1
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
4
|
Truong E, Pandol S, Jeon C. Uniting epidemiology and experimental models: pancreatic steatosis and pancreatic cancer. EBioMedicine 2022; 79:103996. [PMID: 35405390 PMCID: PMC9010750 DOI: 10.1016/j.ebiom.2022.103996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Research from epidemiologic studies and experimental animal models provide insights into the role of pancreatic steatosis in the development of pancreatic cancer. Epidemiologic data demonstrate that pancreatic steatosis is widely prevalent and significantly associated with both development and progression of pancreatic cancer. By focusing on current experimental models, this review elucidates potential cellular mechanisms underlying not only the pathophysiology of pancreatic steatosis itself, but also the pathogenesis behind pancreatic steatosis's role in changing the tumour microenvironment and accelerating the development of pancreatic cancer. This review further explores the impact of bariatric surgery on pancreatic steatosis and pancreatic cancer. Synthesizing knowledge from both epidemiologic studies and experimental animal models, this review identifies gaps in current knowledge regarding pancreatic steatosis and its role in carcinogenesis and proposes future research directions to elucidate the possible mechanisms underlying other obesity-associated cancers.
Collapse
Affiliation(s)
- Emily Truong
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, California.
| | - Stephen Pandol
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, California
| | - Christie Jeon
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, California; UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
5
|
Martínez-Montoro JI, Damas-Fuentes M, Fernández-García JC, Tinahones FJ. Role of the Gut Microbiome in Beta Cell and Adipose Tissue Crosstalk: A Review. Front Endocrinol (Lausanne) 2022; 13:869951. [PMID: 35634505 PMCID: PMC9133559 DOI: 10.3389/fendo.2022.869951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, obesity has reached epidemic proportions worldwide. Obesity is a chronic disease associated with a wide range of comorbidities, including insulin resistance and type 2 diabetes mellitus (T2D), which results in significant burden of disease and major consequences on health care systems. Of note, intricate interactions, including different signaling pathways, are necessary for the establishment and progression of these two closely related conditions. Altered cell-to-cell communication among the different players implicated in this equation leads to the perpetuation of a vicious circle associated with an increased risk for the development of obesity-related complications, such as T2D, which in turn contributes to the development of cardiovascular disease. In this regard, the dialogue between the adipocyte and pancreatic beta cells has been extensively studied, although some connections are yet to be fully elucidated. In this review, we explore the potential pathological mechanisms linking adipocyte dysfunction and pancreatic beta cell impairment/insulin resistance. In addition, we evaluate the role of emerging actors, such as the gut microbiome, in this complex crosstalk.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| |
Collapse
|
6
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
7
|
Ozcan-Sınır G, Inan S, Suna S, Tamer CE, Akgül MB, Bagdas D, Sonmez G, Evrensel T, Kaya E, Sarandol E, Dündar HZ, Tarım OF, Ercan I, Sıgırlı D, Incedayı B, Copur OU. Effect of High Fructose Corn Sirup on Pancreatic Ductal Adenocarcinoma Induced by Dimethyl Benzantracene (DMBA) in Rats. Nutr Cancer 2020; 73:339-349. [PMID: 32475178 DOI: 10.1080/01635581.2020.1770811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Increased risk of pancreatic cancer may be associated with consumption of sugar containing foods. The aim of this study was to evaluate the effect of peach nectar containing high fructose corn sirup (HFCS) consumption in a pancreatic carcinogenesis rat model induced by 7,12-Dimethyl benzanthracene (DMBA). Fifty-day-old male Sprague Dawley rats were fed with peach nectar containing HFCS + chow, peach nectar containing sucrose + chow and only chow. After 8 mo, feeding period, each group was divided into two subgroups, in which the rats were implanted with DMBA and no DMBA (sham). Histologic specimens were evaluated according to the routine tissue processing protocol. The animals with ad libitum access to pn-HFCS, pn-sucrose and chow (only) showed significant differences in chow consumption and glucose level. Necropsy and histopathologic findings showed tumor formation in the entire group treated with DMBA. Excluding one rat in chow group, which was classified as poorly differentiated type, the others were classified as moderately differentiated pancreatic ductal adenocarcinoma (PDAC). This study demonstrated that daily intake of HFCS did not increase body weight and there was no effect of peach nectar consumption on the development of PDAC induced by DMBA in rats.
Collapse
Affiliation(s)
- Gulsah Ozcan-Sınır
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Sevda Inan
- Department of Pathology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Senem Suna
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Canan Ece Tamer
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Mustafa Barış Akgül
- Department of Surgery, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, New Heaven, CT, USA
| | - Gursel Sonmez
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey Görükle
| | - Ekrem Kaya
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Emre Sarandol
- Department of Biochemistry, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Halit Ziya Dündar
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Faruk Tarım
- Department of Paediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Ilker Ercan
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Deniz Sıgırlı
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Bige Incedayı
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| |
Collapse
|
8
|
Adipokines as key players in β cell function and failure. Clin Sci (Lond) 2020; 133:2317-2327. [PMID: 31769478 DOI: 10.1042/cs20190523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the "classic" adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose-pancreatic β cell axis.
Collapse
|
9
|
Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord 2016; 13:423-44. [PMID: 26569333 DOI: 10.1089/met.2015.0095] [Citation(s) in RCA: 677] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| | - Sushil K Jain
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| |
Collapse
|
10
|
Ntimbane T, Mailhot G, Spahis S, Rabasa-Lhoret R, Kleme ML, Melloul D, Brochiero E, Berthiaume Y, Levy E. CFTR silencing in pancreatic β-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab 2016; 310:E200-12. [PMID: 26625901 DOI: 10.1152/ajpendo.00333.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/21/2015] [Indexed: 02/05/2023]
Abstract
Cystic fibrosis (CF)-related diabetes (CFRD) has become a critical complication that seriously affects the clinical outcomes of CF patients. Although CFRD has emerged as the most common nonpulmonary complication of CF, little is known about its etiopathogenesis. Additionally, whether oxidative stress (OxS), a common feature of CF and diabetes, influences CFRD pathophysiology requires clarification. The main objective of this study was to shed light on the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in combination with OxS in insulin secretion from pancreatic β-cells. CFTR silencing was accomplished in MIN6 cells by stable expression of small hairpin RNAs (shRNA), and glucose-induced insulin secretion was evaluated in the presence and absence of the valuable prooxidant system iron/ascorbate (Fe/Asc; 0.075/0.75 mM) along with or without the antioxidant Trolox (1 mM). Insulin output from CFTR-silenced MIN6 cells was significantly reduced (∼ 70%) at basal and at different glucose concentrations compared with control Mock cells. Furthermore, CFTR silencing rendered MIN6 cells more sensitive to OxS as evidenced by both increased lipid peroxides and weakened antioxidant defense, especially following incubation with Fe/Asc. The decreased insulin secretion in CFTR-silenced MIN6 cells was associated with high levels of NF-κB (the major participant in inflammatory responses), raised apoptosis, and diminished ATP production in response to the Fe/Asc challenge. However, these defects were alleviated by the addition of Trolox, thereby pointing out the role of OxS in aggravating the effects of CFTR deficiency. Our findings indicate that CFTR deficiency in combination with OxS may contribute to endocrine cell dysfunction and insulin secretion, which at least in part may explain the development of CFRD.
