1
|
Snow SJ, Henriquez AR, Fisher A, Vallanat B, House JS, Schladweiler MC, Wood CE, Kodavanti UP. Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicol Appl Pharmacol 2021; 415:115427. [PMID: 33524448 PMCID: PMC8086744 DOI: 10.1016/j.taap.2021.115427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Air Pollutants/toxicity
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Composition/drug effects
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gene Expression Regulation
- Inhalation Exposure
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Ozone/toxicity
- Rats, Wistar
- Species Specificity
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|
2
|
Deshmukh AS. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle. Horm Mol Biol Clin Investig 2017; 26:13-24. [PMID: 26485752 DOI: 10.1515/hmbci-2015-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/15/2022]
Abstract
Skeletal muscle is the largest tissues in the human body and is considered the primary target for insulin-stimulated glucose disposal. In skeletal muscle, binding of the insulin to insulin receptor (IR) initiates a signaling cascade that results in the translocation of the insulin-sensitive glucose transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle.
Collapse
|
3
|
Lee D, Martinez B, Crocker DE, Ortiz RM. Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals ( Mirounga angustirostris). Physiol Rep 2017; 5:5/4/e13114. [PMID: 28242816 PMCID: PMC5328766 DOI: 10.14814/phy2.13114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022] Open
Abstract
Fasting typically suppresses thyroid hormone (TH)‐mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate‐activated protein kinase (AMPK). Adult male elephant seals (Mirounga angustirostris) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH‐mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH‐associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals (n = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH‐mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4‐fold and the TH receptor (THrβ‐1) decreased 30‐fold suggesting that cellular uptake of T4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up‐regulation of SIRT1 mRNA expression (2.6‐fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC‐1α. These coordinated changes likely contribute to the up‐regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals.
Collapse
Affiliation(s)
- Debby Lee
- Department of Cellular and Molecular Biology, University of California, Merced, California
| | - Bridget Martinez
- Department of Cellular and Molecular Biology, University of California, Merced, California
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Rudy M Ortiz
- Department of Cellular and Molecular Biology, University of California, Merced, California
| |
Collapse
|
4
|
Taibi N, Dupont J, Bouguermouh Z, Froment P, Ramé C, Anane A, Amirat Z, Khammar F. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state. Anim Reprod Sci 2017; 178:9-22. [PMID: 28122665 DOI: 10.1016/j.anireprosci.2017.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/26/2022]
Abstract
In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.
Collapse
Affiliation(s)
- N Taibi
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (C.R.A.P.C), BP 384, Zone industrielle de Bou-Ismail, RP 42004 w., Tipaza, Algérie.
| | - J Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | - P Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - C Ramé
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - A Anane
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - Z Amirat
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - F Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| |
Collapse
|
5
|
Farese RV, Sajan MP, Standaert ML. Insulin-Sensitive Protein Kinases (Atypical Protein Kinase C and Protein Kinase B/Akt): Actions and Defects in Obesity and Type II Diabetes. Exp Biol Med (Maywood) 2016; 230:593-605. [PMID: 16179727 DOI: 10.1177/153537020523000901] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose transport into muscle is the initial process in glucose clearance and is uniformly defective in insulin-resistant conditions of obesity, metabolic syndrome, and Type II diabetes mellitus. Insulin regulates glucose transport by activating insulin receptor substrate-1 (IRS-1)-dependent phosphatidylinositol 3-kinase (PI3K) which, via increases in PI-3, 4, 5-triphosphate (PIP3), activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). Here, we review (i) the evidence that both aPKC and PKB are required for insulin-stimulated glucose transport, (ii) abnormalities in muscle aPKC/PKB activation seen in obesity and diabetes, and (iii) mechanisms for impaired aPKC activation in insulin-resistant conditions. In most cases, defective muscle aPKC/PKB activation reflects both impaired activation of IRS-1/PI3K, the upstream activator of aPKC and PKB in muscle and, in the case of aPKC, poor responsiveness to PIP3, the lipid product of PI3K. Interestingly, insulin-sensitizing agents (e.g., thiazolidinediones, metformin) improve aPKC activation by insulin in vivo and PIP3 in vitro, most likely by activating 5′-adenosine monophosphate-activated protein kinase, which favorably alters intracellular lipid metabolism. Differently from muscle, aPKC activation in the liver is dependent on IRS-2/PI3K rather than IRS-1/PI3K and, surprisingly, the activation of IRS-2/PI3K and aPKC is conserved in high-fat feeding, obesity, and diabetes. This conservation has important implications, as continued activation of hepatic aPKC in hyperinsulinemic states may increase the expression of sterol regulatory element binding protein-1c, which controls genes that increase hepatic lipid synthesis. On the other hand, the defective activation of IRS-1/PI3K and PKB, as seen in diabetic liver, undoubtedly and importantly contributes to increases in hepatic glucose output. Thus, the divergent activation of aPKC and PKB in the liver may explain why some hepatic actions of insulin (e.g., aPKC-dependent lipid synthesis) are increased while other actions (e.g., PKB-dependent glucose metabolism) are diminished. This may explain the paradox that the liver secretes excessive amounts of both very low density lipoprotein triglycerides and glucose in Type II diabetes. Previous reviews from our laboratory that have appeared in the Proceedings have provided essentials on phospholipid-signaling mechanisms used by insulin to activate several protein kinases that seem to be important in mediating the metabolic effects of insulin. During recent years, there have been many new advances in our understanding of how these lipid-dependent protein kinases function during insulin action and why they fail to function in states of insulin resistance. The present review will attempt to summarize what we believe are some of the more important advances.
Collapse
Affiliation(s)
- Robert V Farese
- James A. Haley Veterans Administration Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
6
|
Silva Frederico MJ, Mascarello A, Castro AJG, Da Luz G, Altenhofen D, Mendes CP, Leal PC, Yunes RA, Nunes RJ, Silva FRMB. Incretinomimetic and Insulinomimetic Effect of (2E)-N′-(1′-Naphthyl)-3,4,5-Trimethoxybenzohydrazide for Glycemic Homeostasis. J Cell Biochem 2015; 117:1199-209. [DOI: 10.1002/jcb.25403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Marisa Jádna Silva Frederico
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| | - Alessandra Mascarello
- Departamento de Química; Universidade Federal de Santa Catarina; Centro de Ciências Físicas e Matemáticas; Campus Universitário; Bairro Trindade; CEP: 88040-900 Florianópolis SC Brazil
| | - Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| | - Gabrielle Da Luz
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| | - Delsi Altenhofen
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| | - Camila Pires Mendes
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| | - Paulo Cesar Leal
- Departamento de Química; Universidade Federal de Santa Catarina; Centro de Ciências Físicas e Matemáticas; Campus Universitário; Bairro Trindade; CEP: 88040-900 Florianópolis SC Brazil
| | - Rosendo Augusto Yunes
- Departamento de Química; Universidade Federal de Santa Catarina; Centro de Ciências Físicas e Matemáticas; Campus Universitário; Bairro Trindade; CEP: 88040-900 Florianópolis SC Brazil
| | - Ricardo José Nunes
- Departamento de Química; Universidade Federal de Santa Catarina; Centro de Ciências Físicas e Matemáticas; Campus Universitário; Bairro Trindade; CEP: 88040-900 Florianópolis SC Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Campus Universitário; Bairro Trindade; Cx. Postal 5069, CEP: 88040-970 Florianópolis SC Brazil
| |
Collapse
|
7
|
