1
|
Koh YC, Liu CP, Leung SY, Lin WS, Ho PY, Ho CT, Pan MH. Nobiletin Enhances Skeletal Muscle Mass and Modulates Bile Acid Composition in Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9076-9087. [PMID: 40193085 PMCID: PMC12007094 DOI: 10.1021/acs.jafc.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Obesity and its associated metabolic disorders─including muscle atrophy─pose significant health challenges, particularly with the increasing prevalence of high-fat diets. This study investigates the effects of nobiletin, a citrus flavonoid, on high-fat-diet-induced obesity-related muscle atrophy and its regulatory role in bile acid metabolism, aiming to determine whether nobiletin supplementation can enhance muscle mass and improve metabolic health in a mouse model. Our findings revealed that nobiletin significantly upregulated CYP7A1 expression in the liver, promoting bile acid synthesis and modulating bile acid composition in the ileum and feces, potentially through microbiota-mediated mechanisms. Furthermore, nobiletin supplementation suppressed muscle atrophy-related proteins, including p-4EBP1, TRIM63, and FBXO32, while promoting the phosphorylation of mTOR/AKT/p70S6K and FOXO3a in skeletal muscle. The FGF15/FGFR4/ERK signaling pathway was notably activated in the skeletal muscle tissues of nobiletin-supplemented mice, suggesting a protective effect against muscle atrophy despite the pathway's inhibition in the liver to promote bile acid synthesis. These results indicate that nobiletin not only mitigates muscle atrophy in the context of obesity but also enhances glucose homeostasis, likely through improved skeletal muscle function. Overall, our study highlights the potential of nobiletin as a therapeutic agent for preventing obesity-related complications, regulating bile acid metabolism, and promoting skeletal muscle health.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chien-Ping Liu
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Siu-Yi Leung
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Food Science, National Quemoy University, Quemoy 89250, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung City 40402, Taiwan
| |
Collapse
|
2
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Hellen DJ, Ungerleider J, Tevonian E, Sphabmixay P, Roy P, Lewis C, Jeppesen J, Demozay D, Griffith LG. A Microphysiological Model of Progressive Human Hepatic Insulin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631261. [PMID: 39829839 PMCID: PMC11741310 DOI: 10.1101/2025.01.08.631261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background & Aims Hepatic insulin resistance is a fundamental phenomenon observed in both Type 2 diabetes (T2D) and metabolic (dysfunction) associated fatty liver disease (MAFLD). The relative contributions of nutrients, hyperinsulinemia, hormones, inflammation, and other cues are difficult to parse in vivo as they are convoluted by interplay between the local and systemic events. Here, we used a well-established human liver microphysiological system (MPS) to establish a physiologically-relevant insulin-responsive metabolic baseline and probe how primary human hepatocytes respond to controlled perturbations in insulin, glucose, and free fatty acids (FFAs). Methods Replicate liver MPS were maintained in media with either 200 pM (normal) or 800 pM (T2D) insulin for up to 3 weeks. Conditions of standard glucose (5.5 mM), hyperglycemia (11 mM glucose), normal (20μM) and elevated FFA (100 μM), alone and in combination were used at each insulin concentration, either continuously or reversing back to standard media after 2 weeks of simulated T2D conditions. Hepatic glucose production, activation of signaling pathways, insulin clearance, transcriptome analysis, and intracellular lipid and bile acid accumulation were assessed. Results Hyperinsulinemia alone induces insulin resistance after one week of exposure, while hyperglycemia and increased FFAs significantly exacerbate this phenotype. Hyperinsulinemia, along with elevated glucose and FFAs, transcriptionally predisposes hepatocytes to insulin resistance through altered metabolic and immune signaling pathways. The phenotypes observed in hyperinsulinemia and nutrient overload are partially reversible upon return to normophysiologic conditions. Conclusions Our enhanced in vitro model, replicating multiple aspects of the insulin-resistant condition, offers improved insights into disease mechanisms with relevance to human physiology.
Collapse
Affiliation(s)
- Dominick J. Hellen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| | - Jessica Ungerleider
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| | - Erin Tevonian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| | - Pierre Sphabmixay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| | - Priyatanu Roy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| | - Caroline Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02139 US
| | - Jacob Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02139 US
- Liver Disease, Novo Nordisk A/S, Måløv, Denmark
| | | | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 US
| |
Collapse
|
4
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Liu Y, Tu J, Shi L, Fang Z, Fan M, Zhang J, Ding L, Chen Y, Wang Y, Zhang E, Xu S, Sharma N, Gillece JD, Reining LJ, Jin L, Huang W. CYP8B1 downregulation mediates the metabolic effects of vertical sleeve gastrectomy in mice. Hepatology 2024; 79:1005-1018. [PMID: 37820064 PMCID: PMC11006827 DOI: 10.1097/hep.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Research Center of Lipid and Vegetable Protein, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianying Zhang
- Biostatistics and Mathematical Oncology Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yiqiang Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nisha Sharma
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - John D. Gillece
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Lauren J. Reining
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Geng T, Lu Q, Jiang L, Guo K, Yang K, Liao YF, He M, Liu G, Tang H, Pan A. Circulating concentrations of bile acids and prevalent chronic kidney disease among newly diagnosed type 2 diabetes: a cross-sectional study. Nutr J 2024; 23:28. [PMID: 38429722 PMCID: PMC10908139 DOI: 10.1186/s12937-024-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The relationship between circulating bile acids (BAs) and kidney function among patients with type 2 diabetes is unclear. We aimed to investigate the associations of circulating concentrations of BAs, particularly individual BA subtypes, with chronic kidney disease (CKD) in patients of newly diagnosed type 2 diabetes. METHODS In this cross-sectional study, we included 1234 newly diagnosed type 2 diabetes who participated in an ongoing prospective study, the Dongfeng-Tongji cohort. Circulating primary and secondary unconjugated BAs and their taurine- or glycine-conjugates were measured using ultraperformance liquid chromatography-tandem mass spectrometry. CKD was defined as eGFR < 60 ml/min per 1.73 m2. Logistic regression model was used to compute odds ratio (OR) and 95% confidence interval (CI). RESULTS After adjusting for multiple testing, higher levels of total primary BAs (OR per standard deviation [SD] increment: 0.78; 95% CI: 0.65-0.92), cholate (OR per SD: 0.78; 95% CI: 0.66-0.92), chenodeoxycholate (OR per SD: 0.81; 95% CI: 0.69-0.96), glycocholate (OR per SD: 0.81; 95% CI: 0.68-0.96), and glycochenodeoxycholate (OR per SD: 0.82; 95% CI: 0.69-0.97) were associated with a lower likelihood of having CKD in patients with newly diagnosed type 2 diabetes. No significant relationships between secondary BAs and odds of CKD were observed. CONCLUSIONS Our findings showed that higher concentrations of circulating unconjugated primary BAs and their glycine-conjugates, but not taurine-conjugates or secondary BAs, were associated with lower odds of having CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kunquan Guo
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
7
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
8
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
9
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
10
|
Yen NTH, Anh NK, Jayanti RP, Phat NK, Vu DH, Ghim JL, Ahn S, Shin JG, Oh JY, Phuoc Long N, Kim DH. Multimodal plasma metabolomics and lipidomics in elucidating metabolic perturbations in tuberculosis patients with concurrent type 2 diabetes. Biochimie 2023:S0300-9084(23)00086-X. [PMID: 37062470 DOI: 10.1016/j.biochi.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Type 2 diabetes mellitus (DM) poses a major burden for the treatment and control of tuberculosis (TB). Characterization of the underlying metabolic perturbations in DM patients with TB infection would yield insights into the pathophysiology of TB-DM, thus potentially leading to improvements in TB treatment. In this study, a multimodal metabolomics and lipidomics workflow was applied to investigate plasma metabolic profiles of patients with TB and TB-DM. Significantly different biological processes and biomarkers in TB-DM vs. TB were identified using a data-driven, knowledge-based framework. Changes in metabolic and signaling pathways related to carbohydrate and amino acid metabolism were mainly captured by amide HILIC column metabolomics analysis, while perturbations in lipid metabolism were identified by the C18 metabolomics and lipidomics analysis. Compared to TB, TB-DM exhibited elevated levels of bile acids and molecules related to carbohydrate metabolism, as well as the depletion of glutamine, retinol, lysophosphatidylcholine, and phosphatidylcholine. Moreover, arachidonic acid metabolism was determined as a potential important factor in the interaction between TB and DM pathophysiology. In a correlation network of the significantly altered molecules, among the central nodes, chenodeoxycholic acid was robustly associated with TB and DM. Fatty acid (22:4) was a component of all significant modules. In conclusion, the integration of multimodal metabolomics and lipidomics provides a thorough picture of the metabolic changes associated with TB-DM. The results obtained from this comprehensive profiling of TB patients with DM advance the current understanding of DM comorbidity in TB infection and contribute to the development of more effective treatment.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Dinh Hoa Vu
