1
|
Camenzuli JA, Sammut MJ, Tijo T, Melling CWJ. Effects of acute aerobic exercise on skeletal muscle and liver glucose metabolism in male rodents with type 1 diabetes. Can J Physiol Pharmacol 2025; 103:123-133. [PMID: 39813664 DOI: 10.1139/cjpp-2024-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-min bout of AE on hepatic and muscle glucose metabolism in T1DM rats. Nineteen male Sprague-Dawley rats were divided into sedentary (SC; n = 5) and T1DM (DSC; n = 14) groups. T1DM rats were subcategorized into pre-exercise (DPRE; n = 6) and post-exercise (DPOST; n = 8). DPOST were sacrificed immediately after 60 min of AE. Results demonstrate that DPOST animals experienced reductions in BG following 30 and 60 min of AE compared to pre-exercise. Both DPRE and DPOST animals exhibited lower hepatic glycogen content, while muscle glycogen did not differ, suggesting impaired glycogenolysis in T1DM. Hepatic glucose-6-phosphatase content, and muscle and hepatic protein kinase B phosphorylation were significantly greater in DPOST animals, suggesting elevated gluconeogenesis and insulin stimulation during exercise. Glycogen phosphorylase activity did not differ between groups. These data suggest that drops in BG during AE in T1DM were due to lower glycogen levels in the liver and muscle and a lack of muscle glycogen utilization; leading to a reliance on gluconeogenesis and BG.
Collapse
Affiliation(s)
- Justin A Camenzuli
- School of Kinesiology, Faculty of Health Sciences, Western University, ON N6A 3K7, Canada
| | - Mitchell J Sammut
- School of Kinesiology, Faculty of Health Sciences, Western University, ON N6A 3K7, Canada
| | - Theres Tijo
- School of Kinesiology, Faculty of Health Sciences, Western University, ON N6A 3K7, Canada
| | - C W James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, ON N6A 3K7, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Nurjanah S, Gerding A, Vieira-Lara MA, Evers B, Langelaar-Makkinje M, Spiekerkoetter U, Bakker BM, Tucci S. Heptanoate Improves Compensatory Mechanism of Glucose Homeostasis in Mitochondrial Long-Chain Fatty Acid Oxidation Defect. Nutrients 2023; 15:4689. [PMID: 37960342 PMCID: PMC10649308 DOI: 10.3390/nu15214689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.
Collapse
Affiliation(s)
- Siti Nurjanah
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Albert Gerding
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
- Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Marcel A. Vieira-Lara
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Bernard Evers
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
| | - Barbara M. Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Hall B, Żebrowska A, Sikora M, Siatkowski S, Robins A. The Effect of High-Intensity Interval Exercise on Short-Term Glycaemic Control, Serum Level of Key Mediator in Hypoxia and Pro-Inflammatory Cytokines in Patients with Type 1 Diabetes-An Exploratory Case Study. Nutrients 2023; 15:3749. [PMID: 37686781 PMCID: PMC10490106 DOI: 10.3390/nu15173749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Type 1 diabetes (T1D) is associated with hyperglycaemia-induced hypoxia and inflammation. This study assessed the effects of a single bout of high-intensity interval exercise (HIIE) on glycaemia (BG) and serum level of pro-inflammatory cytokines, and an essential mediator of adaptive response to hypoxia in T1D patients. The macronutrient intake was also evaluated. Nine patients suffering from T1D for about 12 years and nine healthy individuals (CG) were enrolled and completed one session of HIIE at the intensity of 120% lactate threshold with a duration of 4 × 5 min intermittent with 5 min rests after each bout of exercise. Capillary and venous blood were withdrawn at rest, immediately after and at 24 h post-HIIE for analysis of BG, hypoxia-inducible factor alpha (HIF-1α), tumour necrosis factor alpha (TNF-α) and vascular-endothelial growth factor (VEGF). Pre-exercise BG was significantly higher in the T1D patients compared to the CG (p = 0.043). HIIE led to a significant decline in T1D patients' BG (p = 0.027) and a tendency for a lower BG at 24 h post-HIIE vs. pre-HIIE. HIF-1α was significantly elevated in the T1D patients compared to CG and there was a trend for HIF-1α to decline, and for VEGF and TNF-α to increase in response to HIIE in the T1D group. Both groups consumed more and less than the recommended amounts of protein and fat, respectively. In the T1D group, a tendency for a higher digestible carbohydrate intake and more frequent hyperglycaemic episodes on the day after HIIE were observed. HIIE was effective in reducing T1D patients' glycaemia and improving short-term glycaemic control. HIIE has the potential to improve adaptive response to hypoxia by elevating the serum level of VEGF. Patients' diet and level of physical activity should be screened on a regular basis, and they should be educated on the glycaemic effects of digestible carbohydrates.
Collapse
Affiliation(s)
- Barbara Hall
- School of Physiological and Medical Sciences, Department of Physiology, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72a, 40-065 Katowice, Poland; (A.Ż.); (M.S.)
| | - Aleksandra Żebrowska
- School of Physiological and Medical Sciences, Department of Physiology, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72a, 40-065 Katowice, Poland; (A.Ż.); (M.S.)
| | - Marcin Sikora
- School of Physiological and Medical Sciences, Department of Physiology, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72a, 40-065 Katowice, Poland; (A.Ż.); (M.S.)
| | - Szymon Siatkowski
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72a, 40-065 Katowice, Poland;
| | - Anna Robins
- School of Health and Society, University of Salford, Allerton Building, 43 Crescent, Salford M5 4WT, UK;
| |
Collapse
|
5
|
Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism 2023:155614. [PMID: 37286128 DOI: 10.1016/j.metabol.2023.155614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Gluconeogenesis, a pathway for glucose synthesis from non-carbohydrate substances, begins with the synthesis of oxaloacetate (OA) from pyruvate and intermediates of citric acid cycle in hepatocyte mitochondria. The traditional view is that OA does not cross the mitochondrial membrane and must be shuttled to the cytosol, where most enzymes involved in gluconeogenesis are compartmentalized, in the form of malate. Thus, the possibility of transporting OA in the form of aspartate has been ignored. In the article is shown that malate supply to the cytosol increases only when fatty acid oxidation in the liver is activated, such as during starvation or untreated diabetes. Alternatively, aspartate synthesized from OA by mitochondrial aspartate aminotransferase (AST) is transported to the cytosol in exchange for glutamate via the aspartate-glutamate carrier 2 (AGC2). If the main substrate for gluconeogenesis is an amino acid, aspartate is converted to OA via urea cycle, therefore, ammonia detoxification and gluconeogenesis are simultaneously activated. If the main substrate is lactate, OA is synthesized by cytosolic AST, glutamate is transported to the mitochondria through AGC2, and nitrogen is not lost. It is concluded that, compared to malate, aspartate is a more suitable form of OA transport from the mitochondria for gluconeogenesis.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Juras JA, Webb MB, Young LE, Markussen KH, Hawkinson TR, Buoncristiani MD, Bolton KE, Coburn PT, Williams MI, Sun LP, Sanders WC, Bruntz RC, Conroy LR, Wang C, Gentry MS, Smith BN, Sun RC. In situ microwave fixation provides an instantaneous snapshot of the brain metabolome. CELL REPORTS METHODS 2023; 3:100455. [PMID: 37159672 PMCID: PMC10163000 DOI: 10.1016/j.crmeth.2023.100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Brain glucose metabolism is highly heterogeneous among brain regions and continues postmortem. In particular, we demonstrate exhaustion of glycogen and glucose and an increase in lactate production during conventional rapid brain resection and preservation by liquid nitrogen. In contrast, we show that these postmortem changes are not observed with simultaneous animal sacrifice and in situ fixation with focused, high-power microwave. We further employ microwave fixation to define brain glucose metabolism in the mouse model of streptozotocin-induced type 1 diabetes. Using both total pool and isotope tracing analyses, we identified global glucose hypometabolism in multiple brain regions, evidenced by reduced 13C enrichment into glycogen, glycolysis, and the tricarboxylic acid (TCA) cycle. Reduced glucose metabolism correlated with a marked decrease in GLUT2 expression and several metabolic enzymes in unique brain regions. In conclusion, our study supports the incorporation of microwave fixation for more accurate studies of brain metabolism in rodent models.
Collapse
Affiliation(s)
- Jelena A. Juras
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Madison B. Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Tara R. Hawkinson
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Michael D. Buoncristiani
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Kayli E. Bolton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Peyton T. Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Meredith I. Williams
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lisa P.Y. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - William C. Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Division of Biostatics, Department of Internal Medicine, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Deichmann J, Bachmann S, Burckhardt MA, Pfister M, Szinnai G, Kaltenbach HM. New model of glucose-insulin regulation characterizes effects of physical activity and facilitates personalized treatment evaluation in children and adults with type 1 diabetes. PLoS Comput Biol 2023; 19:e1010289. [PMID: 36791144 PMCID: PMC9974135 DOI: 10.1371/journal.pcbi.1010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/28/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Accurate treatment adjustment to physical activity (PA) remains a challenging problem in type 1 diabetes (T1D) management. Exercise-driven effects on glucose metabolism depend strongly on duration and intensity of the activity, and are highly variable between patients. In-silico evaluation can support the development of improved treatment strategies, and can facilitate personalized treatment optimization. This requires models of the glucose-insulin system that capture relevant exercise-related processes. We developed a model of glucose-insulin regulation that describes changes in glucose metabolism for aerobic moderate- to high-intensity PA of short and prolonged duration. In particular, we incorporated the insulin-independent increase in glucose uptake and production, including glycogen depletion, and the prolonged rise in insulin sensitivity. The model further includes meal absorption and insulin kinetics, allowing simulation of everyday scenarios. The model accurately predicts glucose dynamics for varying PA scenarios in a range of independent validation data sets, and full-day simulations with PA of different timing, duration and intensity agree with clinical observations. We personalized the model on data from a multi-day free-living study of children with T1D by adjusting a small number of model parameters to each child. To assess the use of the personalized models for individual treatment evaluation, we compared subject-specific treatment options for PA management in replay simulations of the recorded data with altered meal, insulin and PA inputs.