Doumatey AP, Xu H, Huang H, Trivedi NS, Lei L, Elkahloun A, Adeyemo A, Rotimi CN. Global Gene Expression Profiling in Omental Adipose Tissue of Morbidly Obese Diabetic African Americans. JOURNAL OF ENDOCRINOLOGY AND METABOLISM 2015; 5:199-210. [PMID: 26504501 DOI: 10.14740/jem286w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D. METHODS Twenty morbidly obese (mean BMI: about 54 kg/m2) subjects were studied, including 14 morbidly obese individuals with T2D (cases) and 6 morbidly obese individuals without T2D (reference group). Gene expression profiling was performed using the Affymetrix U133 Plus 2.0 human genome expression array. Analysis of covariance was performed to identify differentially expressed genes (DEGs). Bioinformatics tools including PANTHER and Ingenuity Pathway Analysis (IPA) were applied to the DEGs to determine biological functions, networks and canonical pathways that were overrepresented in these individuals. RESULTS At an absolute fold-change threshold of 2 and false discovery rate (FDR) < 0.05, 68 DEGs were identified in cases compared to the reference group. Myosin X (MYO10) and transforming growth factor beta regulator 1 (TBRG1) were upregulated. MYO10 encodes for an actin-based motor protein that has been associated with T2D. Telomere extension by telomerase (HNRNPA1, TNKS2), D-myo-inositol (1, 4, 5)-trisphosphate biosynthesis (PIP5K1A, PIP4K2A), and regulation of actin-based motility by Rho (ARPC3) were the most significant canonical pathways and overlay with T2D signaling pathway. Upstream regulator analysis predicted 5 miRNAs (miR-320b, miR-381-3p, miR-3679-3p, miR-494-3p, and miR-141-3p,) as regulators of the expression changes identified. CONCLUSION This study identified a number of transcripts and miRNAs in OAT as candidate novel players in the pathophysiology of T2D in African Americans.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Huichun Xu
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD ; University of Maryland, School of Medicine, Baltimore, MD
| | - Hanxia Huang
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Niraj S Trivedi
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Abdel Elkahloun
- Core laboratory-Cancer Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Phosphatase and tension homolog overexpression in insulin resistant diabetic adipose tissue. ACTA ACUST UNITED AC 2014; 29:167-73. [PMID: 25264885 DOI: 10.1016/s1001-9294(14)60063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the expression of phosphatase and tension homolog (PTEN) in adipose tissue of KKAy diabetic mice, a mouse model of type 2 diabetes. METHODS KKAy diabetic mice were fed with high fat diet for 4 weeks. After blood glucose met the criteria of diabetes (over 16.7 mmol/L), mice were randomly divided into 3 groups: a control group (without any treatment), a rosiglitazone group (treated with rosiglitazone 12.5 mg/kg.d once per day), and a metformin group (treated with metformin 3 g/kg.d twice daily). After 4 weeks, we then determined the expression of PTEN and phosphoserine 473-Akt (pS473-Akt) in the epididymal adipose tissue with Western blots. The mice in each group were further divided into the insulin (-) subgroup and insulin (+) subgroup, which were intraperitoneally injected with saline and insulin (5 mU/g body weight), respectively. RESULTS The expression of PTEN was elevated in the epididymal adipose tissue obtained from KKAy diabetic mice compared with that from the C57BL/6J mice (P<0.001). In accordance with the enhanced expression of PTEN, the level of pS473-Akt stimulated by insulin was decreased in the adipose tissue of KKAy mice compared to the C57BL/6J mice (P<0.001). Treatment with the insulin-sensitizing agents, rosiglitazone and metformin did not inhibit the elevated expression of PTEN in adipose tissue of KKAy diabetic mice. CONCLUSION PTEN may play an important role in the development of insulin resistance in adipose tissue of type 2 diabetes mice model.
Collapse
|
9
|
Liu M, Zhou L, Wei L, Villarreal R, Yang X, Hu D, Riojas RA, Holmes BM, Langlais PR, Lee H, Dong LQ. Phosphorylation of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) at Ser430 mediates endoplasmic reticulum (ER) stress-induced insulin resistance in hepatocytes. J Biol Chem 2012; 287:26087-93. [PMID: 22685300 DOI: 10.1074/jbc.m112.372292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser(430) and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser(430) is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser(430) in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser(430) as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser(430) in insulin signaling, overexpression of APPL1(S430D) but not APPL1(S430A) impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr(308). Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser(430).
Collapse
Affiliation(s)
- Meilian Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mohamed WR, El Sherbiny GA, Zaki HF, El Sayed ME. Possible modulation of the antidiabetic effect of rosiglitazone by buspirone. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bfopcu.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Gao W, Jusko WJ. Modeling disease progression and rosiglitazone intervention in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther 2012; 341:617-25. [PMID: 22378938 PMCID: PMC3362884 DOI: 10.1124/jpet.112.192419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022] Open
Abstract
The pharmacokinetics (PK) and pharmacodynamics (PD) of rosiglitazone were studied in type 2 diabetic (T2D) Goto-Kakizaki (GK) rats that received daily doses of 0, 5, or 10 mg/kg for 23 days followed by 60 days of washout. Blood glucose, plasma insulin, and hemoglobin A1c were determined over time. Oral glucose tolerance tests were performed before and at the end of treatment and after 20 days of washout to determine insulin sensitivity and β-cell function. Rosiglitazone effectively lowered glucose by inhibiting hepatic glucose production and enhancing insulin sensitivity. The glucose-insulin inter-regulation was characterized by a feedback model: glucose and insulin have their own production (k(in)) and elimination (k(out)) rate constants, whereas glucose stimulates insulin production (k(inI)) and insulin, in turn, promotes glucose utilization (k(outG)). Animal handling and placebo treatment affected glucose turnover with k(pl) = 0.388 kg/mg/day. The PK of rosiglitazone was fitted with a one-compartment model with first-order absorption. The effect of rosiglitazone was described as inhibition of k(inG) with I(max) = 0.296 and IC(50) = 1.97 μg/ml. Rosiglitazone also stimulated glucose utilization by improving insulin sensitivity with a linear factor S(R) = 0.0796 kg/mg. In GK rats, 23 days of treatment increased body weight but did not cause hemodilution. Weight gain was characterized with body weight input (k(s)(w)) and output (k(d)(w)), and rosiglitazone inhibited k(d)(w) with ID(50) = 96.8 mg/kg. The mechanistic PK/PD model quantitatively described the glucose-insulin system and body weights under chronic rosiglitazone treatment in T2D rats.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
12
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
13
|
Nie J, Xue B, Sukumaran S, Jusko WJ, DuBois DC, Almon RR. Differential muscle gene expression as a function of disease progression in Goto-Kakizaki diabetic rats. Mol Cell Endocrinol 2011; 338:10-7. [PMID: 21356272 PMCID: PMC3093670 DOI: 10.1016/j.mce.2011.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/26/2011] [Accepted: 02/17/2011] [Indexed: 11/23/2022]
Abstract
The Goto-Kakizaki (GK) rat, a polygenic non-obese model of type 2 diabetes, is a useful surrogate for study of diabetes-related changes independent of obesity. GK rats and appropriate controls were killed at 4, 8, 12, 16 and 20 weeks post-weaning and differential muscle gene expression along with body and muscle weights, plasma hormones and lipids, and blood cell measurements were carried out. Gene expression analysis identified 204 genes showing 2-fold or greater differences between GK and controls in at least 3 ages. Array results suggested increased oxidative capacity in GK muscles, as well as differential gene expression related to insulin resistance, which was also indicated by HOMA-IR measurements. In addition, potential new biomarkers in muscle gene expression were identified that could be either a cause or consequence of T2DM. Furthermore, we demonstrate here the presence of chronic inflammation evident both systemically and in the musculature, despite the absence of obesity.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences
| |
Collapse
|
14
|
Ortmeyer HK, Sajan MP, Miura A, Kanoh Y, Rivas J, Li Y, Standaert ML, Ryan AS, Bodkin NL, Farese RV, Hansen BC. Insulin signaling and insulin sensitizing in muscle and liver of obese monkeys: peroxisome proliferator-activated receptor gamma agonist improves defective activation of atypical protein kinase C. Antioxid Redox Signal 2011; 14:207-19. [PMID: 20518698 PMCID: PMC3014763 DOI: 10.1089/ars.2010.3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO₄)₃, and 5'-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO₄)₃.