- The National Centre of Drug Information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Jong-Lyul Ghim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
11
|
Qi L, Chen Y. Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. J Clin Endocrinol Metab 2023; 108:251-270. [PMID: 36374935 DOI: 10.1210/clinem/dgac659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
CONTEXT Bile acids (BAs) are pivotal signaling molecules that regulate energy metabolism and inflammation. Recent epidemiological studies have reported specific alterations in circulating BA profiles in certain disease states, including obesity, type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and Alzheimer disease (AD). In the past decade, breakthroughs have been made regarding the translation of BA profiling into clinical use for disease prediction. In this review, we summarize and synthesize recent data on variation in circulating BA profiles in patients with various diseases to evaluate the value of these biomarkers in human plasma for early diagnosis. EVIDENCE ACQUISITION This review is based on a collection of primary and review literature gathered from a PubMed search for BAs, obesity, T2DM, insulin resistance (IR), NAFLD, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), colon cancer, and AD, among other keywords. EVIDENCE SYNTHESIS Individuals with obesity, T2DM, HCC, CCA, or AD showed specific alterations in circulating BA profiles. These alterations may have existed long before the initial diagnosis of these diseases. The intricate relationship between obesity, IR, and NAFLD complicates the establishment of clear and independent associations between BA profiles and nonalcoholic steatohepatitis. Alterations in the levels of total BAs and several BA species were seen across the entire spectrum of NAFLD, demonstrating significant increases with the worsening of histological features. CONCLUSIONS Aberrant circulating BA profiles are an early event in the onset and progression of obesity, T2DM, HCC, and AD. The pleiotropic effects of BAs explain these broad connections. Circulating BA profiles could provide a basis for the development of biomarkers for the diagnosis and prevention of a wide range of diseases.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
12
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Rafaqat S, Sattar A, Khalid A, Rafaqat S. Role of liver parameters in diabetes mellitus - a narrative review. Endocr Regul 2023; 57:200-220. [PMID: 37715985 DOI: 10.2478/enr-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Diabetes mellitus is characterized by hyperglycemia and abnormalities in insulin secretion and function. This review article focuses on various liver parameters, including albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), alpha fetoprotein (AFP), alpha 1 antitrypsin (AAT), ammonia, bilirubin, bile acid, gamma-glutamyl transferase (GGT), immunoglobulin, lactate dehydrogenase (LDH), and total protein. These parameters play significant roles in the development of different types of diabetes such as type 1 diabetes (T1DM), type 2 diabetes (T2DM) and gestational diabetes (GDM). The article highlights that low albumin levels may indicate inflammation, while increased ALT and AST levels are associated with liver inflammation or injury, particularly in non-alcoholic fatty liver disease (NAFLD). Elevated ALP levels can be influenced by liver inflammation, biliary dysfunction, or bone metabolism changes. High bilirubin levels are independently linked to albuminuria in T1DM and an increased risk of T2DM. Elevated GGT levels are proposed as markers of oxidative stress and liver dysfunction in T2DM. In GDM, decreased serum AFP levels may indicate impaired embryo growth. Decreased AFP levels in T2DM can hinder the detection of hepatocellular carcinoma. Hyperammonemia can cause encephalopathy in diabetic ketoacidosis, and children with T1DM and attention deficit hyperactivity disorder often exhibit higher ammonia levels. T2DM disrupts the regulation of nitrogen-related metabolites, leading to increased blood ammonia levels. Bile acids affect glucose regulation by activating receptors on cell surfaces and nuclei, and changes in bile acid metabolism are observed in T2DM. Increased LDH activity reflects metabolic disturbances in glucose utilization and lactate production, contributing to diabetic complications. Poor glycemic management may be associated with elevated levels of IgA and IgG serum antibodies, and increased immunoglobulin levels are also associated with T2DM.
Collapse
Affiliation(s)
- Sana Rafaqat
- 1Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aqsa Sattar
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Amber Khalid
- 3Department of Zoology, University of Narowal, Punjab, Pakistan
| | - Saira Rafaqat
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
14
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
15
|
Heianza Y, Wang X, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in circulating bile acid subtypes in response to weight-loss diets are associated with improvements in glycemic status and insulin resistance: The POUNDS Lost trial. Metabolism 2022; 136:155312. [PMID: 36122763 DOI: 10.1016/j.metabol.2022.155312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Various primary and secondary bile acids (BAs) may play pivotal roles in glucose/insulin metabolism. We investigated whether changes in specific BA subtypes were associated with long-term changes in glucose and insulin sensitivity. METHODS This study included 515 adults with overweight or obesity who participated in a 2-year intervention study of weight-loss diets with different macronutrient intakes. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 months after the interventions. We analyzed associations of changes in BA subtypes with two-year changes in fasting glucose, insulin, and insulin resistance (HOMA-IR). RESULTS Greater decreases in primary and secondary BA subtypes induced by the interventions were significantly associated with greater reductions of fasting insulin and HOMA-IR at 6 months, showing various effects across the BA subtypes. The reductions of specific BA subtypes (chenodeoxycholate [CDCA], taurocholate [TCA], taurochenodeoxycholate [TCDCA], and taurodeoxycholate [TDCA]) were significantly related to improved glucose levels at 6 months. The initial (6-month) decreases in primary and secondary BA subtypes (glycochenodeoxycholate [GCDCA], TCDCA, and glycoursodeoxycholate [GUDCA]) were also significantly associated with long-term improvements in glucose and insulin metabolism over 2 years. We found significant interactions between dietary fat intake and changes in the BA subtypes for changes in glucose metabolism (Pinteraction < 0.05). CONCLUSIONS Weight-loss diet-induced changes in distinct subtypes of circulating BAs were associated with improved glucose metabolism and insulin sensitivity in adults with overweight or obesity. Dietary fat intake may modify the associations of changes in BA metabolism with glucose metabolism.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
16
|
Zhang Y, Cheng Y, Liu J, Zuo J, Yan L, Thring RW, Ba X, Qi D, Wu M, Gao Y, Tong H. Tauroursodeoxycholic acid functions as a critical effector mediating insulin sensitization of metformin in obese mice. Redox Biol 2022; 57:102481. [PMID: 36148770 PMCID: PMC9493383 DOI: 10.1016/j.redox.2022.102481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Metformin is widely used to surmount insulin resistance (IR) and type 2 diabetes. Accumulating evidence suggests that metformin may improve IR through regulating gut microbiota and bile acids. However, the underlying mechanisms remain unclear. Our metabolomic analysis showed that metformin significantly increased the accumulation of tauroursodeoxycholic acid (TUDCA) in intestine and liver from high-fat diet (HFD)-induced IR mice. TUDCA also alleviated IR, and reduced oxidative stress and intestinal inflammation in ob/ob mice. TUDCA blocked KEAP1 to bind with Nrf2, resulting in Nrf2 translocation into nuclear and initiating the transcription of antioxidant genes, which eventually reduced intracellular ROS accumulation and improved insulin signaling. Analysis of gut microbiota further revealed that metformin reduced the relative abundance of Bifidobacterium, which produces bile salt hydrolase (BSH). The reduction in BSH was probably crucial for the accumulation of TUDCA. Metformin also increased the proportion of Akkermanisia muciniphlia in gut microbiota of ob/ob mice via TUDCA. These beneficial effects of metformin in remodeling gut microbiota, reducing oxidative stress and improving insulin sensitivity were partly due to the accumulation of TUDCA, suggesting that TUDCA may be a potential therapy for metabolic syndrome.
