1
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Breit A, Besik V, Solinski HJ, Muehlich S, Glas E, Yarwood SJ, Gudermann T. Serine-727 phosphorylation activates hypothalamic STAT-3 independently from tyrosine-705 phosphorylation. Mol Endocrinol 2015; 29:445-59. [PMID: 25584415 DOI: 10.1210/me.2014-1300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcriptional activity of signal transducer and activator of transcription-3 (STAT-3) is a key element in the central regulation of appetite and energy homeostasis. Activation of hypothalamic STAT-3 has been attributed to cytokine-promoted phosphorylation at tyrosine-705 (Tyr-705). In nonhypothalamic cells, STAT-3 is also phosphorylated at serine-727 (Ser-727), but the functional significance of Ser-727 in the regulation of hypothalamic STAT-3 is not known. We used 2 hypothalamic cell lines and analyzed the effects of various hormones on STAT-3-dependent reporter gene activity and observed that IFN-γ, epidermal growth factor (EGF), and bradykinin (BK) induce similar STAT-3 reporter activation. EGF and BK solely increased Ser-727 and IFN-γ increased Tyr-705 phosphorylation of STAT-3. Specific inhibition of ERK-1/2 activity blocked EGF- and BK-induced STAT-3 activation and Ser-727 phosphorylation. BK-induced ERK-1/2 activation occurred via EGF receptor transactivation. Consequently, the BK-mediated effects on STAT-3 were blocked by a specific EGF receptor antagonist. Next, we analyzed the effects of IFN-γ and EGF on the expression of the STAT-3-dependent genes thyroliberin-releasing hormone and suppressors of cytokine signaling-3. EGF but not IFN-γ enhanced thyroliberin-releasing hormone expression via STAT-3. With regard to suppressors of cytokine signaling-3, we observed prolonged expression induced by IFN-γ and a transient effect of EGF that required coactivation of the activator protein-1. Thus, EGF-promoted Ser-727 phosphorylation by ERK-1/2 is not only sufficient to fully activate hypothalamic STAT-3, but, in terms of targeted genes and required cofactors, entails distinct modes of STAT-3 actions compared with IFN-γ-induced Tyr-705 phosphorylation.
Collapse
Affiliation(s)
- Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie (A.B., V.B., H.J.S., S.M., E.G., T.G.), Ludwig-Maximilians-Universität München, München, Germany 80336; and The Institute of Molecular, Cell and Systems Biology (S.J.Y.), College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow GC12 8QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
3
|
Chiappini F, Ramadoss P, Vella KR, Cunha LL, Ye FD, Stuart RC, Nillni EA, Hollenberg AN. Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 2013; 365:84-94. [PMID: 23000398 PMCID: PMC3572472 DOI: 10.1016/j.mce.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023]
Abstract
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T₄ and T₃ levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T₃ in vivo likely occurs independently of the CREB/CREM family.
Collapse
Affiliation(s)
- Franck Chiappini
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Lucas L. Cunha
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Felix D. Ye
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Ronald C. Stuart
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Eduardo A. Nillni
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| |
Collapse
|
4
|
Hashimoto K, Ishida E, Miura A, Ozawa A, Shibusawa N, Satoh T, Okada S, Yamada M, Mori M. Human stearoyl-CoA desaturase 1 (SCD-1) gene expression is negatively regulated by thyroid hormone without direct binding of thyroid hormone receptor to the gene promoter. Endocrinology 2013; 154:537-49. [PMID: 23221600 DOI: 10.1210/en.2012-1559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stearoyl-CoA desaturase-1 (SCD-1) plays a pivotal role in an increase of triglyceride by an excess of dietary carbohydrate intake. Dietary carbohydrates increase SCD-1 gene expression in liver by sterol response element binding protein (SREBP)-1c-dependent and SREBP-1c -independent pathways. Previous report demonstrated that thyroid hormone (TH) negatively regulates mouse SCD-1 gene promoter before SREBP-1c was revealed. We reported that TH negatively regulates SREBP-1c recently. Therefore, in the current study, we examined whether and how TH regulates human SCD-1 gene expression and evaluated SREBP-1c effect on the negative regulation. Luciferase assays revealed that TH suppresses both mouse and human SCD-1 gene promoter activity. In SREBP-1 knockdown HepG2 cells, TH still suppresses SCD-1 gene promoter activity, and it also exerted the negative regulation under cotransfection of a small amount of SREBP-1c. These data indicated that SREBP-1c does not play the decisive role for the negative regulation by TH. The responsible region for the negative regulation in human SCD-1 gene promoter turned out to be between -124 and -92 bp, referred to as site A. Chromatin immunoprecipitation assays demonstrated that TH receptor-β is recruited to the region upon T(3) administration, although TR-β does not bind directly to site A. In conclusion, TH negatively regulates human SCD-1 gene expression in without direct binding of the TH receptor to the SCD-1 gene promoter.