Collapse
Affiliation(s)
- Heidi K Ortmeyer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to activation of phosphatidylinositol 3-kinase (PI3K) and, subsequently, to activation of Akt and its downstream mediator AS160, all of which are important steps for stimulating glucose transport induced by insulin. Although the mechanisms underlying insulin resistance are not completely understood in skeletal muscle, it is thought to result, at least in part, from impaired insulin-dependent PI3K activation and downstream signaling. This review focuses on the molecular basis of skeletal muscle insulin resistance in obesity and type 2 diabetes. In addition, the effects of insulin-sensitizing agent treatment and lifestyle intervention of human insulin-resistant subjects on insulin signaling cascade are discussed. Furthermore, the role of Rho-kinase, a newly identified regulator of insulin action in insulin control of metabolism, is addressed.
Collapse
Affiliation(s)
- Kangduk Choi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
16
|
Oak S, Tran C, Castillo MO, Thamotharan S, Thamotharan M, Devaskar SU. Peroxisome proliferator-activated receptor-gamma agonist improves skeletal muscle insulin signaling in the pregestational intrauterine growth-restricted rat offspring. Am J Physiol Endocrinol Metab 2009; 297:E514-24. [PMID: 19491300 PMCID: PMC2724105 DOI: 10.1152/ajpendo.00008.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of early intervention with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on skeletal muscle GLUT4 translocation and insulin signaling was examined in intrauterine (IUGR) and postnatal (PNGR) growth-restricted pregestational female rat offspring. Rosiglitazone [11 mumol/day provided from postnatal day (PN)21 to PN60] improved skeletal muscle insulin sensitivity and GLUT4 translocation in prenatal nutrient restriction [50% calories from embryonic day (e)11 to e21; IUGR] with (IUGR+PNGR) and without (IUGR) postnatal nutrient restriction (50% calories from PN1 to PN21; PNGR) similar to that of control (ad libitum feeds throughout; Con) (n = 6 each). This was accomplished by diminished basal and improved insulin-responsive GLUT4 association with the plasma membrane in IUGR, IUGR+PNGR, and PNGR mimicking that in Con (P < 0.005). While no change in p85-phosphatidylinositol 3-kinase (PI3-K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was observed, a decrease in protein tyrosine phosphatase 1B (PTP1B; P < 0.0002) and SH2-containing protein tyrosine phosphatase 2 (SHP2; P < 0.05) contributing to the rosiglitazone-induced insulin sensitivity was seen only in IUGR+PNGR. In contrast, an increase in phosphorylated 5'-adenosine monophosphate kinase (pAMPK; P < 0.04) and insulin responsiveness of phosphorylated phosphoinositide-dependent protein kinase-1 (pPDK1; P < 0.05), pAkt (P < 0.01), and particularly pPKCzeta (P < 0.0001) and its corresponding enzyme activity (P < 0.005) were observed in all four experimental groups. We conclude that early introduction of PPARgamma agonist improved skeletal muscle activation of AMPK and insulin signaling, resulting in insulin-independent AMPK and insulin-responsive GLUT4 association with plasma membranes in IUGR, IUGR+PNGR, and PNGR adult offspring, similar to that of Con. These findings support a role for insulin sensitizers in preventing the subsequent development of gestational or type 2 diabetes mellitus in intrauterine and postnatal growth-restricted offspring.
Collapse
Affiliation(s)
- Shilpa Oak
- Department of Pediatrics, Division of Neonatology, Neonatal Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sajan MP, Standaert ML, Rivas J, Miura A, Kanoh Y, Soto J, Taniguchi CM, Kahn CR, Farese RV. Role of atypical protein kinase C in activation of sterol regulatory element binding protein-1c and nuclear factor kappa B (NFkappaB) in liver of rodents used as a model of diabetes, and relationships to hyperlipidaemia and insulin resistance. Diabetologia 2009; 52:1197-207. [PMID: 19357831 PMCID: PMC4766834 DOI: 10.1007/s00125-009-1336-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/25/2009] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Previous findings in rodents used as a model of diabetes suggest that insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but, unexpectedly, conserved in liver, despite impaired hepatic protein kinase B (PKB/Akt) activation. Moreover, aPKC at least partly regulates two major transactivators: (1) hepatic sterol receptor binding protein-1c (SREBP-1c), which controls lipid synthesis; and (2) nuclear factor kappa B (NFkappaB), which promotes inflammation and systemic insulin resistance. METHODS In Goto-Kakizaki rats used as a model of type 2 diabetes, we examined: (1) whether differences in hepatic aPKC and PKB activation reflect differences in activation of IRS-1- and IRS-2-dependent phosphatidylinositol 3-kinase (PI3K); (2) whether hepatic SREBP-1c and NFkappaB are excessively activated by aPKC; and (3) metabolic consequences of excessive activation of hepatic aPKC, SREBP-1c and NFkappaB. RESULTS In liver, as well as in muscle, IRS-2/PI3K activation by insulin was intact, whereas IRS-1/PI3K activation by insulin was impaired. Moreover, hepatic IRS-2 is known to control hepatic aPKC during insulin activation. Against this background, selective inhibition of hepatic aPKC by adenoviral-mediated expression of mRNA encoding kinase-inactive aPKC or short hairpin RNA targeting Irs2 mRNA and partially depleting hepatic IRS-2 diminished hepatic SREBP-1c production and NFkappaB activities, concomitantly improving serum lipids and insulin signalling in muscle and liver. Similar improvements in SREBP-1c, NFkappaB and insulin signalling were seen in ob/ob mice following inhibition of hepatic aPKC. CONCLUSIONS/INTERPRETATION In diabetic rodent liver, diminished PKB activation may largely reflect impaired IRS-1/PI3K activation, while conserved aPKC activation reflects retained IRS-2/PI3K activity. Hepatic aPKC may also contribute importantly to excessive SREPB-1c and NFkappaB activities. Excessive hepatic aPKC-dependent activation of SREBP-1c and NFkappaB may contribute importantly to hyperlipidaemia and systemic insulin resistance.
Collapse
Affiliation(s)
- M P Sajan
- Research Service, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sajan MP, Standaert ML, Nimal S, Varanasi U, Pastoor T, Mastorides S, Braun U, Leitges M, Farese RV. The critical role of atypical protein kinase C in activating hepatic SREBP-1c and NFkappaB in obesity. J Lipid Res 2009; 50:1133-45. [PMID: 19202134 DOI: 10.1194/jlr.m800520-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity is frequently associated with systemic insulin resistance, glucose intolerance, and hyperlipidemia. Impaired insulin action in muscle and paradoxical diet/insulin-dependent overproduction of hepatic lipids are important components of obesity, but their pathogenesis and inter-relationships between muscle and liver are uncertain. We studied two murine obesity models, moderate high-fat-feeding and heterozygous muscle-specific PKC-lambda knockout, in both of which insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but conserved in liver. In both models, activation of hepatic sterol receptor element binding protein-1c (SREBP-1c) and NFkappaB (nuclear factor-kappa B), major regulators of hepatic lipid synthesis and systemic insulin resistance, was chronically increased in the fed state. In support of a critical mediatory role of aPKC, in both models, inhibition of hepatic aPKC by adenovirally mediated expression of kinase-inactive aPKC markedly diminished diet/insulin-dependent activation of hepatic SREBP-1c and NFkappaB, and concomitantly improved hepatosteatosis, hypertriglyceridemia, hyperinsulinemia, and hyperglycemia. Moreover, in high-fat-fed mice, impaired insulin signaling to IRS-1-dependent phosphatidylinositol 3-kinase, PKB/Akt and aPKC in muscle and hyperinsulinemia were largely reversed. In obesity, conserved hepatic aPKC-dependent activation of SREBP-1c and NFkappaB contributes importantly to the development of hepatic lipogenesis, hyperlipidemia, and systemic insulin resistance. Accordingly, hepatic aPKC is a potential target for treating obesity-associated abnormalities.