Collapse
Affiliation(s)
- Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China; Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yang Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ronald W Thring
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Dake Qi
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| |
Collapse
|
17
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
18
|
Cook JR, Kohan AB, Haeusler RA. An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. J Lipid Res 2022; 63:100278. [PMID: 36100090 PMCID: PMC9593242 DOI: 10.1016/j.jlr.2022.100278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.
Collapse
Affiliation(s)
- Joshua R. Cook
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Alison B. Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Pathology and Cell Biology; Columbia University College of Physicians and Surgeons, New York, NY, USA,For correspondence: Rebecca A. Haeusler
| |
Collapse
|
19
|
McCullough D, Harrison T, Boddy LM, Enright KJ, Amirabdollahian F, Schmidt MA, Doenges K, Quinn K, Reisdorph N, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial. Nutrients 2022; 14:3691. [PMID: 36145067 PMCID: PMC9505524 DOI: 10.3390/nu14183691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
High carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation.
Collapse
Affiliation(s)
- Deaglan McCullough
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Tanja Harrison
- Department of Clinical Sciences and Nutrition, University of Chester, Chester CH1 4BJ, UK
| | - Lynne M. Boddy
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Kevin J. Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Michael A. Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Boulder, CO 80302, USA
- Sovaris Aerospace, Boulder, CO 80302, USA
| | - Katrina Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Mohsen Mazidi
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Twin Research & Genetic Epidemiology, South Wing St Thomas’, King’s College London, London SE1 7EH, UK
| | - Katie E. Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Claire E. Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ian G. Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
20
|
Chew NWS, Ng CH, Truong E, Noureddin M, Kowdley KV. Nonalcoholic Steatohepatitis Drug Development Pipeline: An Update. Semin Liver Dis 2022; 42:379-400. [PMID: 35709720 DOI: 10.1055/a-1877-9656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a burgeoning global health crisis that mirrors the obesity pandemic. This global health crisis has stimulated active research to develop novel NASH pharmacotherapies targeting dysregulated inflammatory, cellular stress, and fibrogenetic processes that include (1) metabolic pathways to improve insulin sensitivity, de novo lipogenesis, and mitochondrial utilization of fatty acids; (2) cellular injury or inflammatory targets that reduce inflammatory cell recruitment and signaling; (3) liver-gut axis targets that influence bile acid enterohepatic circulation and signaling; and (4) antifibrotic targets. In this review, we summarize several of the therapeutic agents that have been studied in phase 2 and 3 randomized trials. In addition to reviewing novel therapeutic drugs targeting nuclear receptor pathways, liver chemokine receptors, liver lipid metabolism, lipotoxicity or cell death, and glucagon-like peptide-1 receptors, we also discuss the rationale behind the use of combination therapy and the lessons learned from unsuccessful or negative clinical trials.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Fatty Liver Program, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, Washington
| |
Collapse
|
21
|
Forlano R, Sivakumar M, Mullish BH, Manousou P. Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158307. [PMID: 35955434 PMCID: PMC9368436 DOI: 10.3390/ijms23158307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease, affecting one-third of the population worldwide. Despite many medications being in the pipeline to treat the condition, there is still no pharmaceutical agent licensed to treat the disease. As intestinal bacteria play a crucial role in the pathogenesis and progression of liver damage in patients with NAFLD, it has been suggested that manipulating the microbiome may represent a therapeutical option. In this review, we summarise the latest evidence supporting the manipulation of the intestinal microbiome as a potential therapy for treating liver disease in patients with NAFLD.
Collapse
Affiliation(s)
- Roberta Forlano
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Mathuri Sivakumar
- Faculty of Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Pinelopi Manousou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
- Correspondence:
| |
Collapse
|
22
|
Meyer RK, Bime MA, Duca FA. Small intestinal metabolomics analysis reveals differentially regulated metabolite profiles in obese rats and with prebiotic supplementation. Metabolomics 2022; 18:60. [PMID: 35871176 PMCID: PMC10234511 DOI: 10.1007/s11306-022-01920-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Obesity occurs partly due to consumption of a high-fat, high-sugar and low fiber diet and is associated with an altered gut microbiome. Prebiotic supplementation can reverse obesity and beneficially alter the gut microbiome, evidenced by previous studies in rodents. However, the role of the small intestinal metabolome in obese and prebiotic supplemented rodents has never been investigated. OBJECTIVES To investigate and compare the small intestinal metabolome of healthy and obese rats, as well as obese rats supplemented with the prebiotic oligofructose (OFS). METHODS Untargeted metabolomics was performed on small intestinal contents of healthy chow-fed, high fat diet-induced obese, and obese rats supplemented with oligofructose using UPLC-MS/MS. Quantification of enterohepatic bile acids was performed with UPLC-MS to determine specific effects of obesity and fiber supplementation on the bile acid pool composition. RESULTS The small intestinal metabolome of obese rats was distinct from healthy rats. OFS supplementation did not significantly alter the small intestinal metabolome but did alter levels of several metabolites compared to obese rats, including bile acid metabolites, amino acid metabolites, and metabolites related to the gut microbiota. Further, obese rats had lower total bile acids and increased taurine-conjugated bile acid species in enterohepatic circulation; this effect was reversed with OFS supplementation in high fat-feeding. CONCLUSION Obesity is associated with a distinct small intestinal metabolome, and OFS supplementation reverses some metabolite levels that were altered in obese rats. Future research into the effects of specific metabolites identified in this study will provide deeper insight into the mechanism of fiber supplementation on improved body weight.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, ACBS Building, 1117 E Lowell Street, Tucson, AZ, 85711, USA
| | - Megan A Bime
- KEYS Program, BIO5 Institute, University of Arizona, Tucson, USA
| | - Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, USA.
- Department of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, USA.
