin secretion. Our results reveal an epigenetic regulatory mechanism of δ cell paracrine interactions in which CRL4B-PRC2 complexes, Cav1.2, and AC6 expression fine-tune somatostatin secretion and facilitate glucose homeostasis in pancreatic islets.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Na Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Baichun Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Zhen Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Daolai Zhang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yijing Wang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xibin Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Huili Hu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Pei-Shan Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Shang-Lei Ning
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Si Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Haibo Qi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Hechen Song
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Dongfang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology.,Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina, USA
| | - Jingjing Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tian Xue
- Hefei National Laboratory for Physical Science at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Peng Sun
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China.,Duke University, School of Medicine, Durham, North Carolina, USA
| | - Yaoqin Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| |
Collapse
|
42
|
Satapati S, Qian Y, Wu MS, Petrov A, Dai G, Wang SP, Zhu Y, Shen X, Muise ES, Chen Y, Zycband E, Weinglass A, Di Salvo J, Debenham JS, Cox JM, Lan P, Shah V, Previs SF, Erion M, Kelley DE, Wang L, Howard AD, Shang J. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J Lipid Res 2017; 58:1561-1578. [PMID: 28583918 DOI: 10.1194/jlr.m075044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.
Collapse
Affiliation(s)
| | - Ying Qian
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Margaret S Wu
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Aleksandr Petrov
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ge Dai
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Sheng-Ping Wang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Yonghua Zhu
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Xiaolan Shen
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Eric S Muise
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ying Chen
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Emanuel Zycband
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Adam Weinglass
- Genetics and Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jerry Di Salvo
- Genetics and Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033
| | - John S Debenham
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jason M Cox
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ping Lan
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Vinit Shah
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Stephen F Previs
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Mark Erion
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - David E Kelley
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Liangsu Wang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Andrew D Howard
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jin Shang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033.
| |
Collapse
|
43
|
Abstract
In addition to their bioenergetic intracellular function, several classical metabolites act as extracellular signaling molecules activating cell-surface G-protein-coupled receptors (GPCRs), similar to hormones and neurotransmitters. "Signaling metabolites" generated from nutrients or by gut microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals in adipose tissue, the liver, and the endocrine pancreas. Importantly, distinct metabolite GPCRs act as efficient pro- and anti-inflammatory regulators of key immune cells, and signaling metabolites may thus function as important drivers of the low-grade inflammation associated with insulin resistance and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets.
Collapse
Affiliation(s)
- Anna Sofie Husted
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olga Rudenko
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Siv A Hjorth
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
44
|
Fatty acid and mineral receptors as drug targets for gastrointestinal disorders. Future Med Chem 2017; 9:315-334. [DOI: 10.4155/fmc-2016-0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nutrient-sensing receptors, including fatty acid receptors (FFA1–FFA4), Ca2+-sensing receptors and Zn2+-sensing receptors, are involved in several biological processes. These receptors are abundantly expressed in the GI tract, where they have been shown to play crucial roles in regulating GI function. This review provides an overview of the GI functions of fatty acid and mineral receptors, including the regulation of gastric and enteroendocrine functions, GI motility, ion transport and cell growth. Recently, several lines of evidence have implicated these receptors as promising therapeutic targets for the treatment of GI disorders, for example, inflammatory bowel disease, colorectal cancer, metabolic syndrome and diarrheal diseases. A future perspective on drug discovery research targeting these receptors is discussed.
Collapse
|
45
|
Hansen SVF, Ulven T. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120). Handb Exp Pharmacol 2017; 236:33-56. [PMID: 27807695 DOI: 10.1007/164_2016_60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti-obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend critically on the appropriateness and quality of the available pharmacological probes or tool compounds. After a brief summary of the pharmacological functions of FFA4 and some general considerations on desirable properties for these pharmacological tool compounds, the individual compounds that have been or are currently being used as tools for probing the function of FFA4 in various in vitro and in vivo settings will be discussed and evaluated.