Collapse
Affiliation(s)
- Thierry Ntimbane
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Geneviève Mailhot
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Remi Rabasa-Lhoret
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Marie-Laure Kleme
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel; and
| | | | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada;
| |
Collapse
|
11
|
Arnaboldi L, Corsini A. Could changes in adiponectin drive the effect of statins on the risk of new-onset diabetes? The case of pitavastatin. ATHEROSCLEROSIS SUPP 2015; 16:1-27. [DOI: 10.1016/s1567-5688(14)70002-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R, Furuta K, Okusaka T, Shimada K, Kosuge T, Kanai Y, Nakagama H. Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol 2014; 5:e53. [PMID: 24622469 PMCID: PMC3972693 DOI: 10.1038/ctg.2014.5] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES: Fatty infiltration (FI) in the pancreas is positively correlated with high body mass index (BMI) or obesity, and the prevalence of diabetes mellitus (DM), which are well-known risk factors of pancreatic cancer. However, the association of FI in the pancreas with pancreatic cancer is unclear. Recently, we have shown that Syrian golden hamsters feature FI of the pancreas, the severity of which increases along with the progression of carcinogenesis induced by a chemical carcinogen. To translate the results to a clinical setting, we investigated whether FI in the pancreas is associated with pancreatic cancer in a series of patients who had undergone pancreatoduodenectomy. METHODS: In the series, we identified 102 cases with pancreatic ductal adenocarcinoma (PDAC) and 85 controls with cancers except for PDAC. The degree of FI was evaluated histopathologically from the area occupied by adipocytes in pancreas sections, and was compared between the cases and controls. RESULTS: The degree of FI in the pancreas was significantly higher in cases than in controls (median 26 vs. 15%, P<0.001) and positively associated with PDAC, even after adjustment for BMI, prevalence of DM and other confounding factors (odds ratio (OR), 6.1; P<0.001). BMI was identified as the most significantly associated factor with FI in the pancreas. CONCLUSIONS: There is a positive correlation between FI in the pancreas and pancreatic cancer.
Collapse
Affiliation(s)
- Mika Hori
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Michihiro Mutoh
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Rikako Ishigamori
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Koh Furuta
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoo Kosuge
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- 1] Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan [2] Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
13
|
Park SH, Ho WK, Jeon JH. AMPK regulates K(ATP) channel trafficking via PTEN inhibition in leptin-treated pancreatic β-cells. Biochem Biophys Res Commun 2013; 440:539-44. [PMID: 24103758 DOI: 10.1016/j.bbrc.2013.09.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
Abstract
Leptin regulates pancreatic β-cell excitability through AMP-activated protein kinase (AMPK)-mediated ATP-sensitive potassium (KATP) channel trafficking. However, the signaling components connecting AMPK to KATP channel trafficking are not identified. In this study, we discovered that AMPK inhibits phosphatase and tensin homologue (PTEN) via glycogen synthase kinase 3β (GSK3β) and this signaling pathway is crucial for KATP channel trafficking in leptin-treated pancreatic β-cells. Pharmacologic or genetic inhibition of AMPK or GSK3β, but not casein kinase 2 (CK2), impaired leptin-induced PTEN inactivation and thereby KATP channel trafficking. The PTEN mutant lacking both protein and lipid phosphatase activity is sufficient to induce KATP channel trafficking without leptin. These results present a novel signaling mechanism that underlies leptin regulation of KATP channel trafficking in pancreatic β-cells. Our findings assist in gaining a broader perspective on the peripheral action of leptin on pancreatic β-cell physiology and glucose homeostasis.
Collapse
Affiliation(s)
- Sun-Hyun Park
- Cell Physiology Laboratory and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | |
Collapse
|
14
|
Denroche HC, Quong WL, Bruin JE, Tudurí E, Asadi A, Glavas MM, Fox JK, Kieffer TJ. Leptin administration enhances islet transplant performance in diabetic mice. Diabetes 2013; 62:2738-46. [PMID: 23656888 PMCID: PMC3717838 DOI: 10.2337/db12-1684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Islet transplantation is an effective method to obtain long-term glycemic control for patients with type 1 diabetes, yet its widespread use is limited by an inadequate supply of donor islets. The hormone leptin has profound glucose-lowering and insulin-sensitizing action in type 1 diabetic rodent models. We hypothesized that leptin administration could reduce the dose of transplanted islets required to achieve metabolic control in a mouse model of type 1 diabetes. We first performed a leptin dose-response study in C57Bl/6 mice with streptozotocin (STZ)-induced diabetes to determine a leptin dose insufficient to reverse hyperglycemia. Subsequently, we compared the ability of suboptimal islet transplants of 50 or 125 syngeneic islets to achieve glycemic control in STZ-induced diabetic C57Bl/6 mice treated with or without this dose of leptin. The dose-response study revealed that leptin reverses STZ-induced diabetes in a dose-dependent manner. Supraphysiological leptin levels were necessary to restore euglycemia but simultaneously increased risk of hypoglycemia, and also lost efficacy after 12 days of administration. In contrast, 1 µg/day leptin only modestly reduced blood glucose but maintained efficacy throughout the study duration. We then administered 1 µg/day leptin to diabetic mice that underwent transplantation of 50 or 125 islets. Although these islet doses were insufficient to ameliorate hyperglycemia alone, coadministration of leptin with islet transplantation robustly improved control of glucose and lipid metabolism, without increasing circulating insulin levels. This study reveals that low-dose leptin administration can reduce the number of transplanted islets required to achieve metabolic control in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Heather C. Denroche
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Whitney L. Quong
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer E. Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria M. Glavas
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K. Fox
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Timothy J. Kieffer,
| |
Collapse
|
15
|
Effects of dietary high fat on prostate intraepithelial neoplasia in TRAMP mice. Lab Anim Res 2013; 29:39-47. [PMID: 23573107 PMCID: PMC3616208 DOI: 10.5625/lar.2013.29.1.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Increased fat intake is known to be a major cause of prostate cancer. In this study, we investigated the effect of dietary high fat on prostate intraepithelial neoplasia using transgenic adenocarcinoma mouse prostate (TRAMP) mice. Six-week-old male TRAMP mice were fed AIN93G (control group, 4.0 kcal/kg, n=6) and AIN93G-HFD (experimental group, 4.8 kcal/kg, n=7) for 10 weeks. Prostate histopathology, urogenital tract (UGT) weight, epididymal white adipose tissue weight, argyrophilic nucleolar organizer regions (AgNORs) counts, and serum leptin levels were examined. AIN93G-HFD fed group showed progressed neoplastic lesions in the prostate (P<0.05) compared to AIN93G fed group. AIN93G-HFD intake resulted in a increase in the weight of UGT (P<0.05) and epididymal white adipose tissue. The number of Ag-NOR positive dots significantly increased in each prostate lobe and final serum leptin levels in AIN93G-HFD fed group were about twice those of AIN93G fed group (P<0.05). Dietary high fat was related to the prostate cancer progression in the early stage of TRAMP mice and increased serum leptin levels, suggesting that the regulation of dietary components could delay the progression of prostate cancer.