Collapse
Affiliation(s)
- Julia Deichmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- Life Science Zurich Graduate School, Zurich, Switzerland
| | - Sara Bachmann
- Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Marie-Anne Burckhardt
- Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Marc Pfister
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel, Basel, Switzerland
| | - Gabor Szinnai
- Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Hans-Michael Kaltenbach
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Sobotka O, Ticha M, Kubickova M, Adamek P, Polakova L, Mezera V, Sobotka L. Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients? Nutrients 2023; 15:nu15020439. [PMID: 36678311 PMCID: PMC9863670 DOI: 10.3390/nu15020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Carbohydrate (CHO) intake in oral and enteral nutrition is regularly reduced in nutritional support of older patients due to the high prevalence of diabetes (usually type 2-T2DM) in this age group. However, CHO shortage can lead to the lack of building blocks necessary for tissue regeneration and other anabolic processes. Moreover, low CHO intake decreases CHO oxidation and can increase insulin resistance. The aim of our current study was to determine the extent to which an increased intake of a rapidly digestible carbohydrate-maltodextrin-affects blood glucose levels monitored continuously for one week in patients with and without T2DM. Twenty-one patients (14 T2DM and seven without diabetes) were studied for two weeks. During the first week, patients with T2DM received standard diabetic nutrition (250 g CHO per day) and patients without diabetes received a standard diet (350 g of CHO per day). During the second week, the daily CHO intake was increased to 400 in T2DM and 500 g in nondiabetic patients by addition of 150 g maltodextrin divided into three equal doses of 50 g and given immediately after the main meal. Plasma glucose level was monitored continually with the help of a subcutaneous sensor during both weeks. The increased CHO intake led to transient postprandial increase of glucose levels in T2DM patients. This rise was more manifest during the first three days of CHO intake, and then the postprandial peak hyperglycemia was blunted. During the night's fasting period, the glucose levels were not influenced by maltodextrin. Supplementation of additional CHO did not influence the percentual range of high glucose level and decreased a risk of hypoglycaemia. No change in T2DM treatment was indicated. The results confirm our assumption that increased CHO intake as an alternative to CHO restriction in type 2 diabetic patients during oral and enteral nutritional support is safe.
Collapse
Affiliation(s)
- Ondrej Sobotka
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Marie Ticha
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Marketa Kubickova
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Petr Adamek
- Levit’s Aftercare Centre, 50801 Horice, Czech Republic
| | | | - Vojtech Mezera
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
- Geriatric Center, Pardubice Hospital, 53203 Pardubice, Czech Republic
| | - Lubos Sobotka
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
10
|
Liu Z, Zhang L, Qian C, Zhou Y, Yu Q, Yuan J, Lv Y, Zhang L, Chang X, Li Y, Liu Y. Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or systemic lipolysis in rat. Metabolism 2022; 136:155310. [PMID: 36063868 DOI: 10.1016/j.metabol.2022.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Recurrent hypoglycemia (RH) impairs secretion of counterregulatory hormones. Whether and how RH affects responses within metabolically important peripheral organs to counterregulatory hormones are poorly understood. OBJECTIVE To study the effects of RH on metabolic pathways associated with glucose counterregulation within liver, white adipose tissue and skeletal muscle. METHODS Using a widely adopted rodent model of 3-day recurrent hypoglycemia, we first checked expression of counterregulatory hormone G-protein coupled receptors (GPCRs), their inhibitory regulators and downstream enzymes catalyzing glycogen metabolism, gluconeogenesis and lipolysis by qPCR and western blot. Then, we examined epinephrine-induced phosphorylation of PKA substrates to validate adrenergic sensitivity in each organ. Next, we measured hepatic and skeletal glycogen content, degree of breakdown by epinephrine and abundance of phosphorylated glycogen phosphorylase under hypoglycemia and that of phosphorylated glycogen synthase during recovery to evaluate glycogen turnover. Further, we performed pyruvate and lactate tolerance tests to assess gluconeogenesis. Additionally, we measured circulating FFA and glycerol to check lipolysis. The abovementioned studies were repeated in streptozotocin-induced diabetic rat model. Finally, we conducted epinephrine tolerance test to investigate systemic glycemic excursions to counterregulatory hormones. Saline-injected rats served as controls. RESULTS RH increased counterregulatory hormone GPCR signaling in liver and epidydimal white adipose tissue (eWAT), but not in skeletal muscle. For glycogen metabolism, RH did not affect total content or epinephrine-stimulated breakdown in liver and skeletal muscle. Although RH decreased expression of phosphorylated glycogen synthase 2, it did not affect hepatic glycogen biosynthesis during recovery from hypoglycemia or after fasting-refeeding. For gluconeogenesis, RH upregulated fructose 1,6-bisphosphatase 1 and monocarboxylic acid transporter 1 that imports lactate as precursor, resulting in a lower blood lactate profile during hypoglycemia. In agreement, RH elevated fasting blood glucose and caused higher glycemic excursions during pyruvate tolerance test. For lipolysis, RH did not affect circulating levels of FFA and glycerol after overnight fasting or upon epinephrine stimulation. Interestingly, RH upregulated the trophic fatty acid transporter FATP1 and glucose transporter GLUT4 to increase lipogenesis in eWAT. These aforementioned changes of gluconeogenesis, lipolysis and lipogenesis were validated in streptozotocin-diabetic rats. Finally, RH increased insulin sensitivity to accelerate glucose disposal, which was attributable to upregulated visceral adipose GLUT4. CONCLUSIONS RH caused metabolic adaptations related to counterregulation within peripheral organs. Specifically, adrenergic signaling was enhanced in liver and visceral fat, but not in skeletal muscle. Glycogen metabolism remained unchanged. Hepatic gluconeogenesis was augmented. Systemic lipolysis was unaffected, but visceral lipogenesis was enhanced. Insulin sensitivity was increased. These findings provided insights into mechanisms underlying clinical problems associated with intensive insulin therapy, such as high gluconeogenic flux and body weight gain.
Collapse
Affiliation(s)
- Zejian Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingyu Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Chen Qian
- Department of Endocrinology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Suzhou, Jiangsu 215699, China
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiuyu Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yunfan Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Leheng Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yangyang Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| |
Collapse
|
11
|
Larocque JC, Gardy S, Sammut M, McBey DP, Melling CWJ. Sexual dimorphism in response to repetitive bouts of acute aerobic exercise in rodents with type 1 diabetes mellitus. PLoS One 2022; 17:e0273701. [PMID: 36083870 PMCID: PMC9462568 DOI: 10.1371/journal.pone.0273701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to examine sex-specific differences in the blood glucose (BG) response to recurrent aerobic exercise in type 1 diabetes rats. Specifically, we examined the role of peak estrogen (E2) concentrations during proestrus on BG response to prolonged repetitive aerobic exercise. To do so, nineteen Sprague-Dawley rats were assigned to four exercised groups: control female (CXF; n = 5), control male (CXM; n = 5), diabetic female (DXF, n = 5) and diabetic male (DXM, n = 4). Diabetes was induced in DX groups via subcutaneous multiple injections of low dose streptozotocin (20mg/day for 7 days). After four days of exercise, muscle and liver glycogen content, liver gluconeogenic enzyme content, muscle Beta oxidation activity and BG responses to exercise were compared. The final bout of exercise took place during proestrus when E2 concentrations were at their highest in the female rats. During days 1–3 DXM had significantly lower BG concentrations during exercise than DXF. While both T1DM and non-T1DM females demonstrated higher hepatic G6Pase expression and muscle beta oxidation activity levels on day 4 exercise, no differences in BG response between the male and female T1DM rats were evident. Further, no differences in liver and muscle glycogen content following day 4 of exercise were seen between the sexes. These results would suggest that heightened E2 levels during proestrus may not be an important factor governing glucose counter regulatory response to exercise in female T1DM rats. Rather, the pre-exercise blood glucose levels are likely to be a large determinant of the blood glucose response to exercise in both male and female rats.
Collapse
Affiliation(s)
| | - Silar Gardy
- School of Kinesiology, Western University, London, ON, Canada
| | - Mitchell Sammut
- School of Kinesiology, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
- * E-mail:
| |
Collapse
|
12
|
WU J, CHEN H, WANG D, ZHAO X. Effect of Clerodendranthus spicatus (Thunb.) C. Y. Wu on the exercise ability of D-galactose-induced oxidative aging mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Dan WANG
- China University of Geosciences, China
| | - Xin ZHAO
- Chongqing University of Education, China
| |
Collapse
|
13
|
McCarthy O, Schmidt S, Christensen MB, Bain SC, Nørgaard K, Bracken R. The endocrine pancreas during exercise in people with and without type 1 diabetes: Beyond the beta-cell. Front Endocrinol (Lausanne) 2022; 13:981723. [PMID: 36147573 PMCID: PMC9485437 DOI: 10.3389/fendo.2022.981723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although important for digestion and metabolism in repose, the healthy endocrine pancreas also plays a key role in facilitating energy transduction around physical exercise. During exercise, decrements in pancreatic β-cell mediated insulin release opposed by increments in α-cell glucagon secretion stand chief among the hierarchy of glucose-counterregulatory responses to decreasing plasma glucose levels. As a control hub for several major glucose regulatory hormones, the endogenous pancreas is therefore essential in ensuring glucose homeostasis. Type 1 diabetes (T1D) is pathophysiological condition characterised by a destruction of pancreatic β-cells resulting in pronounced aberrations in glucose control. Yet beyond the beta-cell perhaps less considered is the impact of T1D on all other pancreatic endocrine cell responses during exercise and whether they differ to those observed in healthy man. For physicians, understanding how the endocrine pancreas responds to exercise in people with and without T1D may serve as a useful model from which to identify whether there are clinically relevant adaptations that need consideration for glycaemic management. From a physiological perspective, delineating differences or indeed similarities in such responses may help inform appropriate exercise test interpretation and subsequent program prescription. With more complex advances in automated insulin delivery (AID) systems and emerging data on exercise algorithms, a timely update is warranted in our understanding of the endogenous endocrine pancreatic responses to physical exercise in people with and without T1D. By placing our focus here, we may be able to offer a nexus of better understanding between the clinical and engineering importance of AIDs requirements during physical exercise.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- *Correspondence: Olivia McCarthy,
| | - Signe Schmidt
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Richard Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| |
Collapse
|
14
|
Wu W, Diao J, Yang J, Sun D, Wang Y, Ni Z, Yang F, Tan X, Li L, Li L. Impact of Sociodemographic Characteristics, Lifestyle, and Obesity on Coexistence of Diabetes and Hypertension: A Structural Equation Model Analysis amongst Chinese Adults. Int J Hypertens 2021; 2021:4514871. [PMID: 34733558 PMCID: PMC8560290 DOI: 10.1155/2021/4514871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In general, given the insufficient sample size, considerable literature has been found on single studies of diabetes and hypertension and few studies have been found on the coexistence of diabetes and hypertension (CDH) and its influencing factors with a large range of samples. This study aimed to establish a structural equation model for exploring the direct and indirect relationships amongst sociodemographic characteristics, lifestyle, obesity, and CDH amongst Chinese adults. METHODS A cross-sectional study was conducted in a representative sample of 25356 adults between June 1, 2015, and September 30, 2018, in Hubei province, China. Confirmatory factor analysis was initially conducted to test the latent variables. A structural equation model was then performed to analyse the association between latent variables and CDH. RESULTS The total prevalence of CDH was 2.8%. The model paths indicated that sociodemographic characteristics, lifestyle, and obesity were directly associated with CDH, and the effects were 0.187, 0.739, and 0.353, respectively. Sociodemographic characteristics and lifestyle were also indirectly associated with CDH, and the effects were 0.128 and 0.045, respectively. Lifestyle had the strongest effect on CDH (β = 0.784, P < 0.001), followed by obesity (β = 0.353, P < 0.001) and sociodemographic characteristics (β = 0.315, P < 0.001). All paths of the model were significant (P < 0.001). CONCLUSION CDH was significantly associated with sociodemographic characteristics, lifestyle, and obesity amongst Chinese adults. The dominant predictor of CDH was lifestyle. Targeting these results might develop lifestyle and weight loss intervention to prevent CDH according to the characteristics of the population.