Collapse
|
5
|
Zhao LF, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Okazaki M, Nakayama S, Kambayashi M, Fujimoto S, Hashimoto K, Murao K, Terada Y. Liver X receptor α is involved in the transcriptional regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Diabetes 2012; 61:1062-71. [PMID: 22415873 PMCID: PMC3331782 DOI: 10.2337/db11-1255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The activity of 6-phosphofructo-1-kinase is strictly controlled by fructose-2,6-bisphosphate, the level of which is regulated by another enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBP2). PFK2/FBP2 is a bifunctional enzyme, having kinase and phosphatase activities, and regulates both glycolysis and gluconeogenesis. Here, we examined the hormonal regulation of the PFK2/FBP2 gene in vitro using the reporter assay, the electromobility shift assay (EMSA), and the chromatin immunoprecipitation (ChIP) assay in HuH7 cells and also using the mouse liver in vivo. We found that the transcriptional activity of the PFK2/FBP2 gene was stimulated by insulin and inhibited by cAMP and glucocorticoid. Liver X receptor (LXR) α showed a potent and specific stimulatory effect on PFK2/FBP2 gene transcription. Deletion and mutagenesis analyses identified the LXR response element (LXRE) in the 5'-promoter region of the PFK2/FBP2 gene. Binding of LXRα was confirmed by the EMSA and ChIP assay. Endogenous PFK2/FBP2 mRNA in the mouse liver was increased in the fasting/refeeding state compared with the fasting state. Altogether, PFK2/FBP2 gene transcription is found to be regulated in a way that is more similar to other glycolytic enzyme genes than to gluconeogenic genes. Furthermore, our data strongly suggest that LXRα is one of the key regulators of PFK2/FBP2 gene transcription.
Collapse
Affiliation(s)
- Li-Feng Zhao
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yasumasa Iwasaki
- Health Care Center, Kochi University, Kochi, Japan
- Corresponding author: Yasumasa Iwasaki,
| | - Mitsuru Nishiyama
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takafumi Taguchi
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Makoto Tsugita
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mizuho Okazaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shuichi Nakayama
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Koshi Hashimoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koji Murao
- Department of Advanced Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
6
|
Gill RK, Anbazhagan AN, Esmaili A, Kumar A, Nazir S, Malakooti J, Alrefai WA, Saksena S. Epidermal growth factor upregulates serotonin transporter in human intestinal epithelial cells via transcriptional mechanisms. Am J Physiol Gastrointest Liver Physiol 2011; 300:G627-36. [PMID: 21273531 PMCID: PMC3074988 DOI: 10.1152/ajpgi.00563.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin transporter (SERT) regulates extracellular availability of serotonin and is a potential pharmacological target for gastrointestinal disorders. A decrease in SERT has been implicated in intestinal inflammatory and diarrheal disorders. However, little is known regarding regulation of SERT in the intestine. Epidermal growth factor (EGF) is known to influence intestinal electrolyte and nutrient transport processes and has protective effects on intestinal mucosa. Whether EGF regulates SERT in the human intestine is not known. The present studies examined the regulation of SERT by EGF, utilizing Caco-2 cells grown on Transwell inserts as an in vitro model. Treatment with EGF from the basolateral side (10 ng/ml, 24 h) significantly stimulated SERT activity (∼2-fold, P < 0.01) and mRNA levels compared with control. EGF increased the activities of the two alternate promoter constructs for human SERT gene: SERT promoter 1 (hSERTp1, upstream of exon 1a) and SERT promoter 2 (hSERTp2, upstream of exon 2). Inhibition of EGF receptor (EGFR) tyrosine kinase activity by PD168393 (1 nM) blocked the stimulatory effects of EGF on SERT promoters. Progressive deletions of the SERT promoter indicated that the putative EGF-responsive elements are present in the -672/-472 region of the hSERTp1 and regions spanning -1195/-738 and -152/+123 of hSERTp2. EGF markedly increased the binding of Caco-2 nuclear proteins to the potential AP-1 cis-elements present in EGF-responsive regions of hSERTp1 and p2. Overexpression of c-jun but not c-fos specifically transactivated hSERTp2, with no effects on hSERTp1. Our findings define novel mechanisms of transcriptional regulation of SERT by EGF via EGFR at the promoter level that may contribute to the beneficial effects of EGF in gut disorders.
Collapse
Affiliation(s)
- Ravinder K. Gill
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Arivarasu Natarajan Anbazhagan
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Ali Esmaili
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Anoop Kumar
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Saad Nazir
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| |
Collapse
|
7
|
Díaz-Gallardo MY, Cote-Vélez A, Charli JL, Joseph-Bravo P. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurones prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-Like and composite GRE sites of thyrotrophin-releasing hormone gene promoter. J Neuroendocrinol 2010; 22:282-93. [PMID: 20136691 DOI: 10.1111/j.1365-2826.2010.01966.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline-stimulated TRH transcription.