Collapse
|
16
|
Abstract
PURPOSE The currently available drug repertoire against lymphatic filariasis, a major health hazard in the developing world, is inadequate and is fraught with serious limitations. Thus, the development of an effective antifilarial strategy has become a global research thrust mandated by the World Health Organization. Nanoparticles of silver endowed with antibacterial potency are known to induce apoptosis in eukaryotic cells. The present study was designed to investigate the possible microfilaricidal efficacy of silver nanoparticles and to establish the validity of apoptotic rationale in antifilarial drug designing. METHODS This report analyzed the effect of nanoparticles of silver as well as gold (size range: 10-15 nm) on the microfilariae of Brugia malayi obtained from the lavage of peritoneal cavities of infected jirds (Meriones unguiculatus). The study included a microfilarial motility assay, a trypan blue exclusion test, a poly(adenosine diphosphate-ribose) polymerase activity study, ethidium bromide/acridine orange differential staining, and transmission, as well as scanning electron microscopic evaluation of ultrastructural changes in microfilariae. RESULTS The study demonstrates that nanoparticles of silver, but not of gold, elicited significant loss in microfilarial motility. Differential staining of parasites with ethidium bromide and acridine orange, poly(adenosine diphosphate-ribose) polymerase activity in microfilarial lysate, and electron microscopic findings underscored apoptotic death of parasites attributable to nanosilver. In a trypan blue exclusion test, the 50% lethal dose of nanosilver was measured to be 101.2 μM, which was higher than the recorded complete inhibitory concentration value (50.6 μM), thus supporting nanosilver as a potential drug candidate against lymphatic filariasis. CONCLUSION The present report provides the first ever conclusive proof in support of apoptosis as a novel stratagem in antifilarial drug designing and nanoscale silver as a valid lead in research on antifilarial therapeutics. The main embargo about the current drug diethylcarbamazine citrate is its empirical use without rationale. Effective microfilaricidal activity of nanosilver at relatively low concentrations as reported in this study, with evidence of the induction of apoptosis in microfilariae, projects nanosilver as a potential drug adjuvant against lymphatic filariasis. The much higher 50% lethal dose value of nanosilver compared to the complete inhibitory concentration value reported in this study argues in favor of a safe therapeutic window of this agent in its antifilarial efficacy.
Collapse
Affiliation(s)
- Sunil K Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Richa D Sharma
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Maryada VR Reddy
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi
| |
Collapse
|
17
|
Tarabra E, Pelengaris S, Khan M. A simple matter of life and death-the trials of postnatal Beta-cell mass regulation. Int J Endocrinol 2012; 2012:516718. [PMID: 22577380 PMCID: PMC3346985 DOI: 10.1155/2012/516718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs.
Collapse
Affiliation(s)
- Elena Tarabra
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
- *Elena Tarabra:
| | - Stella Pelengaris
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Michael Khan
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
18
|
Lee YH, Magkos F, Mantzoros CS, Kang ES. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 2011; 60:1664-72. [PMID: 21632069 DOI: 10.1016/j.metabol.2011.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 02/09/2023]
Abstract
Leptin and adiponectin are hormones secreted from adipocytes that have important roles in metabolism and energy homeostasis. This review evaluates the effects of leptin and adiponectin on β-cell function by analyzing and compiling results from human clinical trials and epidemiologic studies as well as in vitro and in vivo experiments. Leptin has been shown to inhibit ectopic fat accumulation and thereby prevent β-cell dysfunction and protect the β-cell from cytokine- and fatty acid-induced apoptosis. However, leptin suppresses insulin gene expression and secretion as well as glucose transport into the β-cell. Adiponectin stimulates insulin secretion by enhancing exocytosis of insulin granules and upregulating the expression of the insulin gene; however, this effect depends on the prevailing glucose concentration and status of insulin resistance. In addition, adiponectin has antiapoptotic properties in β-cells. Available evidence concerning the role of these adipokines on insulin secretion, insulin gene expression, and apoptosis is not always entirely consistent; and many fundamental questions remain to be answered by future studies.
Collapse
Affiliation(s)
- Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
19
|
Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet. Pancreas 2011; 40:1234-40. [PMID: 21989024 DOI: 10.1097/mpa.0b013e318220e742] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Obesity is associated with increased pancreatic cancer risk, although the mechanisms have yet to be detailed. This study aimed to elucidate promotion of pancreatic cancer by obesity and hyperlipidemia. METHODS Six-week-old female Syrian golden hamsters were treated with N-nitrosobis(2-oxopropyl)amine (BOP) and after 1 week were fed a high-fat diet (HFD) or standard diet (STD) for 6 or 17 weeks. RESULTS Body weight and serum levels of lipids and leptin were significantly higher in the HFD than the STD group at 14 weeks of age. Pancreatic ductal adenocarcinomas developed only in the BOP + HFD group, with an incidence of 67% (P < 0.01) at 14 weeks of age. In addition, the multiplicity was 2-fold greater in the BOP + HFD group than in the BOP + STD group (P < 0.05) at 25 weeks of age. Pancreatic fatty infiltration was increased by BOP treatment and further enhanced by the HFD, correlating with progression of BOP-induced pancreatic ductal adenocarcinoma and up-regulated expression of adipocytokines and cell proliferation-related genes in the pancreas. CONCLUSIONS High-fat diet is shown to increase serum lipid levels and enhance fatty infiltration in the pancreas with abnormal adipocytokine production, which may accelerate and enhance pancreatic cancer.