Collapse
Affiliation(s)
- Wenwen Wu
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, Shiyan 442000, China
| | - Jie Diao
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jinru Yang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donghan Sun
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Wang
- Department of Nosocomial Infection Management, Wuhan University Zhongnan Hospital, Wuhan 430071, Hubei, China
| | - Ziling Ni
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Fen Yang
- College of Nursing, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaodong Tan
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Ling Li
- Nursing Department, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Li Li
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
15
|
López-Soldado I, Guinovart JJ, Duran J. Increased liver glycogen levels enhance exercise capacity in mice. J Biol Chem 2021; 297:100976. [PMID: 34284060 PMCID: PMC8350413 DOI: 10.1016/j.jbc.2021.100976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or β-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
16
|
Romeres D, Schiavon M, Basu A, Cobelli C, Basu R, Dalla Man C. Exercise effect on insulin-dependent and insulin-independent glucose utilization in healthy individuals and individuals with type 1 diabetes: a modeling study. Am J Physiol Endocrinol Metab 2021; 321:E122-E129. [PMID: 33998292 PMCID: PMC8321821 DOI: 10.1152/ajpendo.00084.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exercise effects (EE) on whole body glucose rate of disappearance (Rd) occur through insulin-independent (IIRd) and insulin-dependent (IDRd) mechanisms. Quantifying these processes in vivo would allow a better understanding of the physiology of glucose regulation. This is of particular importance in individuals with type 1 diabetes (T1D) since such a knowledge may help to improve glucose management. However, such a model is still lacking. Here, we analyzed data from six T1D and six nondiabetic (ND) subjects undergoing a labeled glucose clamp study during, before, and after a 60-min exercise session at 65% V̇o2max on three randomized visits: euglycemia-low insulin, euglycemia-high insulin, and hyperglycemia-low insulin. We tested a set of models, all sharing a single-compartment description of glucose kinetics, but differing in how exercise is assumed to modulate glucose disposal. Model selection was based on parsimony criteria. The best model assumed an exercise-induced immediate effect on IIRd and a delayed effect on IDRd. It predicted that exercise increases IIRd, compared with rest, by 66%-82% and 67%-97% in T1D and ND, respectively, not significantly different between the two groups. Conversely, the exercise effect on IDRd ranged between 81% and 155% in T1D and it was significantly higher than ND, which ranged between 10% and 40%. The exaggerated effect observed in IDRd can explain the higher hypoglycemia risk related to individuals with T1D. This novel exercise model could help in informing safe and effective glucose management during and after exercise in individuals with T1D.NEW & NOTEWORTHY Here, we present a new mathematical model describing the effect of moderate physical activity on insulin-mediated and noninsulin-mediated glucose disposal in subjects with and without diabetes. We believe that this represents a step-forward in the knowledge of type 1 diabetes pathophysiology, and an useful tool to design safe and effective insulin-therapies.
Collapse
Affiliation(s)
- Davide Romeres
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ananda Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Padova, Italy
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Furbetta N, Comandatore A, Gianardi D, Palmeri M, Di Franco G, Guadagni S, Caprili G, Bianchini M, Fatucchi LM, Picchi M, Bastiani L, Biancofiore G, Di Candio G, Morelli L. Perioperative Nutritional Aspects in Total Pancreatectomy: A Comprehensive Review of the Literature. Nutrients 2021; 13:1765. [PMID: 34067286 PMCID: PMC8224756 DOI: 10.3390/nu13061765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Total pancreatectomy (TP) is a highly invasive procedure often performed in patients affected by anorexia, malabsorption, cachexia, and malnutrition, which are risk factors for bad surgical outcome and even may cause enhanced toxicity to chemo-radiotherapy. The role of nutritional therapies and the association between nutritional aspects and the outcome of patients who have undergone TP is described in some studies. The aim of this comprehensive review is to summarize the available recent evidence about the influence of nutritional factors in TP. Preoperative nutritional and metabolic assessment, but also intra-operative and post-operative nutritional therapies and their consequences, are analyzed in order to identify the aspects that can influence the outcome of patients undergoing TP. The results of this review show that preoperative nutritional status, sarcopenia, BMI and serum albumin are prognostic factors both in TP for pancreatic cancer to support chemotherapy, prevent recurrence and prolong survival, and in TP with islet auto-transplantation for chronic pancreatitis to improve postoperative glycemic control and obtain better outcomes. When it is possible, enteral nutrition is always preferable to parenteral nutrition, with the aim to prevent or reduce cachexia. Nowadays, the nutritional consequences of TP, including diabetes control, are improved and become more manageable.
Collapse
Affiliation(s)
- Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Giovanni Caprili
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Lorenzo Maria Fatucchi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Martina Picchi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Luca Bastiani
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy;
| | | | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (N.F.); (A.C.); (D.G.); (M.P.); (G.D.F.); (S.G.); (G.C.); (M.B.); (L.M.F.); (M.P.); (G.D.C.)
| |
Collapse
|
18
|
McCarthy O, Pitt J, Eckstein ML, Moser O, Bain SC, Bracken RM. Pancreatic β-Cell Function Is Associated with Augmented Counterregulation to In-Exercise Hypoglycemia in Type 1 Diabetes. Med Sci Sports Exerc 2021; 53:1326-1333. [PMID: 34127632 DOI: 10.1249/mss.0000000000002613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aimed to investigate the influence of residual β-cell function on counterregulatory hormonal responses to hypoglycemia during acute physical exercise in people with type 1 diabetes (T1D). A secondary aim was to explore relationships between biomarkers of pancreatic β-cell function and indices of glycemia following acute exercise including the nocturnal period. METHODS This study involved an exploratory, secondary analysis of data from individuals with T1D who partook in a four-peroid, randomized, cross-over trial involving a bout of evening exercise followed by an overnight stay in a clinical laboratory facility. Participants were split into two groups: (i) a stimulated C-peptide level of ≥30 pmol⋅L-1 (low-level secretors [LLS], n = 6) or (ii) <30 pmol⋅L-1 (microsecretors [MS], n = 10). Pancreatic hormones (C-peptide, proinsulin, and glucagon), catecholamines (epinephrine [EPI] and norepinephrine [NE]), and metabolic biomarkers (blood glucose, blood lactate, and β-hydroxybutyrate) were measured at rest, during exercise with and without a hypoglycemic (blood glucose ≤3.9 mmol⋅L-1) episode, and throughout a 13-h postexercise period. Interstitial glucose monitoring was used to assess indices of glycemic variability. RESULTS During in-exercise hypoglycemia, LLS presented with greater sympathoadrenal (EPI and NE P ≤ 0.05) and ketone (P < 0.01) concentrations. Glucagon remained similar (P = 0.09). Over exercise, LLS experienced larger drops in C-peptide and proinsulin (both P < 0.01) as well as greater increases in EPI (P < 0.01) and β-hydroxybutyrate (P = 0.03). LLS spent less time in the interstitial-derived hypoglycemic range acutely postexercise and had lower glucose variability throughout the nocturnal period. CONCLUSION Higher residual β-cell function was associated with greater sympathoadrenal and ketonic responses to exercise-induced hypoglycemia as well as improved glycemia leading into and throughout the nocturnal hours. Even a minimal amount of residual β-cell function confers a beneficial effect on glycemic outcomes during and after exercise in people with T1D.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| | | | | | - Stephen C Bain
- Diabetes Research Group, Medical School, Swansea University, Swansea, UNITED KINGDOM
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| |
Collapse
|
19
|
McCarthy O, Deere R, Eckstein ML, Pitt J, Wellman B, Bain SC, Moser O, Bracken RM. Improved Nocturnal Glycaemia and Reduced Insulin Use Following Clinical Exercise Trial Participation in Individuals With Type 1 Diabetes. Front Public Health 2021; 8:568832. [PMID: 33495732 PMCID: PMC7822762 DOI: 10.3389/fpubh.2020.568832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Aim: To explore the influence of clinical exercise trial participation on glycaemia and insulin therapy use in adults with type 1 diabetes (T1D). Research Design and Methods: This study involved a secondary analysis of data collected from 16 individuals with T1D who completed a randomized clinical trial consisting of 23-h in-patient phases with a 45-min evening bout of moderate intensity continuous exercise. Participants were switched from their usual basal-bolus therapy to ultra-long acting insulin degludec and rapid-acting insulin aspart as well as provided with unblinded interstitial flash-glucose monitoring systems. To assess the impact of clinical trial participation, weekly data obtained at the screening visit (pre-study involvement) were compared against those collated on the last experimental visit (post-study involvement). Interstitial glucose [iG] data were split into distinct glycaemic ranges and stratified into day (06:00–23:59) and night (00:00–05:59) time periods. A p-value of ≤ 0.05 was accepted for significance. Results: Following study completion, there were significant decreases in both the mean nocturnal iG concentration (Δ-0.9 ± 4.5 mmol.L−1, p < 0.001) and the time spent in severe hyperglycaemia (Δ-7.2 ± 9.8%, p = 0.028) during the night-time period. The total daily (Δ-7.3 ± 8.4 IU, p = 0.003) and basal only (Δ-2.3 ± 3.8 IU, p = 0.033) insulin dose requirements were reduced over the course of study involvement. Conclusions: Participation in clinical research may foster improved nocturnal glycaemia and reduced insulin therapy use in people with T1D. Recognition of these outcomes may help encourage volunteers to partake in clinical research opportunities for improved diabetes-related health outcomes. Clinical Trial Registration:DRKS.de; DRKS00013509.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
| | - Rachel Deere
- Department for Health, University of Bath, Bath, United Kingdom
| | - Max L Eckstein
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
| | - Ben Wellman
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
| | - Stephen C Bain
- Diabetes Research Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
| |
Collapse
|
20
|
McCarthy O, Deere R, Churm R, Dunseath GJ, Jones C, Eckstein ML, Williams DM, Hayes J, Pitt J, Bain SC, Moser O, Bracken RM. Extent and prevalence of post-exercise and nocturnal hypoglycemia following peri-exercise bolus insulin adjustments in individuals with type 1 diabetes. Nutr Metab Cardiovasc Dis 2021; 31:227-236. [PMID: 33012641 DOI: 10.1016/j.numecd.2020.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