Collapse
Affiliation(s)
- Mini P Sajan
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qin L, Zhou L, Wu X, Cheng J, Wang J, Du Y, Hu J, Shen M, Zhou J. Genetic variants in protein kinase C zeta gene and type 2 diabetes risk: a case-control study of a Chinese Han population. Diabetes Metab Res Rev 2008; 24:480-5. [PMID: 18615853 DOI: 10.1002/dmrr.882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous investigations of the protein kinase C zeta (PRKCZ) gene, a susceptibility factor for type 2 diabetes mellitus (T2DM), have focussed on its single nucleotide polymorphisms (SNPs). In a departure from these earlier studies, we tested six tagging markers of PRKCZ based on the Hapmap database to evaluate their association with T2DM. METHODS PCR-RFLP was performed to test the genotypes in type 2 diabetes patients (n = 343) and normal controls (n = 429). Insulin-related indexes were calculated from levels of fasting plasma insulin (FPI) and fasting plasma glucose (FPG). RESULTS The variant genotypes, rs3753242TT, rs2503706CT, rs2503706CT/ TT and rs262654TT were associated with T2DM. And the significance remained for rs3753242 TT (p < 0.001) after the false discovery rate (FDR) correction. There was a doubling in the prevalence of the TTGCCC haplotype in the case subjects (14.2%) compared with the control subjects (6.9%) [OR (95% CI) = 2.19(1.49-3.22)]. In the control group, none of the haplotypes studied was associated with insulin-related indexes. CONCLUSIONS The PRKCZ gene variants associated with the development of T2DM in this study must be investigated in a larger population to reveal any potential effects on metabolism.
Collapse
Affiliation(s)
- Lei Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frøsig C, Sajan MP, Maarbjerg SJ, Brandt N, Roepstorff C, Wojtaszewski JFP, Kiens B, Farese RV, Richter EA. Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiol 2007; 582:1289-301. [PMID: 17540697 PMCID: PMC2075270 DOI: 10.1113/jphysiol.2007.136614] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was approximately 80% higher (N = 12, P < 0.05) in previously exercised muscle, measured during a euglycaemic-hyperinsulinaemic clamp (100 microU ml(-1)). Insulin increased (P < 0.05) both insulin receptor substrate (IRS)-1 and IRS-2 associated phosphatidylinositol (PI)-3 kinase activity and led to increased (P < 0.001) phosphorylation of Akt on Ser(473) and Thr(308) in skeletal muscle. Interestingly, in response to prior exercise IRS-2-associated PI-3 kinase activity was higher (P < 0.05) both at basal and during insulin stimulation. This coincided with correspondingly altered phosphorylation of the extracellular-regulated protein kinase 1/2 (ERK 1/2), p70S6 kinase (P70S6K), eukaryotic elongation factor 2 (eEF2) kinase and eEF2. aPKC was similarly activated by insulin in rested and exercised muscle, without detectable changes in aPKC Thr(410) phosphorylation. However, when adding phosphatidylinositol-3,4,5-triphosphate (PIP3), the signalling product of PI-3 kinase, to basal muscle homogenates, aPKC was more potently activated (P = 0.01) in previously exercised muscle. Collectively, this study shows that endurance-type exercise interacts with insulin signalling to peptide chain elongation. Although protein turnover was not evaluated, this suggests that capacity for protein synthesis after acute endurance-type exercise may be improved. Furthermore, endurance exercise increased the responsiveness of aPKC to PIP3 providing a possible link to improved insulin-stimulated glucose uptake after exercise.
Collapse
Affiliation(s)
- Christian Frøsig
- Copenhagen Muscle Research Centre, Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, 13, Universitetsparken, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Björnholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans 2005; 33:354-7. [PMID: 15787605 DOI: 10.1042/bst0330354] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type II diabetes is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue and liver and pancreatic β-cell defects. Since the skeletal muscle accounts for approx. 75% of whole body insulin-stimulated glucose uptake, defects in this tissue play a major role in the impaired glucose homoeostasis in Type II diabetic patients. Thus identifying defective steps in this process may reveal attractive targets for drug development to combat insulin resistance and Type II diabetes. This review will describe the effects of insulin on glucose transport and other metabolic events in skeletal muscle that are mediated by intracellular signalling cascades. Evidence for impaired activation of the insulin receptor signalling cascade and defective glucose transporter 4 translocation in the skeletal muscle from Type II diabetic patients will be presented. Through the identification of the intracellular defects in insulin action that control glucose homoeostasis, a better understanding of the disease pathogenesis can be gained and strategies for intervention may be developed.
Collapse
Affiliation(s)
- M Björnholm
- Department of Surgical Sciences, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
22
|
Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans 2005; 33:350-3. [PMID: 15787604 DOI: 10.1042/bst0330350] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It now seems clear that aPKC (atypical protein kinase C) isoforms are required for insulin-stimulated glucose transport in muscle and adipocytes. Moreover, there are marked defects in the activation of aPKCs under a variety of insulin-resistant conditions in humans, monkeys and rodents. In humans, defects in aPKC in muscle are seen in Type II diabetes and its precursors, obesity, the obesity-associated polycystic ovary syndrome and impaired glucose tolerance. These defects in muscle aPKC activation are due to both impaired activation of insulin receptor substrate-1-dependent PI3K (phosphoinositide 3-kinase) and the direct activation of aPKCs by the lipid product of PI3K, PI-3,4,5-(PO4)3. Although it is still uncertain which underlying defect comes first, the resultant defect in aPKC activation in muscle most certainly contributes significantly to the development of skeletal muscle insulin resistance. Of further note, unlike the seemingly ubiquitous presence of defective aPKC activation in skeletal muscle in insulin-resistant states, the activation of aPKC is normal or increased in livers of Type II diabetic and obese rodents. The maintenance of aPKC activation in the liver may explain how insulin-dependent lipid synthesis is maintained in these states, as aPKCs function mainly in the activation of enzymes important for lipid synthesis. Thus increased activation of liver aPKC in hyperinsulinaemic states may contribute significantly to the development of hyperlipidaemia in insulin-resistant states.
Collapse
Affiliation(s)
- R V Farese
- Research Service, James A. Haley Veterans Administration Medical Center, and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
23
|
Standaert ML, Sajan MP, Miura A, Kanoh Y, Chen HC, Farese RV, Farese RV. Insulin-induced Activation of Atypical Protein Kinase C, but Not Protein Kinase B, Is Maintained in Diabetic (ob/ob and Goto-Kakazaki) Liver. J Biol Chem 2004; 279:24929-34. [PMID: 15069067 DOI: 10.1074/jbc.m402440200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects, we examined the activation of atypical protein kinase C (aPKC) and protein kinase B (PKB), two key signaling factors that operate downstream of phosphatidylinositol 3-kinase and regulate various insulin-sensitive metabolic processes. Livers and muscles of three insulin-resistant rodent models were studied. In livers of type 2 diabetic non-obese Goto-Kakazaki rats and ob/ob-diabetic mice, the activation of PKB was impaired, whereas activation of aPKC was surprisingly maintained. In livers of non-diabetic high fatfed mice, the activation of both aPKC and PKB was maintained. In contrast to the maintenance of aPKC activation in the liver, insulin activation of aPKC was impaired in muscles of Goto-Kakazaki-diabetic rats and ob/ob-diabetic and non-diabetic high fat-fed mice. These findings suggest that, at least in these rodent models, (a) defects in aPKC activation contribute importantly to skeletal muscle insulin resistance observed in both high fat feeding and type 2 diabetes; (b) insulin signaling defects in muscle are not necessarily accompanied by similar defects in liver; (c) defects in hepatic PKB activation occur in association with, and probably contribute importantly to, the development of overt diabetes; and (d) maintenance of hepatic aPKC activation may explain the continued effectiveness of insulin for stimulating certain metabolic actions in the liver.