Collapse
|
20
|
Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes 2011; 60:2830-42. [PMID: 21896929 PMCID: PMC3198069 DOI: 10.2337/db11-0347] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Previous studies show that polyunsaturated fatty acids (PUFAs) increase the insulin secretory capacity of pancreatic β-cells. We aimed at identifying PUFA-derived mediators and their cellular targets that are involved in the amplification of insulin release from β-cells preexposed to high glucose levels. RESEARCH DESIGN AND METHODS The content of fatty acids in phospholipids of INS-1E β-cells was determined by lipidomics analysis. High-performance liquid chromatography was used to identify peroxidation products in β-cell cultures. Static and dynamic glucose-stimulated insulin secretion (GSIS) assays were performed on isolated rat islets and/or INS-1E cells. The function of peroxisome proliferator-activated receptor-δ (PPAR-δ) in regulating insulin secretion was investigated using pharmacological agents and gene expression manipulations. RESULTS High glucose activated cPLA(2) and, subsequently, the hydrolysis of arachidonic and linoleic acid (AA and LA, respectively) from phospholipids in INS-1E cells. Glucose also increased the level of reactive oxygen species, which promoted the peroxidation of these PUFAs to generate 4-hydroxy-2E-nonenal (4-HNE). The latter mimicked the GSIS-amplifying effect of high glucose preexposure and of the PPAR-δ agonist GW501516 in INS-1E cells and isolated rat islets. These effects were blocked with GSK0660, a selective PPAR-δ antagonist, and the antioxidant N-acetylcysteine or by silencing PPAR-δ expression. High glucose, 4-HNE, and GW501516 also induced luciferase expression in a PPAR-δ-mediated transactivation assay. Cytotoxic effects of 4-HNE were observed only above the physiologically effective concentration range. CONCLUSIONS Elevated glucose levels augment the release of AA and LA from phospholipids and their peroxidation to 4-HNE in β-cells. This molecule is an endogenous ligand for PPAR-δ, which amplifies insulin secretion in β-cells.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Yael Riahi
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Ofer Shamni
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Michel Guichardant
- CarMeN Laboratory, Lyon University, INSA de Lyon, INSERM U1060, Université de Lyon-1, Villeurbanne, France
| | | | - Carla Ferreri
- ISOF-BioFreeRadicals, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomo Sasson
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute for Drug Research, Hebrew University, Jerusalem, Israel
- Corresponding author: Shlomo Sasson,
| |
Collapse
|
21
|
White PB, True EM, Ziegler KM, Wang SS, Swartz-Basile DA, Pitt HA, Zyromski NJ. Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg 2010; 14:1888-93; discussion 1893-4. [PMID: 20859700 DOI: 10.1007/s11605-010-1349-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/23/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Obesity accelerates development and growth of human pancreatic cancer. We recently reported similar findings in a novel murine model of pancreatic cancer in congenitally obese mice. The current experiments were designed to evaluate the effects of diet-induced obesity on pancreatic cancer growth. METHODS Thirty C57BL/6J female mice were fed either control 10% fat (n = 10) or 60% fat diet (n = 20) starting at age 6 weeks. At 11 weeks, 2.5 × 10(5) PAN02 murine pancreatic cancer cells were inoculated. After 6 weeks, tumors were harvested. Serum adiponectin, leptin, insulin, and glucose concentrations were measured. Tumor proliferation, apoptosis, adipocyte content, and tumor-infiltrating lymphocytes were evaluated. RESULTS The diet-induced obesity diet led to significant weight gain (control 21.3 ± 0.6 g; diet-induced obesity 23.1 ± 0.5 g; p = 0.03). Mice heavier than 23.1 g were considered "Overweight." Tumors grew significantly larger in overweight (1.3 ± 0.3 g) compared to lean (0.5 ± 0.2 g; p = 0.03) mice; tumor size correlated positively with body weight (R = 0.56; p < 0.02). Serum leptin (3.1 ± 0.7 vs. 1.4 ± 0.2 ng/ml) and insulin (0.5 ± 0.2 vs. 0.18 ± 0.02 ng/ml) were significantly greater in overweight mice. Tumor proliferation, apoptosis, and tumor adipocyte volume were similar. T and B lymphocytes were observed infiltrating tumors from lean and overweight mice in similar number. CONCLUSION These data show that diet-induced obesity accelerates the growth of murine pancreatic cancer.
Collapse
Affiliation(s)
- Patrick B White
- Department of Surgery, Indiana University School of Medicine, 535 Barnhill Dr. RT 130, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Thorand B, Zierer A, Baumert J, Meisinger C, Herder C, Koenig W. Associations between leptin and the leptin / adiponectin ratio and incident Type 2 diabetes in middle-aged men and women: results from the MONICA / KORA Augsburg study 1984-2002. Diabet Med 2010; 27:1004-11. [PMID: 20722673 DOI: 10.1111/j.1464-5491.2010.03043.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Adipocyte-derived hormones seem to be involved in the development of Type 2 diabetes. Therefore, we assessed the association between the proinflammatory adipokine leptin and incident Type 2 diabetes, taking into account interactions between leptin and the anti-inflammatory adipokine adiponectin. METHODS Using a case-cohort design, serum levels of adipokines were measured in 460 cases with incident Type 2 diabetes and 1474 non-cases selected from a source population of 7936 middle-aged subjects participating in the population-based Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA)/Cooperative Health Research in the Region of Augsburg (KORA) Augsburg cohort study between 1984 and 1995 and followed up until 2002 (mean follow-up 10.9+/-4.7 years). RESULTS High leptin and low adiponectin levels were associated with an increased Type 2 diabetes risk. The multivariable adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) comparing tertile extremes were 1.71 (1.12-2.63) for leptin (top vs. bottom tertile) and 2.65 (1.88-3.76) for adiponectin (bottom vs. top tertile), respectively. There was a significant interaction between leptin and adiponectin, with highest diabetes risk being observed in individuals with high leptin and low adiponectin levels (P = 0.029 for interaction).While the addition of adiponectin to a basic risk factor model improved model prediction (Delta area under the curve 0.011), the change in model prediction was only marginal after the addition of leptin (Delta area under the curve 0.002). CONCLUSIONS Our findings indicate that the two adipokines leptin and adiponectin interact in modulating Type 2 diabetes risk, but adiponectin is more strongly associated with Type 2 diabetes risk than leptin.
Collapse
Affiliation(s)
- B Thorand
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kruger AJ, Yang C, Lipson KL, Pino SC, Leif JH, Hogan CM, Whalen BJ, Guberski DL, Lee Y, Unger RH, Greiner DL, Rossini AA, Bortell R. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity 2010; 44:137-48. [PMID: 20695765 DOI: 10.3109/08916934.2010.482116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adipokine, leptin, regulates blood glucose and the insulin secretory function of beta cells, while also modulating immune cell function. We hypothesized that the dual effects of leptin may prevent or suppress the autoreactive destruction of beta cells in a virally induced rodent model of type 1 diabetes. Nearly 100% of weanling BBDR rats treated with the combination of an innate immune system activator, polyinosinic:polycytidylic acid (pIC), and Kilham rat virus (KRV) become diabetic within a predictable time frame. We utilized this model to test the efficacy of leptin in preventing diabetes onset, remitting new onset disease, and preventing autoimmune recurrence in diabetic rats transplanted with syngeneic islet grafts. High doses of leptin delivered via an adenovirus vector (AdLeptin) or alzet pump prevented diabetes in>90% of rats treated with pIC+KRV. The serum hyperleptinemia generated by this treatment was associated with decreased body weight, decreased non-fasting serum insulin levels, and lack of islet insulitis in leptin-treated rats. In new onset diabetics, hyperleptinemia prevented rapid weight loss and diabetic ketoacidosis, and temporarily restored euglycemia. Leptin treatment also prolonged the survival of syngeneic islets transplanted into diabetic BBDR rats. In diverse therapeutic settings, we found leptin treatment to have significant beneficial effects in modulating virally induced diabetes. These findings merit further evaluation of leptin as a potential adjunct therapeutic agent for treatment of human type 1 diabetes.