AIM To detail the extent and prevalence of post-exercise and nocturnal hypoglycemia following peri-exercise bolus insulin dose adjustments in individuals with type 1 diabetes (T1D) using multiple daily injections of insulins aspart (IAsp) and degludec (IDeg). METHODS AND RESULTS Sixteen individuals with T1D, completed a single-centred, randomised, four-period crossover trial consisting of 23-h inpatient phases. Participants administered either a regular (100%) or reduced (50%) dose (100%; 5.1 ± 2.4, 50%; 2.6 ± 1.2 IU, p < 0.001) of individualised IAsp 1 h before and after 45-min of evening exercise at 60 ± 6% V̇O2max. An unaltered dose of IDeg was administered in the morning. Metabolic, physiological and hormonal responses during exercise, recovery and nocturnal periods were characterised. The primary outcome was the number of trial day occurrences of hypoglycemia (venous blood glucose ≤ 3.9 mmol L -1). Inclusion of a 50% IAsp dose reduction strategy prior to evening exercise reduced the occurrence of in-exercise hypoglycemia (p = 0.023). Mimicking this reductive strategy in the post-exercise period decreased risk of nocturnal hypoglycemia (p = 0.045). Combining this strategy to reflect reductions either side of exercise resulted in higher glucose concentrations in the acute post-exercise (p = 0.034), nocturnal (p = 0.001), and overall (p < 0.001) periods. Depth of hypoglycemia (p = 0.302), as well as ketonic and counter-regulatory hormonal profiles were similar. CONCLUSIONS These findings demonstrate the glycemic safety of peri-exercise bolus dose reduction strategies in minimising the prevalence of acute and nocturnal hypoglycemia following evening exercise in people with T1D on MDI. Use of newer background insulins with current bolus insulins demonstrates efficacy and advances current recommendations for safe performance of exercise. CLINICAL TRIALS REGISTER DRKS00013509.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Rachel Deere
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Rachel Churm
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Gareth J Dunseath
- Diabetes Research Group, Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Charlotte Jones
- Diabetes Research Group, Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
| | - David M Williams
- Diabetes Research Group, Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Jennifer Hayes
- Diabetes Research Group, Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Stephen C Bain
- Diabetes Research Group, Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| |
Collapse
|
21
|
Forny P, Burda P, Bode P, Rohrbach M. Is serum biotinidase enzyme activity a potential marker of perturbed glucose and lipid metabolism? JIMD Rep 2021; 57:58-66. [PMID: 33473341 PMCID: PMC7802622 DOI: 10.1002/jmd2.12168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023] Open
Abstract
Glycogen storage diseases (GSDs) belong to the group of inborn errors of carbohydrate metabolism. Hepatic GSDs predominantly involve the liver and most present with hepatomegaly. Biochemically they show known disturbances in glucose and fatty acids metabolism, namely fasting hypoglycaemia and increased triglycerides. Additionally, increased biotinidase (BTD) enzyme activity has been shown to be associated with many GSD types, whereas the mechanism by which BTD enzyme activity is altered remains unknown so far. We aimed to delineate changes in gluconeogenesis and fatty acid synthesis, potentially explaining raised BTD enzyme activity, by using liver (specimens from 2 patients) and serum samples of GSD Ia and GSD IV patients. By expression analysis of genes involved in gluconeogenesis, we ascertained increased levels of phosphoenolpyruvate carboxykinase and fructose-1,6-biphosphatase, indicating an increased flux through the gluconeogenic pathway. Additionally, we found increased gene expression of the biotin-dependent pyruvate and acetyl-CoA carboxylases, providing substrate for gluconeogenesis and increased fatty acid synthesis. We also observed a significant linear correlation between BTD enzyme activity and triglyceride levels in a cohort of GSD Ia patients. The results of this pilot study suggest that enhancement of BTD activity might serve the purpose of providing extra cofactor to the carboxylase enzymes as an adjustment to disturbed glucose and fatty acid metabolism. Future studies involving a higher number of samples should aim at confirming the here proposed mechanism, which extends the application of BTD enzyme activity measurement beyond its diagnostic purpose in suspected GSD, and opens up possibilities for its use as a sensor for increased gluconeogenesis and fatty acid synthesis.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Patricie Burda
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Peter Bode
- Institute of Surgical PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
22
|
McCarthy O, Pitt J, Churm R, Dunseath GJ, Jones C, Bally L, Nakas CT, Deere R, Eckstein ML, Bain SC, Moser O, Bracken RM. Metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001577. [PMID: 33020134 PMCID: PMC7536836 DOI: 10.1136/bmjdrc-2020-001577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION This study sought to compare the metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Thirteen individuals with T1D (hemoglobin; 7.0%±1.3% (52.6±13.9 mmol/mol), age; 36±15 years, duration diabetes; 15±12 years) performed a maximum of 45 min submaximal exercise (60%±6% V̇O2max). Retrospectively identified exercise sessions that ended in hypoglycemia ((HypoEx) blood glucose (BG)≤3.9 mmol/L) were compared against a participant-matched euglycemic condition ((EuEx) BG≥4.0, BG≤10.0 mmol/L). Samples were compared for detailed physiological and hormonal parameters as well as metabolically profiled via large scale targeted ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Data were assessed using univariate and multivariate analysis techniques with false discovery rate adjustment. Significant results were considered at p≤0.05. RESULTS Cardiorespiratory and counterregulatory hormone responses, whole-body fuel use and perception of fatigue during exercise were similar under conditions of hypoglycemia and euglycemia (BG 3.5±0.3 vs 5.8±1.1 mmol/L, respectively p<0.001). HypoEx was associated with greater adenosine salvage pathway activity (5'-methylthioadenosine, p=0.023 and higher cysteine and methionine metabolism), increased utilization of glucogenic amino acids (glutamine, p=0.021, alanine, aspartate and glutamate metabolism and homoserine/threonine, p=0.045) and evidence of enhanced β-oxidation (lower carnitine p<0.001, higher long-chain acylcarnitines). CONCLUSIONS Exposure to acute hypoglycemia during exercise potentiates alterations in subclinical indices of metabolic stress at the level of the metabolome. However, the physiological responses induced by dynamic physical exercise may mask the symptomatic recognition of mild hypoglycemia during exercise in people with T1D, a potential clinical safety concern that reinforces the need for diligent glucose management. TRIAL REGISTRATION NUMBER DRKS00013509.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University College of Engineering, Swansea, UK
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University College of Engineering, Swansea, UK
| | - Rachel Churm
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University College of Engineering, Swansea, UK
| | - Gareth J Dunseath
- Diabetes Research Group, Swansea University Medical School, Swansea, UK
| | - Charlotte Jones
- Diabetes Research Group, Swansea University Medical School, Swansea, UK
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital University Hospital Bern, Bern, Switzerland
| | - Christos T Nakas
- Laboratory of Biometry, University of Thessaly, Volos, Thessaly, Greece
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rachel Deere
- Department of Health, University of Bath, Bath, Somerset, UK
| | - Max L Eckstein
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stephen C Bain
- Diabetes Research Group, Swansea University Medical School, Swansea, UK
| | - Othmar Moser
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University College of Engineering, Swansea, UK
| |
Collapse
|
23
|
Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes Mellitus, Mitochondrial Dysfunction and Ca 2+-Dependent Permeability Transition Pore. Int J Mol Sci 2020; 21:6559. [PMID: 32911736 PMCID: PMC7555889 DOI: 10.3390/ijms21186559] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases in the developed world, and is associated either with the impaired secretion of insulin or with the resistance of cells to the actions of this hormone (type I and type II diabetes, respectively). In both cases, a common pathological change is an increase in blood glucose-hyperglycemia, which eventually can lead to serious damage to the organs and tissues of the organism. Mitochondria are one of the main targets of diabetes at the intracellular level. This review is dedicated to the analysis of recent data regarding the role of mitochondrial dysfunction in the development of diabetes mellitus. Specific areas of focus include the involvement of mitochondrial calcium transport systems and a pathophysiological phenomenon called the permeability transition pore in the pathogenesis of diabetes mellitus. The important contribution of these systems and their potential relevance as therapeutic targets in the pathology are discussed.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
| |
Collapse
|
24
|
Romeres D, Olson K, Carter R, Cobelli C, Dalla Man C, Basu A, Basu R. Hyperglycemia But Not Hyperinsulinemia Is Favorable for Exercise in Type 1 Diabetes: A Pilot Study. Diabetes Care 2020; 43:2176-2182. [PMID: 32661106 PMCID: PMC7440891 DOI: 10.2337/dc20-0611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To distinguish the effects of hyperglycemia and hyperinsulinemia on exercise-induced increases in Rd and endogenous glucose production (EGP) in type 1 diabetes. RESEARCH DESIGN AND METHODS We studied six participants without diabetes and six participants with type 1 diabetes on three visits in random order for the following: euglycemia, low insulin (EuLoI); euglycemia, high insulin (EuHiI); and hyperglycemia, low insulin (HyLoI). Glucose fluxes were measured using [6,6-2H2] glucose before, during, and after 60 min of exercise. RESULTS Rd increased (P < 0.01) with exercise within groups, while peak Rd during exercise was lower (P < 0.01) in participants with type 1 diabetes than participants without diabetes during all visits. In type 1 diabetes participants, EGP increased (P < 0.001) with exercise during EuLoI and HyLoI but not during EuHiI. This demonstrates that hyperinsulinemia, but not hyperglycemia, blunts the compensatory exercise-induced increase in EGP in type 1 diabetes. CONCLUSIONS The data from this pilot study indicate that 1) exercise-induced compensatory increase in EGP was inhibited in participants with type 1 diabetes with hyperinsulinemia but not with hyperglycemia; 2) in contrast, in participants without diabetes, exercise-induced increase in EGP was inhibited only during combined hyperinsulinemia and hyperglycemia. Taken together, these results suggest that low insulin coupled with euglycemia or modest hyperglycemia appear to be the most favorable milieu for type 1 diabetes during exercise.
Collapse
Affiliation(s)
- Davide Romeres
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Karen Olson
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| | - Rickey Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ananda Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
25
|
Nutrition and Exercise Performance in Adults With Type 1 Diabetes. Can J Diabetes 2020; 44:750-758. [PMID: 32847769 DOI: 10.1016/j.jcjd.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
The best nutritional practices for exercise and sports performance are largely activity specific. The presence of type 1 diabetes undeniably bestows additional factors to consider to manage exercise and ensure adequate nutrients and fuels are available for optimal performance. Whether participating in sports or physical activity on a recreational basis or striving to achieve a high level of athletic performance, individuals with type 1 diabetes must pay attention to their nutritional and dietary patterns, including intake of macronutrients, micronutrients, fluids and supplements, such as caffeine to maintain metabolic and glycemic balance. Performance aside, nutritional recommendations may also differ on an individual basis relative to exercise, glycemic management and body weight goals. Balancing all these dietary factors can be challenging for individuals with type 1 diabetes, and many related aspects have yet to be fully researched in this population.