Collapse
Affiliation(s)
- Mary L Standaert
- Research Service, James A. Haley Veterans Medical Center and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Vigliotta G, Miele C, Santopietro S, Portella G, Perfetti A, Maitan MA, Cassese A, Oriente F, Trencia A, Fiory F, Romano C, Tiveron C, Tatangelo L, Troncone G, Formisano P, Beguinot F. Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action. Mol Cell Biol 2004; 24:5005-15. [PMID: 15143191 PMCID: PMC416420 DOI: 10.1128/mcb.24.11.5005-5015.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/24/2004] [Accepted: 03/07/2004] [Indexed: 11/20/2022] Open
Abstract
Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In vivo, insulin-stimulated glucose uptake was decreased by almost 50% in fat and muscle tissues of the ped/pea-15 transgenic mice, accompanied by protein kinase Calpha activation and block of insulin induction of protein kinase Czeta. These changes persisted in isolated adipocytes from the transgenic mice and were rescued by the protein kinase C inhibitor bisindolylmaleimide. In addition to insulin resistance, ped/pea-15 transgenic mice showed a 70% reduction in insulin response to glucose loading. Stable overexpression of ped/pea-15 in the glucose-responsive MIN6 beta-cell line also caused protein kinase Calpha activation and a marked decline in glucose-stimulated insulin secretion. Antisense block of endogenous ped/pea-15 increased glucose sensitivity by 2.5-fold in these cells. Thus, in vivo, overexpression of ped/pea-15 may lead to diabetes by impairing insulin secretion in addition to insulin action.
Collapse
Affiliation(s)
- Giovanni Vigliotta
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Via Sergio Pansini, 5, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK, Neel BG, Kahn BB. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 2004; 279:24844-51. [PMID: 15031294 DOI: 10.1074/jbc.m310688200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies implicate protein-tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related phosphatase (LAR) as negative regulators of insulin signaling. The expression and/or activity of PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans. Overexpression of LAR selectively in muscle of transgenic mice causes whole body insulin resistance. To determine whether overexpression of PTP1B also causes insulin resistance, we generated transgenic mice overexpressing human PTP1B selectively in muscle at levels similar to those observed in insulin-resistant humans. Insulin-stimulated insulin receptor (IR) tyrosyl phosphorylation and phosphatidylinositol 3'-kinase activity were impaired by 35% and 40-60% in muscle of PTP1B-overexpressing mice compared with controls. Insulin stimulation of protein kinase C (PKC)lambda/zeta activity, which is required for glucose transport, was impaired in muscle of PTP1B-overexpressing mice compared with controls, showing that PTP1B overexpression impairs activation of these PKC isoforms. Furthermore, hyperinsulinemic-euglycemic clamp studies revealed that whole body glucose disposal and muscle glucose uptake were decreased by 40-50% in PTP1B-overexpressing mice. Overexpression of PTP1B or LAR alone in muscle caused similar impairments in insulin action; however, compound overexpression achieved by crossing PTP1B- and LAR-overexpressing mice was not additive. Antibodies against specific IR phosphotyrosines indicated overlapping sites of action of PTP1B and LAR. Thus, overexpression of PTP1B in vivo impairs insulin sensitivity, suggesting that overexpression of PTP1B in muscle of obese humans and rodents may contribute to their insulin resistance. Lack of additive impairment of insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions in causing insulin resistance in vivo.
Collapse
Affiliation(s)
- Janice M Zabolotny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bandyopadhyay G, Standaert ML, Sajan MP, Kanoh Y, Miura A, Braun U, Kruse F, Leitges M, Farese RV. Protein Kinase C-λ Knockout in Embryonic Stem Cells and Adipocytes Impairs Insulin-Stimulated Glucose Transport. Mol Endocrinol 2004; 18:373-83. [PMID: 14615604 DOI: 10.1210/me.2003-0087] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- James A Haley Veterans Hospital and University of South Florida College of Medicine, Tampa, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Steiler TL, Galuska D, Leng Y, Chibalin AV, Gilbert M, Zierath JR. Effect of hyperglycemia on signal transduction in skeletal muscle from diabetic Goto-Kakizaki rats. Endocrinology 2003; 144:5259-67. [PMID: 12960081 DOI: 10.1210/en.2003-0447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined basal and insulin-stimulated responses on signaling intermediates in soleus skeletal muscle from male Wistar and diabetic Goto-Kakizaki (GK) rats. Rats were infused with glucose (5 or 20 mm) for 3 h, followed by a continuous infusion of saline or insulin (3 U/kg.h) for 20 min. Under euglycemic and hyperglycemic conditions, basal and insulin-stimulated action on phosphatidylinositol (PI) 3-kinase, protein kinase B/Akt, and ERK were reduced in GK rats, whereas insulin-stimulated protein kinase C (PKC)zeta activity was not altered. Interestingly, basal PKCzeta activity was increased under hyperglycemic conditions in GK and Wistar rats. This finding of increased PKCzeta activity was confirmed in vitro in isolated soleus muscle exposed to high extracellular glucose, and occurred concomitant with an increase in PI-dependent kinase 1 (PDK-1) activity. The glucose effects were not specific to PKCzeta, because an increase in phosphorylation of PKCalpha/beta and PKCdelta, but not PKCtheta, in isolated soleus muscle exposed to 25 mm glucose was observed. In conclusion, insulin signaling defects in diabetic GK rats are not corrected by an acute normalization of glycemia. Interestingly, acute hyperglycemia leads to a parallel increase in PDK-1, PKCalpha/beta, PKCdelta, and PKCzeta phosphorylation/activity via a PI 3-kinase-protein kinase B/Akt-independent mechanism. The long-term consequence of elevated PDK-1 and PKC phosphorylation/activity should be considered in the context of diabetes mellitus, as hyperglycemia is a clinical feature of this disease.
Collapse
Affiliation(s)
- Tatiana L Steiler
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Li YF, Sun HX, Wu GD, Du WN, Zuo J, Shen Y, Qiang BQ, Yao ZJ, Wang H, Huang W, Chen Z, Xiong MM, Meng Y, Fang FD. Protein kinase C/ζ ( PRKCZ) Gene is associated with type 2 diabetes in Han population of North China and analysis of its haplotypes. World J Gastroenterol 2003; 9:2078-82. [PMID: 12970910 PMCID: PMC4656678 DOI: 10.3748/wjg.v9.i9.2078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the susceptible gene (s) for type 2 diabetes in the prevousely mapped region, 1p36.33-p36.23, in Han population of North China using single nucleotide polymorphisms (SNPs) and to analyze the haplotypes of the gene (s) related to type 2 diabetes.
METHODS: Twenty three SNPs located in 10 candidate genes in the mapped region were chosen from public SNP domains with bioinformatic methods, and the single base extension (SBE) method was used to genotype the loci for 192 sporadic type 2 diabetes patients and 172 normal individuals, all with Han ethical origin, to perform this case-control study. The haplotypes with significant difference in the gene (s) were further analyzed.
RESULTS: Among the 23 SNPs, 8 were found to be common in Chinese Han population. Allele frequency of one SNP, rs436045 in the protein kinase C/ζgene (PRKCZ) was statistically different between the case and control groups (P < 0.05). Furthermore, haplotypes at five SNP sites of PRKCZ gene were identified.
CONCLUSION: PRKCZ gene may be associated with type 2 diabetes in Han population in North China. The haplotypes at five SNP sites in this gene may be responsible for this association.
Collapse
Affiliation(s)
- Yun-Feng Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML, Farese RV. Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 2003; 52:1926-34. [PMID: 12882907 DOI: 10.2337/diabetes.52.8.1926] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance in type 2 diabetes is partly due to impaired glucose transport in skeletal muscle. Atypical protein kinase C (aPKC) and protein kinase B (PKB), operating downstream of phosphatidylinositol (PI) 3-kinase and its lipid product, PI-3,4,5-(PO(4))(3) (PIP(3)), apparently mediate insulin effects on glucose transport. We examined these signaling factors during hyperinsulinemic-euglycemic clamp studies in nondiabetic subjects, subjects with impaired glucose tolerance (IGT), and type 2 diabetic subjects. In nondiabetic control subjects, insulin provoked twofold increases in muscle aPKC activity. In both IGT and diabetes, aPKC activation was markedly (70-80%) diminished, most likely reflecting impaired activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase and decreased ability of PIP(3) to directly activate aPKCs; additionally, muscle PKC-zeta levels were diminished by 40%. PKB activation was diminished in patients with IGT but not significantly in diabetic patients. The insulin sensitizer rosiglitazone improved insulin-stimulated IRS-1-dependent PI 3-kinase and aPKC activation, as well as glucose disposal rates. Bicycle exercise, which activates aPKCs and stimulates glucose transport independently of PI 3-kinase, activated aPKCs comparably to insulin in nondiabetic subjects and better than insulin in diabetic patients. Defective aPKC activation contributes to skeletal muscle insulin resistance in IGT and type 2 diabetes, rosiglitazone improves insulin-stimulated aPKC activation, and exercise directly activates aPKCs in diabetic muscle.