Collapse
Affiliation(s)
- Annie J Kruger
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang C, Guan Y, Yang J. Cytokines in the Progression of Pancreatic β-Cell Dysfunction. Int J Endocrinol 2010; 2010:515136. [PMID: 21113299 PMCID: PMC2989452 DOI: 10.1155/2010/515136] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/05/2010] [Accepted: 10/07/2010] [Indexed: 12/29/2022] Open
Abstract
The dysfunction of pancreatic β-cell and the reduction in β-cell mass are the decisive events in the progression of type 2 diabetes. There is increasing evidence that cytokines play important roles in the procedure of β-cell failure. Cytokines, such as IL-1β, IFN-γ, TNF-α, leptin, resistin, adiponectin, and visfatin, have been shown to diversely regulate pancreatic β-cell function. Recently, islet-derived cytokine PANcreatic DERived factor (PANDER or FAM3B) has also been demonstrated to be a regulator of islet β-cell function. The change in cytokine profile in islet and plasma is associated with pancreatic β-cell dysfunction and apoptosis. In this paper, we summarize and discuss the recent studies on the effects of certain important cytokines on pancreatic β-cell function. The imbalance in deleterious and protective cytokines plays pivotal roles in the development and progression of pancreatic β-cell dysfunction under insulin-resistant conditions.
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
- *Jichun Yang:
| |
Collapse
|
25
|
Slavin BG, Zarow C, Warden CH, Fisler JS. Histological, Immunocytochemical, and Morphometrical Analyses of Pancreatic Islets in the BSB Mouse Model of Obesity. Anat Rec (Hoboken) 2009; 293:108-16. [DOI: 10.1002/ar.21019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Hoda MR, Popken G. Mitogenic and anti-apoptotic actions of adipocyte-derived hormone leptin in prostate cancer cells. BJU Int 2008; 102:383-8. [PMID: 18341625 DOI: 10.1111/j.1464-410x.2008.07534.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the proliferative and anti-apoptotic effects of leptin on human prostate cancer cells, and the role of related signalling pathways in mediating these actions, as obesity is a possible risk factor for prostate cancer and leptin, an adipocyte-derived hormone, has mitogenic action in various cell types. MATERIALS AND METHODS Two human prostate cancer cell lines, DU145 and PC-3, were treated with leptin (5-100 ng/mL) for up to 48 h. Under serum-free conditions, cell proliferation was measured using a colorimetric tetrazolium assay and apoptosis by an enzyme-linked immunosorbent assay measuring cell death. Also, the phosphorylation of ERK1/2 and Akt was detected by Western blotting, and specific inhibitors of mitogen-activated protein kinase (MAPK) (PD98059; 40 microm) and phosphatidylinositol 3-kinase (PI3-K, LY294002; 40 microm) were used to evaluate the role of these signalling pathways. RESULTS Leptin dose-dependently increased the cell number in both cell lines for up to 48 h of incubation, the mean (sem) percentage of the control being 189 (4.3)% for DU145 and 173 (7.5)% for PC-3 (100 ng/mL leptin, 48 h; P < 0.01). Leptin also significantly reduced the number of apoptotic cells after 24 h of treatment, dose-dependently caused ERK1/2 and Akt phosphorylation; pretreatment with inhibitors of MAPK and PI3-K inhibited these responses. CONCLUSION These results show that chronic increases in leptin might enhance the growth of prostate cancer via the MAPK and PI3-K pathways. Further studies are needed to investigate whether the ability of leptin to stimulate mitogenic/anti-apoptotic signal transduction pathways could represent a target for anticancer drug discovery.
Collapse
Affiliation(s)
- M Raschid Hoda
- Department of Urology, Helios Clinics Berlin-Buch, University Medical School of Charité, Berlin, Germany.
| | | |
Collapse
|
27
|
Herrid M, O'Shea T, McFarlane JR. Ontogeny of leptin and its receptor expression in mouse testis during the postnatal period. Mol Reprod Dev 2008; 75:874-80. [DOI: 10.1002/mrd.20796] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Brown JEP, Dunmore SJ. Leptin decreases apoptosis and alters BCL-2 : Bax ratio in clonal rodent pancreatic beta-cells. Diabetes Metab Res Rev 2007; 23:497-502. [PMID: 17318810 DOI: 10.1002/dmrr.726] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line. METHODS BRIN-BD11 cells were cultured in RPMI 1640 and subsequently serum depleted +/- leptin (10 and 50 ng/mL) for 24 h. Cell viability and apoptosis were measured using a modified MTS assay and TUNEL/YO-PRO-1 assays, respectively. BCL-2 and Bax expression were measured by real-time PCR and Western blotting. RESULTS Leptin caused a reduction in serum-depleted apoptosis, although it failed to have any effect on the overall cell viability, causing a 68% shift from apoptosis to necrosis. Leptin significantly increased the level of BCL-2 mRNA expression (150% compared to serum depletion alone), without altering Bax mRNA expression. At the protein level, leptin increased BCL-2 and decreased Bax, altering the BCL-2 : Bax ratio. CONCLUSIONS We conclude that leptin reduces apoptosis in beta-cells at physiological concentrations, possibly via its ability to up-regulate BCL-2 and Bax expression.
Collapse
Affiliation(s)
- James E P Brown
- Diabetes and Metabolic Disorders Research Group, RIHS, University of Wolverhampton, Wulfruna St, Wolverhampton, WV1 1SB, UK
| | | |
Collapse
|
29
|
Ercan S, Ozer C, Taş M, Erdoğan D, Babül A. Effects of leptin on stress-induced changes of caspases in rat gastric mucosa. J Gastroenterol 2007; 42:461-8. [PMID: 17671761 DOI: 10.1007/s00535-007-2032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 02/22/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND In this study, we investigated the effect of leptin on caspase-3, caspase-8, and caspase-9 immunoreactivity and lipid peroxidation in the stomachs of rats exposed to cold-restraint stress. METHODS Thirty-two male Wistar Albino rats were used. Rats pretreated with leptin (10 microg/kg per day for 7 days) were restrained in a wire cage for 4 h at 4 degrees C. Spectrophotometric techniques were used for detection of malondialdehyde (MDA) and glutathione (GSH) levels, and immunoreactivity of caspases was investigated by immunohistochemistry. RESULTS While the stomach MDA level of the cold-restraint stress group was increased significantly, the level of GSH was decreased when compared with the control group. Caspase-9 and caspase-3 immunoreactivities of the stress group were not changed, while caspase-8 immunoreactivity was decreased. Leptin administration prevented the increase in the MDA level and the decrease in the GSH content of the gastric mucosa in animals subjected to stress. Leptin administration produced no significant change in caspase-8 immunoreactivity but caused a decrease in caspase-3 immunoreactivity. CONCLUSIONS Cold-restraint stress decreases the antioxidant capacity of stomach tissue while activating oxidants, and induces apoptosis by an increase in caspase immunoreactivity. The presence of leptin reverses these mechanisms and suppresses the apoptosis.
