1
|
Groeneweg S, van Geest FS, Martín M, Dias M, Frazer J, Medina-Gomez C, Sterenborg RBTM, Wang H, Dolcetta-Capuzzo A, de Rooij LJ, Teumer A, Abaci A, van den Akker ELT, Ambegaonkar GP, Armour CM, Bacos I, Bakhtiani P, Barca D, Bauer AJ, van den Berg SAA, van den Berge A, Bertini E, van Beynum IM, Brunetti-Pierri N, Brunner D, Cappa M, Cappuccio G, Castellotti B, Castiglioni C, Chatterjee K, Chesover A, Christian P, Coenen-van der Spek J, de Coo IFM, Coutant R, Craiu D, Crock P, DeGoede C, Demir K, Dewey C, Dica A, Dimitri P, Dremmen MHG, Dubey R, Enderli A, Fairchild J, Gallichan J, Garibaldi L, George B, Gevers EF, Greenup E, Hackenberg A, Halász Z, Heinrich B, Hurst AC, Huynh T, Isaza AR, Klosowska A, van der Knoop MM, Konrad D, Koolen DA, Krude H, Kulkarni A, Laemmle A, LaFranchi SH, Lawson-Yuen A, Lebl J, Leeuwenburgh S, Linder-Lucht M, López Martí A, Lorea CF, Lourenço CM, Lunsing RJ, Lyons G, Malikova JK, Mancilla EE, McCormick KL, McGowan A, Mericq V, Lora FM, Moran C, Muller KE, Nicol LE, Oliver-Petit I, Paone L, Paul PG, Polak M, Porta F, Poswar FO, Reinauer C, Rozenkova K, Seckold R, Seven Menevse T, Simm P, Simon A, Singh Y, Spada M, Stals MAM, Stegenga MT, Stoupa A, et alGroeneweg S, van Geest FS, Martín M, Dias M, Frazer J, Medina-Gomez C, Sterenborg RBTM, Wang H, Dolcetta-Capuzzo A, de Rooij LJ, Teumer A, Abaci A, van den Akker ELT, Ambegaonkar GP, Armour CM, Bacos I, Bakhtiani P, Barca D, Bauer AJ, van den Berg SAA, van den Berge A, Bertini E, van Beynum IM, Brunetti-Pierri N, Brunner D, Cappa M, Cappuccio G, Castellotti B, Castiglioni C, Chatterjee K, Chesover A, Christian P, Coenen-van der Spek J, de Coo IFM, Coutant R, Craiu D, Crock P, DeGoede C, Demir K, Dewey C, Dica A, Dimitri P, Dremmen MHG, Dubey R, Enderli A, Fairchild J, Gallichan J, Garibaldi L, George B, Gevers EF, Greenup E, Hackenberg A, Halász Z, Heinrich B, Hurst AC, Huynh T, Isaza AR, Klosowska A, van der Knoop MM, Konrad D, Koolen DA, Krude H, Kulkarni A, Laemmle A, LaFranchi SH, Lawson-Yuen A, Lebl J, Leeuwenburgh S, Linder-Lucht M, López Martí A, Lorea CF, Lourenço CM, Lunsing RJ, Lyons G, Malikova JK, Mancilla EE, McCormick KL, McGowan A, Mericq V, Lora FM, Moran C, Muller KE, Nicol LE, Oliver-Petit I, Paone L, Paul PG, Polak M, Porta F, Poswar FO, Reinauer C, Rozenkova K, Seckold R, Seven Menevse T, Simm P, Simon A, Singh Y, Spada M, Stals MAM, Stegenga MT, Stoupa A, Subramanian GM, Szeifert L, Tonduti D, Turan S, Vanderniet J, van der Walt A, Wémeau JL, van Wermeskerken AM, Wierzba J, de Wit MCY, Wolf NI, Wurm M, Zibordi F, Zung A, Zwaveling-Soonawala N, Rivadeneira F, Meima ME, Marks DS, Nicola JP, Chen CH, Medici M, Visser WE. Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration. Nat Commun 2025; 16:2479. [PMID: 40075072 PMCID: PMC11904026 DOI: 10.1038/s41467-025-56628-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for 'actionable' genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mariano Martín
- Department of Clinical Biochemistry (CIBICI-CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mafalda Dias
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jonathan Frazer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie B T M Sterenborg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hao Wang
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Anna Dolcetta-Capuzzo
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Linda J de Rooij
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Ayhan Abaci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Erica L T van den Akker
- Department of Paediatrics, Division of Endocrinology, Erasmus Medical Centre -Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gautam P Ambegaonkar
- Department of Paediatric Neurology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Iiuliu Bacos
- Centrul Medical Dr. Bacos Cosma, Timisoara, Romania
| | - Priyanka Bakhtiani
- University of Louisville, Louisville, KY, USA
- Childrens Hospital Los Angeles, Los Angeles, CA, USA
| | - Diana Barca
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest, Romania
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sjoerd A A van den Berg
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amanda van den Berge
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Ingrid M van Beynum
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80131, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Doris Brunner
- Gottfried Preyer's Children Hospital, Vienna, Austria
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, 80131, Naples, Italy
- Neurological Research Institute and Baylor College of Medicine, Houston, TX, USA
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Castiglioni
- Department of Neurology, Clinica Meds, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Krishna Chatterjee
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alexander Chesover
- Division of Endocrinology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, M5G 1×8, Canada
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Peter Christian
- East Kent Hospitals University NHS Foundation Trust, Ashford, UK
| | - Jet Coenen-van der Spek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, Maastricht University, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Regis Coutant
- Department of Pediatric Endocrinology and Diabetology, University Hospital, Angers, France
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest, Romania
| | - Patricia Crock
- John Hunter Children's Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Christian DeGoede
- Department of Paediatric Neurology, Clinical Research Facility, Lancashire Teaching Hospitals NHS Trust, Lancashire, UK
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Cheyenne Dewey
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System, Tacoma, WA, USA
| | - Alice Dica
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest, Romania
| | - Paul Dimitri
- The Department of Oncology and Metabolism, The University of Sheffield, Western Bank, Sheffield, S10, 2TH, UK
| | - Marjolein H G Dremmen
- Division of Paediatric Radiology, Erasmus Medical Centre - Sophia's Children Hospital, Rotterdam, The Netherlands
| | | | - Anina Enderli
- Department of Neuropediatrics, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Fairchild
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide, 5066, South Australia, Australia
| | | | | | - Belinda George
- Department of Endocrinology, St. John's Medical College Hospital, Bengaluru, India
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research institute, Queen Mary University of London, London, UK
| | - Erin Greenup
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, Orlando Health Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Annette Hackenberg
- Department of Neuropediatrics, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Zita Halász
- Pediatric Center, Semmelweis University Budapest, Budapest, Hungary
| | - Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Anna C Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tony Huynh
- Department of Endocrinology & Diabetes, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Amber R Isaza
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Klosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Heiko Krude
- Institute of Experimental Paediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Abhishek Kulkarni
- Department of Paediatric Endocrinology, SRCC Children's Hospital, Mumbai, India
| | - Alexander Laemmle
- Institute of Clinical Chemistry and Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Stephen H LaFranchi
- Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health & Sciences University, Portland, OR, USA
| | - Amy Lawson-Yuen
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System, Tacoma, WA, USA
- Department of Genetics, Kaiser Permanente Washington, Seattle, WA, USA
| | - Jan Lebl
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Selmar Leeuwenburgh
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Michaela Linder-Lucht
- Division of Neuropediatrics and Muscular Disorders, Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Anna López Martí
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Cláudia F Lorea
- Teaching Hospital of Universidade Federal de Pelotas, Pelotas, Brazil
- Federal University of Rio Grande do Sul, Porto Alegre-RS, Brazil
| | - Charles M Lourenço
- National Reference Center for Rare Diseases, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Personalized Medicine area -Special Education Sector at DLE/Grupo Pardini, Rio de Janeiro, Brazil
| | - Roelineke J Lunsing
- Department of Child Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Greta Lyons
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jana Krenek Malikova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Edna E Mancilla
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenneth L McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anne McGowan
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Veronica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile, Department of Pediatrics, Clinica Las Condes, Santiago, Chile
| | - Felipe Monti Lora
- Pediatric Endocrinology Group, Sabara Children's Hospital, São Paulo, Brazil
| | - Carla Moran
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Lindsey E Nicol
- Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health & Sciences University, Portland, OR, USA
| | - Isabelle Oliver-Petit
- Department of Paediatric Endocrinology and Genetics, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Laura Paone
- Endocrinology and Diabetology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Praveen G Paul
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology, Department, Necker Children's University Hospital, Imagine Institute Affiliate, Université de Paris Cité, Paris, France
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Fabiano O Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Dusseldorf, Germany
| | - Klara Rozenkova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rowen Seckold
- John Hunter Children's Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Tuba Seven Menevse
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Peter Simm
- Royal Children's Hospital/University of Melbourne, Parkville, Australia
| | - Anna Simon
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Yogen Singh
- Department of Paediatric Cardiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pediatrics, University of California - UC Davis Children's Hospital, Sacramento, CA, USA
| | - Marco Spada
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Milou A M Stals
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Merel T Stegenga
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Athanasia Stoupa
- Paediatric Endocrinology, Diabetology and Gynaecology, Department, Necker Children's University Hospital, Imagine Institute Affiliate, Université de Paris Cité, Paris, France
| | - Gopinath M Subramanian
- John Hunter Children's Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Lilla Szeifert
- Pediatric Center, Semmelweis University Budapest, Budapest, Hungary
| | - Davide Tonduti
- Child Neurology Unit - C.O.A.L.A. (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
- Department of Clinical and Biomedical Science, Università degli Studi di Milano, Milano, Italy
| | - Serap Turan
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Joel Vanderniet
- John Hunter Children's Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Adri van der Walt
- Private paediatric Neurology practice Dr A van der Walt, Durbanville, South Africa
| | | | | | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Institute of Nursing and Midwifery, Medical University of Gdańsk, Gdańsk, Poland
| | - Marie-Claire Y de Wit
- Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Michael Wurm
- University Children's Hospital Regensburg (KUNO), University of Regensburg, Campus St. Hedwig, Regensburg, Germany
| | - Federica Zibordi
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical center, Rehovot and the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitash Zwaveling-Soonawala
- Emma Children's Hospital, Department of Paediatric Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Juan P Nicola
- Department of Clinical Biochemistry (CIBICI-CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Marco Medici
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Çelik N, Demir K, Dibeklioğlu SE, Dündar BN, Hatipoğlu N, Mutlu GY, Arslan E, Yıldırımçakar D, Çayır A, Hacıhamdioğlu B, Sütçü ZK, Ünsal Y, Karagüzel G. Clinical and genetic characteristics of patients with monocarboxylate transporter-8 deficiency: a multicentre retrospective study. Eur J Pediatr 2024; 184:92. [PMID: 39699593 DOI: 10.1007/s00431-024-05931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated. The median age at the diagnosis was 2.4 (1.29; 5.9) years, which ranged from 0.5 to 14.0 years. The median follow-up period was 2.34 years, ranging from four months to 7.9 years. In 21 patients, 17 different variants were detected in the SLC16A2 gene. Eleven of these variants (c.1456delC, c.439G > T, c.949C > A, c.1392dupC, c.1612C > T, c.407dup, c.781del, c.589C > A, c.712G > A, c.311 T > A, c.1461del) have not been previously reported. In this study, with the exception of three cases with fT3/fT4 ratios of 4.95, 3.58, and 4.52, all cases exhibited fT3/fT4 ratios higher than five (9.9 (7.9; 12.0)). CONCLUSION MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation. There is a need to raise clinicians' awareness of this potentially treatable condition with the emergence of new and promising treatments. WHAT IS KNOWN • Allan-Herndon-Dudley syndrome, also known as MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. WHAT IS NEW • In this study, seventeen different variants were detected in the SLC16A2 gene, eleven of which (c.1456delC; c.439G>T; c.949C>A; c.1392dupC; c.1612C>T; c.407dup; c.781del; c.589C>A; c.712G>A; c.311T>A; c.1461del) have not been reported before. • The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation.