Collapse
|
26
|
Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 2020; 22:603-611. [PMID: 32468027 PMCID: PMC7339764 DOI: 10.3892/mmr.2020.11175] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6‑phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.
Collapse
Affiliation(s)
- Saizhi Jiang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Jamie L. Young
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Kai Wang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Yan Qian
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Cai
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Radiation Oncology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Frenzke H, Varnhorn A, Schulze H, Kahle-Stephan M, Nauck MA. A Prospective, Randomized Trial Testing Different Regimens of Carbohydrate Administration to Prevent Major Reduction in Plasma Glucose Follwing a Standardized Bout of Moderate Physical Activity in Patients with Type 1 Diabetes. Exp Clin Endocrinol Diabetes 2020; 130:77-84. [PMID: 32615613 DOI: 10.1055/a-1190-3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM/HYPOTHESIS It was the aim to prospectively study regimes of "preventive" carbohydrate administration to avoid major reduction in plasma glucose during physical activity. METHODS 24 patients with type 1 diabetes (age 41±12 years; 11 women, 13 men; BMI 26.5±4.7 kg/m2; HbA1c 9.1±1.5%; insulin dose 0.64±0.22 IU/kg body weight and day) participated in one experiment without physical activity and in three experiments with a 4 km, 60 min hike starting at 2 p.m.. No "preventive" carbohydrates, 2×10 g or 2×20 g carbohydrates (muesli bars) were taken when starting and after 30 min (randomized order). Plasma glucose was determined. RESULTS Within 30 min after starting physical activity, plasma glucose fell by approximately 70 mg/dl, making additional carbohydrate intake necessary in 70% of the subjects. This drop was not prevented by any regimens of "preventive" carbohydrate intake. After the nadir, plasma glucose rose faster after the 2×20 g carbohydrate regime (the largest amount tested; p=0.0036). With "preventive" administration of carbohydrates, significantly (p<0.05) less additional "therapeutic" carbohydrates needed to be administered in 6 h following the initiation of the hike. CONCLUSIONS/INTERPRETATION In conclusion, in the setting of 2 h postprandial exercise in type 1 diabetes, preventive carbohydrate supplementation alone will not completely eliminate the risk of brisk falls in plasma glucose concentrations or hypoglycaemic episodes. Else, higher amounts or repeated administration of carbohydrates may be necessary.
Collapse
Affiliation(s)
- Hanna Frenzke
- Diabeteszentrum Bad Lauterberg im Harz, Germany (where work was performed).,(current affiliation) Medicover MVZ Oldenburg, Oldenburg, Germany
| | - Annette Varnhorn
- Diabeteszentrum Bad Lauterberg im Harz, Germany (where work was performed)
| | - Heike Schulze
- Diabeteszentrum Bad Lauterberg im Harz, Germany (where work was performed)
| | | | - Michael A Nauck
- Diabeteszentrum Bad Lauterberg im Harz, Germany (where work was performed).,(current affiliation) Diabetes Division, Katholisches Klinikum Bochum, St. Josef-Hospital (Ruhr-University Bochum), Bochum, Germany
| |
Collapse
|
28
|
Abstract
In health hypoglycaemia is rare and occurs only in circumstances like extreme sports. Hypoglycaemia in type 1 Diabetes (T1D) and advanced type 2 Diabetes (T2D) are the result of interplay between absolute or relative insulin access and defective glucose counterregulation. The basic mechanism is, failure of decreasing insulin and failure of the compensatory increasing counterregulatory hormones at the background of falling blood glucose. Any person with Diabetes on anti-diabetic medication who behaves oddly in any way whatsoever is hypoglycaemic until proven otherwise. Hypoglycaemia can be a terrifying experience for a patient with Diabetes. By definition, hypoglycaemic symptoms are subjective and vary from person to person and even episode to episode in same person. Fear of iatrogenic hypoglycaemia is a major barrier in achieving optimum glycaemic control and quality of life which limits the reduction of diabetic complications. Diabetes patients with comorbidities especially with chronic renal failure, hepatic dysfunction, major limb amputation, terminal illness, cognitive dysfunction etc. are more vulnerable to hypoglycaemia. In most cases, prompt glucose intake reverts hypoglycaemia. Exogenous insulin in T1D and insulin treated advanced T2D have no control by pancreatic regulation. Moreover, failure of increase of glucagon and attenuated secretion in epinephrine causes the defective glucose counterregulation. In this comprehensive review, I will try to touch all related topics for better understanding of hypoglycaemia.
Collapse
|
29
|
Wang Y, Kwon H, Su X, Wondisford FE. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol Metab 2019; 31:36-44. [PMID: 31918920 PMCID: PMC6881678 DOI: 10.1016/j.molmet.2019.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of glycogen, lactate, and glycerol in glucose production of male C57BL/6 J-albino mice after 6, 12, and 18 h of fasting. Methods We used non-perturbative infusions of 13C3 lactate, 13C3 glycerol, and 13C6 glucose combined with liquid chromatography mass spectrometry and metabolic flux analysis to study the contribution of substrates in gluconeogenesis (GNG). Results During infusion studies, both lactate and glycerol significantly label about 60% and 30–50% glucose carbon, respectively, but glucose labels much more lactate (∼90%) than glycerol carbon (∼10%). Our analyses indicate that lactate, but not glycerol is largely recycled during all fasting periods such that lactate is the largest direct contributor to GNG via the Cori cycle but a minor source of new glucose carbon (overall contribution). In contrast, glycerol is not only a significant direct contributor to GNG but also the largest overall contributor to GNG regardless of fasting length. Prolonged fasting decreases both the whole body turnover rate of glucose and lactate but increases that of glycerol, indicating that the usage of glycerol in GNG become more significant with longer fasting. Conclusion Collectively, these findings suggest that glycerol is the dominant overall contributor of net glucose carbon in GNG during both short and prolonged fasting. Prolonged fasting significantly decreases the turnover rate of glucose and lactate but increases the glycerol turnover rate in mice. In both short and prolonged fasting, lactate is the largest direct contributor to gluconeogenesis but a minor source of new carbon entry. Glycerol is the second largest direct contributor to gluconeogenesis and the dominant overall carbon contributor during both short and prolonged fasting.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
30
|
Baltaci AK, Duran MO, Mogulkoc R, Oltulu P, Avunduk MC. Resveratrol does not affect leptin while it has regulatory effects on liver glycogen levels in exercised and non-exercised rats. INT J VITAM NUTR RES 2019; 89:303-308. [PMID: 30932774 DOI: 10.1024/0300-9831/a000397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Resveratrol (RES) is a well-known phytocompound and food component which has antioxidative and multifunctional bioactivities. The present study aims to examine how resveratrol administration affects plasma leptin and liver glycogen levels in rats subjected to an acute swimming exercise bout. The study was carried out on Wistar-Albino type adult male rats, each group include 7 rats. Group 1, Control Group. Group 2, Control Swimming Group: The group fed on a standard diet and subjected to an acute swimming exercise bout for 30 minutes at the end of the study. Group 3, Resveratrol Group: The group fed on a standard diet and given (10 mg/kg) resveratrol in drinking water for four weeks. Group 4, Resveratrol + Swimming Group: The group fed on a standard diet, given (10 mg/kg) resveratrol in drinking water for four weeks and subjected to a 30-minute acute swimming exercise at the end of the study. Plasma leptin levels using ELISA method (ng/l) and liver glycogen levels were determined by using histochemical method (number/0.1 mm2). Four weeks resveratrol administration to exercised and not-exercised rats did not cause a change in plasma leptin levels. Liver glycogen levels were 17.00 ± 3.16; 14.12 ± 2.98; 20.82 ± 1.97; 16.38 ± 1.27 (mean ± sd); respectively in groups 1, 2, 3, 4. Resveratrol administration to rats subjected to a bout of acute swimming exercise produced an effect that prevented the decrease in liver glycogen (p < 0.05). The study highlights that resveratrol supplementation may have regulatory effects on liver glycogen levels in exercised and non-exercised rats.