| |
Collapse
|
23
|
Lian P, Zhao X, Song H, Tanumiharjo S, Chen J, Wang T, Chen S, Lu L. Metabolic characterization of human intraocular fluid in patients with pathological myopia. Exp Eye Res 2022; 222:109184. [PMID: 35820467 DOI: 10.1016/j.exer.2022.109184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Pathological myopia (PM) and its associated complications can lead to permanent vision loss. However, the cellular mechanisms underlying PM development remain unclear. To identify the metabolic alterations that may contribute to the pathophysiology of PM, we performed non-targeted metabolomics analysis using ultra-high-performance liquid chromatography with tandem mass spectrometry in age- and sex-matched patients with PM (n = 30) and individuals without myopia as controls (n = 30). Targeted metabolomics and insulin microarray were used to validate the results. We identified 508 metabolites in the aqueous humour (AH) and 601 in the vitreous humour (VH). Statistical evaluation revealed that 104 metabolites in AH and 114 metabolites in VH were significantly different between the two groups (variable important for the projection >1, fold change >1.5, or < 0.667, and P < 0.05). The four metabolic pathways enriched in both AH and VH identified to be associated with PM were: bile secretion, insulin secretion, thyroid hormone synthesis, and cGMP-PKG signaling pathway. The concentration of 10 amino acids was significantly higher in the PM than in the controls. Insulin microarray analysis showed that insulin, insulin-like growth factor 2 (IGF-2), IGF-2R, insulin-like growth factor binding protein 1 (IGFBP-1), IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-6 levels were significantly higher in PM patients compared to that in the controls. Thus, this study identified potential metabolite biomarkers for PM and provided novel insights into the mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Ping Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Huiying Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Silvia Tanumiharjo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Tong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
25
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
26
|
Kårhus ML, Sonne DP, Thomasen M, Ellegaard AM, Holst JJ, Rehfeld JF, Chávez-Talavera O, Tailleux A, Staels B, Nielsen DS, Krych L, Dragsted LO, Vilsbøll T, Brønden A, Knop FK. Enterohepatic, Gluco-metabolic, and Gut Microbial Characterization of Individuals With Bile Acid Malabsorption. GASTRO HEP ADVANCES 2022; 1:299-312. [PMID: 39131668 PMCID: PMC11307667 DOI: 10.1016/j.gastha.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Bile acid malabsorption (BAM) is a debilitating disease characterized by loose stools and high stool frequency. The pathophysiology of BAM is not well-understood. We investigated postprandial enterohepatic and gluco-metabolic physiology, as well as gut microbiome composition and fecal bile acid content in patients with BAM. Methods Twelve participants with selenium-75 homocholic acid taurine test-verified BAM and 12 healthy controls, individually matched on sex, age, and body mass index, were included. Each participant underwent 2 mixed meal tests (with and without administration of the bile acid sequestrant colesevelam) with blood sampling and evaluation of gallbladder motility; bile acid content and microbiota composition were evaluated in fecal specimens. Results Patients with BAM were characterized by increased bile acid synthesis as assessed by circulating 7-alpha-hydroxy-4-cholesten-3-one, fecal bile acid content, and postprandial concentrations of glucose, insulin, C-peptide, and glucagon. The McAuley index of insulin sensitivity was lower in patients with BAM than that in healthy controls. In patients with BAM, colesevelam co-administered with the meal reduced postprandial concentrations of bile acids and fibroblast growth factor 19 and increased 7-alpha-hydroxy-4-cholesten-3-one concentrations but did not affect postprandial glucagon-like peptide 1 responses or other gluco-metabolic parameters. Patients with BAM were characterized by a gut microbiome with low relative abundance of bifidobacteria and high relative abundance of Blautia, Streptococcus, Ruminococcus gnavus, and Akkermansia muciniphila. Conclusion Patients with BAM are characterized by an overproduction of bile acids, greater fecal bile acid content, and a gluco-metabolic profile indicative of a dysmetabolic prediabetic-like state, with changes in their gut microbiome composition potentially linking their enterohepatic pathophysiology and their dysmetabolic phenotype. ClinicalTrials.gov number NCT03009916.
Collapse
Affiliation(s)
- Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David P. Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Thomasen
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Oscar Chávez-Talavera
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Anne Tailleux
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Identification of the Metabolomics Signature of Human Follicular Fluid from PCOS Women with Insulin Resistance. DISEASE MARKERS 2022; 2022:6877541. [PMID: 35465261 PMCID: PMC9019454 DOI: 10.1155/2022/6877541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
Abstract
Context. Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease, and approximately 60% of patients with PCOS have different degrees of insulin resistance (IR). The regulatory role of metabolic networks in human follicular fluid (FF) related to IR in PCOS remains unclear. Aims. To explore the effect of IR on the metabolism of PCOS by analyzing the changes in FF metabolites in PCOS patients who are undergoing assisted reproductive technology based on the metabonomic platform of ultraperformance gas chromatography coupled to mass spectrometry (GC/MS). Method. Eight PCOS patients with IR (PCOS-IR) and 8 PCOS patients without IR (PCOS-NIR) were enrolled. All patients received controlled ovarian stimulation by using the gonadotropin-releasing hormone (GnRH) antagonist protocol, and the FF of a single dominant follicle was collected on the day of oocyte retrieval. The metabolite profiles of the FF were determined by GC/MS. Key Results. A total of 20 differentially expressed metabolites in FF were identified. Compared with levels in the PCOS-NIR group, stearic acid, palmitic acid, pentadecanoic acid, stigmasterol, citric acid, isocitric acid, thymine, and pyruvic acid in FF were significantly increased in the PCOS-IR group. Lithocholic acid and sinapinic acid in FF decreased significantly. The affected metabolic pathways with potential regulatory roles were identified by KEGG annotation. Conclusion. Compared with the PCOS-NIR group, the PCOS-IR group showed more significant metabolic abnormalities. Implications. These results will help us to understand the pathogenesis of PCOS combined with IR and will provide new clues for studying metabolic disorders associated with PCOS, e.g., IR.
Collapse
|
28
|
Gallego-Durán R, Albillos A, Ampuero J, Arechederra M, Bañares R, Blas-García A, Berná G, Caparrós E, Delgado TC, Falcón-Pérez JM, Francés R, Fernández-Barrena MG, Graupera I, Iruzubieta P, Nevzorova YA, Nogueiras R, Macías RIR, Marín F, Sabio G, Soriano G, Vaquero J, Cubero FJ, Gracia-Sancho J. Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:724-734. [PMID: 35248669 DOI: 10.1016/j.gastrohep.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
29
|
Sen P, Qadri S, Luukkonen PK, Ragnarsdottir O, McGlinchey A, Jäntti S, Juuti A, Arola J, Schlezinger JJ, Webster TF, Orešič M, Yki-Järvinen H, Hyötyläinen T. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J Hepatol 2022; 76:283-293. [PMID: 34627976 DOI: 10.1016/j.jhep.2021.09.039] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Oddny Ragnarsdottir
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Sirkku Jäntti
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
30
|
Heianza Y, Zhou T, He H, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver Int 2022; 42:363-373. [PMID: 34748263 DOI: 10.1111/liv.15098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Primary bile acids (BAs) are synthesized in the liver and secondary BAs result from intestinal microbial activity. Different subtypes of BAs may be involved in regulating adiposity and energy homeostasis. We examined how changes in circulating BA subtypes induced by weight-loss diets were associated with improvements in adiposity, regional fat deposition and energy metabolism among overweight and obese adults. METHODS The study included 551 subjects who participated in a 2-year weight-loss diet intervention trial. Circulating 14 BA subtypes (primary and secondary unconjugated BAs and their taurine-/glycine-conjugates) were measured at baseline and 6 months. Associations of changes in BAs with changes in weight, waist circumference, resting energy expenditure (REE), body fat composition and fat distribution were evaluated. RESULTS Greater decreases in primary BAs (cholate and chenodeoxycholate) and secondary BAs (deoxycholate and lithocholate) and their conjugates (except for glycolithocholate) were associated with more decreases in weight and waist circumference at 6 months (P-after-false-discovery-rate-correction [PFDR ] < .05). We found that changes in glycocholate and glycoursodeoxycholate were consistently associated with reductions of general and central adiposity, REE, whole-body fat and visceral adipose tissue (PFDR < .05). Further, the initial (6-month) changes in BA subtypes were differently predictive of successful weight loss over 2 years. CONCLUSIONS The decreases in primary and secondary BA subtypes after eating low-calorie weight-loss diets were significantly associated with improving adiposity, fat accumulation and energy metabolism, suggesting that specific BA subtypes would be predictive of long-term successful weight loss and individuals' response to the treatment of weight-loss diets.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Luo Y, Decato BE, Charles ED, Shevell DE, McNaney C, Shipkova P, Apfel A, Tirucherai GS, Sanyal AJ. Pegbelfermin selectively reduces secondary bile acid concentrations in patients with non-alcoholic steatohepatitis. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100392. [PMID: 34977519 PMCID: PMC8689226 DOI: 10.1016/j.jhepr.2021.