Collapse
Affiliation(s)
- Sevim Ercan
- Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
30
|
Oge A, Isganaitis E, Jimenez-Chillaron J, Reamer C, Faucette R, Barry K, Przybyla R, Patti ME. In utero undernutrition reduces diabetes incidence in non-obese diabetic mice. Diabetologia 2007; 50:1099-108. [PMID: 17370059 DOI: 10.1007/s00125-007-0617-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/19/2007] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Observational studies in humans suggest that low birthweight may decrease the risk of type 1 diabetes, but the mechanism is unknown. We hypothesised that antenatal undernutrition would decrease the incidence of type 1 diabetes in non-obese diabetic (NOD) mice. MATERIALS AND METHODS A 40% restriction of energy intake was applied to pregnant NOD dams from day 12.5 to day 18.5 of gestation, resulting in intrauterine growth retardation of offspring. All mice were fed a standard diet after weaning. Control and undernourished female offspring were followed to assess diabetes incidence. Male NOD mice were treated with cyclophosphamide to accelerate development of diabetes. Glucose homeostasis, body composition and pancreatic histology were compared in control and undernourished offspring. RESULTS Mean birthweight was lower in undernourished than in control mice (p = 0.00003). At 24 weeks of age, the cumulative incidence of spontaneous diabetes in female mice was 73% in control and 48% in undernourished mice (p = 0.003). In cyclophosphamide-treated male mice, antenatal undernutrition also tended to reduce the development of diabetes (p = 0.058). Maternal leptin levels were lower in undernourished dams on day 18.5 of pregnancy (p = 0.039), while postnatal leptin levels were significantly higher in undernourished offspring at 4, 20 and 27 weeks of life (p < 0.05). Beta cell mass was similar in both groups (control = 0.4 mg; undernourished = 0.54 mg; p = 0.24). Histological evidence of apoptosis at 20 weeks was greater in control than in undernourished mice (control = 6.3 +/- 1.4%; undernourished = 4.2 +/- 0.3%, p = 0.05). CONCLUSIONS/INTERPRETATION Antenatal undernutrition reduces the incidence of diabetes in NOD mice, perhaps via alterations in apoptosis.
Collapse
Affiliation(s)
- A Oge
- Research Division, Joslin Diabetes Center, Room 620, 1 Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Chen Y, Yuasa T, Tanaka K, Narushima M, Miki A, Misawa H, Tabata Y, Jun HS, Matsumoto S, Fox IJ, Tanaka N, Kobayashi N. Cell-permeable pentapeptide V5 inhibits apoptosis and enhances insulin secretion, allowing experimental single-donor islet transplantation in mice. Diabetes 2007; 56:1259-1267. [PMID: 17287463 DOI: 10.2337/db06-1679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Treatment of diabetic patients by pancreatic islet transplantation often requires the use of islets from two to four donors to produce insulin independence in a single recipient. Following isolation and transplantation, islets are susceptible to apoptosis, which limits their function and probably long-term islet graft survival. RESEARCH DESIGN AND METHODS To address this issue, we examined the effect of the cell-permeable apoptosis inhibitor pentapeptide Val-Pro-Met-Leu-Lys, V5, on pancreatic islets in a mouse model. RESULTS V5 treatment upregulated expression of anti-apoptotic proteins Bcl-2 and XIAP (X-linked inhibitor of apoptosis protein) by more than 3- and 11-fold and downregulated expression of apoptosis-inducing proteins Bax, Bad, and nuclear factor-kappaB-p65 by 10, 30, and nearly 50%, respectively. Treatment improved the recovered islet mass following collagenase digestion and isolation by 44% and in vitro glucose-responsive insulin secretion nearly fourfold. Following transplantation in streptozotocin-induced diabetic mice, 150 V5-treated islet equivalents functioned as well as 450 control untreated islet equivalents in normalizing blood glucose. CONCLUSIONS These studies indicate that inhibition of apoptosis by V5 significantly improves islet function following isolation and improves islet graft function following transplantation. Use of this reagent in clinical islet transplantation could have a dramatic impact on the number of patients that might benefit from this therapy and could affect long-term graft survival.
Collapse
Affiliation(s)
- Jorge D Rivas-Carrillo
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hoda MR, Keely SJ, Bertelsen LS, Junger WG, Dharmasena D, Barrett KE. Leptin acts as a mitogenic and antiapoptotic factor for colonic cancer cells. Br J Surg 2007; 94:346-54. [PMID: 17212381 DOI: 10.1002/bjs.5530] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Obesity is associated with increased levels of leptin. The mitogenic actions of leptin have been identified in various cell types. Because obesity may be a risk factor for colonic cancer, the proliferative and antiapoptotic effects of leptin on colonic cancer cells and the role of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K) signalling were investigated. METHODS Three human colonic cancer cell lines (T(84), HT29/Cl.19A and Caco-2) were treated with leptin. Cell proliferation was measured using the XTT colorimetric assay and apoptosis by a cell death enzyme-linked immunosorbent assay. Inhibitors of MAPK and PI3-K were used to evaluate the role of these signalling pathways. Phosphorylation of the downstream components extracellular signal-regulated kinase (ERK) 1/2 and Akt was detected by western blotting. RESULTS Leptin increased cell number in all cell lines in a dose-dependent manner and reduced the number of apoptotic cells in a cell line-dependent manner. Leptin also caused ERK1/2 and Akt phosphorylation. Pretreatment with inhibitors of MAPK and PI3-K inhibited these responses, attenuated the mitogenic action of leptin and abolished its antiapoptotic effects. CONCLUSION Chronic increases in leptin concentration may enhance the growth of colonic cancers via MAPK and PI3-K pathways. These effects of leptin could provide a link between obesity and colonic cancer, and may represent a target for anticancer drug development.
Collapse
Affiliation(s)
- M R Hoda
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Turner SM, Roy S, Sul HS, Neese RA, Murphy EJ, Samandi W, Roohk DJ, Hellerstein MK. Dissociation between adipose tissue fluxes and lipogenic gene expression in ob/ob mice. Am J Physiol Endocrinol Metab 2007; 292:E1101-9. [PMID: 17164440 PMCID: PMC2895312 DOI: 10.1152/ajpendo.00309.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.