Collapse
Affiliation(s)
- M Y Díaz-Gallardo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
8
|
Hashimoto K, Ishida E, Matsumoto S, Okada S, Yamada M, Satoh T, Monden T, Mori M. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 2009; 150:3417-24. [PMID: 19324998 PMCID: PMC2703542 DOI: 10.1210/en.2009-0059] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The molecular mechanism of thyroid hormone (TH) effects to fatty acid metabolism in liver is yet to be clear. The carbohydrate response element-binding protein (ChREBP) as well as sterol response element-binding protein (SREBP)-1c plays a pivotal role in hepatic lipogenesis. Both SREBP-1c and ChREBP are target genes of liver X receptors (LXRs). Because LXRs and TH receptors (TRs) cross talk mutually in many aspects of transcription, we examined whether TRs regulate the mouse ChREBP gene expression. In the current study, we demonstrated that TH up-regulated mouse ChREBP mRNA and protein expression in liver. Run-on and luciferase assays showed that TH and TR-beta1 positively regulated the ChREBP gene transcription. The mouse ChREBP gene promoter contains two direct repeat-4 sites (LXRE1 and LXRE2) and EMSAs demonstrated that LXR-alpha and TR-beta1 prefer to bind LXRE1 and LXRE2, respectively. The direct repeat-4 deletion and LXRE2 mutants of the promoter deteriorate the positive regulation by TR-beta1, indicating that LXRE2 is functionally important for the regulation. We also showed that human ChREBP gene expression and promoter activities were up-regulated by TH. These data suggest that ChREBP mRNA expression is positively regulated by TR-beta1 and TH at the transcriptional level in mammals. This novel observation indicates that TH fine-tunes hepatic lipogenesis via regulating SREBP-1c and ChREBP gene expression reciprocally.
Collapse
Affiliation(s)
- Koshi Hashimoto
- Department of Medicine and Molecular Science, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Matsumoto S, Hashimoto K, Yamada M, Satoh T, Hirato J, Mori M. Liver X receptor-alpha regulates proopiomelanocortin (POMC) gene transcription in the pituitary. Mol Endocrinol 2008; 23:47-60. [PMID: 19036902 DOI: 10.1210/me.2007-0533] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The liver X receptors (LXR-alpha and -beta) are nuclear oxysterol receptors that play pivotal roles in regulating the expression of genes involved in cholesterol transport and metabolism. Recently, several groups have reported that the LXRs also regulate adrenal steroidogenesis. However, the roles of LXRs in the hypothalami-pituitary-adrenal axis, especially whether they regulate proopiomelanocortin (POMC) gene expression in the pituitary, remain to be elucidated. In this report, we demonstrate that LXR mRNA is expressed in the pituitary and that at the protein level, LXR-alpha is dominantly expressed. Next, we show that the LXR agonist TO901317 (TO) increased POMC mRNA levels and the number of cells immunostained with anti-ACTH antibody in the mouse pituitary. We also confirmed that TO elevated plasma ACTH and serum corticosterone levels in vivo and increased the total tissue content of immunoreactive ACTH in the pituitary. TO activated the rat POMC gene promoter (-706/+64 bp) in GH3 and AtT-20 cells. Silencing of LXR-alpha mRNA expression in GH3 cells with small interfering RNA specific to LXR-alpha caused a loss of promoter activity induced by the LXR ligand, suggesting that LXR-alpha directly regulates the POMC gene promoter. EMSAs also demonstrated that the retinoid X receptor-alpha/LXR-alpha heterodimer bound to the region between -73 and -52 bp in the rat POMC gene promoter, and this site was responsible for the induction by TO, as confirmed by chromatin immunoprecipitation assays using AtT-20 cells. Our findings provide the first evidence that LXR-alpha positively regulates the POMC gene promoter at the transcriptional level and suggest LXR-alpha to be a coordinator for cross talk between lipid metabolism and neuroendocrinology.
Collapse
Affiliation(s)
- Shunichi Matsumoto
- Department of Medicine and Molecular Science, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kaeser MD, Aslanian A, Dong MQ, Yates JR, Emerson BM. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 2008; 283:32254-63. [PMID: 18809673 DOI: 10.1074/jbc.m806061200] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The composition of chromatin-remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. In the present study we investigated the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits with low levels of BRM, BAF170, and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identified BRD7 as a novel component of the Polybromo-associated BRG1-associated factor (PBAF) complex in both ESCs and differentiated cells. Using short hairpin RNA-mediated depletion of BRG1, we showed that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, BMI-1, CRABP1, and thyroid releasing hormone. Knockdown studies of PBAF-specific BRD7 and of a signature subunit within the BAF complex, ARID1A, showed that these two subcomplexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally we examined the role of SWI/SNF in regulating its target genes during differentiation. We found that SWI/SNF affects recruitment of components of the preinitiation complex in a promoter-specific manner to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action.