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Background & Aims Increased serum bile acids (BAs) have been observed in patients with non-alcoholic steatohepatitis (NASH). Pegbelfermin (PGBF), a polyethylene glycol-modified (PEGylated) analogue of human fibroblast growth factor 21 (FGF21), significantly decreased hepatic steatosis and improved fibrosis biomarkers and metabolic parameters in patients with NASH in a phase IIa trial. This exploratory analysis evaluated the effect of PGBF on serum BAs and explored potential underlying mechanisms. Methods Serum BAs and 7α-hydroxy-4-cholesten-3-one (C4) were measured by HPLC-mass spectrometry (MS) using serum collected in studies of patients with NASH (NCT02413372) and in overweight/obese adults (NCT03198182) who received PGBF. Stool samples were collected in NCT03198182 to evaluate faecal BAs by liquid chromatography (LC)-MS and the faecal microbiome by metagenetic and metatranscriptomic analyses. Results Significant reductions from baseline in serum concentrations of the secondary BA, deoxycholic acid (DCA), and conjugates, were observed with PGBF, but not placebo, in patients with NASH; primary BA concentrations did not significantly change in any arm. Similar effects of PGBF on BAs were observed in overweight/obese adults, allowing for an evaluation of the effects of PGBF on the faecal microbiome and BAs. Faecal transcriptomic analysis showed that the relative abundance of the gene encoding choloylglycine hydrolase, a critical enzyme for secondary BA synthesis, was reduced after PGBF, but not placebo, administration. Furthermore, a trend of reduction in faecal secondary BAs was observed. Conclusions PGBF selectively reduced serum concentrations of DCA and conjugates in patients with NASH and in healthy overweight/obese adults. Reduced choloylglycine hydrolase gene expression and decreased faecal secondary BA levels suggest a potential role for PGBF in modulating secondary BA synthesis by gut microbiome. The clinical significance of DCA reduction post-PGBF treatment warrants further investigation. Lay summary Pegbelfermin (PGBF) is a hormone that is currently being studied in clinical trials for the treatment of non-alcoholic fatty liver disease. In this study, we show that PGBF treatment can reduce bile acids that have previously been shown to have toxic effects on the liver. Additional studies to understand how PGBF regulates bile acids may provide additional information about its potential use as a treatment for fatty liver. Bile acids are elevated in patients with non-alcoholic steatohepatitis. Pegbelfermin, a PEGylated human FGF21 analogue, is in phase II trials for non-alcoholic steatohepatitis. Pegbelfermin treatment was associated with secondary, but not primary, bile acid reductions. Pegbelfermin reduced expression of a gene responsible for secondary bile acid synthesis. Further study is needed to assess the clinical significance of these observations.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- ApoA1, apolipoprotein A1
- BA, bile acid
- BSH, bile salt hydrolase
- Bile salt hydrolase
- Biomarkers
- C4
- C4, 7α-hydroxy-4-cholesten-3-one
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CYP7A1, cytochrome P450 7A1
- DCA, deoxycholic acid
- Deoxycholic acid
- FGF21
- FGF21, fibroblast growth factor 21
- FXR, farnesoid X receptor
- GCA, glyco-cholic acid
- GCDCA, glyco-chenodeoxycholic acid
- GDCA, glyco-deoxycholic acid
- GUDCA, glyco-ursodeoxycholic acid
- HFF, hepatic fat fraction
- HbA1c, glycated haemoglobin
- LC, liquid chromatography
- LCA, lithocholic acid
- MS, mass spectrometry
- Microbiome
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PEGylated, polyethylene glycol-conjugated
- PGBF, pegbelfermin
- PRO-C3, N-terminal type III collagen propeptide
- QD, once daily
- QW, once weekly
- T2DM, type 2 diabetes mellitus
- TCA, tauro-cholic acid
- TCDCA, tauro-chenodeoxycholic acid
- TDCA, tauro-deoxycholic acid
- UDCA, ursodeoxycholic acid
- baiCD, 7α-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductase
- baiH, 7β-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductase
- hdhA, 7-alpha-hydroxysteroid dehydrogenase
Collapse
Affiliation(s)
- Yi Luo
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | | | | | - Arun J Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Abstract
Cholestatic and non-alcoholic fatty liver disease (NAFLD) share several key pathophysiological mechanisms which can be targeted by novel therapeutic concepts that are currently developed for both areas. Nuclear receptors (NRs) are ligand-activated transcriptional regulators of key metabolic processes including hepatic lipid and glucose metabolism, energy expenditure and bile acid (BA) homoeostasis, as well as inflammation, fibrosis and cellular proliferation. Dysregulation of these processes contributes to the pathogenesis and progression of cholestatic as well as fatty liver disease, placing NRs at the forefront of novel therapeutic approaches. This includes BA and fatty acid activated NRs such as farnesoid-X receptor (FXR) and peroxisome proliferator-activated receptors, respectively, for which high affinity therapeutic ligands targeting specific or multiple isoforms have been developed. Moreover, novel liver-specific ligands for thyroid hormone receptor beta 1 complete the spectrum of currently available NR-targeted drugs. Apart from FXR ligands, BA signalling can be targeted by mimetics of FXR-activated fibroblast growth factor 19, modulation of their enterohepatic circulation through uptake inhibitors in hepatocytes and enterocytes, as well as novel BA derivatives undergoing cholehepatic shunting (instead of enterohepatic circulation). Other therapeutic approaches more directly target inflammation and/or fibrosis as critical events of disease progression. Combination strategies synergistically targeting metabolic disturbances, inflammation and fibrosis may be ultimately necessary for successful treatment of these complex and multifactorial disorders.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Daniela Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
34
|
Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab 2021; 3:1596-1607. [PMID: 34931080 DOI: 10.1038/s42255-021-00501-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged pandemically across the globe and particularly affects patients with obesity and type 2 diabetes. NAFLD is a complex systemic disease that is characterised by hepatic lipid accumulation, lipotoxicity, insulin resistance, gut dysbiosis and inflammation. In this review, we discuss how metabolic dysregulation, the gut microbiome, innate and adaptive immunity and their interplay contribute to NAFLD pathology. Lipotoxicity has been shown to instigate liver injury, inflammation and insulin resistance. Synchronous metabolic dysfunction, obesity and related nutritional perturbation may alter the gut microbiome, in turn fuelling hepatic and systemic inflammation by direct activation of innate and adaptive immune responses. We review evidence suggesting that, collectively, these unresolved exogenous and endogenous cues drive liver injury, culminating in liver fibrosis and advanced sequelae of this disorder such as liver cirrhosis and hepatocellular carcinoma. Understanding NAFLD as a complex interplay between metabolism, gut microbiota and the immune response will challenge the clinical perception of NAFLD and open new therapeutic avenues.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
35
|
Gillard J, Clerbaux LA, Nachit M, Sempoux C, Staels B, Bindels LB, Tailleux A, Leclercq IA. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100387. [PMID: 34825156 PMCID: PMC8604813 DOI: 10.1016/j.jhepr.2021.100387] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. Methods We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. Results Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. Conclusions BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. Lay summary This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.
Collapse
Key Words
- ASBT, apical sodium-dependent BA transporter
- BA, bile acid
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CYP27A1, sterol 27-hydroxylase
- CYP2A12, bile acid 7α-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP7B1, oxysterol 7α-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- DCA, deoxycholic acid
- FABP6, fatty acid binding protein 6
- FGF15, fibroblast growth factor 15
- FGFR4, fibroblast growth factor receptor 4
- FXR
- FXR, Farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HFD, high-fat diet
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- ND, normal diet
- OGTT, oral glucose tolerance test
- OST, organic solute transporter
- SHP, small heterodimer protein
- TGR5
- TGR5, Takeda G-protein coupled receptor 5
- TLCA, tauro-lithocholic acid
- TNFα, tumor necrosis factor α
- WDF, western and high-fructose diet
- WT, wild-type
- metabolic syndrome
- αMCA, α-muricholic acid
- βMCA, β-muricholic acid
- ωMCA, ω-muricholic acid
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
36
|
Radun R, Trauner M. Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Semin Liver Dis 2021; 41:461-475. [PMID: 34289507 PMCID: PMC8492195 DOI: 10.1055/s-0041-1731707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease, increasingly contributing to the burden of liver transplantation. In search for effective treatments, novel strategies addressing metabolic dysregulation, inflammation, and fibrosis are continuously emerging. Disturbed bile acid (BA) homeostasis and microcholestasis via hepatocellular retention of potentially toxic BAs may be an underappreciated factor in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) as its progressive variant. In addition to their detergent properties, BAs act as signaling molecules regulating cellular homeostasis through interaction with BA receptors such as the Farnesoid X receptor (FXR). Apart from being a key regulator of BA metabolism and enterohepatic circulation, FXR regulates metabolic homeostasis and has immune-modulatory effects, making it an attractive therapeutic target in NAFLD/NASH. In this review, the molecular basis and therapeutic potential of targeting FXR with a specific focus on restoring BA and metabolic homeostasis in NASH is summarized.