Collapse
Affiliation(s)
| | | | - Rasim Mogulkoc
- Faculty of Medicine, Department of Physiology, Selçuk University, Konya, Turkey
| | - Pembe Oltulu
- Faculty of Meram Medicine, Department of Pathology, Necmettin Erbakan University, Konya, Turkey
| | - Mustafa Cihat Avunduk
- Faculty of Meram Medicine, Department of Pathology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
31
|
Abstract
Focusing on daily nutrition is important for athletes to perform and adapt optimally to exercise training. The major roles of an athlete's daily diet are to supply the substrates needed to cover the energy demands for exercise, to ensure quick recovery between exercise bouts, to optimize adaptations to exercise training, and to stay healthy. The major energy substrates for exercising skeletal muscles are carbohydrate and fat stores. Optimizing the timing and type of energy intake and the amount of dietary macronutrients is essential to ensure peak training and competition performance, and these strategies play important roles in modulating skeletal muscle adaptations to endurance and resistance training. In this review, recent advances in nutritional strategies designed to optimize exercise-induced adaptations in skeletal muscle are discussed, with an emphasis on mechanistic approaches, by describing the physiological mechanisms that provide the basis for different nutrition regimens.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| |
Collapse
|
32
|
Morgan ES, Tai LJ, Pham NC, Overman JK, Watts LM, Smith A, Jung SW, Gajdošík M, Krššák M, Krebs M, Geary RS, Baker BF, Bhanot S. Antisense Inhibition of Glucagon Receptor by IONIS-GCGR Rx Improves Type 2 Diabetes Without Increase in Hepatic Glycogen Content in Patients With Type 2 Diabetes on Stable Metformin Therapy. Diabetes Care 2019; 42:585-593. [PMID: 30765435 DOI: 10.2337/dc18-1343] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/16/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the safety and efficacy of IONIS-GCGRRx, a 2'-O-methoxyethyl antisense oligonucleotide targeting the glucagon receptor (GCGR), and the underlying mechanism of liver transaminase increases in patients with type 2 diabetes on stable metformin therapy. RESEARCH DESIGN AND METHODS In three phase 2, randomized, double-blind studies, patients with type 2 diabetes on metformin received weekly subcutaneous injections of IONIS-GCGRRx (50-200 mg) or placebo for 13 or 26 weeks. RESULTS Significant reductions in HbA1c were observed after IONIS-GCGRRx treatment versus placebo at week 14 (-2.0% 200 mg, -1.4% 100 mg, -0.3% placebo; P < 0.001) or week 27 (-1.6% 75 mg, -0.9% 50 mg, -0.2% placebo; P < 0.001). Dose-dependent increases in transaminases were observed with IONIS-GCGRRx, which were attenuated at lower doses and remained mostly within the normal reference range at the 50-mg dose. There were no other significant safety observations and no symptomatic hypoglycemia or clinically relevant changes in blood pressure, LDL cholesterol, or other vital signs. At week 14, IONIS-GCGRRx 100 mg did not significantly affect mean hepatic glycogen content compared with placebo (15.1 vs. -20.2 mmol/L, respectively; P = 0.093) but significantly increased hepatic lipid content (4.2 vs. -2.7%, respectively; P = 0.005) in the presence of transaminase increases. CONCLUSIONS IONIS-GCGRRx is a potent inhibitor of hepatic glucagon receptor expression with a potential to improve glycemic control at low weekly doses in combination with metformin. Significant reductions in HbA1c occurred across the full-dose range tested, with minimal transaminase elevations at lower doses. Furthermore, novel results suggest that despite inhibition of glycogenolysis after GCGR antagonism, IONIS-GCGRRx did not increase hepatic glycogen content.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Smith
- Ionis Pharmaceuticals, Inc., Carlsbad, CA
| | | | - Martin Gajdošík
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Steineck IIK, Ranjan A, Schmidt S, Clausen TR, Holst JJ, Nørgaard K. Preserved glucose response to low-dose glucagon after exercise in insulin-pump-treated individuals with type 1 diabetes: a randomised crossover study. Diabetologia 2019; 62:582-592. [PMID: 30643924 DOI: 10.1007/s00125-018-4807-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS This study aimed to compare the increase in plasma glucose after a subcutaneous injection of 200 μg glucagon given after 45 min of cycling with resting (study 1) and to investigate the effects of glucagon when injected before compared with after 45 min of cycling (study 2). We hypothesised that: (1) the glucose response to glucagon would be similar after cycling and resting; and (2) giving glucagon before the activity would prevent the exercise-induced fall in blood glucose during exercise and for 2 h afterwards. METHODS Fourteen insulin-pump-treated individuals with type 1 diabetes completed three visits in a randomised, placebo-controlled, participant-blinded crossover study. They were allocated by sealed envelopes. Baseline values were (mean and range): HbA1c 54 mmol/mol (43-65 mmol/mol) or 7.1% (6.1-8.1%); age 45 years (23-66 years); BMI 26 kg/m2 (21-30 kg/m2); and diabetes duration 26 years (8-51 years). At each visit, participants consumed a standardised breakfast 2 h prior to 45 min of cycling or resting. A subcutaneous injection of 200 μg glucagon was given before or after cycling or after resting. The glucose response to glucagon was compared after cycling vs resting (study 1) and before vs after cycling (study 2). RESULTS The glucose response to glucagon was higher after cycling compared with after resting (mean ± SD incremental peak: 2.6 ± 1.7 vs 1.8 ± 2.0 mmol/l, p = 0.02). As expected, plasma glucose decreased during cycling (-3.1 ± 2.8 mmol/l) but less so when glucagon was given before cycling (-0.9 ± 2.8 mmol/l, p = 0.002). The number of individuals reaching glucose values ≤3.9 mmol/l was the same on the 3 days. CONCLUSIONS/INTERPRETATION Moderate cycling for 45 min did not impair the glucose response to glucagon compared with the glucose response after resting. The glucose fall during cycling was diminished by a pre-exercise injection of 200 μg glucagon; however, no significant difference was seen in the number of events of hypoglycaemia. TRIAL REGISTRATION Clinicaltrials.gov NCT02882737 FUNDING: The study was funded by the Danish Diabetes Academy founded by Novo Nordisk foundation and by an unrestricted grant from Zealand Pharma.
Collapse
Affiliation(s)
- Isabelle I K Steineck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark.
- Danish Diabetes Academy, Odense, Denmark.
| | - Ajenthen Ranjan
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Department of Pediatrics, Copenhagen University Hospital, Herlev, Denmark
| | - Signe Schmidt
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | | | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Nørgaard
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark
- Steno Diabetes Center, Copenhagen, Denmark
| |
Collapse
|
34
|
Scott SN, Cocks M, Andrews RC, Narendran P, Purewal TS, Cuthbertson DJ, Wagenmakers AJM, Shepherd SO. High-Intensity Interval Training Improves Aerobic Capacity Without a Detrimental Decline in Blood Glucose in People With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:604-612. [PMID: 30281094 DOI: 10.1210/jc.2018-01309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
CONTEXT We investigated whether 6 weeks of high-intensity interval training (HIT) induced improvements in cardiometabolic health markers similar to moderate-intensity continuous training (MICT) in people with type 1 diabetes (T1D), and whether HIT abolished acute reductions in plasma glucose levels observed after MICT sessions. METHODS Two groups of sedentary individuals with T1D (n = 7 per group) completed 6 weeks of thrice weekly HIT or MICT. Pre- and post-training measurements were made of 24-hour interstitial glucose profiles, using continuous glucose monitors, and cardiometabolic health markers [peak oxygen consumption (V˙o2peak), blood lipid profile, and aortic pulse wave velocity (aPWV)]. Capillary blood glucose (BG) concentrations were assessed before and after exercise to investigate changes in BG levels during exercise in the fed state. RESULTS Six weeks of HIT or MICT increased V˙o2peak by 14% and 15%, respectively (P < 0.001), and aPWV by 12% (P < 0.001), with no difference between groups. There was no difference in incidence or percentage of time spent in hypoglycemia after training in either group (P > 0.05). In the fed state, the mean change (±SEM) in capillary BG concentration during the HIT sessions was -0.2 ± 0.5 mmol/L, and -5.5 ± 0.4 mmol/L during MICT. CONCLUSIONS Six weeks of HIT improved V˙o2peak and aPWV to a similar extent as MICT. That BG levels remained stable during HIT in the fed state but consistently fell during MICT suggests HIT may be the preferred training mode for some people with T1D.
Collapse
Affiliation(s)
- Sam N Scott
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matt Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | - Tejpal S Purewal
- Royal Liverpool & Broadgreen University Hospital, Liverpool, United Kingdom
| | - Daniel J Cuthbertson
- Obesity and Endocrinology Research Group, University of Liverpool, Liverpool, United Kingdom
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
35
|
Abstract
The present paper reviews the physiological responses of human liver carbohydrate metabolism to physical activity and ingestion of dietary sugars. The liver represents a central link in human carbohydrate metabolism and a mechanistic crux point for the effects of dietary sugars on athletic performance and metabolic health. As a corollary, knowledge regarding physiological responses to sugar ingestion has potential application to either improve endurance performance in athletes, or target metabolic diseases in people who are overweight, obese and/or sedentary. For example, exercise increases whole-body glycogen utilisation, and the breakdown of liver glycogen to maintain blood glucose concentrations becomes increasingly important as exercise intensity increases. Accordingly, prolonged exercise at moderate-to-high exercise intensity results in depletion of liver glycogen stores unless carbohydrate is ingested during exercise. The exercise-induced glycogen deficit can increase insulin sensitivity and blood glucose control, and may result in less hepatic lipid synthesis. Therefore, the induction and maintenance of a glycogen deficit with exercise could be a specific target to improve metabolic health and could be achieved by carbohydrate (sugar) restriction before, during and/or after exercise. Conversely, for athletes, maintaining and restoring these glycogen stores is a priority when competing in events requiring repeated exertion with limited recovery. With this in mind, evidence consistently demonstrates that fructose-containing sugars accelerate post-exercise liver glycogen repletion and could reduce recovery time by as much as half that seen with ingestion of glucose (polymers)-only. Therefore, athletes aiming for rapid recovery in multi-stage events should consider ingesting fructose-containing sugars to accelerate recovery.
Collapse
|
36
|
Shetty VB, Fournier PA, Davey RJ, Retterath AJ, Paramalingam N, Roby HC, Davis EA, Jones TW. The time lag prior to the rise in glucose requirements to maintain stable glycaemia during moderate exercise in a fasted insulinaemic state is of short duration and unaffected by the level at which glycaemia is maintained in Type 1 diabetes. Diabet Med 2018; 35:1404-1411. [PMID: 29939421 DOI: 10.1111/dme.13771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 11/28/2022]
Abstract
AIMS To determine the duration of the low hypoglycaemia risk period after the start of moderate-intensity exercise performed under basal insulinaemic conditions and whether this period is affected by the level at which glycaemia is maintained under these conditions. METHODS This was a prospective, randomized counterbalanced study. Eight participants with Type 1 diabetes (mean ± sd age 21.5 ± 4.0 years) underwent either a euglycaemic (5-6 mmol/l) or hyperglycaemic clamp (9-10 mmol/l) on separate days and were infused with insulin at basal rates and [6,6-2 H]glucose while cycling for 40 min at 50% maximum oxygen consumption rate. The main outcome measures were the glucose infusion rates required to maintain stable glycaemia and glucoregulatory hormone levels, and rates of glucose appearance and disappearance. RESULTS During the first 20 min of exercise, the glucose infusion rate did not increase significantly, irrespective of the level at which glycaemia was maintained, but increased acutely between 20 and 25 min under both conditions. Maintaining higher glycaemia resulted in higher glucose infusion rate during, but not early post-exercise. With the exception of epinephrine, the glucoregulatory hormone levels and rates of glucose appearance and disappearance were similar between conditions. CONCLUSION Irrespective of the levels at which glycaemia is maintained, there is a 20-min low exogenous glucose demand period during which the exogenous glucose requirements to maintain stable glycaemia do not increase during moderate exercise performed at basal insulin level.
Collapse
Affiliation(s)
- V B Shetty
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Division of Paediatrics, Medical School, Perth, WA, Australia
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - P A Fournier
- School of Human Sciences, Perth, WA, Australia
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - R J Davey
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - A J Retterath
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - N Paramalingam
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - H C Roby
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - E A Davis
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Division of Paediatrics, Medical School, Perth, WA, Australia
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| | - T W Jones
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Division of Paediatrics, Medical School, Perth, WA, Australia
- Telethon Kids Institute, Children's Diabetes Centre, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
37
|
Kuga GK, Gaspar RC, Muñoz VR, Nakandakari SCBR, Breda L, Sandoval BM, Caetano FH, Leme JACDA, Pauli JR, Gomes RJ. Physical training reverses changes in hepatic mitochondrial diameter of Alloxan-induced diabetic rats. EINSTEIN-SAO PAULO 2018; 16:eAO4353. [PMID: 30088548 PMCID: PMC6110382 DOI: 10.1590/s1679-45082018ao4353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To investigate the effects of physical training on metabolic and morphological parameters of diabetic rats. METHODS Wistar rats were randomized into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes mellitus was induced by Alloxan (35mg/kg) administration for sedentary diabetic and Trained Diabetic Groups. The exercise protocol consisted of swimming with a load of 2.5% of body weight for 60 minutes per day (5 days per week) for the trained control and Trained Diabetic Groups, during 6 weeks. At the end of the experiment, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin and total protein. Liver samples were extracted for measurements of glycogen, protein, DNA and mitochondrial diameter determination. RESULTS The sedentary diabetic animals presented decreased body weight, blood insulin, and hepatic glycogen, as well as increased glycemia and mitochondrial diameter. The physical training protocol in diabetic animals was efficient to recovery body weight and liver glycogen, and to decrease the hepatic mitochondrial diameter. CONCLUSION Physical training ameliorated hepatic metabolism and promoted important morphologic adaptations as mitochondrial diameter in liver of the diabetic rats.