Collapse
Affiliation(s)
- Nurullah Çelik
- Department of Pediatric Endocrinology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Celebi University, Izmir, Turkey
| | - Nihal Hatipoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gül Yeşiltepe Mutlu
- Department of Pediatric Endocrinology and Diabetes, Koç University School of Medicine, Istanbul, Turkey
| | - Emrullah Arslan
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, Izmir, Turkey
| | - Didem Yıldırımçakar
- Department of Pediatric Endocrinology, Denizli State Hospital, Denizli, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology and Diabetes, Erzurum Education and Research Hospital, University of Health Science, Erzurum, Turkey
| | - Bülent Hacıhamdioğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul Aydın University, Istanbul, Turkey
| | - Zümrüt Kocabey Sütçü
- Başakşehir Çam and Sakura City Hospital, Pediatric Endocrinology, Istanbul, Turkey
| | - Yağmur Ünsal
- Clinic of Pediatric Endocrinology, Şanlıurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
3
|
Zung A, Sonntag N, Schweizer U, Banne E, Braun D. Glycerol Phenylbutyrate Treatment of 2 Patients With Monocarboxylate Transporter 8 Deficiency. J Clin Endocrinol Metab 2024; 109:2589-2601. [PMID: 38469646 DOI: 10.1210/clinem/dgae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease that leads to severe global developmental delay. MCT8 facilitates thyroid hormone (TH) transport across the cell membrane, and the serum TH profile is characterized by high T3 and low T4 levels. Recent studies have shown that the chemical chaperone sodium phenylbutyrate (NaPB) restored mutant MCT8 function and increased TH content in patient-derived induced pluripotent stem cells, making it a potential treatment for MCT8 deficiency. OBJECTIVE We aimed to assess the efficacy and safety of glycerol phenylbutyrate (GPB) in MCT8 deficiency. METHODS We treated 2 monozygotic twins aged 14.5 years with MCT8 deficiency due to P321L mutation with escalating doses of GPB over 13 months. We recorded TH, vital signs, anthropometric measurements, and neurocognitive functions. Resting metabolic rate (RMR) was measured by indirect calorimetry. Serum metabolites of GPB were monitored as a safety measure. In vitro effects of NaPB were evaluated in MDCK1 cells stably expressing the MCT8P321L mutation. The effects of GPB were compared to the effects of DITPA and TRIAC, thyromimetic medications that the patients had received in the past. RESULTS NaPB restored mutant MCT8 expression in MDCK1 cells and increased T3 transport into cells carrying the P321L mutation. GPB treatment reduced high T3 and increased low T4 levels. The patients showed a significant weight gain simultaneously with a reduction in RMR. Only minor neurocognitive improvement was observed, in hyperreflexia score and in cognitive functions. Serum metabolites did not exceed the toxic range, but elevated liver transaminases were observed. CONCLUSION In the first report of GPB treatment in MCT8 deficiency we found an improvement in TH profile and body mass index, with minor neurodevelopmental changes.
Collapse
Affiliation(s)
- Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, Rehovot 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 12000, Israel
| | - Niklas Sonntag
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ehud Banne
- The Genetic Institute, Edith Wolfson Medical Center, Holon 5822012, Israel
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
4
|
Jin Y, Zhai T, Wang Y, Li J, Wang T, Huang J. Recent advances in liquid chromatography-tandem mass spectrometry for the detection of thyroid hormones and thyroglobulin in clinical samples: A review. J Sep Sci 2024; 47:e2400466. [PMID: 39294846 DOI: 10.1002/jssc.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024]
Abstract
Thyroid hormones (THs), including triiodothyronine (T3), thyroxine (T4), and their metabolites, are essential for regulating development, growth, and energy metabolism. Thyroglobulin (Tg) produced by thyroid follicular cells acts as an essential substrate for TH synthesis. The combination of THs with Tg is a widely used serological laboratory test for thyroid function assessment. Early detection and timely intervention are significant for preventing and managing thyroid disease. In recent years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for the precise detection of small molecular analytes and steroid hormones in clinical practice as a result of its high sensitivity and specificity. While LC-MS/MS has been increasingly used for detecting THs and Tg recently, its application in clinical practice is still in its early stages. Recent advances in the assessment of thyroid metabolism using LC-MS/MS in clinical samples published during 2004-2023 were reviewed, with a special focus on the use of this technique for quantifying molecules involved in thyroid diseases.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taiyu Zhai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiuyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Tingting Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Chincarini G, Walker DW, Wong F, Richardson SJ, Cumberland A, Tolcos M. Thyroid hormone analogues: Promising therapeutic avenues to improve the neurodevelopmental outcomes of intrauterine growth restriction. J Neurochem 2024; 168:2335-2350. [PMID: 38742992 DOI: 10.1111/jnc.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.
Collapse
Affiliation(s)
- Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Flora Wong
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | | | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Bauer AJ, Auble B, Clark AL, Hu TY, Isaza A, McNerney KP, Metzger DL, Nicol L, Pierce SR, Sidlow R. Unmet patient needs in monocarboxylate transporter 8 (MCT8) deficiency: a review. Front Pediatr 2024; 12:1444919. [PMID: 39132310 PMCID: PMC11310894 DOI: 10.3389/fped.2024.1444919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency is a rare, X-linked disorder arising from mutations in the SLC16A2 gene and resulting from dysfunctional thyroid hormone transport. This disorder is characterized by profound neurodevelopmental delay and motor disability due to a lack of thyroid hormone in the brain, and coexisting endocrinological symptoms, due to chronic thyrotoxicosis, resulting from elevated thyroid hormone outside the central nervous system (CNS). In February 2024, we reviewed the published literature to identify relevant articles reporting on the current unmet needs of patients with MCT8 deficiency. There are several main challenges in the diagnosis and treatment of MCT8 deficiency, with decreased awareness and recognition of MCT8 deficiency among healthcare professionals (HCPs) associated with misdiagnosis and delays in diagnosis. Diagnostic delay may also be attributed to other factors, including the complex symptomology of MCT8 deficiency only becoming apparent several months after birth and pathognomonic serum triiodothyronine (T3) testing not being routinely performed. For patients with MCT8 deficiency, multidisciplinary team care is vital to optimize the support provided to patients and their caregivers. Although there are currently no approved treatments specifically for MCT8 deficiency, earlier identification and diagnosis of this disorder enables earlier access to supportive care and developing treatments focused on improving outcomes and quality of life for both patients and caregivers.
Collapse
Affiliation(s)
- Andrew J. Bauer
- The Thyroid Center, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Bethany Auble
- Medical College of Wisconsin, Children’s Wisconsin, Milwaukee, WI, United States
| | - Amy L. Clark
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Pediatric Endocrinology and Diabetes, SSM Health Cardinal Glennon, St. Louis, MO, United States
| | - Tina Y. Hu
- Department of Pediatrics, Division of Endocrinology, University of California San Francisco, San Francisco, CA, United States
| | - Amber Isaza
- The Thyroid Center, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle P. McNerney
- Diabetes Education Program, Washington University in St. Louis, St. Louis, MO, United States
| | - Daniel L. Metzger
- The Endocrinology & Diabetes Unit, British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Lindsey Nicol
- Department of Pediatric Endocrinology, Oregon Health & Science University Doernbecher Children’s Hospital, Portland, OR, United States
- Division of Endocrinology, Oregon Health & Science University, Portland, OR, United States
| | - Samuel R. Pierce
- Division of Rehabilitation Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children’s Hospital, Madera, CA, United States
| |
Collapse
|
7
|
Freund ME, van der Most F, Visser WE. Diagnosis and Therapy in MCT8 Deficiency: Ongoing Challenges. J Clin Res Pediatr Endocrinol 2024; 16:1-3. [PMID: 38345399 PMCID: PMC10938520 DOI: 10.4274/jcrpe.galenos.2024.2024-1-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Matthijs E.T. Freund
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Floor van der Most
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W. Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Ünsal Y, Hayran G. Impact of Early Intervention with Triiodothyroacetic Acid on Peripheral and Neurodevelopmental Findings in a Boy with MCT8 Deficiency. J Clin Res Pediatr Endocrinol 2024; 16:116-122. [PMID: 38054413 PMCID: PMC10938514 DOI: 10.4274/jcrpe.galenos.2023.2023-10-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disorder characterized by peripheral thyrotoxicosis and severe cognitive and motor disability due to cerebral hypothyroidism. 3,3’,5-triiodothyroacetic acid (Triac) was shown to improve peripheral thyrotoxicosis but data on neurodevelopmental outcome are scarce. We present a case of MCT8 deficiency and the experience with Triac focusing on change in neurodevelopmental and peripheral features. A five-month-old boy was referred because of feeding difficulty, central hypotonia and global developmental delay. Despite six months of physiotherapy, physical developmental milestones did not improve, and distal muscle tone was increased. A hemizygous pathogenic variant in SLC16A2 was found and MCT8 deficiency was confirmed at 19-months. Thyroid stimulating hormone was 2.83 mIU/mL, free thyroxine 6.24 pmol/L (N=12-22) and free triiodothyronine (FT3) 15.65pmol/L (N=3.1-6.8). He had tachycardia, blood pressure and transaminases were elevated. Triac was started at 21-months. Two weeks after treatment, FT3 dramatically decreased, steady normal serum FT3 was achieved at 28-months. Assessment of neurodevelopmental milestones and signs of hyperthyroidism were evaluated at baseline, 6 months and 12 months after treatment. Signs of hyperthyroidism were improved by 6 months. Developmental composite scores of Bayley Scales of Infant Developmental 3rd Edition remained the same but important developmental milestones (head control, recognition of caregiver, response to his name) were attained, regression in the attained milestones were not observed. Initial dose, management protocol for Triac and research into its efficacy on neurodevelopmental signs in MCT8 deficiency are progressing. This case presents evidence that Triac may resolve peripheral thyrotoxicosis successfully and may slow neurodevelopmental regression, while some developmental milestones were achieved after one year of treatment.
Collapse
Affiliation(s)
- Yağmur Ünsal
- Şanlıurfa Training and Research Hospital, Clinic of Pediatric Endocrinology, Şanlıurfa, Turkey
| | - Gamze Hayran
- Şanlıurfa Training and Research Hospital, Clinic of Developmental Pediatrics, Şanlıurfa, Turkey
| |
Collapse
|
9
|
Salas-Lucia F, Escamilla S, Bianco AC, Dumitrescu A, Refetoff S. Impaired T3 uptake and action in MCT8-deficient cerebral organoids underlie Allan-Herndon-Dudley syndrome. JCI Insight 2024; 9:e174645. [PMID: 38376950 PMCID: PMC11128209 DOI: 10.1172/jci.insight.174645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Miguel Hernández-CSIC University, Sant Joan d’Alacant, Alicante, Spain
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Alexandra Dumitrescu
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Sabatino L, Lapi D, Del Seppia C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024; 14:198. [PMID: 38397435 PMCID: PMC10886502 DOI: 10.3390/biom14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
11
|
Wilpert NM, Tonduti D, Vaia Y, Krude H, Sarret C, Schuelke M. Establishing Patient-Centered Outcomes for MCT8 Deficiency: Stakeholder Engagement and Systematic Literature Review. Neuropsychiatr Dis Treat 2023; 19:2195-2216. [PMID: 37881807 PMCID: PMC10595182 DOI: 10.2147/ndt.s379703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction The SCL16A2 gene encodes the thyroid hormone (TH) transporter MCT8. Pathogenic variants result in a reduced TH uptake into the CNS despite high serum T3 concentrations. Patients suffer from severe neurodevelopmental delay and require multidisciplinary care. Since a first compassionate use study in 2008, the development of therapies has recently gained momentum. Treatment strategies range from symptom-based approaches, supplementation with TH or TH-analogs, to gene therapy. All these studies have mainly used surrogate endpoints and clinical outcomes. However, the EMA and FDA strongly encourage researchers to involve patients and their advocacy groups in the design of clinical trials. This should strengthen the patients' perspective and identify clinical endpoints that are clinically relevant to their daily life. Methods We involved patient families to define patient-relevant outcomes for MCT8 deficiency. In close collaboration with patient families, we designed a questionnaire asking for their five most preferred therapeutic goals, which, if achieved at least, make a difference in their lives. In addition, we performed a systematic review according to Cochrane recommendations of the published treatment trials. Results We obtained results from 15 families with completed questionnaires from 14 mothers and 8 fathers. Improvement in development, especially in gross motor skills, was most important to the parents. 59% wished for head control and 50% for sitting ability. Another 36% wished for weight gain, 32% for improvement of expressive language skills, and 18% for a reduction of dystonia/spasticity, less dysphagia, and reflux. Paraclinical aspects were least important (5-9%). In a treatment trial (n=46) and compassionate use cases (n=83), the results were mainly inconclusive, partly due to a lack of predefined patient-centered clinical endpoints. Discussion We recommend that future trials should define a relevant improvement in "development" and/or other patient-relevant outcomes compared to natural history as treatment goals.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Ylenia Vaia
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, Berlin, Germany
| |
Collapse
|
12
|
Yamauchi I, Hakata T, Ueda Y, Sugawa T, Omagari R, Teramoto Y, Nakayama SF, Nakajima D, Kubo T, Inagaki N. TRIAC disrupts cerebral thyroid hormone action via negative feedback and heterogenous distribution among organs. iScience 2023; 26:107135. [PMID: 37408688 PMCID: PMC10319255 DOI: 10.1016/j.isci.2023.107135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
As 3,3',5-triiodothyroacetic acid (TRIAC), a metabolite of thyroid hormones (THs), was previously detected in sewage effluent, we aimed to investigate exogenous TRIAC's potential for endocrine disruption. We administered either TRIAC or 3,3',5-triiodo-L-thyronine (LT3) to euthyroid mice and 6-propyl-2-thiouracil-induced hypothyroid mice. In hypothyroid mice, TRIAC administration suppressed the hypothalamus-pituitary-thyroid (HPT) axis and upregulated TH-responsive genes in the pituitary gland, the liver, and the heart. We observed that, unlike LT3, TRIAC administration did not upregulate cerebral TH-responsive genes. Measurement of TRIAC contents suggested that TRIAC was not efficiently trafficked into the cerebrum. By analyzing euthyroid mice, we found that cerebral TRIAC content did not increase despite TRIAC administration at higher concentrations, whereas serum levels and cerebral contents of THs were substantially decreased. Disruption by TRIAC is due to the additive effects of circulating endogenous THs being depleted via a negative feedback loop involving the HPT axis and heterogeneous distribution of TRIAC among different organs.