Collapse
Affiliation(s)
- Richard Radun
- Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| |
Collapse
|
37
|
Shen C, Pan Z, Wu S, Zheng M, Zhong C, Xin X, Lan S, Zhu Z, Liu M, Wu H, Huang Q, Zhang J, Liu Z, Si Y, Tu H, Deng Z, Yu Y, Liu H, Zhong Y, Guo J, Cai J, Xian S. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114340. [PMID: 34171397 DOI: 10.1016/j.jep.2021.114340] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cassia mimosoides Linn (CMD) is a traditional Chinese herb that clears liver heat and dampness. It has been widely administered in clinical practice to treat jaundice associated with damp-heat pathogen and obesity. Emodin (EMO) is a major bioactive constituent of CMD that has apparent therapeutic efficacy against obesity and fatty liver. Here, we investigated the protective effects and underlying mechanisms of EMO against high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). OBJECTIVE We aimed to investigate whether EMO activates farnesoid X receptor (FXR) signaling to alleviate HFD-induced NAFLD. MATERIALS AND METHODS In vivo assays included serum biochemical indices tests, histopathology, western blotting, and qRT-PCR to evaluate the effects of EMO on glucose and lipid metabolism disorders in wild type (WT) and FXR knockout mice maintained on an HFD. In vitro experiments included intracellular triglyceride (TG) level measurement and Oil Red O staining to assess the capacity of EMO to remove lipids induced by oleic acid and palmitic acid in WT and FXR knockout mouse primary hepatocytes (MPHs). We also detected mRNA expression of FXR signaling genes in MPHs. RESULTS After HFD administration, body weight and serum lipid and inflammation levels were dramatically increased in the WT mice. The animals also presented with impaired glucose tolerance, insulin resistance, and antioxidant capacity, liver tissue attenuation, and pathological injury. EMO remarkably reversed the foregoing changes in HFD-induced mice. EMO improved HFD-induced lipid accumulation, insulin resistance, inflammation, and oxidative stress in a dose-dependent manner in WT mice by inhibiting FXR expression. EMO also significantly repressed TG hyperaccumulation by upregulating FXR expression in MPHs. However, it did not improve lipid accumulation, insulin sensitivity, or glucose tolerance in HFD-fed FXR knockout mice. CONCLUSIONS The present study demonstrated that EMO alleviates HFD-induced NAFLD by activating FXR signaling which improves lipid accumulation, insulin resistance, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Chuangpeng Shen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang Uygur Autonomous Region, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuangcheng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shaoyang Lan
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingyin Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhou Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Si
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Tu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Deng
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Zhong
- Department of Acupuncture-rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, China.
| | - Jiewen Guo
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China.
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoxiang Xian
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Qi L, Tian Y, Chen Y. Circulating Bile Acid Profiles: A Need for Further Examination. J Clin Endocrinol Metab 2021; 106:3093-3112. [PMID: 34279029 DOI: 10.1210/clinem/dgab531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are increasingly recognized as metabolic and chronobiologic integrators that synchronize the systemic metabolic response to nutrient availability. Alterations in the concentration and/or composition of circulating BAs are associated with a number of metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), insulin resistance (IR), and metabolic associated fatty liver disease (MAFLD). This review summarizes recent evidence that links abnormal circulating BA profiles to multiple metabolic disorders, and discusses the possible mechanisms underlying the connections to determine the role of BA profiling as a novel biomarker for these abnormalities. EVIDENCE ACQUISITION The review is based on a collection of primary and review literature gathered from a PubMed search of BAs, T2DM, IR, and MAFLD, among other keywords. EVIDENCE SYNTHESIS Obese and IR subjects appear to have elevated fasting circulating BAs but lower postprandial increase when compared with controls. The possible underlying mechanisms are disruption in the synchronization between the feeding/fasting cycle and the properties of BA-regulated metabolic pathways. Whether BA alterations are associated per se with MAFLD remains inconclusive. However, increased fasting circulating BAs level was associated with higher risk of advanced fibrosis stage. Thus, for patients with MAFLD, dynamically monitoring the circulating BA profiles may be a promising tool for the stratification of MAFLD. CONCLUSIONS Alterations in the concentration, composition, and rhythm of circulating BAs are associated with adverse events in systemic metabolism. Subsequent investigations regarding these aspects of circulating BA kinetics may help predict future metabolic disorders and guide therapeutic interventions.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
39
|
Wang Z, Nagy RA, Groen H, Cantineau AEP, van Oers AM, van Dammen L, Wekker V, Roseboom TJ, Mol BWJ, Tietge UJF, Hoek A. Preconception insulin resistance and neonatal birth weight in women with obesity: role of bile acids. Reprod Biomed Online 2021; 43:931-939. [PMID: 34627684 DOI: 10.1016/j.rbmo.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Does maternal preconception insulin resistance affect neonatal birth weight among women with obesity? Is insulin resistance associated with circulating bile acids? Do bile acids influence the association between maternal preconception insulin resistance and neonatal birth weight? DESIGN An exploratory post-hoc analysis of the LIFEstyle randomized controlled trial comparing lifestyle intervention with conventional infertility treatment in women with a BMI of ≥29 kg/m2. Fasting blood samples were collected at randomization and after 3 and 6 months in 469 women. Insulin resistance was quantified using the homeostasis model assessment of insulin resistance (HOMA-IR). Bile acid sub-species were determined by liquid chromatography with tandem mass spectrometry. Singletons were included (n = 238). Birth weight Z-scores were adjusted for age, offspring gender and parity. Multilevel analysis and linear regressions were used. RESULTS A total of 913 pairs of simultaneous preconception HOMA-IR (median [Q25; Q75]: 2.96 [2.07; 4.16]) and total bile acid measurements (1.79 [1.10; 2.94]) µmol/l were taken. Preconception HOMA-IR was positively associated with total bile acids (adjusted B 0.15; 95% CI 0.09 to 0.22; P < 0.001) and all bile acid sub-species. At the last measurement before pregnancy, HOMA-IR (2.71 [1.91; 3.74]) was positively related to birth weight Z-score (mean ± SD 0.4 ± 1.1; adjusted B 0.08; 95% CI 0.01 to 0.14; P = 0.03). None of the preconception bile acids measured were associated with birth weight. CONCLUSION Maternal preconception insulin resistance is an important determinant of neonatal birth weight in women with obesity, whereas preconception bile acids are not.
Collapse
Affiliation(s)
- Zheng Wang
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Ruxandra A Nagy
- University of Groningen, University Medical Centre Groningen, Department of Clinical Genetics, Groningen, The Netherlands
| | - Henk Groen
- University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Astrid E P Cantineau
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Anne M van Oers
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Lotte van Dammen
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands; Iowa State University, Department of Human Development and Family Studies, Ames Iowa, USA
| | - Vincent Wekker
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Tessa J Roseboom
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands.
| | - Ben W J Mol
- Monash University, Department of Obstetrics and Gynecology, Clayton, Australia
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Annemieke Hoek
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | | |
Collapse
|
40
|
LaBarre JL, Hirschfeld E, Soni T, Kachman M, Wigginton J, Duren W, Fleischman JY, Karnovsky A, Burant CF, Lee JM. Comparing the Fasting and Random-Fed Metabolome Response to an Oral Glucose Tolerance Test in Children and Adolescents: Implications of Sex, Obesity, and Insulin Resistance. Nutrients 2021; 13:nu13103365. [PMID: 34684365 PMCID: PMC8538092 DOI: 10.3390/nu13103365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8–17 years, BMI percentile 5–85%) and overweight and obese (OVOB, n = 228, aged 8–17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.