Collapse
Affiliation(s)
- Mary Beeson
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB. Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 2003; 52:1935-42. [PMID: 12882908 DOI: 10.2337/diabetes.52.8.1935] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans with obesity or type 2 diabetes, insulin target tissues are resistant to many actions of insulin. The atypical protein kinase C (PKC) isoforms lambda and zeta are downstream of phosphatidylinositol-3 kinase (PI3K) and are required for maximal insulin stimulation of glucose uptake. Phosphoinositide-dependent protein kinase-1 (PDK-1), also downstream of PI3K, mediates activation of atypical PKC isoforms and Akt. To determine whether impaired PKClambda/zeta or PDK-1 activation plays a role in the pathogenesis of insulin resistance, we measured the activities of PKClambda/zeta and PDK-1 in vastus lateralis muscle of lean, obese, and obese/type 2 diabetic humans. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic-euglycemic clamp. Obese subjects were also studied after weight loss on a very-low-calorie diet. Insulin-stimulated glucose disposal rate is reduced 26% in obese subjects and 62% in diabetic subjects (both comparisons P < 0.001). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and PI3K activity are impaired 40-50% in diabetic subjects compared with lean or obese subjects. Insulin stimulates PKClambda/zeta activity approximately 2.3-fold in lean subjects; the increment above basal is reduced 57% in obese and 65% in diabetic subjects. PKClambda/zeta protein amount is decreased 46% in diabetic subjects but is normal in obese nondiabetic subjects, indicating impaired insulin action on PKClambda/zeta. Importantly, weight loss in obese subjects normalizes PKClambda/zeta activation and increases IRS-1 phosphorylation and PI3K activity. Insulin also stimulates PDK-1 activity approximately twofold with no impairment in obese or diabetic subjects. In contrast to our previous data on Akt, reduced insulin-stimulated PKClambda/zeta activity could play a role in the pathogenesis of insulin resistance in muscle of obese and type 2 diabetic subjects.
Collapse
Affiliation(s)
- Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
31
|
Usui I, Imamura T, Huang J, Satoh H, Olefsky JM. Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem 2003; 278:13765-74. [PMID: 12566459 DOI: 10.1074/jbc.m208904200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We investigated the role of cdc42, a Rho GTPase family member, in insulin-induced glucose transport in 3T3-L1 adipocytes. Microinjection of anti-cdc42 antibody or cdc42 siRNA led to decreased insulin-induced and constitutively active G(q) (CA-G(q); Q209L)-induced GLUT4 translocation. Adenovirus-mediated expression of constitutively active cdc42 (CA-cdc42; V12) stimulated 2-deoxyglucose uptake to 56% of the maximal insulin response, and this was blocked by treatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin, or LY294002. Both insulin and CA-G(q) expression caused an increase in cdc42 activity, showing that cdc42 is activated by insulin and is downstream of G alpha(q/11) in this activation pathway. Immunoprecipitation experiments showed that insulin enhanced a direct association of cdc42 and p85, and both insulin treatment and CA-cdc42 expression stimulated PI3-kinase activity in immunoprecipitates with anti-cdc42 antibody. Furthermore, the effects of insulin, CA-G(q), and CA-cdc42 on GLUT4 translocation or 2-deoxyglucose uptake were inhibited by microinjection of anti-protein kinase C lambda (PKC lambda) antibody or overexpression of a kinase-deficient PKC lambda construct. In summary, activated cdc42 can mediate 1) insulin-stimulated GLUT4 translocation and 2) glucose transport in a PI3-kinase-dependent manner. 3) Insulin treatment and constitutively active G(q) expression can enhance the cdc42 activity state as well as the association of cdc42 with activated PI3-kinase. 4) PKC lambda inhibition blocks CA-cdc42, CA-G(q), and insulin-stimulated GLUT4 translocation. Taken together, these data indicate that cdc42 can mediate insulin signaling to GLUT4 translocation and lies downstream of G alpha(q/11) and upstream of PI3-kinase and PKC lambda in this stimulatory pathway.
Collapse
Affiliation(s)
- Isao Usui
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
32
|
Kanoh Y, Sajan MP, Bandyopadhyay G, Miura A, Standaert ML, Farese RV. Defective activation of atypical protein kinase C zeta and lambda by insulin and phosphatidylinositol-3,4,5-(PO4)(3) in skeletal muscle of rats following high-fat feeding and streptozotocin-induced diabetes. Endocrinology 2003; 144:947-54. [PMID: 12586772 DOI: 10.1210/en.2002-221017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Insulin-stimulated glucose transport in skeletal muscle is thought to be effected at least partly through atypical protein kinase C isoforms (aPKCs) operating downstream of phosphatidylinositol (PI) 3-kinase and 3-phosphoinositide-dependent protein kinase-1 (PDK-1). However, relatively little is known about the activation of aPKCs in physiological conditions or insulin-resistant states. Presently, we studied aPKC activation in vastus lateralis muscles of normal chow-fed and high-fat-fed rats and after streptozotocin (STZ)-induced diabetes. In normal chow-fed rats, dose-dependent increases in aPKC activity approached maximal levels after 15-30 min of stimulation by relatively high and lower, presumably more physiological, insulin concentrations, achieved by im insulin or ip glucose administration. Insulin-induced activation of aPKCs was impaired in both high-fat-fed and STZ-diabetic rats, but, surprisingly, IRS-1-dependent and IRS-2-dependent PI 3-kinase activation was not appreciably compromised. Most interestingly, direct in vitro activation of aPKCs by PI-3,4,5-(PO(4))(3), the lipid product of PI 3-kinase, was impaired in both high-fat-fed and STZ-diabetic rats. Defects in activation of aPKCs by insulin and PI-3,4,5-(PO(4))(3) could not be explained by diminished PDK-1-dependent phosphorylation of threonine-410 in the PKC-zeta activation loop, as this phosphorylation was increased even in the absence of insulin treatment in high-fat-fed rats. CONCLUSIONS 1) muscle aPKCs are activated at relatively low, presumably physiological, as well as higher supraphysiological, insulin concentrations; 2) aPKC activation is defective in muscles of high-fat-fed and STZ-diabetic rats; and 3) defective aPKC activation in these states is at least partly due to impaired responsiveness to PI-3,4,5-(PO(4))(3), apparently at activation steps distal to PDK-1-dependent loop phosphorylation.
Collapse
Affiliation(s)
- Yoshinori Kanoh
- Research Service, James A. Haley Veterans Administration Medical Center and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
33
|
Tremblay F, Lavigne C, Jacques H, Marette A. Dietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes 2003; 52:29-37. [PMID: 12502490 DOI: 10.2337/diabetes.52.1.29] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diet-induced obesity is known to cause peripheral insulin resistance in rodents. We have recently found that feeding cod protein to high-fat-fed rats prevents the development of insulin resistance in skeletal muscle. In the present study, we have further explored the cellular mechanisms behind this beneficial effect of cod protein on skeletal muscle insulin sensitivity. Rats were fed a standard chow diet or a high-fat diet in which the protein source was either casein, soy, or cod proteins for 4 weeks. Whole-body and muscle glucose disposal were reduced by approximately 50% in rats fed high-fat diets with casein or soy proteins, but these impairments were not observed in animals fed cod protein. Insulin-induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate (IRS) proteins were similar in muscle of chow- and high-fat-fed rats regardless of the dietary protein source. However, IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was severely impaired (-60%) in muscle of high-fat-fed rats consuming casein or soy protein. In marked contrast, feeding rats with cod protein completely prevented the deleterious effect of fat feeding on insulin-stimulated PI 3-kinase activity. The activation of the downstream kinase Akt/PKB by insulin, assessed by in vitro kinase assay and phosphorylation of GSK-3beta, were also impaired in muscle of high-fat-fed rats consuming casein or soy protein, but these defects were also fully prevented by dietary cod protein. However, no effect of cod protein was observed on atypical protein kinase C activity. Normalization of PI 3-kinase/Akt activation by insulin in rats fed high-fat diets with cod protein was associated with improved translocation of GLUT4 to the T-tubules but not to the plasma membrane. Taken together, these results show that dietary cod protein is a natural insulin-sensitizing agent that appears to prevent obesity-linked muscle insulin resistance by normalizing insulin activation of the PI 3-kinase/Akt pathway and by selectively improving GLUT4 translocation to the T-tubules.