Collapse
Affiliation(s)
- Matthias D Kaeser
- Regulatory Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
11
|
Hashimoto K, Matsumoto S, Yamada M, Satoh T, Mori M. Liver X receptor-alpha gene expression is positively regulated by thyroid hormone. Endocrinology 2007; 148:4667-75. [PMID: 17628006 DOI: 10.1210/en.2007-0150] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The nuclear oxysterol receptors, liver X receptors (LXRs), and thyroid hormone receptors (TRs) cross talk mutually in many aspects of transcription, sharing the same DNA binding site (direct repeat-4) with identical geometry and polarity. In the current study, we demonstrated that thyroid hormone (T(3)) up-regulated mouse LXR-alpha, but not LXR-beta, mRNA expression in the liver and that cholesterol administration did not affect the LXR-alpha mRNA levels. Recently, several groups have reported that human LXR-alpha autoregulates its own gene promoter through binding to the LXR response element. Therefore, we examined whether TRs regulate the mouse LXR-alpha gene promoter activity. Luciferase assays showed that TR-beta1 positively regulated the mouse LXR-alpha gene transcription. Analysis of serial deletion mutants of the promoter demonstrated that the positive regulation by TR-beta1 was not observed in the -1240/+30-bp construct. EMSA(s) demonstrated that TR-beta1 or retinoid X receptor-alpha did not bind to the region from -1300 to -1240 bp (site A), whereas chromatin-immunoprecipitation assays revealed that TR-beta1 and retinoid X receptor-alpha were recruited to the site A, indicating the presence of intermediating protein between the nuclear receptors and DNA site. We also showed that human LXR-alpha gene expression and promoter activities were up-regulated by thyroid hormone. These data suggest that LXR-alpha mRNA expression is positively regulated by TR-beta1 and thyroid hormone at the transcriptional level in mammals. This novel insight that thyroid hormone regulates LXR-alpha mRNA levels and promoter activity should shed light on a cross talk between LXR-alpha and TR-beta1 as a new therapeutic target against dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Koshi Hashimoto
- Department of Medicine and Molecular Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, Japan 371-8511.
| | | | | | | | | |
Collapse
|
12
|
Hashimoto K, Yamada M, Matsumoto S, Monden T, Satoh T, Mori M. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 2006; 147:4292-302. [PMID: 16794015 DOI: 10.1210/en.2006-0116] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sterol regulatory element-binding protein (SREBP)-1c is a key regulator of fatty acid metabolism and plays a pivotal role in the transcriptional regulation of different lipogenic genes mediating lipid synthesis. In previous studies, the regulation of SREBP-1c mRNA levels by thyroid hormone has remained controversial. In this study, we examined whether T3 regulates the mouse SREBP-1c mRNA expression. We found that T3 negatively regulates the mouse SREBP-1c gene expression in the liver, as shown by ribonuclease protection assays and real-time quantitative RT-PCR. Promoter analysis with luciferase assays using HepG2 and Hepa1-6 cells revealed that T3 negatively regulates the mouse SREBP-1c gene promoter (-574 to +42) and that Site2 (GCCTGACAGGTGAAATCGGC) located around the transcriptional start site is responsible for the negative regulation by T3. Gel shift assays showed that retinoid X receptor-alpha/thyroid hormone receptor-beta heterodimer bound to Site2, but retinoid X receptor-alpha/liver X receptor- heterodimer could not bind to the site. In vivo chromatin immunoprecipitation assays demonstrated that T3 induced thyroid hormone receptor-beta recruitment to Site2. Thus, we demonstrated that mouse SREBP-1c mRNA is down-regulated by T3 in vivo and that T3 negatively regulates mouse SREBP-1c gene transcription via a novel negative thyroid hormone response element: Site2.