Collapse
Affiliation(s)
- Jennifer L. LaBarre
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Weight and Wellness Center, Lebanon, NH 03766, USA
- Correspondence: (J.L.L.); (J.M.L.)
| | - Emily Hirschfeld
- Susan B Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - Janis Wigginton
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - William Duren
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Johanna Y. Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joyce M. Lee
- Susan B Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (J.L.L.); (J.M.L.)
| |
Collapse
|
41
|
The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol 2021; 18:599-612. [PMID: 33972770 DOI: 10.1038/s41575-021-00448-y] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions worldwide. NAFLD and type 2 diabetes mellitus (T2DM) are known to frequently coexist and act synergistically to increase the risk of adverse (hepatic and extra-hepatic) clinical outcomes. T2DM is also one of the strongest risk factors for the faster progression of NAFLD to nonalcoholic steatohepatitis, advanced fibrosis or cirrhosis. However, the link between NAFLD and T2DM is more complex than previously believed. Strong evidence indicates that NAFLD is associated with an approximate twofold higher risk of developing T2DM, irrespective of obesity and other common metabolic risk factors. This risk parallels the severity of NAFLD, such that patients with more advanced stages of liver fibrosis are at increased risk of incident T2DM. In addition, the improvement or resolution of NAFLD (on ultrasonography) is associated with a reduction of T2DM risk, adding weight to causality and suggesting that liver-focused treatments might reduce the risk of developing T2DM. This Review describes the evidence of an association and causal link between NAFLD and T2DM, discusses the putative pathophysiological mechanisms linking NAFLD to T2DM and summarizes the current pharmacological treatments for NAFLD or T2DM that might benefit or adversely affect the risk of T2DM or NAFLD progression.
Collapse
|
42
|
Wu T, Yang M, Xu H, Wang L, Wei H, Ji G. Serum Bile Acid Profiles Improve Clinical Prediction of Nonalcoholic Fatty Liver in T2DM patients. J Proteome Res 2021; 20:3814-3825. [PMID: 34043368 DOI: 10.1021/acs.jproteome.1c00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The present study aimed to assess the ability of serum bile acid profiles to predict the development of nonalcoholic fatty liver (NAFL) in type 2 diabetes mellitus (T2DM) patients. Methods: Using targeted ultraperformance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry (TQ/MS), we compared serum bile acid levels in T2DM patients with NAFL (n = 30) and age- and sex-matched T2DM patients without NAFL (n = 36) at the first time. Second, an independent cohort study of T2DM patients with NAFL (n = 17) and age- and sex-matched T2DM patients without NAFL (n = 20) was used to validate the results. The incremental benefits of serum biomarkers, clinical variables alone, or with biomarkers were then evaluated using receiver operating characteristic (ROC) curves and decision curve analysis. The area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to evaluate the biomarker predictive abilities. Results: The serum bile acid profiles in T2DM patients with NAFL were significantly different from T2DM patients without NAFL, as characterized by the significant elevation of LCA, TLCA, TUDCA, CDCA-24G, and TCDCA, which may be potential biomarkers for the identification of NAFL in T2DM patients. Based on the improvement in AUC, IDI, and NRI, the addition of 5 bile acids to a model with clinical variables statistically improved its predictive value. Similar results were found in the validation cohort. Conclusions: These results highlight that the detected biomarkers may contribute to the progression of NAFL in T2DM patients, and these biomarkers particularly in combination may help in the diagnosis of NAFL and allow earlier intervention in T2DM patients.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Ming Yang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Lei Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Huafeng Wei
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| |
Collapse
|
43
|
Abstract
Bile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome. Interfering with microbiome composition may be beneficial for cholestatic and metabolic liver diseases by modulating formation of secondary bile acids, as different bile acid species have different signaling functions. Bile acid receptors such as FXR, VDR, and TGR5 are expressed in a variety of cells involved in innate as well as adaptive immunity, and specific microbial bile acid metabolites positively modulate immune responses of the host. Identification of Cyp2c70 as the enzyme responsible for the generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. These novel mouse models will aid to accelerate translational research on the (patho)physiological roles of bile acids in human liver diseases .
Collapse
|
44
|
Abstract
The clinical phenotypes of nonalcoholic fatty liver disease (NAFLD) encompass from simple steatosis to nonalcoholic steatohepatitis (NASH) with varying degrees of fibrosis or cirrhosis. Liver biopsy has been the standard to diagnose NASH. However, there has been strong need for precise and accurate noninvasive tests because of invasiveness and sampling variability of biopsy. Metabolomics has drawn attention as a promising diagnostic methodology in the field of NAFLD, particularly to unravel metabolic alterations which plays relevant roles in the progression of NASH. There have been numerous metabolomics researches to find new biomarker of NASH in the last decade, fueled by the recent advances in the metabolomics methodology. This review briefly covers recent research advances on the lipidomics, amino acids and bile acid metabolomics regarding continuing attempts to discover relevant biomarkers for NASH.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
45
|
Li R, Andreu-Sánchez S, Kuipers F, Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 2021; 35:101493. [PMID: 33707081 DOI: 10.1016/j.beem.2021.101493] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dysbiosis has been implemented in the etiologies of obesity-related chronic diseases such as type 2 diabetes, NAFLD and cardiovascular diseases. Bile acids, a class of amphipathic steroids produced in the liver and extensively modified by the microbiome, are increasingly recognized as actors in onset and progression of these diseases. Indeed, human obesity is associated with altered bile acid metabolism. Bile acids facilitate intestinal fat absorption but also exert hormone-like functions through activation of nuclear and membrane-bound receptors and thereby modulate glucose, lipid and energy metabolism, intestinal integrity and immunity. Bile acid-signaling pathways have thus been identified as potential pharmacological targets for obesity-related diseases. Interfering with microbiome composition may also be considered, as liver- and microbiome-derived bile acid species have different signaling functions. This review summarizes recent developments in this rapidly expanding field of research and addresses potential clinical prospects of interference with bile acid signaling pathways in human diseases.
Collapse
Affiliation(s)
- Rumei Li
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sergio Andreu-Sánchez
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
46
|
Grzych G, Chávez-Talavera O, Descat A, Thuillier D, Verrijken A, Kouach M, Legry V, Verkindt H, Raverdy V, Legendre B, Caiazzo R, Van Gaal L, Goossens JF, Paumelle R, Francque S, Pattou F, Haas JT, Tailleux A, Staels B. NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Rep 2021; 3:100222. [PMID: 33615207 PMCID: PMC7878982 DOI: 10.1016/j.jhepr.2020.100222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & AIMS Plasma bile acids (BAs) have been extensively studied as pathophysiological actors in non-alcoholic steatohepatitis (NASH). However, results from clinical studies are often complicated by the association of NASH with type 2 diabetes (T2D), obesity, and insulin resistance (IR). Here, we sought to dissect the relationship between NASH, T2D, and plasma BA levels in a large patient cohort. METHODS Four groups of patients from the Biological Atlas of Severe Obesity (ABOS) cohort (Clinical Trials number NCT01129297) were included based on the presence or absence of histologically evaluated NASH with or without coincident T2D. Patients were matched for BMI, homeostatic model assessment 2 (HOMA2)-assessed IR, glycated haemoglobin, age, and gender. To study the effect of IR and BMI on the association of plasma BA and NASH, patients from the HEPADIP study were included. In both cohorts, fasting plasma BA concentrations were measured. RESULTS Plasma BA concentrations were higher in NASH compared with No-NASH patients both in T2D and NoT2D patients from the ABOS cohort. As we previously reported that plasma BA levels were unaltered in NASH patients of the HEPADIP cohort, we assessed the impact of BMI and IR on the association of NASH and BA on the combined BA datasets. Our results revealed that NASH-associated increases in plasma total cholic acid (CA) concentrations depend on the degree of HOMA2-assessed systemic IR, but not on β-cell function nor on BMI. CONCLUSIONS Plasma BA concentrations are elevated only in those NASH patients exhibiting pronounced IR. LAY SUMMARY Non-alcoholic steatohepatitis (NASH) is a progressive liver disease that frequently occurs in patients with obesity and type 2 diabetes. Reliable markers for the diagnosis of NASH are needed. Plasma bile acids have been proposed as NASH biomarkers. Herein, we found that plasma bile acids are only elevated in patients with NASH when significant insulin resistance is present, limiting their utility as NASH markers.