Collapse
Affiliation(s)
- Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryo Omagari
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Yasuo Teramoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Shoji F. Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Daisuke Nakajima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
13
|
Triac Treatment Prevents Neurodevelopmental and Locomotor Impairments in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice. Int J Mol Sci 2023; 24:ijms24043452. [PMID: 36834863 PMCID: PMC9966820 DOI: 10.3390/ijms24043452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Patients with inactive thyroid hormone (TH) transporter MCT8 display intellectual disability due to compromised central TH transport and action. As a therapeutic strategy, application of thyromimetic, MCT8-independent compounds Triac (3,5,3'-triiodothyroacetic acid), and Ditpa (3,5-diiodo-thyropropionic acid) was proposed. Here, we directly compared their thyromimetic potential in Mct8/Oatp1c1 double knock-out mice (Dko) modeling human MCT8 deficiency. Dko mice received either Triac (50 ng/g or 400 ng/g) or Ditpa (400 ng/g or 4000 ng/g) daily during the first three postnatal weeks. Saline-injected Wt and Dko mice served as controls. A second cohort of Dko mice received Triac (400 ng/g) daily between postnatal weeks 3 and 6. Thyromimetic effects were assessed at different postnatal stages by immunofluorescence, ISH, qPCR, electrophysiological recordings, and behavior tests. Triac treatment (400 ng/g) induced normalized myelination, cortical GABAergic interneuron differentiation, electrophysiological parameters, and locomotor performance only when administered during the first three postnatal weeks. Ditpa (4000 ng/g) application to Dko mice during the first three postnatal weeks resulted in normal myelination and cerebellar development but only mildly improved neuronal parameters and locomotor function. Together, Triac is highly-effective and more efficient than Ditpa in promoting CNS maturation and function in Dko mice yet needs to be initiated directly after birth for the most beneficial effects.
Collapse
|
14
|
Reinwald JR, Weber-Fahr W, Cosa-Linan A, Becker R, Sack M, Falfan-Melgoza C, Gass N, Braun U, Clemm von Hohenberg C, Chen J, Mayerl S, Muente TF, Heuer H, Sartorius A. TRIAC Treatment Improves Impaired Brain Network Function and White Matter Loss in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice. Int J Mol Sci 2022; 23:15547. [PMID: 36555189 PMCID: PMC9779161 DOI: 10.3390/ijms232415547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic anion transporting protein OATP1C1 (Mct8/Oatp1c1 DKO). In this study, we characterize impairments of brain structure and function in Mct8/Oatp1c1 DKO mice using multimodal magnetic resonance imaging (MRI) and assess the potential of the TH analogue 3,3',5-triiodothyroacetic acid (TRIAC) to rescue this phenotype. Structural and functional MRI were performed in 11-weeks-old male Mct8/Oatp1c1 DKO mice (N = 10), wild type controls (N = 7) and Mct8/Oatp1c1 DKO mice (N = 13) that were injected with TRIAC (400 ng/g bw s.c.) daily during the first three postnatal weeks. Grey and white matter volume were broadly reduced in Mct8/Oatp1c1 DKO mice. TRIAC treatment could significantly improve white matter thinning but did not affect grey matter loss. Network-based statistic showed a wide-spread increase of functional connectivity, while graph analysis revealed an impairment of small-worldness and whole-brain segregation in Mct8/Oatp1c1 DKO mice. Both functional deficits could be substantially ameliorated by TRIAC treatment. Our study demonstrates prominent structural and functional brain alterations in Mct8/Oatp1c1 DKO mice that may underlie the psychomotor deficiencies in AHDS. Additionally, we provide preclinical evidence that early-life TRIAC treatment improves white matter loss and brain network dysfunctions associated with TH transporter deficiency.
Collapse
Affiliation(s)
- Jonathan Rochus Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Research Group Systems Neuroscience and Mental Health, Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Alejandro Cosa-Linan
- Research Group in Silico Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Urs Braun
- Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Jiesi Chen
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas F. Muente
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Heike Heuer
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
15
|
Wasserman-Bartov T, Admati I, Lebenthal-Loinger I, Sharabany J, Lerer-Goldshtein T, Appelbaum L. Tsh Induces Agrp1 Neuron Proliferation in Oatp1c1-Deficient Zebrafish. J Neurosci 2022; 42:8214-8224. [PMID: 36150888 PMCID: PMC9653277 DOI: 10.1523/jneurosci.0002-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs), thyroxine (T4), and triiodothyronine (T3), regulate growth, metabolism, and neurodevelopment. THs secretion is controlled by the pituitary thyroid-stimulating hormone (TSH) and the hypothalamic-pituitary-thyroid (HPT) axis. The organic anion-transporting polypeptide 1C1 (OATP1C1/SLCO1C1) and the monocarboxylate transporter 8 (MCT8/SLC16A2) actively transport THs, which bind to their nuclear receptors and induce gene expression. A mutation in OATP1C1 is associated with brain hypometabolism, gradual neurodegeneration, and impaired cognitive and motor functioning in adolescent patients. To understand the role of Oatp1c1 and the mechanisms of the disease, we profiled the transcriptome of oatp1c1 mutant (oatp1c1 -/-) and mct8 -/- xoatp1c1 -/- adult male and female zebrafish brains. Among dozens of differentially expressed genes, agouti-related neuropeptide 1 (agrp1) expression increased in oatp1c1 -/- adult brains. Imaging in the hypothalamus revealed enhanced proliferation of Agrp1 neurons in oatp1c1 -/- larvae and adults, and increased food consumption in oatp1c1 -/- larvae. Similarly, feeding and the number of Agrp1 neurons increased in thyroid gland-ablated zebrafish. Pharmacological treatments showed that the T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid), but not T4, normalized the number of Agrp1 neurons in oatp1c1 -/- zebrafish. Since the HPT axis is hyperactive in the oatp1c1 -/- brain, we used the CRISPR-Cas9 system to knockdown tsh in oatp1c1 -/- larvae, and inducibly enhanced the HPT axis in wild-type larvae. These manipulations showed that Tsh promotes proliferation of Agrp1 neurons and increases food consumption in zebrafish. The results revealed upregulation of both the HPT axis-Agrp1 circuitry and feeding in a zebrafish model for OATP1C1 deficiency.SIGNIFICANCE STATEMENT Mutation in the thyroid hormone (TH) transporter OATP1C1 is associated with cognitive and motor functioning disturbances in humans. Here, we used an oatp1c1 -/- zebrafish to understand the role of organic anion-transporting polypeptide 1C1 (Oatp1c1), and the characteristics of OATP1C1 deficiency. Transcriptome profiling identified upregulation of agrp1 expression in the oatp1c1 -/- brain. The oatp1c1 -/- larvae showed increased thyroid-stimulating hormone (tsh) levels, proliferation of Agrp1 neurons and food consumption. Genetic manipulations of the hypothalamic-pituitary-thyroid (HPT) axis showed that Tsh increases the number of Agrp1 neurons and food consumption. The T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid) normalizes the number of Agrp1 neurons and may have potential for the treatment of Oatp1c1 deficiency. The findings demonstrate a functional interaction between the thyroid and feeding systems in the brain of zebrafish and suggest a neuroendocrinological mechanism for OATP1C1 deficiency.
Collapse
Affiliation(s)
- Talya Wasserman-Bartov
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Admati
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Julia Sharabany
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
16
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
17
|
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: Mechanisms and therapeutic development. Mol Cell Endocrinol 2022; 553:111679. [PMID: 35738449 DOI: 10.1016/j.mce.2022.111679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
As an essential primary hormone, thyroid hormone (TH) is indispensable for human growth, development and metabolism. Impairment of TH function in several aspects, including TH synthesis, activation, transportation and receptor-dependent transactivation, can eventually lead to thyroid hormone resistance syndrome (RTH). RTH is a rare syndrome that manifests as a reduced target cell response to TH signaling. The majority of RTH cases are related to thyroid hormone receptor β (TRβ) mutations, and only a few RTH cases are associated with thyroid hormone receptor α (TRα) mutations or other causes. Patients with RTH suffer from goiter, mental retardation, short stature and bradycardia or tachycardia. To date, approximately 170 mutated TRβ variants and more than 20 mutated TRα variants at the amino acid level have been reported in RTH patients. In addition to these mutated proteins, some TR isoforms can also reduce TH function by competing with primary TRs for TRE and RXR binding. Fortunately, different treatments for RTH have been explored with structure-activity relationship (SAR) studies and drug design, and among these treatments. With thyromimetic potency but biochemical properties that differ from those of primary TH (T3 and T4), these TH analogs can bypass specific defective transporters or reactive mutant TRs. However, these compounds must be carefully applied to avoid over activating TRα, which is associated with more severe heart impairment. The structural mechanisms of mutation-induced RTH in the TR ligand-binding domain are summarized in this review. Furthermore, strategies to overcome this resistance for therapeutic development are also discussed.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Chunyan Yang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| | - Chengxi Pan
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
18
|
Liao XH, Avalos P, Shelest O, Ofan R, Shilo M, Bresee C, Likhite S, Vit JP, Heuer H, Kaspar B, Meyer K, Dumitrescu AM, Refetoff S, Svendsen CN, Vatine GD. AAV9-MCT8 Delivery at Juvenile Stage Ameliorates Neurological and Behavioral Deficits in a Mouse Model of MCT8-Deficiency. Thyroid 2022; 32:849-859. [PMID: 35350867 PMCID: PMC9469747 DOI: 10.1089/thy.2022.0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.