Collapse
Affiliation(s)
- Koshi Hashimoto
- Department of Medicine and Molecular Science, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Joseph-Bravo P. Hypophysiotropic thyrotropin-releasing hormone neurons as transducers of energy homeostasis. Endocrinology 2004; 145:4813-5. [PMID: 15489313 DOI: 10.1210/en.2004-0979] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang G, Leiter AB, Englander EW, Greeley GH. Insulin-like growth factor I increases rat peptide YY promoter activity through Sp1 binding sites. Endocrinology 2004; 145:659-66. [PMID: 14592960 DOI: 10.1210/en.2003-0770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies in rodents demonstrate that the mitogen, IGF-I, stimulates intestinal peptide YY (PYY) expression. To investigate whether the stimulatory influence of IGF-I is exerted at the level of gene transcription, rat PYY 5'-upstream sequences (-2800/+37 bp, -770/+37 bp, -127/+37 bp) fused to the firefly luciferase (luc) reporter gene were transfected into rat pheochromocytoma cells (PC12) and luc activity measured after IGF-I treatment. IGF-I increased transcriptional activity of all constructs similarly; the PYY (-127/+37 bp)-luc construct was used in subsequent experiments. IGF-I increased PYY (-127/+37 bp)-luc activity in a time- and dose-dependent fashion. Sequence analysis detected five putative Sp1 binding sites in the -127/+37-bp sequence. EMSA and supershift experiments using two oligonucleotide fragments of the -127/+37 region showed that Sp1 and Sp3 proteins bound to putative Sp1 sites. Overexpression of Sp1 greatly increased PYY (-127/+37 bp)-luc activity and site-directed mutagenesis of putative Sp1 binding sites decreased basal and IGF-I-induced elevations in PYY (-127/+37 bp)-luc activity. IGF-I treatment also increased Sp1 protein levels and binding activity. Blockade of the IGF-I receptor (IGF-IR) with an IGF-IR antibody decreased the stimulatory influence of IGF-I on Sp1 protein levels and PYY (-127/+37 bp)-luc activity. Together, these findings indicate that IGF-I functions as a positive regulator of PYY gene expression and that the stimulatory effect may be mediated by Sp1 proteins that bind to the proximal PYY promoter region.
Collapse
Affiliation(s)
- Guiyun Wang
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0725, USA
| | | | | | | |
Collapse
|
15
|
Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation of the human NaPi-IIb cotransporter by EGF in Caco-2 cells involves c-myb. Am J Physiol Cell Physiol 2003; 284:C1262-71. [PMID: 12529244 DOI: 10.1152/ajpcell.00456.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type IIb sodium-phosphate (NaP(i)-IIb) cotransporter mediates intestinal phosphate absorption. Previous work in our laboratory has shown that EGF inhibited NaP(i)-IIb cotransporter expression through transcriptional regulation. To understand this regulation, progressively shorter human NaP(i)-IIb promoter constructs were used to define the EGF response region, and gel mobility shift assays (GMSAs) were used to characterize DNA-protein interactions. Promoter analysis determined that the EGF response region was located between -784 and -729 base pair (bp) of the promoter. GMSAs and overexpression studies revealed an interaction between this promoter region and c-myb transcription factor. Inhibition of EGF receptor activation restored promoter function. Further studies suggested that MAPK, PKC, and/or PKA pathways are involved in this regulation. In conclusion, these studies suggest that EGF decreases human NaP(i)-IIb gene expression by modifying the c-myb protein such that it inhibits transcriptional activation. We further conclude that this downregulation of promoter function is mediated by EGF-activated PKC/PKA and MAPK pathways. This is the first study that demonstrates involvement of c-myb in the regulation of intestinal nutrient absorption.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
16
|
Satoh T, Toyoda M, Hoshino H, Monden T, Yamada M, Shimizu H, Miyamoto K, Mori M, Yamada M, Mori M. Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene 2002; 21:2171-80. [PMID: 11948400 DOI: 10.1038/sj.onc.1205279] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 12/18/2001] [Accepted: 12/19/2001] [Indexed: 11/09/2022]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-gamma by the thiazolidinedione (TZD) class of antidiabetic drugs elicits growth inhibition in a variety of malignant tumors. We clarified the effects of TZDs on growth of human non-small cell lung carcinoma (NSCLC) cells that express endogenous PPAR-gamma. Troglitazone and pioglitazone caused inhibition of cellular growth and induced apoptosis of NSCLC cells in a time- and dose-dependent manner. Subtraction cloning analysis identified that troglitazone stimulated expression of the growth arrest and DNA-damage inducible (GADD)153 gene, and the increased expression of GADD153 mRNA was also confirmed by an array analysis of the 160 apoptosis-related genes. Western blot analysis revealed that troglitazone also increased GADD153 protein levels in a time-dependent manner. Troglitazone did not stimulate GADD153 mRNA levels in undifferentiated 3T3-L1 cells lacking PPAR-gamma expression, whereas its induction was clearly observed in differentiated adipocytes expressing PPAR-gamma. Activity of the GADD153 promoter occurred in a NSCLC cell line in transient transcription assays and was significantly stimulated by troglitazone, although binding of PPAR/retinoid X receptor heterodimer was not detected in the promoter region in gel retardation assays. Inhibition of GADD153 gene expression by an antisense phosphorothionate oligonucleotide attenuated the troglitazone-induced growth inhibition. These findings collectively indicated that activation of PPAR-gamma by TZDs could cause growth inhibition and apoptosis of NSCLC cells and that GADD153 might be a candidate factor implicated in these processes.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Division/drug effects