Collapse
Affiliation(s)
- Gabriel Keine Kuga
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
| | - Rafael Calais Gaspar
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | - Vitor Rosetto Muñoz
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | | | | | | | | | | | - José Rodrigo Pauli
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | | |
Collapse
|
38
|
Bogachus LD, Oseid E, Bellin M, Vella A, Robertson RP. Deficient Endogenous Glucose Production During Exercise After Total Pancreatectomy/Islet Autotransplantation. J Clin Endocrinol Metab 2017; 102:3288-3295. [PMID: 28911142 PMCID: PMC5587075 DOI: 10.1210/jc.2017-00923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023]
Abstract
CONTEXT Total pancreatectomy followed by intrahepatic islet autotransplantation (TP/IAT) is performed to alleviate severe, unrelenting abdominal pain caused by chronic pancreatitis, to improve quality of life, and to prevent diabetes. OBJECTIVE To determine the cause of exercise-induced hypoglycemia that is a common complaint in TP/IAT recipients. DESIGN Participants completed 1 hour of steady-state exercise. SETTING Hospital research unit. PATIENTS AND OTHER PARTICIPANTS We studied 14 TP/IAT recipients and 10 age- and body mass index-matched control subjects. INTERVENTIONS Peak oxygen uptake (VO2) was determined via a symptom-limited maximal cycle ergometer test. Fasted subjects then returned for a primed [6,6-2H2]-glucose infusion to measure endogenous glucose production while completing 1 hour of bicycle exercise at either 40% or 70% peak VO2. MAIN OUTCOME MEASURES Blood samples were obtained to measure glucose metabolism and counterregulatory hormones before, during, and after exercise. RESULTS Although the Borg Rating of Perceived Exertion did not differ between recipients and control subjects, aerobic capacity was significantly higher in controls than in recipients (40.4 ± 2.0 vs 27.2 ± 1.4 mL/kg per minute; P < 0.001). This difference resulted in workload differences between control subjects and recipients to reach steady-state exercise at 40% peak VO2 (P = 0.003). Control subjects significantly increased their endogenous glucose production from 12.0 ± 1.0 to 15.2 ± 1.0 µmol/kg per minute during moderate exercise (P = 0.01). Recipients did not increase endogenous glucose production during moderate exercise (40% peak VO2) but succeeded during heavy exercise, from 10.1 ± 0.4 to 14.8 ± 2.0 µmol/kg per minute (70% peak VO2; P = 0.001). CONCLUSIONS Failure to increase endogenous glucose production during moderate exercise may be a key contributor to the hypoglycemia TP/IAT recipients experience.
Collapse
Affiliation(s)
- Lindsey D. Bogachus
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Elizabeth Oseid
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Melena Bellin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicines and Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Adrian Vella
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - R. Paul Robertson
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington 98195
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicines and Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
39
|
Nadella S, Indyk JA, Kamboj MK. Management of diabetes mellitus in children and adolescents: engaging in physical activity. Transl Pediatr 2017; 6:215-224. [PMID: 28795013 PMCID: PMC5532192 DOI: 10.21037/tp.2017.05.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regular physical activity is an important component in the management of both type 1 and type 2 diabetes mellitus (T1DM and T2DM), as it has the potential to improve glycemic control, delay cardiovascular complications, and increase overall well-being. Unfortunately, many children and adolescents with diabetes do not partake in regular exercise and physical activity for multiple reasons. This review identifies the barriers to participation from the aspect of the patient, caregiver, and the healthcare provider. The management of physical activity of children and adolescents with diabetes mellitus is unique and requires an understanding of exercise physiology and how it differs in these children and adolescents from those without the condition. These individuals are at risk for important and potentially life threatening complications including, but not limited to, severe or delayed nocturnal hypoglycemia. It is essential to identify these risks as well as, monitor and manage adjustments to carbohydrate intake and insulin dosing through basal-bolus regimen or insulin pump adjustments appropriately before, during, and after the exercise activity. This review discusses these issues and also outlines differences in management between patients with T1DM and T2DM.
Collapse
Affiliation(s)
- Silpa Nadella
- Emory University School of Medicine, Atlanta, GA, USA
| | - Justin A Indyk
- Section of Endocrinology, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, USA
| | - Manmohan K Kamboj
- Section of Endocrinology, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
40
|
Price TB, Sanders K. Muscle and liver glycogen utilization during prolonged lift and carry exercise: male and female responses. Physiol Rep 2017; 5:e13113. [PMID: 28242815 PMCID: PMC5328765 DOI: 10.14814/phy2.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
This study examined the use of carbohydrates by men and women during lift/carry exercise. Effects of menstrual cycle variation were examined in women. Twenty-five subjects (15 M, 10 F) were studied; age 25 ± 2y M, 26 ± 3y F, weight 85 ± 3 kg* M, 63 ± 3 kg F, and height 181 ± 2 cm* M, 161 ± 2 cm F (* P < 0.0001). During exercise subjects squatted to floor level and lifted a 30 kg box, carried it 3 m, and placed it on a shelf 132 cm high 3X/min over a 3-hour period (540 lifts) or until they could not continue. Males were studied in a single session, females were studied on separate occasions (during the luteal (L) and follicular (F) menstrual phases). The protocol was identical for both sexes and on both occasions in the female group. Glycogen utilization was tracked with natural abundance C-13 NMR of quadriceps femoris and biceps brachialis muscles, and in the liver at rest and throughout the exercise period. Males completed more of the 180 min protocol than females [166 ± 9 min M, 112 ± 16 min* F (L), 88 ± 16 min** F (F) (*P = 0.0036, **P < 0.0001)]. Quadriceps glycogen depletion was similar between sexes and within females in L/F phases [4.7 ± 0.8 mmol/L-h M, 4.5 ± 2.4 mmol/L-h F (L), 10.3 ± 3.5 mmol/L-h F (F)]. Biceps glycogen depletion was greater in females [2.7 ± 0.9 mmol/L-h M, 10.3 ± 1.3 mmol/L-h* F (L), 16.8 ± 4.8 mmol/L-h** F (F) (* P = 0.0004, ** P = 0.0122)]. Resting glycogen levels were higher in females during the follicular phase (P = 0.0077). Liver glycogen depletion increased during exercise, but was not significant. We conclude that with non-normalized lift/carry exercise: (1) Based on their smaller size, women are less capable of completing and work their upper body harder than men. (2) Women and men work their lower body at similar levels. (3) Women store more quadriceps carbohydrate during the follicular phase. (4) The liver is not significantly challenged by this protocol.
Collapse
Affiliation(s)
- Thomas B Price
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Arts and Sciences, University of Bridgeport, Bridgeport, Connecticut
| | - Kimberly Sanders
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Naturopathic Medicine, University of Bridgeport, Bridgeport, Connecticut
| |
Collapse
|
41
|
Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach. Nutrients 2016; 8:nu8110719. [PMID: 27845704 PMCID: PMC5133105 DOI: 10.3390/nu8110719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
(1) Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2) Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3) Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4) Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise.
Collapse
|
42
|
van Albada ME, Bakker-van Waarde WM. Recurrent nightly ketosis after prolonged exercise in type 1 diabetes - the need for glycogen replacement strategies. Case report and review of literature. Pediatr Diabetes 2016; 17:531-534. [PMID: 26530055 DOI: 10.1111/pedi.12328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/29/2015] [Accepted: 09/17/2015] [Indexed: 12/01/2022] Open
Abstract
Exercise in diabetes patients has many benefits but also several risks, of which hypoglycemia is most often discussed. We present a case with recurrent keto-acidosis post-exercise, in which we hypothesize that glycogen replacement strategies were insufficient. Our experience in this case and review of the literature emphasize the importance of discussing glycogen replacement strategies with your diabetic athletes.
Collapse
Affiliation(s)
- M E van Albada
- Department of Pediatric Endocrinology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands.
| | - W M Bakker-van Waarde
- Department of Pediatric Endocrinology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab 2016; 311:E543-53. [PMID: 27436612 DOI: 10.1152/ajpendo.00232.2016] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Cas J Fuchs
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
44
|
McAuley SA, Horsburgh JC, Ward GM, La Gerche A, Gooley JL, Jenkins AJ, MacIsaac RJ, O'Neal DN. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia 2016; 59:1636-44. [PMID: 27168135 DOI: 10.1007/s00125-016-3981-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/29/2016] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the effects of exercise, vs rest, on circulating insulin and glucose, following pre-exercise insulin pump basal rate reduction. METHODS This was an open-label, two-stage randomised crossover study of 14 adults (seven women, seven men) with type 1 diabetes established on insulin pump therapy. In each stage, participants fasted and insulin delivery was halved following a single insulin basal rate overnight. Exercise (30 min moderate-intensity stationary bicycle exercise, starting 60 min post-basal reduction) and rest stages were undertaken in random order at a university hospital. Randomisation was computer-generated, and allocation concealed via sequentially numbered sealed opaque envelopes. Venous blood was collected at 15 min intervals from 60 min pre- until 210 min post-basal rate reduction. Changes in plasma free insulin (the primary outcome), and changes in plasma glucose, with exercise were compared with changes when resting. Outcomes were assessed blinded to group assignment. RESULTS Following basal rate reduction when rested, mean (± SE) free insulin decreased by 4.9 ± 2.9%, 16.2 ± 2.6% and 18.6 ± 3.2% at 1, 2 and 3 h, respectively (p < 0.05 after 75 min). With exercise, relative to rest, mean free insulin increased by 6 ± 2 pmol/l after 15 min and 5 ± 2 pmol/l after 30 min (p < 0.001), then declined post-exercise (p < 0.001). Three participants (mean baseline glucose 5.0 ± 0.1 mmol/l) required glucose supplementation to prevent or treat exercise-related hypoglycaemia. In the other 11 participants (mean baseline glucose 8.4 ± 0.5 mmol/l), glucose increased by 0.8 ± 0.3 mmol/l with exercise (p = 0.028). CONCLUSIONS/INTERPRETATION Halving the basal insulin rate 1 h prior to exercise did not significantly reduce circulating free insulin by exercise commencement. Exercise itself transiently increased insulin levels. In participants with low-normal glucose pre-exercise, hypoglycaemia was not prevented by insulin basal rate reduction alone. Greater insulin basal rate reduction and supplemental carbohydrate may be required to prevent exercise-induced hypoglycaemia. TRIAL REGISTRATION ANZCTR.org.au ACTRN12613000581763 FUNDING: Australian Diabetes Society, Hugh DT Williamson Foundation, Lynne Quayle Charitable Trust Fund.