Collapse
Affiliation(s)
- Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Pablo Avalos
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Oksana Shelest
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Raz Ofan
- Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Shilo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Jean-Philippe Vit
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Brian Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
- Address correspondence to: Samuel Refetoff, MD, Department of Medicine, The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Clive N. Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Address correspondence to: Clive N. Svendsen, PhD, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Gad D. Vatine
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Address correspondence to: Gad D. Vatine, PhD, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
19
|
Braun D, Bohleber S, Vatine GD, Svendsen CN, Schweizer U. Sodium Phenylbutyrate Rescues Thyroid Hormone Transport in Brain Endothelial-Like Cells. Thyroid 2022; 32:860-870. [PMID: 35357974 DOI: 10.1089/thy.2021.0643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease leading to a severe developmental delay due to a lack of thyroid hormones (THs) during critical stages of human brain development. Some MCT8-deficient patients are not as severely affected as others. Previously, we hypothesized that these patients' mutations do not affect the functionality but destabilize the MCT8 protein, leading to a diminished number of functional MCT8 molecules at the cell surface. Methods: We have already demonstrated that the chemical chaperone sodium phenylbutyrate (NaPB) rescues the function of these mutants by stabilizing their protein expression in an overexpressing cell system. Here, we expanded our previous work and used iPSC (induced pluripotent stem cell)-derived brain microvascular endothelial-like cells (iBMECs) as a physiologically relevant cell model of human origin to test for NaPB responsiveness. The effects on mutant MCT8 expression and function were tested by Western blotting and radioactive uptake assays. Results: We found that NaPB rescues decreased mutant MCT8 expression and restores transport function in iBMECs carrying patient's mutation MCT8-P321L. Further, we identified MCT10 as an alternative TH transporter in iBMECs that contributes to triiodothyronine uptake, the biological active TH. Our results indicate an upregulation of MCT10 after NaPB treatment. In addition, we detected an increase in thyroxine (T4) uptake after NaPB treatment that was not mediated by rescued MCT8 but an unidentified T4 transporter. Conclusions: We demonstrate that NaPB is suitable to stabilize a pathogenic missense mutation in a human-derived cell model. Further, it activates TH transport independent of MCT8. Both options fuel future studies to investigate repurposing the Food and Drug Administration-approved drug NaPB in selected cases of MCT8 deficiency.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, The Regenerative Medicine and Stem Cell (RMSC) Research Center and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
20
|
van Geest FS, Groeneweg S, van den Akker ELT, Bacos I, Barca D, van den Berg SAA, Bertini E, Brunner D, Brunetti-Pierri N, Cappa M, Cappuccio G, Chatterjee K, Chesover AD, Christian P, Coutant R, Craiu D, Crock P, Dewey C, Dica A, Dimitri P, Dubey R, Enderli A, Fairchild J, Gallichan J, Garibaldi LR, George B, Hackenberg A, Heinrich B, Huynh T, Kłosowska A, Lawson-Yuen A, Linder-Lucht M, Lyons G, Monti Lora F, Moran C, Müller KE, Paone L, Paul PG, Polak M, Porta F, Reinauer C, de Rijke YB, Seckold R, Menevşe TS, Simm P, Simon A, Spada M, Stoupa A, Szeifert L, Tonduti D, van Toor H, Turan S, Vanderniet J, de Waart M, van der Wal R, van der Walt A, van Wermeskerken AM, Wierzba J, Zibordi F, Zung A, Peeters RP, Visser WE. Long-Term Efficacy of T3 Analogue Triac in Children and Adults With MCT8 Deficiency: A Real-Life Retrospective Cohort Study. J Clin Endocrinol Metab 2022; 107:e1136-e1147. [PMID: 34679181 PMCID: PMC8852204 DOI: 10.1210/clinem/dgab750] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with mutations in thyroid hormone transporter MCT8 have developmental delay and chronic thyrotoxicosis associated with being underweight and having cardiovascular dysfunction. OBJECTIVE Our previous trial showed improvement of key clinical and biochemical features during 1-year treatment with the T3 analogue Triac, but long-term follow-up data are needed. METHODS In this real-life retrospective cohort study, we investigated the efficacy of Triac in MCT8-deficient patients in 33 sites. The primary endpoint was change in serum T3 concentrations from baseline to last available measurement. Secondary endpoints were changes in other thyroid parameters, anthropometric parameters, heart rate, and biochemical markers of thyroid hormone action. RESULTS From October 15, 2014 to January 1, 2021, 67 patients (median baseline age 4.6 years; range, 0.5-66) were treated up to 6 years (median 2.2 years; range, 0.2-6.2). Mean T3 concentrations decreased from 4.58 (SD 1.11) to 1.66 (0.69) nmol/L (mean decrease 2.92 nmol/L; 95% CI, 2.61-3.23; P < 0.0001; target 1.4-2.5 nmol/L). Body-weight-for-age exceeded that of untreated historical controls (mean difference 0.72 SD; 95% CI, 0.36-1.09; P = 0.0002). Heart-rate-for-age decreased (mean difference 0.64 SD; 95% CI, 0.29-0.98; P = 0.0005). SHBG concentrations decreased from 245 (99) to 209 (92) nmol/L (mean decrease 36 nmol/L; 95% CI, 16-57; P = 0.0008). Mean creatinine concentrations increased from 32 (11) to 39 (13) µmol/L (mean increase 7 µmol/L; 95% CI, 6-9; P < 0.0001). Mean creatine kinase concentrations did not significantly change. No drug-related severe adverse events were reported. CONCLUSIONS Key features were sustainably alleviated in patients with MCT8 deficiency across all ages, highlighting the real-life potential of Triac for MCT8 deficiency.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Iuliu Bacos
- Centrul Medical Dr. Bacos Cosma, Timisoara 307200, Romania
| | - Diana Barca
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Sjoerd A A van den Berg
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Doris Brunner
- Gottfried Preyer's Children Hospital, 1100 Vienna, Austria
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy
| | - Marco Cappa
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy
| | - Krishna Chatterjee
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexander D Chesover
- Division of Endocrinology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, M5G 1X8, Canada
| | - Peter Christian
- East Kent Hospitals University NHS Foundation Trust, Ashford TN24 0LZ, UK
| | - Régis Coutant
- Department of Pediatric Endocrinology and Diabetology, University Hospital, 49100 Angers, France
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Patricia Crock
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Cheyenne Dewey
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System Tacoma, WA 98403, USA
| | - Alice Dica
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Paediatric Neurology Discipline II, Bucharest 050474, Romania
- Paediatric Neurology Clinic, Reference Center for Rare Paediatric Neurological Disorders, ENDO-ERN member, Alexandru Obregia Hospital, Bucharest 041914, Romania
| | - Paul Dimitri
- Sheffield Children's NHS Foundation Trust, Sheffield Hallam University and University of Sheffield, Sheffield, S10 2TH, UK
| | - Rachana Dubey
- Medanta Superspeciality Hospital, Indore 800020, India
| | - Anina Enderli
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
- Neurology Department, Children's Hospital, St. Gallen, 9000, Switzerland
| | - Jan Fairchild
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide 5066 SouthAustralia
| | | | | | - Belinda George
- Department of Endocrinology, St. John's Medical College Hospital, Bengaluru 560034, India
| | - Annette Hackenberg
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Tony Huynh
- Department of Endocrinology & Diabetes, Queensland Children's Hospital, South Brisbane Queensland 4101, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, Queensland 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Amy Lawson-Yuen
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System Tacoma, WA 98403, USA
| | - Michaela Linder-Lucht
- Division of Neuropediatrics and Muscular Disorders, Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Greta Lyons
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Felipe Monti Lora
- Pediatric Endocrinology Group, Santa Catarina Hospital, São Paulo, 01310-000, Brazil
| | - Carla Moran
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katalin E Müller
- Heim Pal National Institute of Pediatrics, Budapest, 1089, Hungary
- Institute of Translational Medicine, University of Pécs, Pécs, 7622, Hungary
| | - Laura Paone
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, 00165 Rome, Italy
| | - Praveen G Paul
- Department of Paediatrics, Christian Medical College, Vellore 632004, India
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Université de Paris, Paris 75015, France
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino 10126,Italy
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf 40225, Germany
| | - Yolanda B de Rijke
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rowen Seckold
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Tuba Seven Menevşe
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul 34854, Turkey
| | - Peter Simm
- Royal Children's Hospital/University of Melbourne, Parkville 3052,Australia
| | - Anna Simon
- Department of Paediatrics, Christian Medical College, Vellore 632004, India
| | - Marco Spada
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino 10126,Italy
| | - Athanasia Stoupa
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Université de Paris, Paris 75015, France
| | - Lilla Szeifert
- 1st Department of Pediatrics, Semmelweis University, Budapest, 1083, Hungary
| | - Davide Tonduti
- Child Neurology Unit - C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano 20154, Italy
| | - Hans van Toor
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
| | - Serap Turan
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul 34854, Turkey
| | - Joel Vanderniet
- John Hunter Children's Hospital, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, University of Newcastle Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Monique de Waart
- Department of Clinical chemistry, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ronald van der Wal
- Diagnostic Laboratory for Endocrinology, Department of Internal Medicine, Erasmus Medical Center , 3015 GD Rotterdam, The Netherlands
| | - Adri van der Walt
- Private Paediatric Neurology Practice of Dr A van der Walt, Durbanville, South Africa
| | | | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Institute of Nursing and Midwifery, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Federica Zibordi
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, University of Jerusalem, Rehovot 76100, Israel
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
21
|
Zhang Q, Yang Q, Zhou X, Qin Z, Yi S, Luo J. Characteristics of Allan-Herndon-Dudley Syndrome in Chinese children: Identification of two novel pathogenic variants of the SLC16A2 gene. Front Pediatr 2022; 10:1050023. [PMID: 36458135 PMCID: PMC9705582 DOI: 10.3389/fped.2022.1050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to identify causative variants associated with Allan-Herndon-Dudley syndrome (AHDS) in two unrelated Chinese families, and to determine their potential pathogenicity. We also summarized the core clinical symptoms of AHDS by reviewing the related literature. METHODS Genomic DNA was isolated from the peripheral blood of AHDS patients and their family members. Whole exome sequencing (WES) was performed on the proband from each family to identify the candidate variants. Subsequently, Sanger sequencing was used to verify the identified candidate variants and to assess co-segregation among the available family members. In silico prediction combined with 3D protein modeling was conducted to predict the functional effects of the variants on the encoded protein. RESULTS Two novel hemizygous variants of SLC16A2, c.1111_1112insGTCTTGT (Gly375fs*6) and c.942delA (Val315fs*28), were detected in two patients. We compared the clinical symptoms of the patients with all patients with AHDS reported in China and those reported in the literature. While both our patients presented symptoms mostly consistent with AHDS, Patient 1 had no abnormal brain structure and thyroid function, and yet showed other symptoms including lactic aciduria, conjunctival hyperemia, vomiting, laryngeal stridor, low immunoglobulin and iron levels. CONCLUSIONS This study expands the mutation spectrum of AHDS and has clinical value for variant-based prenatal and postnatal screening for this condition. Doctors often have difficulty identifying AHDS by using clinical symptoms. WES can help to identify specific disorder when diagnosis cannot be made based on symptoms alone.
Collapse
Affiliation(s)
- Qiang Zhang
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Qi Yang
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Xunzhao Zhou
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Zailong Qin
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Shang Yi
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Jingsi Luo
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| |
Collapse
|
22
|
Refetoff S, Pappa T, Williams MK, Matheus MG, Liao XH, Hansen K, Nicol L, Pierce M, Blasco PA, Wiebers Jensen M, Bernal J, Weiss RE, Dumitrescu AM, LaFranchi S. Prenatal Treatment of Thyroid Hormone Cell Membrane Transport Defect Caused by MCT8 Gene Mutation. Thyroid 2021; 31:713-720. [PMID: 32746752 PMCID: PMC8110025 DOI: 10.1089/thy.2020.0306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Mutations of the thyroid hormone (TH)-specific cell membrane transporter, monocarboxylate transporter 8 (MCT8), produce an X-chromosome-linked syndrome of TH deficiency in the brain and excess in peripheral tissues. The clinical consequences include brain hypothyroidism causing severe psychoneuromotor abnormalities (no speech, truncal hypotonia, and spastic quadriplegia) and hypermetabolism (poor weight gain, tachycardia, and increased metabolism, associated with high serum levels of the active TH, T3). Treatment in infancy and childhood with TH analogues that reduce serum triiodothyronine (T3) corrects hypermetabolism, but has no effect on the psychoneuromotor deficits. Studies of brain from a 30-week-old MCT8-deficient embryo indicated that brain abnormalities were already present during fetal life. Methods: A carrier woman with an affected male child (MCT8 A252fs268*), pregnant with a second affected male embryo, elected to carry the pregnancy to term. We treated the fetus with weekly 500 μg intra-amniotic instillation of levothyroxine (LT4) from 18 weeks of gestation until birth at 35 weeks. Thyroxine (T4), T3, and thyrotropin (TSH) were measured in the amniotic fluid and maternal serum. Treatment after birth was continued with LT4 and propylthiouracil. Follow-up included brain magnetic resonance imaging (MRI) and neurodevelopmental evaluation, both compared with the untreated brother. Results: During intrauterine life, T4 and T3 in the amniotic fluid were maintained above threefold to twofold the baseline and TSH was suppressed by 80%, while maternal serum levels remained unchanged. At birth, the infant serum T4 was 14.5 μg/dL and TSH <0.01 mU/L compared with the average in untreated MCT8-deficient infants of 5.1 μg/ and >8 mU/L, respectively. MRI at six months of age showed near-normal brain myelination compared with much reduced in the untreated brother. Neurodevelopmental assessment showed developmental quotients in receptive language and problem-solving, and gross motor and fine motor function ranged from 12 to 25 at 31 months in the treated boy and from 1 to 7 at 58 months in the untreated brother. Conclusions: This is the first demonstration that prenatal treatment improved the neuromotor and neurocognitive function in MCT8 deficiency. Earlier treatment with TH analogues that concentrate in the fetus when given to the mother may further rescue the phenotype.