Collapse
Affiliation(s)
- S M Turner
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Söderberg S, Zimmet P, Tuomilehto J, Chitson P, Gareeboo H, Alberti KGMM, Shaw JE. Leptin predicts the development of diabetes in Mauritian men, but not women: a population–based study. Int J Obes (Lond) 2007; 31:1126-33. [PMID: 17325688 DOI: 10.1038/sj.ijo.0803561] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if levels of the adipocyte-derived hormone, leptin, predict the development of type 2 diabetes. METHODS Population-based surveys were undertaken in the multiethnic nation of Mauritius in 1987, 1992 and 1998. Questionnaires, anthropometric measurements, and a 2-h 75-g oral glucose tolerance test were included. A cohort of 2330 participants who were free of diabetes, aged 25-79 years in 1987, and who were followed-up in 1992 and 1998 was studied. Serum leptin was measured in baseline samples. Glucose tolerance was classified according to WHO (World Health Organization) 1999 criteria. RESULTS In total, 456 subjects developed diabetes over 11 years with similar incidences in all ethnic groups (P=0.2). Baseline leptin correlated positively with anthropometric measurements, fasting and postload insulin and homeostasis model assessment indices (all P<0.001), and inversely with subsequent weight increase. Participants with incident diabetes had higher serum levels of leptin at baseline than those remaining nondiabetic (P<0.001). After adjustment for confounders, high leptin levels and high leptin/body mass index ratio were independently associated with incident diabetes over 11 years in men (odds ratio for top versus bottom quartile of leptin 2.18; 95% CI: 1.09-4.35), but not in women. CONCLUSION We conclude that high leptin levels are associated with the future development of diabetes, and the association is independent of other factors in men, but not in women.
Collapse
Affiliation(s)
- S Söderberg
- International Diabetes Institute, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Jackerott M, Møldrup A, Thams P, Galsgaard ED, Knudsen J, Lee YC, Nielsen JH. STAT5 activity in pancreatic beta-cells influences the severity of diabetes in animal models of type 1 and 2 diabetes. Diabetes 2006; 55:2705-12. [PMID: 17003334 DOI: 10.2337/db06-0244] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic beta-cell growth and survival and insulin production are stimulated by growth hormone and prolactin through activation of the transcription factor signal transducer and activator of transcription (STAT)5. To assess the role of STAT5 activity in beta-cells in vivo, we generated transgenic mice that expressed a dominant-negative mutant of STAT5a (DNSTAT5) or constitutive active mutant of STAT5b (CASTAT5) under control of the rat insulin 1 promoter (RIP). When subjected to a high-fat diet, RIP-DNSTAT5 mice showed higher body weight, increased plasma glucose levels, and impairment of glucose tolerance, whereas RIP-CASTAT5 mice were more glucose tolerant and less hyperleptinemic than wild-type mice. Although the pancreatic insulin content and relative beta-cell area were increased in high-fat diet-fed RIP-DNSTAT5 mice compared with wild-type or RIP-CASTAT5 mice, RIP-DNSTAT5 mice showed reduced beta-cell proliferation at 6 months of age. The inhibitory effect of high-fat diet or leptin on insulin secretion was diminished in isolated islets from RIP-DNSTAT5 mice compared with wild-type islets. Upon multiple low-dose streptozotocin treatment, RIP-DNSTAT5 mice exhibited higher plasma glucose levels, lower plasma insulin levels, and lower pancreatic insulin content than wild-type mice, whereas RIP-CASTAT5 mice maintained higher levels of plasma insulin. In conclusion, our results indicate that STAT5 activity in beta-cells influences the susceptibility to experimentally induced type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Malene Jackerott
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The prevalence of obesity has markedly increased over the past two decades, especially in the industrialized countries. While the impact of excess body weight on the development of cardiac disease and diabetes has been well documented, the link between obesity and carcinogenesis is just being recognized. This review will focus on the link between leptin, a cytokine that is elevated in obese individuals, and cancer development. First, we briefly discuss the biological functions of leptin and its signaling pathways. Then, we summarize the effects of leptin on different cancer types in experimental cellular and animal models. Next, we analyze epidemiological data on the relationship between obesity and the presence of cancer or cancer risk in patients. Finally, leptin as a target for cancer treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Cecilia Garofalo
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | |
Collapse
|
37
|
Hekerman P, Zeidler J, Bamberg-Lemper S, Knobelspies H, Lavens D, Tavernier J, Joost HG, Becker W. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J 2004. [DOI: 10.1111/j.1432-1033.2004.04391.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol 2004; 200:177-200. [PMID: 15174089 DOI: 10.1002/jcp.20021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.
Collapse
Affiliation(s)
- Hongxiang Hui
- Division of Diabetes, Endocrinology and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
39
|
Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T, Dayer JM, Reinecke M, Halban PA, Donath MY. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci U S A 2004; 101:8138-43. [PMID: 15141093 PMCID: PMC419570 DOI: 10.1073/pnas.0305683101] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High concentrations of glucose induce beta cell production of IL-1beta, leading to impaired beta cell function and apoptosis in human pancreatic islets. IL-1 receptor antagonist (IL-1Ra) is a naturally occurring antagonist of IL-1beta and protects cultured human islets from glucotoxicity. Therefore, the balance of IL-1beta and IL-1Ra may play a crucial role in the pathogenesis of diabetes. In the present study, we observed expression of IL-1Ra in human pancreatic beta cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro, chronic exposure of human islets to leptin, a hormone secreted by adipocytes, decreased beta cell production of IL-1Ra and induced IL-1beta release from the islet preparation, leading to impaired beta cell function, caspase-3 activation, and apoptosis. Exogenous addition of IL-1Ra protected cultured human islets from the deleterious effects of leptin. Antagonizing IL-1Ra by introduction of small interfering RNA to IL-1Ra into human islets led to caspase-3 activation, DNA fragmentation, and impaired beta cell function. Moreover, siIL-1Ra enhanced glucose-induced beta cell apoptosis. These findings demonstrate expression of IL-1Ra in the human beta cell, providing localized protection against leptin- and glucose-induced islet IL-1beta.