Collapse
Affiliation(s)
- Frédéric Tremblay
- Department of Anatomy and Physiology, Laval University Hospital Research Center, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Standaert ML, Ortmeyer HK, Sajan MP, Kanoh Y, Bandyopadhyay G, Hansen BC, Farese RV. Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-zeta/lambda/iota. Diabetes 2002; 51:2936-43. [PMID: 12351430 DOI: 10.2337/diabetes.51.10.2936] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhesus monkeys frequently develop obesity and insulin resistance followed by type 2 diabetes when allowed free access to chow. This insulin resistance is partly due to defective glucose transport into skeletal muscle. In this study, we examined signaling factors required for insulin-stimulated glucose transport in muscle biopsies taken during euglycemic-hyperinsulinemic clamps in nondiabetic, obese prediabetic, and diabetic monkeys. Insulin increased activities of insulin receptor substrate (IRS)-1-dependent phosphatidylinositol (PI) 3-kinase and its downstream effectors, atypical protein kinase Cs (aPKCs) (zeta/lambda/iota) and protein kinase B (PKB) in muscles of nondiabetic monkeys. Insulin-induced increases in glucose disposal and aPKC activity diminished progressively in prediabetic and diabetic monkeys. Decreases in aPKC activation appeared to be at least partly due to diminished activation of IRS-1-dependent PI 3-kinase, but direct activation of aPKCs by the PI 3-kinase lipid product PI-3,4,5-(PO(4))(3) was also diminished. In conjunction with aPKCs, PKB activation was diminished in prediabetic muscle but, differently from aPKCs, seemed to partially improve in diabetic muscle. Interestingly, calorie restriction and avoidance of obesity largely prevented development of defects in glucose disposal and aPKC activation. Our findings suggest that defective activation of aPKCs contributes importantly to obesity-dependent development of skeletal muscle insulin resistance in prediabetic and type 2 diabetic monkeys.
Collapse
Affiliation(s)
- Mary L Standaert
- Research Service, James A. Haley Veterans Administration Medical Center and the Department of Internal Medicine, University of South Florida College of Medicine, Tampa, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim YB, Shulman GI, Kahn BB. Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda /zeta but not on glycogen synthase kinase-3. J Biol Chem 2002; 277:32915-22. [PMID: 12095990 DOI: 10.1074/jbc.m204710200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanism(s) for insulin resistance induced by fatty acids, we measured the ability of insulin to activate phosphoinositide 3-kinase (PI3K) and multiple distal pathways in rats. Following a 5-h infusion of lipid or glycerol (control), rats underwent a euglycemic hyperinsulinemic clamp. Insulin stimulated IRS-1-associated PI3K activity in muscle of glycerol-infused rats 2.4-fold but had no effect in lipid-infused rats. IRS-2- and phosphotyrosine-associated PI3K activity were increased 3.5- and 4.8-fold, respectively, by insulin in glycerol-infused rats but only 1.6- and 2.3-fold in lipid-infused rats. Insulin increased Akt1 activity 3.9-fold in glycerol-infused rats, and this was impaired 41% in lipid-infused rats. Insulin action on Akt2 and p70S6K were not impaired, whereas activation of protein kinase C lambda/zeta activity was reduced 47%. Insulin inhibited glycogen synthase kinase 3alpha (GSK-3alpha) activity by 30% and GSK-3beta activity by approximately 65% and increased protein phosphatase-1 activity by 40-47% in both glycerol- and lipid-infused rats. Insulin stimulated glycogen synthase activity 2.0-fold in glycerol-infused rats but only 1.4-fold in lipid-infused rats. Thus, 1) elevation of fatty acids differentially affects insulin action on pathways distal to PI3K, impairing activation of Akt1 and protein kinase C lambda/zeta and 2) insulin action on glycogen synthase can be regulated independent of effects on GSK-3 and protein phosphatase-1 activity in vivo.
Collapse
Affiliation(s)
- Young-Bum Kim
- Diabetes Unit, Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
36
|
Hori H, Sasaoka T, Ishihara H, Wada T, Murakami S, Ishiki M, Kobayashi M. Association of SH2-containing inositol phosphatase 2 with the insulin resistance of diabetic db/db mice. Diabetes 2002; 51:2387-94. [PMID: 12145149 DOI: 10.2337/diabetes.51.8.2387] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SH-2-containing inositol 5'-phosphatase 2 (SHIP-2) is a physiologically important lipid phosphatase that functions to hydrolyze phosphatidylinositol (PI) 3-kinase product PI(3,4,5)P3 to PI(3,4)P2 in the negative regulation of insulin signaling. We investigated whether SHIP-2 is associated with the insulin resistance of diabetic db/db mice. The amount of SHIP-2 protein was elevated in quadriceps muscle and epididymal fat tissue, but not in the liver, of db/db mice relative to that in control db/+m mice. In accordance with the enhanced expression of SHIP-2, its localization at the membrane preparation was increased in the skeletal muscle and fat tissue of db/db mice. Insulin stimulation of PI 3-kinase activity was modestly decreased in skeletal muscle, fat tissue, and liver of db/db mice compared with that of db/+m mice. In addition to the modest decrease at the level of PI 3-kinase, the activity of Akt and protein kinase C (PKC)-zeta/lambda, which are downstream molecules of PI 3-kinase, was more severely reduced in the skeletal muscle and fat tissue, but not in liver of db/db mice. Treatment with the insulin-sensitizing agent rosiglitazone decreased the elevated expression of SHIP-2 in the skeletal muscle and fat tissue of db/db mice. Insulin-induced Akt activation and PKC-zeta/lambda phosphorylation were restored to the control level, although insulin-stimulated PI 3-kinase activation was minimally affected in the skeletal muscle and fat tissue of db/db mice. These results indicate that SHIP-2 is a novel molecule associated with insulin resistance in the skeletal muscle and fat tissue, and that insulin-induced activity of the downstream molecules of PI 3-kinase is decreased, at least in part, by the elevated expression of SHIP-2 in diabetic db/db mice.
Collapse
Affiliation(s)
- Hiroyuki Hori
- First Department of Internal Medicine, Toyama Medical & Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 2002; 283:E1-11. [PMID: 12067836 DOI: 10.1152/ajpendo.00045.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable evidence suggests that atypical protein kinase C isoforms (aPKCs), serving downstream of insulin receptor substrates and phosphatidylinositol (PI) 3-kinase, are required for insulin-stimulated glucose transport in skeletal muscle and adipocytes. More recent findings further suggest that aPKCs are activated and required for glucose transport responses while serving downstream of 1) proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D, as during the actions of high concentrations of carbohydrates (glucose, sorbitol) and agents that activate 5'-AMP-activated protein kinase (exercise, 5-amino-imidazole-4-carboxamide-1-beta-D-riboside, dinitrophenol), and 2) Cbl-dependent PI 3-kinase, as during the action of insulin-sensitizing thiazolidinediones. It therefore seems reasonable to postulate that, regardless of the initial mechanism, aPKCs may serve as terminal molecular switches for activating glucose transport responses. This postulation is of critical importance, as it now appears that insulin-stimulated aPKC activation is compromised in various states of insulin resistance.