Collapse
Affiliation(s)
- Sybil A McAuley
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Jodie C Horsburgh
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Glenn M Ward
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - André La Gerche
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Sports Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Judith L Gooley
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Alicia J Jenkins
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Richard J MacIsaac
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - David N O'Neal
- Department of Medicine, St Vincent's Hospital, University of Melbourne, 29 Regent Street, Fitzroy, Melbourne, VIC, 3065, Australia.
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Seenappa V, Das B, Joshi MB, Satyamoorthy K. Context Dependent Regulation of Human Phosphoenolpyruvate Carboxykinase Isoforms by DNA Promoter Methylation and RNA Stability. J Cell Biochem 2016; 117:2506-20. [DOI: 10.1002/jcb.25543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Venu Seenappa
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Bidyadhar Das
- Department of Zoology; Northeast Hill University; Shillong India
| | - Manjunath B. Joshi
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| |
Collapse
|
46
|
Horton WB, Subauste JS. Care of the Athlete With Type 1 Diabetes Mellitus: A Clinical Review. Int J Endocrinol Metab 2016; 14:e36091. [PMID: 27679652 PMCID: PMC5035675 DOI: 10.5812/ijem.36091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
CONTEXT Type 1 diabetes mellitus (T1DM) results from a highly specific immune-mediated destruction of pancreatic β cells, resulting in chronic hyperglycemia. For many years, one of the mainstays of therapy for patients with T1DM has been exercise balanced with appropriate medications and medical nutrition. Compared to healthy peers, athletes with T1DM experience nearly all the same health-related benefits from exercise. Despite these benefits, effective management of the T1DM athlete is a constant challenge due to various concerns such as the increased risk of hypoglycemia. This review seeks to summarize the available literature and aid clinicians in clinical decision-making for this patient population. EVIDENCE ACQUISITION PubMed searches were conducted for "type 1 diabetes mellitus AND athlete" along with "type 1 diabetes mellitus AND exercise" from database inception through November 2015. All articles identified by this search were reviewed if the article text was available in English and related to management of athletes with type 1 diabetes mellitus. Subsequent reference searches of retrieved articles yielded additional literature included in this review. RESULTS The majority of current literature available exists as recommendations, review articles, or proposed societal guidelines, with less prospective or higher-order treatment studies available. The available literature is presented objectively with an attempt to describe clinically relevant trends and findings in the management of athletes living with T1DM. CONCLUSIONS Managing T1DM in the context of exercise or athletic competition is a challenging but important skill for athletes living with this disease. A proper understanding of the hormonal milieu during exercise, special nutritional needs, glycemic control, necessary insulin dosing adjustments, and prevention/management strategies for exercise-related complications can lead to successful care plans for these patients. Individualized management strategies should be created with close cooperation between the T1DM athlete and their healthcare team (including a physician and dietitian).
Collapse
Affiliation(s)
- William B. Horton
- Department of Medicine, University of Mississippi Medical Center, Mississippi, United States
- Corresponding author: William B. Horton, Department of Medicine, University of Mississippi Medical Center, 2500 N State Street, Jackson, Mississippi 39216, United States. Tel: +1-6019845601, Fax: +1-6019846665, E-mail:
| | - Jose S. Subauste
- Department of Medicine, University of Mississippi Medical Center, Mississippi, United States
- Division of Endocrinology, University of Mississippi Medical Center, Mississippi, United States
- Department of Medicine, G.V. Montgomery VA Medical Center, Mississippi, Jackson, United States
| |
Collapse
|
47
|
McDonald MW, Murray MR, Grise KN, Olver TD, Dey A, Shoemaker JK, Noble EG, Melling CWJ. The glucoregulatory response to high-intensity aerobic exercise following training in rats with insulin-treated type 1 diabetes mellitus. Appl Physiol Nutr Metab 2016; 41:631-9. [PMID: 27175938 DOI: 10.1139/apnm-2015-0558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An acute bout of exercise elicits a rapid, potentially deleterious, reduction in blood glucose in patients with type 1 diabetes mellitus (T1DM). In the current study, we examined whether a 10-week aerobic training program could alleviate the rapid exercise-associated reduction in blood glucose through changes in the glucoregulatory hormonal response or increased hepatic glycogen storage in an insulin-treated rat model of T1DM. Thirty-two male Sprague-Dawley rats were divided evenly into 4 groups: non-T1DM sedentary (C) (n = 8), non-T1DM exercised (CX) (n = 8), T1DM sedentary (D) (n = 8), and T1DM exercised (DX) (n = 8). Exercise training consisted of treadmill running for 5 days/week (1 h, 27 m/min, 6% grade) for 10 weeks. T1DM was induced by multiple streptozotocin injections (20 mg/kg) followed by implantation of subcutaneous insulin pellets. At week 1, an acute exercise bout led to a significant reduction in blood glucose in DX (p < 0.05), whereas CX exhibited an increase in blood glucose (p < 0.05). During acute exercise, serum epinephrine was increased in both DX and CX (p < 0.05), whereas serum glucagon was increased during recovery only in CX (p < 0.01). Following aerobic training in DX, the exercise-mediated reduction in blood glucose remained; however, serum glucagon increased to the same extent as in CX (p < 0.05). DX exhibited significantly less hepatic glycogen (p < 0.001) despite elevations in glycogenic proteins in the liver (p < 0.05). Elevated serum epinephrine and decreased hepatic adrenergic receptor expression were also evident in DX (p < 0.05). In summary, despite aerobic training in DX, abrupt blood glucose reductions and hepatic glycogen deficiencies were evident. These data suggest that sympathetic overactivity may contribute to deficiencies in hepatic glycogen storage.
Collapse
Affiliation(s)
- Matthew W McDonald
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Michael R Murray
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Kenneth N Grise
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - T Dylan Olver
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Adwitia Dey
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - J Kevin Shoemaker
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,b Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Earl G Noble
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,b Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - C W James Melling
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,c School of Health Studies, Faculty of Health Sciences, University of Western Ontario, 3M Centre, Room 2213, London, ON, N6A 5B9 Canada
| |
Collapse
|
48
|
Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism 2015; 64:1629-39. [PMID: 26455399 DOI: 10.1016/j.metabol.2015.09.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
For long the presence of insulin resistance in type 1 diabetes has been questioned. Detailed metabolic analyses revealed 12%-61% and up to 20% lower whole-body (skeletal muscle) and hepatic insulin sensitivity in type 1 diabetes, depending on the population studied. Type 1 diabetes patients feature impaired muscle adenosine triphosphate (ATP) synthesis and enhanced oxidative stress, predominantly relating to hyperglycemia. They may also exhibit abnormal fasting and postprandial glycogen metabolism in liver, while the role of hepatic energy metabolism for insulin resistance remains uncertain. Recent rodent studies point to tissue-specific differences in the mechanisms underlying insulin resistance. In non-obese diabetic mice, increased lipid availability contributes to muscle insulin resistance via diacylglycerol/protein kinase C isoforms. Furthermore, humans with type 1 diabetes respond to lifestyle modifications or metformin by 20%-60% increased whole-body insulin sensitivity, likely through improvement in both glycemic control and oxidative phosphorylation. Intensive insulin treatment and islet transplantation also increase but fail to completely restore whole-body and hepatic insulin sensitivity. In conclusion, insulin resistance is a feature of type 1 diabetes, but more controlled trials are needed to address its contribution to disease progression, which might help to optimize treatment and reduce comorbidities.
Collapse
Affiliation(s)
- Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
49
|
Chuanchao Zhang, Juan Liu, Qianqian Shi, Tao Zeng, Chen L. Identification of phenotypic networks based on whole transcriptome by comparative network decomposition. 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2015:189-194. [DOI: 10.1109/bibm.2015.7359679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Mallad A, Hinshaw L, Schiavon M, Dalla Man C, Dadlani V, Basu R, Lingineni R, Cobelli C, Johnson ML, Carter R, Kudva YC, Basu A. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. Am J Physiol Endocrinol Metab 2015; 308:E1106-15. [PMID: 25898950 PMCID: PMC4469811 DOI: 10.1152/ajpendo.00014.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/19/2015] [Indexed: 12/16/2022]
Abstract
To determine the effects of exercise on postprandial glucose metabolism and insulin action in type 1 diabetes (T1D), we applied the triple tracer technique to study 16 T1D subjects on insulin pump therapy before, during, and after 75 min of moderate-intensity exercise (50% V̇o2max) that started 120 min after a mixed meal containing 75 g of labeled glucose. Prandial insulin bolus was administered as per each subject's customary insulin/carbohydrate ratio adjusted for meal time meter glucose and the level of physical activity. Basal insulin infusion rates were not altered. There were no episodes of hypoglycemia during the study. Plasma dopamine and norepinephrine concentrations rose during exercise. During exercise, rates of endogenous glucose production rose rapidly to baseline levels despite high circulating insulin and glucose concentrations. Interestingly, plasma insulin concentrations increased during exercise despite no changes in insulin pump infusion rates, implying increased mobilization of insulin from subcutaneous depots. Glucagon concentrations rose before and during exercise. Therapeutic approaches for T1D management during exercise will need to account for its effects on glucose turnover, insulin mobilization, glucagon, and sympathetic response and possibly other blood-borne feedback and afferent reflex mechanisms to improve both hypoglycemia and hyperglycemia.
Collapse
Affiliation(s)
- Ashwini Mallad
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Ling Hinshaw
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Michele Schiavon
- Department of Information Engineering, University of Padua, Padua, Italy; and
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy; and
| | - Vikash Dadlani
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Rita Basu
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Ravi Lingineni
- Department of Health Sciences Research, Mayo College of Medicine, Rochester, Minnesota
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy; and
| | - Matthew L Johnson
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Rickey Carter
- Department of Health Sciences Research, Mayo College of Medicine, Rochester, Minnesota
| | - Yogish C Kudva
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota
| | - Ananda Basu
- Endocrine Research Unit, Division of Endocrinology, Mayo College of Medicine, Rochester, Minnesota;
| |
Collapse
|