- Cloning, Molecular
- DNA Damage/drug effects
- Dose-Response Relationship, Drug
- E2F5 Transcription Factor
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Oligonucleotides, Antisense/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Thiazoles/pharmacology
- Thiazolidinediones
- Time Factors
- Transcription Factor CHOP
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Teturou Satoh
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ozawa A, Yamada M, Satoh T, Monden T, Hashimoto K, Kohga H, Hashiba Y, Sasaki T, Mori M. Transcriptional regulation of the human PRL-releasing peptide (PrRP) receptor gene by a dopamine 2 Receptor agonist: cloning and characterization of the human PrRP receptor gene and its promoter region. Mol Endocrinol 2002; 16:785-98. [PMID: 11923475 DOI: 10.1210/mend.16.4.0819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PRL-releasing peptide receptor (PrRPR) mRNA was expressed in pituitary adenomas but was not detected in patients treated with bromocriptine, a specific agonist of dopamine 2 (D2) receptor. Although medical treatment with bromocriptine is effective for patients with pituitary adenomas, little is known about the molecular mechanisms of gene regulation mediated by D2 receptors. The cloned human PrRPR gene spanned approximately 2.0 kb and contained two exons and one intron. Two functional polyadenylation signals located at 510 and 714 bp downstream from the stop codon. A primer extension analysis demonstrated two major transcriptional start sites at 139 and 140 bp upstream from the translational start site and an additional minor site at -161. The promoter region contained several putative binding sites for transcriptional factors including pituitary-specific transcription factor (Pit 1), activator protein 1 (AP-1), and specificity protein (Sp1), but no typical TATA or CAAT box. This promoter showed the strong activity in the pituitary-derived GH4C1 cells, and the region between -697 and -596 bp was responsible for the stimulation both by forskolin and overexpression of cAMP response element binding protein (CREB). These stimulations were significantly suppressed by incubation with bromocriptine in a dose- and time-dependent manner, and the mutant CREB (S133A) completely abolished the inhibitory events of bromocriptine. However, EMSA studies demonstrated that CREB did not bind to this region, to which an approximately 60-kDa protein was strongly bound, and that antibodies against CREB, c-Fos, and Sp1 did not supershift this complex. Furthermore, the amount of this unknown protein was apparently reduced by treatment with bromocriptine. A series of mutation analyses demonstrated that the specific sequence, 5'-cccacatcat-3', was required for both the binding to the 60-kDa protein and the repression by bromocriptine. Therefore, the transcriptional repression of the PrRPR gene by bromocriptine required CREB but was independent of direct binding of CREB to the gene and that the sequence -663 -- -672, 5'-cccacatcat-3', bound to the 60-kDa protein appeared to be critical for this event.
Collapse
Affiliation(s)
- Atsushi Ozawa
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ishizuka T, Satoh T, Monden T, Shibusawa N, Hashida T, Yamada M, Mori M. Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol Endocrinol 2001; 15:1329-43. [PMID: 11463857 DOI: 10.1210/mend.15.8.0680] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The DNA-binding domain of nuclear hormone receptors functions as an interaction interface for other transcription factors. Using the DNA-binding domain of TRbeta1 as bait in the yeast two-hybrid system, we cloned the Tat binding protein-1 that was originally isolated as a protein binding to the human immunodeficiency virus type 1 Tat transactivator. Tat binding protein-1 has subsequently been identified as a member of the ATPase family and a component of the 26S proteasome. Tat binding protein-1 interacted with the DNA-binding domain but not with the ligand binding domain of TR in vivo and in vitro. TR bound to the amino-terminal portion of Tat binding protein-1 that contains a leucine zipper-like structure. In mammalian cells, Tat binding protein-1 potentiated the ligand-dependent transactivation by TRbeta1 and TRalpha1 via thyroid hormone response elements. Both the intact DNA-binding domain and activation function-2 of the TR were required for the transcriptional enhancement in the presence of Tat binding protein-1. Tat binding protein-1 did not augment the transactivation function of the RAR, RXR, PPARgamma, or ER. The intrinsic activation domain in Tat binding protein-1 resided within the carboxyl-terminal conserved ATPase domain, and a mutation of a putative ATP binding motif but not a helicase motif in the carboxyl-terminal conserved ATPase domain abolished the activation function. Tat binding protein-1 synergistically activated the TR-mediated transcription with the steroid receptor coactivator 1, p120, and cAMP response element-binding protein, although Tat binding protein-1 did not directly interact with these coactivators in vitro. In contrast, the N-terminal portion of Tat binding protein-1 directly interacted in vitro and in vivo with the TR-interacting protein 1 possessing an ATPase activity that interacts with the activation function-2 of liganded TR. Collectively, Tat binding protein-1 might function as a novel DNA-binding domain-binding transcriptional coactivator specific for the TR probably in cooperation with other activation function-2-interacting cofactors such as TR-interacting protein 1.