Collapse
Affiliation(s)
- Kathrin Maedler
- Division of Endocrinology and Diabetes, University Hospital, CH8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Somasundar P, Riggs D, Jackson B, Vona-Davis L, McFadden DW. Leptin stimulates esophageal adenocarcinoma growth by nonapoptotic mechanisms. Am J Surg 2003; 186:575-8. [PMID: 14599628 DOI: 10.1016/j.amjsurg.2003.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Leptin is a hormone primarily produced by adipocytes and serum leptin is elevated in obese persons. One risk factor associated with adenocarcinoma of the esophagus is obesity. We hypothesized that leptin would have stimulatory effects on esophageal adenocarcinoma and alter apoptosis in vitro. METHODS Barrett's esophageal adenocarcinoma cells (BIC-1 and SEG-1) were cultured with human recombinant leptin (80 ng/mL) for 24 hours. Cell growth was determined by MTT assay. Apoptosis and necrosis was measured after 16 hours of treatment with leptin using a Cell Death Kit. RESULTS Exogenous leptin stimulated cell proliferation in both cell lines. No changes in apoptosis or necrosis resulted between control and leptin-treated groups. CONCLUSIONS We have shown that leptin increases the proliferation of human esophageal adenocarcinoma, but does not alter cell apoptosis or necrosis. The data suggest that leptin stimulates esophageal adenocarcinoma growth by nonapoptotic mechanisms. Leptin antagonism may have potential efficacy in esophageal cancer therapy.
Collapse
Affiliation(s)
- Ponnandai Somasundar
- Department of Surgery, Robert C. Byrd Health Science Center, West Virginia University, Morgantown, WV, USA
| | | | | | | | | |
Collapse
|
41
|
Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 2003; 81:455-70. [PMID: 12879149 DOI: 10.1007/s00109-003-0450-y] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 12/17/2022]
Abstract
Pancreatic islet beta-cell death occurs in type 1 and 2 diabetes mellitus, leading to absolute or relative insulin deficiency. beta-cell death in type 1 diabetes is due predominantly to autoimmunity. In type 2 diabetes beta-cell death occurs as the combined consequence of increased circulating glucose and saturated fatty acids together with adipocyte secreted factors and chronic activation of the innate immune system. In both diabetes types intra-islet inflammatory mediators seem to trigger a final common pathway leading to beta-cell apoptosis. Therefore anti-inflammatory therapeutic approaches designed to block beta-cell apoptosis could be a significant new development in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Marc Y Donath
- Division of Endocrinology and Diabetes, University Hospital, 8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
42
|
Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol 2003; 133:11-9. [PMID: 12823272 PMCID: PMC1808745 DOI: 10.1046/j.1365-2249.2003.02190.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2003] [Indexed: 01/13/2023] Open
Abstract
Leptin is a an adipocyte-secreted hormone that regulates weight centrally. However, the leptin receptor is expressed not only in the central nervous system, but also in peripheral tissues, such as haematopoietic and immune systems. Therefore, the physiological role of leptin should not be limited to the regulation of food intake and energy expenditure. Moreover, the leptin receptor bears homology to members of the class I cytokine family, and recent data have demonstrated that leptin is able to modulate the immune response. Thus, the leptin receptor is expressed in human peripheral blood mononuclear cells, mediating the leptin effect on proliferation and activation. In vitro activation and HIV infection in vivo induce the expression of the long isoform of the leptin receptor in mononuclear cells. Also, leptin stimulates the production of proinflammatory cytokines from cultured monocytes and enhances the production of Th1 type cytokines from stimulated lymphocytes. Moreover, leptin has a trophic effect on monocytes, preventing apoptosis induced by serum deprivation. Leptin stimulation activates JAK-STAT, IRS-1-PI3K and MAPK signalling pathways. Leptin also stimulates Tyr-phosphorylation of the RNA-binding protein Sam68 mediating the dissociation from RNA. In this way, leptin signalling could modulate RNA metabolism. These signal transduction pathways provide possible mechanisms whereby leptin may modulate activation of peripheral blood mononuclear cells. Therefore, these data support the hypothesis regarding leptin as a proinflammatory cytokine with a possible role as a link between the nutritional status and the immune response. Moreover, these immunoregulatory functions of leptin could have some relevance in the pathophysiology of obesity.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Clinical Biochemistry, Investigation Unit, University Hospital Virgen Macarena, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Najib S, Sánchez-Margalet V. Human leptin promotes survival of human circulating blood monocytes prone to apoptosis by activation of p42/44 MAPK pathway. Cell Immunol 2002; 220:143-9. [PMID: 12657249 DOI: 10.1016/s0008-8749(03)00027-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leptin, the adipocyte-secreted hormone, is known to function as an immunomodulatory regulator. Thus, we have recently found that human leptin promotes stimulation and proliferation of human peripheral blood mononuclear cells. Besides, we have also demonstrated that leptin triggers PI3K and p42/44 MAPK signaling pathways. In the present work, we sought to study the possible effect of leptin on cell survival and apoptosis, as well as the mechanisms underlying these effects. We have cultured human PBMC in serum-free conditions to assess the effect of leptin on cell survival and apoptosis. We have assayed the early phases of apoptosis by flow cytometric detection of phosphatidylserine expression using fluorescein isothiocyanate (FITC)-labelled Annexin V, simultaneously with dye exclusion of propidium iodide (PI), to discriminate intact cells, apoptotic, and necrotic cells. We have found that leptin promotes dose-dependent cell survival of monocytes after 24-96 h of serum-free culture. This effect of leptin on monocyte survival was completely reversed by blocking p42/44 MAPK activation employing the MEK inhibitor PD98059, whereas it was not affected by PI3K inhibition using Wortmannin. Leptin promotes this survival effect by preventing the apoptosis of monocyte cells, via MAPK activation. Thus, p42/44 MAPK inhibition, using PD98059, but not PI3K inhibition, employing Wortmannin, blocked the protective effect of leptin preventing apoptosis of monocytes cultured in the absence of serum. These data suggest that leptin is a trophic factor for the survival of blood monocytes and this effect is mediated by the p42/44 MAPK pathway.
Collapse
Affiliation(s)
- Souad Najib
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit, Virgen Macarena University Hospital, Av. Sanchez Pizjuan 4, Seville 41009, Spain
| | | |
Collapse
|
44
|
Dieudonne MN, Machinal-Quelin F, Serazin-Leroy V, Leneveu MC, Pecquery R, Giudicelli Y. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun 2002; 293:622-8. [PMID: 12054648 DOI: 10.1016/s0006-291x(02)00205-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor of breast cancers. As leptin, a hormone mainly secreted by white adipocytes, elicits proliferative effects in some cell types, we tested the hypothesis that leptin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express leptin receptors and respond to human recombinant leptin by STAT3 and p42/p44 MAPkinase activations and by increased proliferation. These findings suggest that leptin could act in vivo as a paracrine/endocrine growth factor towards mammary epithelial cells thus contributing to explain why obesity is a risk factor of developing breast cancers.
Collapse
Affiliation(s)
- Marie-Noelle Dieudonne
- Service de Biochimie et Biologie Moléculaire, Faculté de Médecine Paris-Ouest, Centre Hospitalier de Poissy, Université Descartes Paris V, 78303 Poissy Cedex, France
| | | | | | | | | | | |
Collapse
|