Collapse
Affiliation(s)
- Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Committees on Genetics, and The University of Chicago, Chicago, Illinois, USA
- Address correspondence to: Samuel Refetoff, MD, Department of Medicine, The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Theodora Pappa
- Department of Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | | | - M. Gisele Matheus
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Karen Hansen
- Northwest Perinatal Center, Portland, Oregon, USA
| | - Lindsey Nicol
- Department of Pediatrics–Endocrinology and Oregon Health & Science University, Portland, Oregon, USA
| | - Melinda Pierce
- Department of Pediatrics–Endocrinology and Oregon Health & Science University, Portland, Oregon, USA
| | - Peter A. Blasco
- Neurodevelopmental Disabilities Doernbacher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Mandie Wiebers Jensen
- Neurodevelopmental Disabilities Doernbacher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Juan Bernal
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid and Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Roy E. Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexandra M. Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | - Stephen LaFranchi
- Department of Pediatrics–Endocrinology and Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Hackenberg S, Kraus F, Scherzad A. Rare Diseases of Larynx, Trachea and Thyroid. Laryngorhinootologie 2021; 100:S1-S36. [PMID: 34352904 PMCID: PMC8363221 DOI: 10.1055/a-1337-5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review article covers data on rare diseases of the larynx, the trachea and the thyroid. In particular, congenital malformations, rare manifestations of inflammatory laryngeal disorders, benign and malignant epithelial as well as non-epithelial tumors, laryngeal and tracheal manifestations of general diseases and, finally, thyroid disorders are discussed. The individual chapters contain an overview of the data situation in the literature, the clinical appearance of each disorder, important key points for diagnosis and therapy and a statement on the prognosis of the disease. Finally, the authors indicate on study registers and self-help groups.
Collapse
Affiliation(s)
- Stephan Hackenberg
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Fabian Kraus
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Agmal Scherzad
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| |
Collapse
|
24
|
Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M. Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol 2021; 61:100901. [PMID: 33493504 DOI: 10.1016/j.yfrne.2021.100901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.
Collapse
Affiliation(s)
- Maurice Pagnin
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | | | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
25
|
van Geest FS, Groeneweg S, Visser WE. Monocarboxylate transporter 8 deficiency: update on clinical characteristics and treatment. Endocrine 2021; 71:689-695. [PMID: 33650046 PMCID: PMC8016746 DOI: 10.1007/s12020-020-02603-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Defective thyroid hormone transport due to deficiency in thyroid hormone transporter monocarboxylate transporter 8 (MCT8) results in severe neurodevelopmental delay due to cerebral hypothyroidism and in clinical negative sequelae following a chronic thyrotoxic state in peripheral tissues. The life expectancy of patients with MCT8 deficiency is severely impaired. Increased mortality is associated with lack of head control and being underweight at young age. Treatment options are available to alleviate the thyrotoxic state; particularly, treatment with the thyroid hormone analogue triiodothyroacetic acid seems a promising therapy. This review provides an overview of key clinical features and treatment options available and under development for this rare disorder.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
van Geest FS, Meima ME, Stuurman KE, Wolf NI, van der Knaap MS, Lorea CF, Poswar FO, Vairo F, Brunetti-Pierri N, Cappuccio G, Bakhtiani P, de Munnik SA, Peeters RP, Visser WE, Groeneweg S. Clinical and Functional Consequences of C-Terminal Variants in MCT8: A Case Series. J Clin Endocrinol Metab 2021; 106:539-553. [PMID: 33141165 PMCID: PMC7823235 DOI: 10.1210/clinem/dgaa795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Marcel E Meima
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Nicole I Wolf
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centre, AZ Amsterdam, Netherlands
- Amsterdam Neuroscience, HV Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centre, AZ Amsterdam, Netherlands
- Amsterdam Neuroscience, HV Amsterdam, Netherlands
| | - Cláudia F Lorea
- Teaching Hospital of Universidade Federal de Pelotas, Brazil
| | - Fabiano O Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Filippo Vairo
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, GA Nijmegen, the Netherlands
| | - Robin P Peeters
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| |
Collapse
|
27
|
van Geest FS, Gunhanlar N, Groeneweg S, Visser WE. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol (Lausanne) 2021; 12:723750. [PMID: 34539576 PMCID: PMC8440930 DOI: 10.3389/fendo.2021.723750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.
Collapse
|
28
|
Braun D, Schweizer U. The Protein Translocation Defect of MCT8 L291R Is Rescued by Sodium Phenylbutyrate. Eur Thyroid J 2020; 9:269-280. [PMID: 33088796 PMCID: PMC7548921 DOI: 10.1159/000507439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The monocarboxylate transporter 8 (MCT8; SLC16A2) is a specific transporter for thyroid hormones. MCT8 deficiency, formerly known as the Allan-Herndon-Dudley syndrome, is a rare genetic disease that leads to neurological impairments and muscle weakness. Current experimental treatment options rely on thyromimetic agonists that do not depend on MCT8 for cellular uptake. Another approach comes from studies with the chemical chaperone sodium phenylbutyrate (NaPB), which was able to stabilize MCT8 mutants having protein folding defects in vitro. In addition, NaPB is known as a compound that assists with plasma membrane translocation. OBJECTIVE The pathogenic MCT8L291R leads to the same severe neurological impairments found for other MCT8-deficient patients but, unexpectedly, lacks alterations in plasma 3,3',5-triiodothyronine (T3) levels. Here we tried to unravel the underlying mechanism of MCT8 deficiency and tested whether the pathogenic MCT8L291R mutant responds to NaPB treatment. Therefore, we overexpressed the mutant in Madin-Darby canine kidney cells in the human choriocarcinoma cell line JEG1 and in COS7 cells of African green monkey origin. RESULTS In our recent study we describe that the MCT8L291R mutation most likely leads to a translocation defect. The pathogenic mutant is not located at the plasma membrane, but shows overlapping expression with a marker protein of the lysosome. Mutation of the corresponding amino acid in murine Mct8 (Mct8L223R) displays a similar effect on cell surface expression and transport function as seen before for MCT8L291R. NaPB was able to correct the translocation defect of MCT8L291R/Mct8L223R and restored protein function by increasing T3 transport activity. Furthermore, we detected enhanced mRNA levels of wild-type and mutant MCT8/Mct8 after NaPB treatment. The increase in mRNA levels could be an explanation for the positive effect on protein expression and function detected for wild-type MCT8. CONCLUSION NaPB is not only suitable for the treatment of mutations leading to misfolding and protein degradation, but also for a mutant wrongly sorted inside a cell which is otherwise functional.
Collapse
Affiliation(s)
- Doreen Braun
- *Doreen Braun, Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, DE–53115 Bonn (Germany),
| | | |
Collapse
|
29
|
Wilpert NM, Krueger M, Opitz R, Sebinger D, Paisdzior S, Mages B, Schulz A, Spranger J, Wirth EK, Stachelscheid H, Mergenthaler P, Vajkoczy P, Krude H, Kühnen P, Bechmann I, Biebermann H. Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid 2020; 30:1366-1383. [PMID: 32143555 DOI: 10.1089/thy.2019.0544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Mutations of monocarboxylate transporter 8 (MCT8), a thyroid hormone (TH)-specific transmembrane transporter, cause a severe neurodevelopmental disorder, the Allan-Herndon-Dudley syndrome. In MCT8 deficiency, TH is not able to reach those areas of the brain where TH uptake depends on MCT8. Currently, therapeutic options for MCT8-deficient patients are missing, as TH treatment is not successful in improving neurological deficits. Available data on MCT8 protein and transcript levels indicate complex expression patterns in neural tissue depending on species, brain region, sex, and age. However, information on human MCT8 expression is still scattered and additional efforts are needed to map sites of MCT8 expression in neurovascular units and neural tissue. This is of importance because new therapeutic strategies for this disease are urgently needed. Methods: To identify regions and time windows of MCT8 expression, we used highly specific antibodies against MCT8 to perform immunofluorescence labeling of postnatal murine brains, adult human brain tissue, and human cerebral organoids. Results: Qualitative and quantitative analyses of murine brain samples revealed stable levels of MCT8 protein expression in endothelial cells of the blood-brain barrier (BBB), choroid plexus epithelial cells, and tanycytes during postnatal development. Conversely, the neuronal MCT8 protein expression that was robustly detectable in specific brain regions of young mice strongly declined with age. Similarly, MCT8 immunoreactivity in adult human brain tissue was largely confined to endothelial cells of the BBB. Recently, cerebral organoids emerged as promising models of human neural development and our first analyses of forebrain-like organoids revealed MCT8 expression in early neuronal progenitor cell populations. Conclusions: With respect to MCT8-deficient conditions, our analyses not only strongly support the contention that the BBB presents a lifelong barrier to TH uptake but also highlight the need to decipher the TH transport role of MCT8 in early neuronal cell populations in more detail. Improving the understanding of the spatiotemporal expression in latter barriers will be critical for therapeutic strategies addressing MCT8 deficiency in the future.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Robert Opitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - David Sebinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Sarah Paisdzior
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Eva K Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Harald Stachelscheid
- Stem Cell Core Facility, Berlin Institute of Health, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Department of Neurology, Center for Stroke Research Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Peter Vajkoczy
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurosurgery, Berlin, Germany
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Peter Kühnen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Heike Biebermann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| |
Collapse
|
30
|
Wassner AJ. MCT8 deficiency: collaborative rare disease phenotyping for care and research. Lancet Diabetes Endocrinol 2020; 8:555-557. [PMID: 32559466 DOI: 10.1016/s2213-8587(20)30186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Ari J Wassner
- Thyroid Center, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Groeneweg S, van Geest FS, Abacı A, Alcantud A, Ambegaonkar GP, Armour CM, Bakhtiani P, Barca D, Bertini ES, van Beynum IM, Brunetti-Pierri N, Bugiani M, Cappa M, Cappuccio G, Castellotti B, Castiglioni C, Chatterjee K, de Coo IFM, Coutant R, Craiu D, Crock P, DeGoede C, Demir K, Dica A, Dimitri P, Dolcetta-Capuzzo A, Dremmen MHG, Dubey R, Enderli A, Fairchild J, Gallichan J, George B, Gevers EF, Hackenberg A, Halász Z, Heinrich B, Huynh T, Kłosowska A, van der Knaap MS, van der Knoop MM, Konrad D, Koolen DA, Krude H, Lawson-Yuen A, Lebl J, Linder-Lucht M, Lorea CF, Lourenço CM, Lunsing RJ, Lyons G, Malikova J, Mancilla EE, McGowan A, Mericq V, Lora FM, Moran C, Müller KE, Oliver-Petit I, Paone L, Paul PG, Polak M, Porta F, Poswar FO, Reinauer C, Rozenkova K, Menevse TS, Simm P, Simon A, Singh Y, Spada M, van der Spek J, Stals MAM, Stoupa A, Subramanian GM, Tonduti D, Turan S, den Uil CA, Vanderniet J, van der Walt A, Wémeau JL, Wierzba J, de Wit MCY, Wolf NI, Wurm M, Zibordi F, Zung A, Zwaveling-Soonawala N, Visser WE. Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study. Lancet Diabetes Endocrinol 2020; 8:594-605. [PMID: 32559475 PMCID: PMC7611932 DOI: 10.1016/s2213-8587(20)30153-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disordered thyroid hormone transport, due to mutations in the SLC16A2 gene encoding monocarboxylate transporter 8 (MCT8), is characterised by intellectual and motor disability resulting from cerebral hypothyroidism and chronic peripheral thyrotoxicosis. We sought to systematically assess the phenotypic characteristics and natural history of patients with MCT8 deficiency. METHODS We did an international, multicentre, cohort study, analysing retrospective data from Jan 1, 2003, to Dec 31, 2019, from patients with MCT8 deficiency followed up in 47 hospitals in 22 countries globally. The key inclusion criterion was genetically confirmed MCT8 deficiency. There were no exclusion criteria. Our primary objective was to analyse the overall survival of patients with MCT8 deficiency and document causes of death. We also compared survival between patients who did or did not attain full head control by age 1·5 years and between patients who were or were not underweight by age 1-3 years (defined as a bodyweight-for-age Z score <-2 SDs or <5th percentile according to WHO definition). Other objectives were to assess neurocognitive function and outcomes, and clinical parameters including anthropometric characteristics, biochemical markers, and neuroimaging findings. FINDINGS Between Oct 14, 2014, and Jan 17, 2020, we enrolled 151 patients with 73 different MCT8 (SLC16A2) mutations. Median age at diagnosis was 24·0 months (IQR 12·0-60·0, range 0·0-744·0). 32 (21%) of 151 patients died; the main causes of mortality in these patients were pulmonary infection (six [19%]) and sudden death (six [19%]). Median overall survival was 35·0 years (95% CI 8·3-61·7). Individuals who did not attain head control by age 1·5 years had an increased risk of death compared with patients who did attain head control (hazard ratio [HR] 3·46, 95% CI 1·76-8·34; log-rank test p=0·0041). Patients who were underweight during age 1-3 years had an increased risk for death compared with patients who were of normal bodyweight at this age (HR 4·71, 95% CI 1·26-17·58, p=0·021). The few motor and cognitive abilities of patients did not improve with age, as evidenced by the absence of significant correlations between biological age and scores on the Gross Motor Function Measure-88 and Bayley Scales of Infant Development III. Tri-iodothyronine concentrations were above the age-specific upper limit in 96 (95%) of 101 patients and free thyroxine concentrations were below the age-specific lower limit in 94 (89%) of 106 patients. 59 (71%) of 83 patients were underweight. 25 (53%) of 47 patients had elevated systolic blood pressure above the 90th percentile, 34 (76%) of 45 patients had premature atrial contractions, and 20 (31%) of 64 had resting tachycardia. The most consistent MRI finding was a global delay in myelination, which occurred in 13 (100%) of 13 patients. INTERPRETATION Our description of characteristics of MCT8 deficiency in a large patient cohort reveals poor survival with a high prevalence of treatable underlying risk factors, and provides knowledge that might inform clinical management and future evaluation of therapies. FUNDING Netherlands Organisation for Health Research and Development, and the Sherman Foundation.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ferdy S van Geest