Collapse
Affiliation(s)
- T Ishizuka
- First Department of Internal Medicine, Gunma University School of Medicine 3-39-15, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188:143-60. [PMID: 11424081 DOI: 10.1002/jcp.1111] [Citation(s) in RCA: 844] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sp/KLF family contains at least twenty identified members which include Sp1-4 and numerous krüppel-like factors. Members of the family bind with varying affinities to sequences designated as 'Sp1 sites' (e.g., GC-boxes, CACCC-boxes, and basic transcription elements). Family members have different transcriptional properties and can modulate each other's activity by a variety of mechanisms. Since cells can express multiple family members, Sp/KLF factors are likely to make up a transcriptional network through which gene expression can be fine-tuned. 'Sp1 site'-dependent transcription can be growth-regulated, and the activity, expression, and/or post-translational modification of multiple family members is altered with cell growth. Furthermore, Sp/KLF factors are involved in many growth-related signal transduction pathways and their overexpression can have positive or negative effects on proliferation. In addition to growth control, Sp/KLF factors have been implicated in apoptosis and angiogenesis; thus, the family is involved in several aspects of tumorigenesis. Consistent with a role in cancer, Sp/KLF factors interact with oncogenes and tumor suppressors, they can be oncogenic themselves, and altered expression of family members has been detected in tumors. Effects of changes in Sp/KLF factors are context-dependent and can appear contradictory. Since these factors act within a network, this diversity of effects may arise from differences in the expression profile of family members in various cells. Thus, it is likely that the properties of the overall network of Sp/KLF factors play a determining role in regulation of cell growth and tumor progression.
Collapse
Affiliation(s)
- A R Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
20
|
Xu H, Collins JF, Bai L, Kiela PR, Lynch RM, Ghishan FK. Epidermal growth factor regulation of rat NHE2 gene expression. Am J Physiol Cell Physiol 2001; 281:C504-13. [PMID: 11443049 DOI: 10.1152/ajpcell.2001.281.2.c504] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidermal growth factor (EGF) is involved in acute regulation of Na(+)/H(+) exchangers (NHEs), but the effect of chronic EGF administration on NHE gene expression is unknown. The present studies showed that EGF treatment increased NHE2-mediated intestinal brush-border membrane vesicle Na(+) absorption and NHE2 mRNA abundance by nearly twofold in 19-day-old rats. However, no changes were observed in renal NHE2 mRNA or intestinal and renal NHE3 mRNA abundance. To understand the mechanism of this regulation, we developed the rat intestinal epithelial (RIE) cell as an in vitro model to study the effect of EGF on NHE2 gene expression. EGF increased functional NHE2 activity and mRNA abundance in cultured RIE cells, and this stimulation could be blocked by actinomycin D (a transcriptional inhibitor). Additionally, NHE2 promoter reporter gene assays in transiently transfected RIE cells showed an almost twofold increase in promoter activity after EGF treatment. We conclude that rat NHE2 activity can be stimulated by chronic EGF treatment and that this response is at least partially mediated by gene transcription.
Collapse
Affiliation(s)
- H Xu
- Departments of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK. Regulation of the human sodium-phosphate cotransporter NaP(i)-IIb gene promoter by epidermal growth factor. Am J Physiol Cell Physiol 2001; 280:C628-36. [PMID: 11171583 DOI: 10.1152/ajpcell.2001.280.3.c628] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intestinal sodium-phosphate cotransporter (NaP(i)-IIb) plays a major role in intestinal P(i) absorption. Epidermal growth factor (EGF) is involved in the regulation of P(i) homeostasis. However, the role of EGF in intestinal NaP(i)-IIb regulation is not clear. The current studies showed that EGF decreased NaP(i)-IIb mRNA abundance by 40-50% in both rat intestine and Caco-2 cells. To understand the mechanism of this regulation, we cloned the human NaP(i)-IIb gene and promoter region and studied the effect of EGF on NaP(i)-IIb gene transcription. The human NaP(i)-IIb gene has 12 exons and 11 introns. Two transcription initiation sites were identified by primer extension. Additionally, 2.8 kb of the 5'-flanking region of the gene was characterized as a functional promoter in human intestinal (Caco-2) and human lung (A549) cells. Additional studies showed that EGF inhibited promoter activity by 40-50% in Caco-2 cells and that actinomycin D treatment abolished this inhibition. EGF had no effect on promoter activity in lung (A549) cells. We conclude that the human NaP(i)-IIb gene promoter is functional in Caco-2 and A549 cells and that the gene is responsive to EGF by a transcriptionally mediated mechanism in intestinal cells.