Collapse
Affiliation(s)
- Steffen V F Hansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
46
|
Ekberg JP, Hauge M, Kristensen LV, Madsen AN, Engelstoft MS, Husted AS, Sichlau R, Egerod K, Kowalski T, Gribble FM, Reimann F, Hansen HS, Howard AD, Holst B, Schwartz TW. GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology 2016; 157:4561-4569. [PMID: 27779915 PMCID: PMC7212052 DOI: 10.1210/en.2016-1334] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triglycerides (TGs) are among the most efficacious stimulators of incretin secretion; however, the relative importance of FFA1 (G Protein-coupled Receptor [GPR] 40), FFA4 (GPR120), and GPR119, which all recognize TG metabolites, ie, long-chain fatty acid and 2-monoacylglycerol, respectively, is still unclear. Here, we find all 3 receptors to be highly expressed and highly enriched in fluorescence-activated cell sorting-purified GLP-1 and GIP cells isolated from transgenic reporter mice. In vivo, the TG-induced increase in plasma GIP was significantly reduced in FFA1-deficient mice (to 34%, mean of 4 experiments each with 8-10 animals), in GPR119-deficient mice (to 24%) and in FFA1/FFA4 double deficient mice (to 15%) but not in FFA4-deficient mice. The TG-induced increase in plasma GLP-1 was only significantly reduced in the GPR119-deficient and the FFA1/FFA4 double deficient mice, but not in the FFA1, and FFA4-deficient mice. In mouse colonic crypt cultures the synthetic FFA1 agonists, TAK-875 stimulated GLP-1 secretion to a similar extent as the prototype GLP-1 secretagogue neuromedin C; this, however, only corresponded to approximately half the maximal efficiency of the GPR119 agonist AR231453, whereas the GPR120 agonist Metabolex-209 had no effect. Importantly, when the FFA1 agonist was administered on top of appropriately low doses of the GPR119 agonist, a clear synergistic, ie, more than additive, effect was observed. It is concluded that the 2-monoacylglycerol receptor GPR119 is at least as important as the long-chain fatty acid receptor FFA1 in mediating the TG-induced secretion of incretins and that the 2 receptors act in synergy, whereas FFA4 plays a minor if any role.
Collapse
Affiliation(s)
- Jeppe P. Ekberg
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Maria Hauge
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Line V. Kristensen
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Andreas N. Madsen
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Maja S. Engelstoft
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Danish Diabetes Academy, Sdr Boulevard 29, 5000 Odense, Denmark
| | - Anna-Sofie Husted
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Rasmus Sichlau
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristoffer Egerod
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Timothy Kowalski
- Merck Research Laboratories, Galloping Hills Road, Kenilworth, New Jersey, USA
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Cambridge Institute for Medical Research and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Harald S. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK- 2100 Copenhagen, Denmark
| | | | - Birgitte Holst
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Thue W. Schwartz
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The present review summarizes the past year's literature, both clinical and basic science, regarding neuroendocrine and intracellular regulation of gastric acid secretion and proper use of antisecretory medications. RECENT FINDINGS Gastric acid kills microorganisms, modulates the gut microbiome, assists in digestion of protein, and facilitates absorption of iron, calcium, and vitamin B12. The main stimulants of acid secretion are gastrin, released from antral G cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Other stimulants include ghrelin, motilin, and hydrogen sulfide. The main inhibitor of acid secretion is somatostatin, released from oxyntic and antral D cells. Glucagon-like peptide-1 also inhibits acid secretion. Proton pump inhibitors (PPIs) reduce acid secretion and, as a result, decrease somatostatin and thus stimulate gastrin secretion. Although considered well tolerated drugs, concerns have been raised this past year regarding associations between PPI use and kidney disease, dementia, and myocardial infarction; the quality of evidence, however, is very low. SUMMARY Our understanding of the physiology of gastric secretion and proper use of PPIs continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders.