Collapse
Key Words
- ABOS, Biological Atlas of Severe Obesity
- ADA, American Diabetes Association
- BA, bile acids
- Bile acids
- C4, 7alpha-hydroxy-4-cholesten-3-one
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- DCA, deoxycholic acid
- Diabetes
- FPG, fasting plasma glycaemia
- FXR, farnesoid-X-receptor
- GCA, glycocholic acid
- GCDCA, glycochenodeoxycholic acid
- GDCA, glycodeoxycholic acid
- GHCA, glycohyocholic acid
- GHDCA, glycohyodeoxycholic acid
- GLCA, glycolithocholic acid
- GUDCA, glycoursodeoxycholic acid
- HCA, hyocholic acid
- HDCA, hyodeoxycholic acid
- HOMA2, homeostatic model assessment 2
- HbA1c, glycated haemoglobin
- IR, insulin resistance
- Insulin resistance
- LCA, lithocholic acid
- MAFLD, metabolic associated fatty liver disease
- NAFL, non-alcoholic fatty liver
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- OGTT, oral glucose tolerance test
- Obesity
- T2D, type 2 diabetes
- TCA, taurocholic acid
- TCDCA, taurochenodeoxycholic acid
- TDCA, taurodeoxycholic acid
- THCA, taurohyocholic acid
- THDCA, taurohyodeoxycholic acid
- TLCA, taurolithocholic acid
- TUDCA, tauroursodeoxycholic acid
- Translational study
- UDCA, ursodeoxycholic acid
Collapse
Affiliation(s)
- Guillaume Grzych
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Amandine Descat
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Dorothée Thuillier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Vanessa Legry
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Hélène Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
| | - Jean-Francois Goossens
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Réjane Paumelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| |
Collapse
|
47
|
Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021; 13:1104. [PMID: 33800566 PMCID: PMC8066182 DOI: 10.3390/nu13041104] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
| | - Weikun Huang
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- The ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Richard L. Young
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute, Adelaide 5005, Australia
| | - Karen L. Jones
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Michael Horowitz
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
48
|
Sokołowska E, Sadowska A, Sawicka D, Kotulska-Bąblińska I, Car H. A head-to-head comparison review of biological and toxicological studies of isomaltulose, d-tagatose, and trehalose on glycemic control. Crit Rev Food Sci Nutr 2021; 62:5679-5704. [PMID: 33715524 DOI: 10.1080/10408398.2021.1895057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is the most common metabolic disorder contributing to significant morbidity and mortality in humans. Different preventive and therapeutic agents, as well as various pharmacological strategies or non-pharmacological tools, improve the glycemic profile of diabetic patients. Isomaltulose, d-tagatose, and trehalose are naturally occurring, low glycemic sugars that are not synthesized by humans but widely used in food industries. Various studies have shown that these carbohydrates can regulate glucose metabolism and provide support in maintaining glucose homeostasis in patients with diabetes, but also can improve insulin response, subsequently leading to better control of hyperglycemia. In this review, we discussed the anti-hyperglycemic effects of isomaltulose, D-tagatose, and trehalose, comparing their properties with other known sweeteners, and highlighting their importance for the development of the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
49
|
Bishay RH, Tonks KT, George J, Samocha-Bonet D, Meyerowitz-Katz G, Chisholm DJ, James DE, Greenfield JR. Plasma Bile Acids More Closely Align With Insulin Resistance, Visceral and Hepatic Adiposity Than Total Adiposity. J Clin Endocrinol Metab 2021; 106:e1131-e1139. [PMID: 33347566 DOI: 10.1210/clinem/dgaa940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT The etiological mechanism of bile acid (BA) effects on insulin resistance and obesity is unknown. OBJECTIVE This work aimed to determine whether plasma BAs are elevated in human obesity and/or insulin resistance. METHODS This observational study was conducted at an academic research center. Seventy-one adult volunteers formed 4 groups: lean insulin-sensitive (body mass index [BMI] ≤ 25 kg/m2, Homeostatic Model Assessment of Insulin Resistance [HOMA-IR] < 2.0, n = 19), overweight/obese nondiabetic who were either insulin sensitive (Obsensitive, BMI > 25 kg/m2, HOMA-IR < 1.5, n = 11) or insulin resistant (Obresistant, BMI > 25 kg/m2, HOMA-IR > 3.0, n = 20), and type 2 diabetes (T2D, n = 21). Main outcome measures included insulin sensitivity by hyperinsulinemic-euglycemic clamp, body composition by dual energy x-ray absorptiometry, abdominal fat distribution, and liver density by computed tomography and plasma BA. RESULTS In the Obresistant group, glucose infusion rate/fat-free mass (GIR/FFM, an inverse measure of insulin resistance) was significantly lower, and visceral and liver fat higher, compared to lean and Obsensitive individuals, despite similar total adiposity in Obresistant and Obsensitive. Total BA concentrations were higher in Obresistant (2.62 ± 0.333 mmol/L, P = .03) and T2D (3.36 ± 0.582 mmol/L, P < .001) vs Obsensitive (1.16 ± 0.143 mmol/L), but were similar between Obsensitive and lean (2.31 ± 0.329 mmol/L) individuals. Total BAs were positively associated with waist circumference (R = 0.245, P = .041), visceral fat (R = 0.360, P = .002), and fibroblast growth factor 21 (R = 0.341, P = .004) and negatively associated with insulin sensitivity (R = -0.395, P = .001), abdominal subcutaneous fat (R = -0.352, P = .003), adiponectin (R = -0.375, P = .001), and liver fat (Hounsfield units, an inverse marker of liver fat, R = -0.245, P = .04). Conjugated BAs were additionally elevated in T2D individuals (P < .001). CONCLUSIONS BA concentrations correlated with abdominal, visceral, and liver fat in humans, though an etiological role in insulin resistance remains to be verified.
Collapse
Affiliation(s)
- Ramy H Bishay
- Department of Endocrinology & Diabetes, St Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia
- Metabolic & Weight Loss Program, Department of Endocrinology & Diabetes, Blacktown-Mt Druitt Hospital, Blacktown, Sydney, New South Wales, Australia
- Blacktown Clinical School, Western Sydney University, New South Wales, Australia
| | - Katherine T Tonks
- Department of Endocrinology & Diabetes, St Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, New South Wales, Australia
| | - Dorit Samocha-Bonet
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Gideon Meyerowitz-Katz
- Western Sydney Diabetes, Blacktown Hospital, Blacktown, Sydney, New South Wales, Australia
| | - Donald J Chisholm
- Department of Endocrinology & Diabetes, St Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - David E James
- The Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Jerry R Greenfield
- Department of Endocrinology & Diabetes, St Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| |
Collapse
|
50
|
Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol 2020; 152:105-117. [PMID: 33307092 DOI: 10.1016/j.yjmcc.2020.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome (GMB) has been increasingly recognized as a contributor to development and progression of heart failure (HF), immune-mediated subtypes of cardiomyopathy (myocarditis and anthracycline-induced cardiotoxicity), response to certain cardiovascular drugs, and HF-related comorbidities, such as chronic kidney disease, cardiorenal syndrome, insulin resistance, malnutrition, and cardiac cachexia. Gut microbiome is also responsible for the "gut hypothesis" of HF, which explains the adverse effects of gut barrier dysfunction and translocation of GMB on the progression of HF. Furthermore, accumulating evidence has suggested that gut microbial metabolites, including short chain fatty acids, trimethylamine N-oxide (TMAO), amino acid metabolites, and bile acids, are mechanistically linked to pathogenesis of HF, and could, therefore, serve as potential therapeutic targets for HF. Even though there are a variety of proposed therapeutic approaches, such as dietary modifications, prebiotics, probiotics, TMAO synthesis inhibitors, and fecal microbial transplant, targeting GMB in HF is still in its infancy and, indeed, requires further preclinical and clinical evidence. In this review, we aim to highlight the role gut microbiome plays in HF pathophysiology and its potential as a novel therapeutic target in HF.
Collapse
Affiliation(s)
- Petra Mamic
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|