Collapse
Affiliation(s)
- H Xu
- Departments of Pediatrics and Physiology, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
22
|
Satoh T, Ishizuka T, Monden T, Shibusawa N, Hashida T, Kishi M, Yamada M, Mori M. Regulation of the mouse preprothyrotropin-releasing hormone gene by retinoic acid receptor. Endocrinology 1999; 140:5004-13. [PMID: 10537125 DOI: 10.1210/endo.140.11.7111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acid (RA) has been reported to inhibit the secretion and synthesis of the pituitary TSH in vivo and in vitro. However, little is known about the influence of RA on the expression of the prepro-TRH gene. We therefore investigated whether the promoter activity of the mouse TRH gene is directly regulated by RA using a transient transfection assay into CV-1 cells. In the absence of cotransfected RA receptor (RAR), all-trans-RA did not affect the promoter activity. In contrast, the cotransfected RARalpha significantly stimulated promoter activity in the absence of ligand, and all-trans-RA reversed basal promoter activation. The cotransfected thyroid hormone receptor-beta (TRbeta), but not 9-cis-RA receptor (RXR), had an additive effect on the RAR-dependent stimulation. TR and RAR can similarly interact with the corepressor proteins, and the cotransfected nuclear receptor corepressor (N-CoR) has been demonstrated to augment the transcriptional stimulation of the TRH gene by unliganded TR. As observed with TR, the coexpression of a N-CoR variant significantly enhanced the ligand-independent stimulation by RAR. A mutant RAR (RAR403) lacking the C-terminal activation function-2 (AF-2) activation domain that was essential for ligand-induced corepressor release constitutively stimulated the promoter activity. The constitutive stimulation by RAR403 was augmented by the cotransfected N-CoR variant. A deletion analysis of the 5'-flanking region of the TRH gene revealed that the minimal promoter region for the regulation by RAR was -83 to +53, with a consensus half-site motif for the thyroid hormone response element at -57. In contrast to the strong binding of TR to the thyroid hormone response element half-site in gel retardation assays, no binding of RAR homodimer, RAR/ RXR heterodimer, or RAR/TR heterodimer was observed to the minimal promoter region. These results collectively suggest that RAR without heterodimerization with RXR and TR regulates transcription of the mouse TRH gene in cooperation with the corepressor, and that the DNA binding of RAR appeared to be unnecessary for regulation of the TRH gene promoter.
Collapse
Affiliation(s)
- T Satoh
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bauer K, Schomburg L, Heuer H, Schäfer MK. Thyrotropin releasing hormone (TRH), the TRH-receptor and the TRH-degrading ectoenzyme; three elements of a peptidergic signalling system. Results Probl Cell Differ 1999; 26:13-42. [PMID: 10453458 DOI: 10.1007/978-3-540-49421-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- K Bauer
- Max-Planck-Institut für experimentelle Endokrinologie, Hannover, Germany
| | | | | | | |
Collapse
|
24
|
Sabbatini M, Coppi G, Maggioni A, Olgiati V, Panocka I, Amenta F. Effect of lesions of the nucleus basalis magnocellularis and of treatment with posatirelin on cholinergic neurotransmission enzymes in the rat cerebral cortex. Mech Ageing Dev 1998; 104:183-94. [PMID: 9792196 DOI: 10.1016/s0047-6374(98)00066-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of 4 and 8 weeks of treatment with the thyrotropin releasing hormone (TRH), analogue posatirelin (L-6-ketopiperidine-2-carbonyl-L-leucyl-proline amide), on the changes of cholinergic neurotransmission enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), caused by lesions of the nucleus basalis magnocellularis (NBM), was investigated in the rat frontal cortex. ChAT and AChE were demonstrated with immunohistochemical and histochemical techniques, respectively associated with image analysis and microdensitometry. Monolateral and bilateral lesions of NBM area caused a significant loss of ChAT-immunoreactive nerve cell bodies in the NBM, as well as a remarkable decrease of ChAT-immunoreactive fibres and of AChE reactivity in the frontal cortex ipsilateral to the lesion or of both sides, respectively. The number of ChAT-immunoreactive nerve cell bodies in the lesioned NBM was higher in posatirelin-treated rats for 8 weeks in comparison with control NBM-lesioned rats. Moreover, the compound increased the number of ChAT-immunoreactive fibres in the frontal cortex of monolaterally and bilaterally NBM-lesioned rats at 8 weeks after lesion, but was without effect on these fibres in sham-operated rats. The same is true for AChE reactivity, developed in the neuropil of the frontal cortex, which was restored in part by an 8-week treatment with posatirelin in NBM-lesioned rats. These findings suggest that treatment with posatirelin rescues cholinergic neurons of the NBM and cholinergic projections to the cerebral cortex affected by lesioning of the NBM. The functional relevance of these observations and their possible applications should be evaluated in future studies.
Collapse
Affiliation(s)
- M Sabbatini
- Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Italy
| | | | | | | | | | | |
Collapse
|