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ayhan Abacı
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Alberto Alcantud
- Pediatric Neurology Section, Hospital Francesc de Borja de Gandia, Valencia, Spain
| | - Gautem P Ambegaonkar
- Department of Paediatric Neurology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Diana Barca
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurosciences, Paediatric Neurology Discipline II, Carol Davila University of Medicine, Bucharest, Romania
| | - Enrico S Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Ingrid M van Beynum
- Sophia Children's Hospital, Division of Paediatric Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Marianna Bugiani
- Department of Child Neurology, Center for Childhood White Matter Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, Amsterdam, Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marco Cappa
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Krishna Chatterjee
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Irenaeus F M de Coo
- Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Régis Coutant
- Department of Pediatric Endocrinology and Diabetology, University Hospital, Angers, France
| | - Dana Craiu
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurosciences, Paediatric Neurology Discipline II, Carol Davila University of Medicine, Bucharest, Romania
| | - Patricia Crock
- John Hunter Children's Hospital and University of Newcastle, Newcastle, NSW, Australia
| | | | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Alice Dica
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurosciences, Paediatric Neurology Discipline II, Carol Davila University of Medicine, Bucharest, Romania
| | - Paul Dimitri
- Sheffield Children's NHS Foundation Trust, Sheffield Hallam University and University of Sheffield, Sheffield, UK
| | - Anna Dolcetta-Capuzzo
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands; Università Vita-Salute San Raffaele, Milan, Italy
| | | | | | - Anina Enderli
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland
| | - Jan Fairchild
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | | | - Belinda George
- Department of Endocrinology, St. John's Medical College Hospital, Bengaluru, Karnataka, India
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research institute, Queen Mary University London, London, UK; Dept of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| | - Annette Hackenberg
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland
| | - Zita Halász
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland
| | - Tony Huynh
- Department of Endocrinology & Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia; Department of Chemical Pathology, Mater Pathology, South Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Anna Kłosowska
- Medical University of Gdańsk, Department of Paediatrics, Haematology & Oncology, Department of General Nursery, Gdańsk, Poland
| | - Marjo S van der Knaap
- Department of Child Neurology, Center for Childhood White Matter Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Heiko Krude
- Department of Paediatric Endocrinology and Diabetology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amy Lawson-Yuen
- Genomics Institute Mary Bridge Children's Hospital, MultiCare Health System Tacoma, WA, USA
| | - Jan Lebl
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Michaela Linder-Lucht
- Division of Neuropediatrics and Muscular Disorders, Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Cláudia F Lorea
- Teaching Hospital of Universidade Federal de Pelotas, Pelotas, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Roelineke J Lunsing
- Department of Child Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Greta Lyons
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jana Malikova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Edna E Mancilla
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Anne McGowan
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Veronica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile; Department of Pediatrics, Clinica Las Condes, Santiago, Chile
| | - Felipe M Lora
- Pediatric Endocrinology Group, Santa Catarina Hospital, São Paulo, Brazil
| | - Carla Moran
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Isabelle Oliver-Petit
- Department of Paediatric Endocrinology and Genetics, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Laura Paone
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Praveen G Paul
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Paris, France
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Fabiano O Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Klara Rozenkova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Tuba S Menevse
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Peter Simm
- Royal Children's Hospital, Parkville, Melbourne, VIC, Australia
| | - Anna Simon
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Yogen Singh
- Department of Paediatric Cardiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marco Spada
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Jet van der Spek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Milou A M Stals
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Athanasia Stoupa
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Paris, France
| | | | - Davide Tonduti
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Serap Turan
- Marmara University School of Medicine Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Corstiaan A den Uil
- Department of Cardiology and Intensive Care Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Joel Vanderniet
- John Hunter Children's Hospital and University of Newcastle, Newcastle, NSW, Australia
| | | | | | - Jolante Wierzba
- Medical University of Gdańsk, Department of Paediatrics, Haematology & Oncology, Department of General Nursery, Gdańsk, Poland
| | | | - Nicole I Wolf
- Department of Child Neurology, Center for Childhood White Matter Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Michael Wurm
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; KUNO Children's University Hospital, Campus St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Federica Zibordi
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Amnon Zung
- Paediatric Endocrinology Unit, Kaplan Medical Center, Rehovot, Israel; Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitash Zwaveling-Soonawala
- Emma Children's Hospital, Department of Paediatric Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - W Edward Visser
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
32
|
Grijota-Martínez C, Bárez-López S, Gómez-Andrés D, Guadaño-Ferraz A. MCT8 Deficiency: The Road to Therapies for a Rare Disease. Front Neurosci 2020; 14:380. [PMID: 32410949 PMCID: PMC7198743 DOI: 10.3389/fnins.2020.00380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Allan-Herndon-Dudley syndrome is a rare disease caused by inactivating mutations in the SLC16A2 gene, which encodes the monocarboxylate transporter 8 (MCT8), a transmembrane transporter specific for thyroid hormones (T3 and T4). Lack of MCT8 function produces serious neurological disturbances, most likely due to impaired transport of thyroid hormones across brain barriers during development resulting in severe brain hypothyroidism. Patients also suffer from thyrotoxicity in other organs due to the presence of a high concentration of T3 in the serum. An effective therapeutic strategy should restore thyroid hormone serum levels (both T3 and T4) and should address MCT8 transporter deficiency in brain barriers and neural cells, to enable the access of thyroid hormones to target neural cells. Unfortunately, targeted therapeutic options are currently scarce and their effect is limited to an improvement in the thyrotoxic state, with no sign of any neurological improvement. The use of thyroid hormone analogs such as TRIAC, DITPA, or sobetirome, that do not require MCT8 to cross cell membranes and whose controlled thyromimetic activity could potentially restore the normal function of the affected organs, are being explored to improve the cerebral availability of these analogs. Other strategies aiming to restore the transport of THs through MCT8 at the brain barriers and the cellular membranes include gene replacement therapy and the use of pharmacological chaperones. The design of an appropriate therapeutic strategy in combination with an early diagnosis (at prenatal stages), will be key aspects to improve the devastating alterations present in these patients.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron University Hospital and VHIR (Euro-NMD, ERN-RND), Barcelona, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Visser WE. Therapeutic applications of thyroid hormone analogues. ANNALES D'ENDOCRINOLOGIE 2020; 82:170-172. [PMID: 32197712 DOI: 10.1016/j.ando.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cellular thyroid hormone homeostasis requires adequate function of: (1) thyroid hormone transporter proteins at the plasma membrane, (2) deiodinating enzymes and (3) nuclear thyroid hormone receptors (TRs). Defects in any of these processes give rise to distinct disease entities, collectively called thyroid hormone signaling disorders. Thyroid hormone analogues hold therapeutic potential in thyroid hormone signaling disorders by bypassing defective transporters or binding to mutant TRs. This review will focus on the application of analogues in thyroid hormone signaling disorders, particularly monocarboxylate transporter (MCT)8 deficiency, and resistance to thyroid hormone due to mutations in TRβ (RTHβ).
Collapse
Affiliation(s)
- W E Visser
- Department of Internal Medicine, Rotterdam Thyroid Centre, Erasmus Medical Centre, Rotterdam, Netherlands. E%
| |
Collapse
|
35
|
Jongejan RMS, Klein T, Meima ME, Visser WE, van Heerebeek REA, Luider TM, Peeters RP, de Rijke YB. A Mass Spectrometry-Based Panel of Nine Thyroid Hormone Metabolites in Human Serum. Clin Chem 2020; 66:556-566. [DOI: 10.1093/clinchem/hvaa022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023]
Abstract
Abstract
Background
While thyroxine (T4), 3,3’,5-triiodothyronine (T3), and 3,3’,5’-triiodothyronine (rT3) have routine methods available for evaluating patients with suspected thyroid disease, appropriate methods for the measurement of other thyroid hormone metabolites (THMs) are lacking. The effects of other iodothyronines or iodothyroacetic acids are therefore less explored. To better understand the (patho)physiological role of THMs, a robust method to measure iodothyronines and iodothyroacetic acids in serum in a single analysis is needed, including associated reference intervals.
Methods
Clinical and Laboratory Standards Institute guidelines, European Medicines Agency guidelines, and the National Institute of Standards and Technology protocol were used for the method validation and reference intervals. Reference intervals were determined in 132 healthy males and 121 healthy females. Serum samples were deproteinized with acetonitrile, followed by anion-exchange solid phase extraction and analysis with LC-MS/MS, using eight 13C6-internal standards
Results
The analytical method validation was performed for all nine THMs. Reference intervals (2.5th to 97.5th percentile) were determined for L-thyronine (4.9–11.3 ng/dL), 3-monoiodothyronine (0.06 --0.41 ng/dL), 3,5-diiodothyronine (<0.13 ng/dL), 3,3’-diiodothyronine (0.25--0.77 ng/dL), T3 (66.4--129.9 ng/dL), rT3 (15.0--64.1 ng/dL), T4 (4.3--10.0 µg/dL), triac/3,3’,5-triiodothyroacetic acid (not detected), and tetrac/3,3’,5,5’-tetraiodothyroacetic acid (2.2--27.2 ng/dL).
Conclusions
A broad dynamic concentration range exists among the nine THMs. This method should help to develop a better understanding of the clinical relevance of other THMs, as well as an understanding of thyroid hormone metabolism in health and disease.
Collapse
Affiliation(s)
- Rutchanna M S Jongejan
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Academic Centre for Thyroid Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ramona E A van Heerebeek
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Academic Centre for Thyroid Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Academic Centre for Thyroid Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Vancamp P, Demeneix BA, Remaud S. Monocarboxylate Transporter 8 Deficiency: Delayed or Permanent Hypomyelination? Front Endocrinol (Lausanne) 2020; 11:283. [PMID: 32477268 PMCID: PMC7237703 DOI: 10.3389/fendo.2020.00283] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.
Collapse
Affiliation(s)
- Pieter Vancamp
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
37
|
Admati I, Wasserman-Bartov T, Tovin A, Rozenblat R, Blitz E, Zada D, Lerer-Goldshtein T, Appelbaum L. Neural Alterations and Hyperactivity of the Hypothalamic-Pituitary-Thyroid Axis in Oatp1c1 Deficiency. Thyroid 2020; 30:161-174. [PMID: 31797746 DOI: 10.1089/thy.2019.0320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The thyroid hormones (THs) triiodothyronine (T3) and thyroxine (T4) are crucial regulators of brain development and function. Cell-specific transporter proteins facilitate TH uptake and efflux across the cell membrane, and insufficient TH transport causes hypothyroidism and mental retardation. Mutations in the TH transporters monocarboxylate transporter 8 (MCT8, SLC16A2) and the organic anion-transporting polypeptide 1C1 (OATP1C1, SLCO1C1) are associated with the psychomotor retardation Allan-Herndon-Dudley syndrome and juvenile neurodegeneration, respectively. Methods: To understand the mechanisms and test potential treatments for the recently discovered OATP1C1 deficiency, we established an oatp1c1 mutant (oatp1c1-/-) zebrafish. Results:oatp1c1 is expressed in endothelial cells, neurons, and astrocytes in zebrafish. The activity of the hypothalamic-pituitary-thyroid axis and behavioral locomotor activity increased in oatp1c1-/- larvae. Neuropathological analysis revealed structural alteration in radial glial cells and shorter neuronal axons in oatp1c1-/- larvae and adults. Notably, oatp1c1-/- and oatp1c1-/-Xmct8-/- adults exhibit an enlarged thyroid gland (goiter). Pharmacological assays showed that TH analogs, but not THs, can reduce the size and improve the color of the thyroid gland in adult mutant zebrafish. Conclusion: These results establish a vertebrate model for OATP1C1 deficiency that demonstrates endocrinological, neurological, and behavioral alterations mimicking findings observed in an OATP1C1-deficient patient. Further, the curative effect of TH analogs in the oatp1c1-/- zebrafish model may provide a lead toward a treatment modality in human patients.