Collapse
|
48
|
Azevedo CMG, Watterson KR, Wargent ET, Hansen SVF, Hudson BD, Kępczyńska MA, Dunlop J, Shimpukade B, Christiansen E, Milligan G, Stocker CJ, Ulven T. Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity. J Med Chem 2016; 59:8868-8878. [DOI: 10.1021/acs.jmedchem.6b00685] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carlos M. G. Azevedo
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kenneth R. Watterson
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Ed T. Wargent
- Buckingham
Institute for Translational Medicine, University of Buckingham, Hunter
Street, Buckingham MK18
1EG, U.K
| | - Steffen V. F. Hansen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D. Hudson
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Małgorzata A. Kępczyńska
- Buckingham
Institute for Translational Medicine, University of Buckingham, Hunter
Street, Buckingham MK18
1EG, U.K
| | - Julia Dunlop
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Bharat Shimpukade
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Elisabeth Christiansen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Graeme Milligan
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Claire J. Stocker
- Buckingham
Institute for Translational Medicine, University of Buckingham, Hunter
Street, Buckingham MK18
1EG, U.K
| | - Trond Ulven
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
49
|
Engelstoft MS, Schwartz TW. Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors. Trends Endocrinol Metab 2016; 27:665-675. [PMID: 27474997 DOI: 10.1016/j.tem.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled by a limited number of G-protein coupled receptors (GPCRs); half of which recognize and bind dietary nutrient metabolites, metabolites generated by gut microbiota, and metabolites of the host's intermediary metabolism. Most metabolite GPCRs controlling ghrelin secretion are inhibitory, whereas all metabolite receptors controlling GLP-1 secretion are stimulatory. This dichotomy in metabolite sensor function, which is obtained through a combination of differential expression and cell-dependent signaling bias, offers pharmacological targets to stimulate GLP-1 and inhibit ghrelin through the same mechanism.
Collapse
Affiliation(s)
- M S Engelstoft
- Metabolic Receptology, NNF Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy, 5000 Odense, Denmark
| | - T W Schwartz
- Metabolic Receptology, NNF Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
50
|
Martínez-Herrero S, Martínez A. Adrenomedullin regulates intestinal physiology and pathophysiology. Domest Anim Endocrinol 2016; 56 Suppl:S66-83. [PMID: 27345325 DOI: 10.1016/j.domaniend.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are 2 biologically active peptides produced by the same gene, ADM, with ubiquitous distribution and many physiological functions. Adrenomedullin is composed of 52 amino acids, has an internal molecular ring composed by 6 amino acids and a disulfide bond, and shares structural similarities with calcitonin gene-related peptide, amylin, and intermedin. The AM receptor consists of a 7-transmembrane domain protein called calcitonin receptor-like receptor in combination with a single transmembrane domain protein known as receptor activity-modifying protein. Using morphologic techniques, it has been shown that AM and PAMP are expressed throughout the gastrointestinal tract, being specially abundant in the neuroendocrine cells of the gastrointestinal mucosa; in the enterochromaffin-like and chief cells of the gastric fundus; and in the submucosa of the duodenum, ileum, and colon. This wide distribution in the gastrointestinal tract suggests that AM and PAMP may act as gut hormones regulating many physiological and pathologic conditions. To date, it has been proven that AM and PAMP act as autocrine/paracrine growth factors in the gastrointestinal epithelium, play key roles in the protection of gastric mucosa from various kinds of injury, and accelerate healing in diseases such as gastric ulcer and inflammatory bowel diseases. In addition, both peptides are potent inhibitors of gastric acid secretion and gastric emptying; they regulate the active transport of sugars in the intestine, regulate water and ion transport in the colon, modulate colonic bowel movements and small-intestine motility, improve endothelial barrier function, and stabilize circulatory function during gastrointestinal inflammation. Furthermore, AM and PAMP are antimicrobial peptides, and they contribute to the mucosal host defense system by regulating gut microbiota. To get a formal demonstration of the effects that endogenous AM and PAMP may have in gut microbiota, we developed an inducible knockout of the ADM gene. Using this model, we have shown, for the first time, that lack of AM/PAMP leads to changes in gut microbiota composition in mice. Further studies are needed to investigate whether this lack of AM/PAMP may have an impact in the development and/or progression of intestinal diseases through their effect on microbiota composition.
Collapse
Affiliation(s)
- S Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain
| | - A Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain.
| |
Collapse
|