Collapse
Affiliation(s)
- Robert V Farese
- Department of Internal Medicine, University of South Florida College of Medicine and James A. Haley Veterans Administration Medical Center, Tampa, Florida 33612, USA.
| |
Collapse
|
38
|
Jucker BM, Schaeffer TR, Haimbach RE, McIntosh TS, Chun D, Mayer M, Ohlstein DH, Davis HM, Smith SA, Cobitz AR, Sarkar SK. Normalization of skeletal muscle glycogen synthesis and glycolysis in rosiglitazone-treated Zucker fatty rats: an in vivo nuclear magnetic resonance study. Diabetes 2002; 51:2066-73. [PMID: 12086934 DOI: 10.2337/diabetes.51.7.2066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to characterize insulin-stimulated skeletal muscle glucose metabolism in Zucker fatty rats and to provide insight into the therapeutic mechanism by which rosiglitazone increases insulin-stimulated glucose disposal in these rats. Metabolic parameters were measured using combined in vivo (13)C nuclear magnetic resonance (NMR) spectroscopy to measure skeletal muscle glucose uptake and its distributed fluxes (glycogen synthesis and glycolysis), and (31)P NMR was used to measure simultaneous changes in glucose-6-phosphate (G-6-P) during a euglycemic-hyperinsulinemic clamp in awake Zucker fatty rats. Three groups of Zucker fatty rats (fatty rosiglitazone [FRSG], fatty control [FC], lean control [LC]) were treated for 7 days before the experiment (3 mg/kg rosiglitazone or vehicle via oral gavage). Rates of glycolysis and glycogen synthesis were assessed after treatment by monitoring 1,6-(13)C(2) glucose label incorporation into 1-(13)C glycogen, 3-(13)C lactate, and 3-(13)C alanine during a euglycemic ( approximately 7-8 mmol/l)-hyperinsulinemic (10 mU. kg(-1). min(-1)) clamp. The FRSG group exhibited a significant increase in insulin sensitivity, reflected by an increased whole-body glucose disposal rate during the clamp (24.4 +/- 1.9 vs. 17.6 +/- 1.4 and 33.2 +/- 2.0 mg. kg(-1). min(-1) in FRSG vs. FC [P < 0.05] and LC [P < 0.01] groups, respectively). The increased insulin-stimulated glucose disposal in the FRSG group was associated with a normalization of the glycolytic flux (52.9 +/- 9.1) to LC (56.2 +/- 16.6) versus FC (18.8 +/- 8.6 nmol. g(-1). min(-1), P < 0.02) and glycogen synthesis flux (56.3 +/- 11.5) to LC (75.2 +/- 15.3) versus FC (16.6 +/- 12.8 nmol. g(-1). min(-1), P < 0.05). [G-6-P] increased in the FRSG and LC groups versus baseline during the clamp (13.0 +/- 11.1 and 16.9 +/- 5.8%, respectively), whereas [G-6-P] in the FC group decreased (-23.3 +/- 13.4%, P < 0.05). There were no differences between groups in intramyocellular glucose, as measured by biochemical assay. These data suggest that the increased insulin-stimulated glucose disposal in muscle after rosiglitazone treatment can be attributed to a normalization of glucose transport and metabolism.
Collapse
Affiliation(s)
- Beat M Jucker
- Cardiovascular and Urogenital Investigational Biology and Product Support, GlaxoSmithKline, UW2940, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Insulin resistance of skeletal muscle in humans, animals, and cells is often strongly correlated with increased lipid availability. The elevation of certain intracellular lipid species can lead to the activation of signal transduction pathways that inhibit normal insulin action. Thus, increased diacylglycerol levels in muscle are associated with the activation of one or more isoforms of the protein kinase C family, which is known to attenuate insulin signaling, especially at the level of IRS-1. In addition, de novo synthesis of ceramide can inhibit more distal sites by the activation of protein phosphatase 2A and hence promote the dephosphorylation and inactivation of protein kinase B. Such mechanisms may account at least in part for the reduced insulin sensitivity occurring in obesity and type 2 diabetes where lipid oversupply is a major factor.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Cell Signalling Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
40
|
Standaert ML, Kanoh Y, Sajan MP, Bandyopadhyay G, Farese RV. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-lambda, and glucose transport in 3T3/L1 adipocytes. Endocrinology 2002; 143:1705-16. [PMID: 11956152 DOI: 10.1210/endo.143.5.8812] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The thiazolidenedione, rosiglitazone, increases basal and/or insulin-stimulated glucose transport in various cell types by diverse but uncertain mechanisms that may involve insulin receptor substrate (IRS)-1-dependent PI3K. Presently, in 3T3/L1 adipocytes, rosiglitazone induced sizable increases in basal glucose transport that were: dependent on PI3K, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and PKC-lambda; accompanied by increases in tyrosine phosphorylation of Cbl and Cbl-dependent increases in PI3K and PKC-lambda activity; but not accompanied by increases in IRS-1/2-dependent PI3K or protein kinase B activity. Additionally, rosiglitazone increased IRS-1 and IRS-2 levels, thereby enhancing insulin effects on IRS-1- and IRS-2-dependent PI3K and downstream signaling factors PKC-lambda and protein kinase B. Our findings suggest that Cbl participates in mediating effects of rosiglitazone on PI3K, PDK-1, and PKC-lambda and the glucose transport system and that this Cbl-dependent pathway complements the IRS-1 and IRS-2 pathways for activating PI3K, PDK-1, and PKC-lambda during combined actions of rosiglitazone and insulin in 3T3/L1 cells.
Collapse
Affiliation(s)
- Mary L Standaert
- Research Service, J. A. Haley Veterans' Hospital, 13000 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
41
|
Yeow K, Phillips B, Dani C, Cabane C, Amri EZ, Dérijard B. Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line. FEBS Lett 2001; 506:157-62. [PMID: 11591391 DOI: 10.1016/s0014-5793(01)02900-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C2C12 cells are a well-established model system for studying myogenesis. We examined whether inhibiting the process of myogenesis via expression of dominant negative (DN) mitogen-activated protein kinase kinase-3 (MKK3) facilitated the trans-differentiation of these cells into adipocytes. Cells expressing DN MKK3 respond to rosiglitazone, resulting in adipocyte formation. The effects of rosiglitazone appear to be potentiated through peroxisome proliferator activating receptor-gamma. This trans-differentiation is inhibited by the use of the phosphoinositide-3 (PI3) kinase inhibitor, LY294002. These results indicate that preventing myogenesis through expression of DN MKK3 facilitates adipocytic trans-differentiation, and involves PI3 kinase signalling.
Collapse
Affiliation(s)
- K Yeow
- CNRS UMR 6548, Laboratory of Cellular and Molecular Physiology, University of Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
42
|
Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV. Glucose activates protein kinase C-zeta /lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 2001; 276:35537-45. [PMID: 11463795 DOI: 10.1074/jbc.m106042200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and adipose tissues by a mechanism that appears to require protein kinase C (PKC)-zeta/lambda operating downstream of phosphatidylinositol 3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglycemia, uptake is maintained but by uncertain mechanisms. Presently, we found that glucose acutely activated PKC-zeta/lambda in rat adipocytes and rat skeletal muscle preparations by a mechanism that was independent of phosphatidylinositol 3-kinase but, interestingly, dependent on the apparently sequential activation of the dantrolene-sensitive, nonreceptor proline-rich tyrosine kinase-2; components of the extracellular signal-regulated kinase (ERK) pathway, including, GRB2, SOS, RAS, RAF, MEK1 and ERK1/2; and, most interestingly, phospholipase D, thus yielding increases in phosphatidic acid, a known activator of PKC-zeta/lambda. This activation of PKC-zeta/lambda, moreover, appeared to be required for glucose-induced increases in GLUT4 translocation and glucose transport in adipocytes and muscle cells. Our findings suggest the operation of a novel pathway for activating PKC-zeta/lambda and glucose transport.
Collapse
Affiliation(s)
- G Bandyopadhyay
- J. A. Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|