Collapse
Affiliation(s)
- Inbal Admati
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Talya Wasserman-Bartov
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
38
|
Bárez-López S, Grijota-Martínez C, Liao XH, Refetoff S, Guadaño-Ferraz A. Intracerebroventricular administration of the thyroid hormone analog TRIAC increases its brain content in the absence of MCT8. PLoS One 2019; 14:e0226017. [PMID: 31809508 PMCID: PMC6897405 DOI: 10.1371/journal.pone.0226017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023] Open
Abstract
Patients lacking the thyroid hormone (TH) transporter MCT8 present abnormal serum levels of TH: low thyroxine and high triiodothyronine. They also have severe neurodevelopmental defects resulting from cerebral hypothyroidism, most likely due to impaired TH transport across the brain barriers. The use of TH analogs, such as triiodothyroacetic acid (TRIAC), that can potentially access the brain in the absence of MCT8 and restore at least a subset of cerebral TH actions could improve the neurological defects in these patients. We hypothesized that direct administration of TRIAC into the brain by intracerebroventricular delivery to mice lacking MCT8 could bypass the restriction at the brain barriers and mediate TH action without causing hypermetabolism. We found that intracerebroventricular administration of therapeutic doses of TRIAC does not increase further plasma triiodothyronine or further decrease plasma thyroxine levels and does not alter TH content in the cerebral cortex. Although TRIAC content increased in the brain, it did not induce TH-mediated actions on selected target genes. Our data suggest that intracerebroventricular delivery of TRIAC has the ability to target the brain in the absence of MCT8 and should be further investigated to address its potential therapeutic use in MCT8 deficiency.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Grijota-Martínez
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Salveridou E, Mayerl S, Sundaram SM, Markova B, Heuer H. Tissue-Specific Function of Thyroid Hormone Transporters: New Insights from Mouse Models. Exp Clin Endocrinol Diabetes 2019; 128:423-427. [PMID: 31724131 DOI: 10.1055/a-1032-8328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) transporters are required for cellular transmembrane passage of TH and are thus mandatory for proper TH metabolism and action. Consequently, inactivating mutations in TH transporters such as MCT8 or OATP1C1 can cause tissue- specific changes in TH homeostasis. As the most prominent example, patients with MCT8 mutations exhibit elevated serum T3 levels, whereas their CNS appear to be in a TH deficient state. Here, we will briefly summarize recent studies of mice lacking Mct8 alone or in combination with the TH transporters Mct10 or Oatp1c1 that shed light on many aspects and pathogenic events underlying global MCT8 deficiency and also underscore the contribution of Mct10 and Oatp1c1 in tissue-specific TH transport processes. Moreover, development of conditional knock-out mice that allow a cell-specific inactivation of TH transporters in distinct tissues, disclosed cell-specific changes in TH signaling, thereby highlighting the pathophysiological significance of local control of TH action.
Collapse
Affiliation(s)
- Eva Salveridou
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.,Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Sivaraj Mohana Sundaram
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Boyka Markova
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.,Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.,Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| |
Collapse
|
40
|
Groeneweg S, Kersseboom S, van den Berge A, Dolcetta-Capuzzo A, van Geest FS, van Heerebeek REA, Arjona FJ, Meima ME, Peeters RP, Visser WE, Visser TJ. In Vitro Characterization of Human, Mouse, and Zebrafish MCT8 Orthologues. Thyroid 2019; 29:1499-1510. [PMID: 31436139 DOI: 10.1089/thy.2019.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause MCT8 deficiency, characterized by severe intellectual and motor disability and abnormal serum thyroid function tests. Various Mct8 knock-out mouse models as well as mct8 knock-out and knockdown zebrafish models are used as a disease model for MCT8 deficiency. Although important for model eligibility, little is known about the functional characteristics of the MCT8 orthologues in these species. Therefore, we here compared the functional characteristics of mouse (mm) MCT8 and zebrafish (dr) Mct8 to human (hs) MCT8. Methods: We performed extensive transport studies in COS-1 and JEG-3 cells transiently transfected with hsMCT8, drMct8, and mmMCT8. Protein expression levels and subcellular localization were assessed by immunoblotting, surface biotinylation, and immunocytochemistry. Sequence alignment and structural modeling were used to interpret functional differences between the orthologues. Results: hsMCT8, drMct8, and mmMCT8 all facilitated the uptake and efflux of 3,3'-diiodothyronine (3,3'-T2), rT3, triiodothyronine (T3), and thyroxine (T4), although the initial uptake rates of drMct8 were 1.5-4.0-fold higher than for hsMCT8 and mmMCT8. drMct8 exhibited 3-50-fold lower apparent IC50 values than hsMCT8 and mmMCT8 for all tested substrates, and substrate preference of drMct8 (3,3'-T2, T3 > T4 > rT3) differed from hsMCT8 and mmMCT8 (T3 > T4 > rT3, 3,3'-T2). Compared with hsMCT8 and mmMCT8, cis-inhibition studies showed that T3 uptake by drMct8 was inhibited at a lower concentration and by a broader spectrum of TH metabolites. Total and cell surface expression levels of drMct8 and hsMCT8 were equal and both significantly exceeded those of mmMCT8. Structural modeling located most non-conserved residues outside the substrate pore, except for H192 in hsMCT8, which is replaced by a glutamine in drMct8. However, a H192Q substituent of hsMCT8 did not alter its transporter characteristics. Conclusion: Our studies substantiate the eligibility of mice and zebrafish models for human MCT8 deficiency. However, differences in the intrinsic transporter properties of MCT8 orthologues may exist, which should be realized when comparing MCT8 deficiency in different in vivo models. Moreover, our findings may indicate that the protein domains outside the substrate channel may play a role in substrate selection and protein stability.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Simone Kersseboom
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Amanda van den Berge
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Anna Dolcetta-Capuzzo
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
- Department of Endocrinology and Internal Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Ramona E A van Heerebeek
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Francisco J Arjona
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Senese R, Cioffi F, Petito G, Goglia F, Lanni A. Thyroid hormone metabolites and analogues. Endocrine 2019; 66:105-114. [PMID: 31359245 DOI: 10.1007/s12020-019-02025-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Several metabolic products that derive from L-thyroxine (T4) and 3,3'5-L-triiodothyronine (T3), the main thyroid hormones secreted by the thyroid gland, possess biologic activities. Among these metabolites or derivatives showing physiological actions some have received greater attention: diiodothyronines, iodothyronamines, acetic acid analogues. It is known that increased thyroid hormone (T3 and T4) levels can improve serum lipid profiles and reduce body fat. These positive effects are, however, counterbalanced by adverse effects on the heart, muscle and bone, limiting their use. In addition to the naturally occurring metabolites, thyroid hormone analogues have been developed that either have selective effects on specific tissues or bind selectively to thyroid hormone receptor (TR) isoform. Among these GC-1, KB141, KB2115, and DITPA were deeply investigated and displayed promising therapeutic results in the potential treatment of conditions such as dyslipidemias and obesity. In this review, we summarize the current knowledge of metabolites and analogues of T4 and T3 with reference to their possible clinical application in the treatment of human diseases.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
42
|
Groeneweg S, Peeters RP, Moran C, Stoupa A, Auriol F, Tonduti D, Dica A, Paone L, Rozenkova K, Malikova J, van der Walt A, de Coo IFM, McGowan A, Lyons G, Aarsen FK, Barca D, van Beynum IM, van der Knoop MM, Jansen J, Manshande M, Lunsing RJ, Nowak S, den Uil CA, Zillikens MC, Visser FE, Vrijmoeth P, de Wit MCY, Wolf NI, Zandstra A, Ambegaonkar G, Singh Y, de Rijke YB, Medici M, Bertini ES, Depoorter S, Lebl J, Cappa M, De Meirleir L, Krude H, Craiu D, Zibordi F, Oliver Petit I, Polak M, Chatterjee K, Visser TJ, Visser WE. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol 2019; 7:695-706. [PMID: 31377265 PMCID: PMC7611958 DOI: 10.1016/s2213-8587(19)30155-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Deficiency of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) causes severe intellectual and motor disability and high serum tri-iodothyronine (T3) concentrations (Allan-Herndon-Dudley syndrome). This chronic thyrotoxicosis leads to progressive deterioration in bodyweight, tachycardia, and muscle wasting, predisposing affected individuals to substantial morbidity and mortality. Treatment that safely alleviates peripheral thyrotoxicosis and reverses cerebral hypothyroidism is not yet available. We aimed to investigate the effects of treatment with the T3 analogue Triac (3,3',5-tri-iodothyroacetic acid, or tiratricol), in patients with MCT8 deficiency. METHODS In this investigator-initiated, multicentre, open-label, single-arm, phase 2, pragmatic trial, we investigated the effectiveness and safety of oral Triac in male paediatric and adult patients with MCT8 deficiency in eight countries in Europe and one site in South Africa. Triac was administered in a predefined escalating dose schedule-after the initial dose of once-daily 350 μg Triac, the daily dose was increased progressively in 350 μg increments, with the goal of attaining serum total T3 concentrations within the target range of 1·4-2·5 nmol/L. We assessed changes in several clinical and biochemical signs of hyperthyroidism between baseline and 12 months of treatment. The prespecified primary endpoint was the change in serum T3 concentrations from baseline to month 12. The co-primary endpoints were changes in concentrations of serum thyroid-stimulating hormone (TSH), free and total thyroxine (T4), and total reverse T3 from baseline to month 12. These analyses were done in patients who received at least one dose of Triac and had at least one post-baseline evaluation of serum throid function. This trial is registered with ClinicalTrials.gov, number NCT02060474. FINDINGS Between Oct 15, 2014, and June 1, 2017, we screened 50 patients, all of whom were eligible. Of these patients, four (8%) patients decided not to participate because of travel commitments. 46 (92%) patients were therefore enrolled in the trial to receive Triac (median age 7·1 years [range 0·8-66·8]). 45 (98%) participants received Triac and had at least one follow-up measurement of thyroid function and thus were included in the analyses of the primary endpoints. Of these 45 patients, five did not complete the trial (two patients withdrew [travel burden, severe pre-existing comorbidity], one was lost to follow-up, one developed of Graves disease, and one died of sepsis). Patients required a mean dose of 38.3 μg/kg of bodyweight (range 6·4-84·3) to attain T3 concentrations within the target range. Serum T3 concentration decreased from 4·97 nmol/L (SD 1·55) at baseline to 1·82 nmol/L (0·69) at month 12 (mean decrease 3·15 nmol/L, 95% CI 2·68-3·62; p<0·0001), while serum TSH concentrations decreased from 2·91 mU/L (SD 1·68) to 1·02 mU/L (1·14; mean decrease 1·89 mU/L, 1·39-2·39; p<0·0001) and serum free T4 concentrations decreased from 9·5 pmol/L (SD 2·5) to 3·4 (1·6; mean decrease 6·1 pmol/L (5·4-6·8; p<0·0001). Additionally, serum total T4 concentrations decreased by 31·6 nmol/L (28·0-35·2; p<0·0001) and reverse T3 by 0·08 nmol/L (0·05-0·10; p<0·0001). Seven treatment-related adverse events (transiently increased perspiration or irritability) occurred in six (13%) patients. 26 serious adverse events that were considered unrelated to treatment occurred in 18 (39%) patients (mostly hospital admissions because of infections). One patient died from pulmonary sepsis leading to multi-organ failure, which was unrelated to Triac treatment. INTERPRETATION Key features of peripheral thyrotoxicosis were alleviated in paediatric and adult patients with MCT8 deficiency who were treated with Triac. Triac seems a reasonable treatment strategy to ameliorate the consequences of untreated peripheral thyrotoxicosis in patients with MCT8 deficiency. FUNDING Dutch Scientific Organization, Sherman Foundation, NeMO Foundation, Wellcome Trust, UK National Institute for Health Research Cambridge Biomedical Centre, Toulouse University Hospital, and Una Vita Rara ONLUS.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Academic Center for Thyroid Diseases, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Carla Moran
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Athanasia Stoupa
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Paris, France
| | - Françoise Auriol
- Department of Paediatric Endocrinology and Genetics, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Davide Tonduti
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alice Dica
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania
| | - Laura Paone
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Klara Rozenkova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Malikova
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | | | - Irenaeus F M de Coo
- Sophia Children's Hospital, Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Anne McGowan
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Greta Lyons
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Femke K Aarsen
- Sophia Children's Hospital, Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Diana Barca
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurosciences, Paediatric Neurology Discipline II, Carol Davila University of Medicine, Bucharest, Romania
| | - Ingrid M van Beynum
- Sophia Children's Hospital, Division of Paediatric Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Marieke M van der Knoop
- Sophia Children's Hospital, Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Jurgen Jansen
- Department of Paediatrics, Meander Medical Center, Amersfoort, Netherlands
| | | | - Roelineke J Lunsing
- Department of Child Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stan Nowak
- Department of Paediatrics, Refaja Hospital, Stadskanaal, Netherlands
| | - Corstiaan A den Uil
- Department of Cardiology and Intensive Care Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | | | - Marie Claire Y de Wit
- Sophia Children's Hospital, Department of Paediatric Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Gautam Ambegaonkar
- Department of Paediatric Neurology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yogen Singh
- Department of Paediatric Cardiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Marco Medici
- Academic Center for Thyroid Diseases, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Enrico S Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Sylvia Depoorter
- Department of Paediatrics, Algemeen Ziekenhuis Sint-Jan, Bruges, Belgium
| | - Jan Lebl
- Department of Paediatrics, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Marco Cappa
- Division of Endocrinology, Bambino Gesu' Children's Research Hospital IRCCS, Rome, Italy
| | - Linda De Meirleir
- Paediatric Neurology Unit, Department of Paediatrics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Heiko Krude
- Department of Paediatric Endocrinology and Diabetology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dana Craiu
- Paediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurosciences, Paediatric Neurology Discipline II, Carol Davila University of Medicine, Bucharest, Romania
| | - Federica Zibordi
- Child Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabelle Oliver Petit
- Department of Paediatric Endocrinology and Genetics, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Necker Children's University Hospital, Imagine Institute, Paris, France
| | - Krishna Chatterjee
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Theo J Visser
- Academic Center for Thyroid Diseases, Erasmus Medical Centre, Rotterdam, Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Erasmus Medical Centre, Rotterdam, Netherlands.
| |
Collapse
|
43
|
Lazcano I, Hernández-Puga G, Robles JP, Orozco A. Alternative ligands for thyroid hormone receptors. Mol Cell Endocrinol 2019; 493:110448. [PMID: 31100496 DOI: 10.1016/j.mce.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that activate or repress gene transcription, resulting in the regulation of numerous physiological programs. While 3,3',5-L-triiodothyronine is the TR cognate ligand, these receptors can also be activated by various alternative ligands, including endogenous and synthetic molecules capable of inducing diverse active receptor conformations that influence thyroid hormone-dependent signaling pathways. This review mainly discusses current knowledge on 3,5-diiodo-L-thyronine and 3,5,3'-triiodothyroacetic acid, two endogenous molecules that bind to TRs and regulate gene expression; and the molecular interactions between TRs and ligands, like synthetic thyromimetics developed to target specific TR isoforms for tissue-specific regulation of thyroid-related disorders, or endocrine disruptors that have allowed the design of new analogues and revealed essential amino acids for thyroid hormone binding.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico; Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Qro, Mexico
| | - Gabriela Hernández-Puga
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Qro, Mexico
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico.
| |
Collapse
|
44
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
45
|
Köhrle J. The Colorful Diversity of Thyroid Hormone Metabolites. Eur Thyroid J 2019; 8:115-129. [PMID: 31259154 PMCID: PMC6587369 DOI: 10.1159/000497141] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of L-thyroxine, the main secretory product of the thyroid gland, and its major metabolite T3, which exerts the majority of thyroid hormone action via ligand-dependent modulation of the function of T3 receptors in nuclei, mitochondria, and other subcellular compartments, various other T4-derived endogenous metabolites have been identified in blood and tissues of humans, animals, and early protochordates. This review addresses major historical milestones and experimental findings resulting in the discovery of the key enzymes of thyroid hormone metabolism, the three selenoprotein deiodinases, as well as the decarboxylases and amine oxidases involved in formation and degradation of recently identified endogenous thyroid hormone metabolites, i.e. 3-iodothyronamine and 3-thyroacetic acid. The concerted action of deiodinases 2 and 3 in regulation of local T3 availability is discussed. Special attention is given to the role of the thyromimetic "hot" metabolite 3,5-T2 and the "cool" 3-iodothyronamine, especially after administration of pharmacological doses of these endogenous thyroid hormone metabolites in various animal experimental models. In addition, available information on the biological roles of the two major acetic acid derivatives of thyroid hormones, i.e. Tetrac and Triac, as well as sulfated metabolites of thyroid hormones is reviewed. This review addresses the consequences of the existence of this broad spectrum of endogenous thyroid hormone metabolites, the "thyronome," beyond the classical thyroid hormone profile comprising T4, T3, and rT3 for appropriate analytical coverage and clinical diagnostics using mass spectrometry versus immunoassays for determination of total and free concentrations of thyroid hormone metabolites in blood and tissues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum (CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Kim MJ, Petratos S. Oligodendroglial Lineage Cells in Thyroid Hormone-Deprived Conditions. Stem Cells Int 2019; 2019:5496891. [PMID: 31182964 PMCID: PMC6515029 DOI: 10.1155/2019/5496891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are supporting glial cells that ensure the metabolism and homeostasis of neurons with specific synaptic axoglial interactions in the central nervous system. These require key myelinating glial trophic signals important for growth and metabolism. Thyroid hormone (TH) is one such trophic signal that regulates oligodendrocyte maturation, myelination, and oligodendroglial synaptic dynamics via either genomic or nongenomic pathways. The intracellular and extracellular transport of TH is facilitated by a specific transmembrane transporter known as the monocarboxylate transporter 8 (MCT8). Dysfunction of the MCT8 due to mutation, inhibition, or downregulation during brain development leads to inherited hypomyelination, which manifests as psychomotor retardation in the X-linked inherited Allan-Herndon-Dudley syndrome (AHDS). In particular, oligodendroglial-specific MCT8 deficiency may restrict the intracellular T3 availability, culminating in deficient metabolic communication between the oligodendrocytes and the neurons they ensheath, potentially promulgating neurodegenerative adult diseases such as multiple sclerosis (MS). Based on the therapeutic effects exhibited by TH in various preclinical studies, particularly related to its remyelinating potential, TH has now entered the initial stages of a clinical trial to test the therapeutic efficacy in relapsing-remitting MS patients (NCT02506751). However, TH analogs, such as DITPA or Triac, may well serve as future therapeutic options to rescue mature oligodendrocytes and/or promote oligodendrocyte precursor cell differentiation in an environment of MCT8 deficiency within the CNS. This review outlines the therapeutic strategies to overcome the differentiation blockade of oligodendrocyte precursors and maintain mature axoglial interactions in TH-deprived conditions.
Collapse
Affiliation(s)
- Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
47
|
Strømme P, Groeneweg S, Lima de Souza EC, Zevenbergen C, Torgersbråten A, Holmgren A, Gurcan E, Meima ME, Peeters RP, Visser WE, Høneren Johansson L, Babovic A, Zetterberg H, Heuer H, Frengen E, Misceo D, Visser TJ. Mutated Thyroid Hormone Transporter OATP1C1 Associates with Severe Brain Hypometabolism and Juvenile Neurodegeneration. Thyroid 2018; 28:1406-1415. [PMID: 30296914 DOI: 10.1089/thy.2018.0595] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid hormones (TH) are essential for brain development and function. The TH transporters monocarboxylate transporter 8 (MCT8) and organic anion transporter1 C1 (OATP1C1) facilitate the transport of TH across the blood-brain barrier and into glia and neuronal cells in the brain. Loss of MCT8 function causes Allan-Herndon-Dudley syndrome (AHDS, OMIM 300523) characterized by severe intellectual and motor disability due to cerebral hypothyroidism. Here, the first patient with loss of OATP1C1 function is described. The patient is a 15.5-year-old girl with normal development in the first year of life, who gradually developed dementia with spasticity and intolerance to cold. Brain imaging demonstrated gray and white matter degeneration and severe glucose hypometabolism. METHODS Exome sequencing of the patient and parents was performed to identify the disease-causing mutation, and the effect of the mutation was studied through a panel of in vitro experiments, including thyroxine uptake studies, immunoblotting, and immunocytochemistry. Furthermore, the clinical effects of treatment with the triiodothyronine analogue triiodothyroacetic acid (Triac) are described. RESULTS Exome sequencing identified a homozygous missense mutation in OATP1C1, changing the highly conserved aspartic acid 252 to asparagine (D252N). In vitro, the mutated OATP1C1 displays impaired plasma membrane localization and decreased cellular thyroxine uptake. After treatment with Triac, the clinical condition improved in several domains. CONCLUSIONS This is the first report of human OATP1C1 deficiency compatible with brain-specific hypothyroidism and neurodegeneration.
Collapse
Affiliation(s)
- Petter Strømme
- 1 Division of Pediatric and Adolescent Medicine; Oslo University Hospital , Oslo, Norway
- 2 Faculty of Medicine, University of Oslo , Oslo, Norway
| | - Stefan Groeneweg
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Anette Torgersbråten
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Asbjørn Holmgren
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Ebrar Gurcan
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Marcel E Meima
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Robin P Peeters
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - W Edward Visser
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | | | - Almira Babovic
- 5 Department of Nuclear Medicine; Oslo University Hospital , Oslo, Norway
| | - Henrik Zetterberg
- 6 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden
- 7 Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden
- 8 Department of Molecular Neuroscience, UCL Institute of Neurology , Queen Square, London, United Kingdom
- 9 UK Dementia Research Institute at UCL , London, United Kingdom
| | - Heike Heuer
- 10 Department of Endocrinology, University of Duisburg-Essen , Essen, Germany
| | - Eirik Frengen
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Doriana Misceo
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Theo J Visser
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| |
Collapse
|
48
|
Vancamp P, Darras VM. From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 2018; 265:219-229. [PMID: 29183795 DOI: 10.1016/j.ygcen.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates transmembrane transport of thyroid hormones (THs) ensuring their action on gene expression during vertebrate neurodevelopment. A loss of MCT8 in humans results in severe psychomotor deficits associated with the Allan-Herndon-Dudley Syndrome (AHDS). However, where and when exactly a lack of MCT8 causes the neurological manifestations remains unclear because of the varying expression pattern of MCT8 between specific brain regions and cells. Here, we elaborate on the animal models that have been generated to elucidate the mechanisms underlying MCT8-deficient brain development. The absence of a clear neurological phenotype in Mct8 knockout mice made it clear that a single species would not suffice. The evolutionary conservation of TH action on neurodevelopment as well as the components regulating TH signalling however offers the opportunity to answer different aspects of MCT8 function in brain development using different vertebrate species. Moreover, the plethora of tools for genome editing available today facilitates gene silencing in these animals as well. Studies in the recently generated mct8-deficient zebrafish and Mct8/Oatp1c1 double knockout mice have put forward the current paradigm of impaired TH uptake at the level of the blood-brain barrier during peri- and postnatal development as being the main pathophysiological mechanism of AHDS. RNAi vector-based, cell-specific induction of MCT8 knockdown in the chicken embryo points to an additional function of MCT8 at the level of the neural progenitors during early brain development. Future studies including also additional in vivo models like Xenopus or in vitro approaches such as induced pluripotent stem cells will continue to help unravelling the exact role of MCT8 in developmental events. In the end, this multispecies approach will lead to a unifying thesis regarding the cellular and molecular mechanisms responsible for the neurological phenotype in AHDS patients.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
49
|
Bárez-López S, Hartley MD, Grijota-Martínez C, Scanlan TS, Guadaño-Ferraz A. Sobetirome and its Amide Prodrug Sob-AM2 Exert Thyromimetic Actions in Mct8-Deficient Brain. Thyroid 2018; 28:1211-1220. [PMID: 29845892 PMCID: PMC6154442 DOI: 10.1089/thy.2018.0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Loss of function mutations in the thyroid hormone (TH)-specific cell membrane transporter, the monocarboxylate transporter 8 (MCT8), lead to profound psychomotor retardation and abnormal TH serum levels, with low thyroxine (T4) and high triiodothyronine (T3). Several studies point to impaired TH transport across brain barriers as a crucial pathophysiological mechanism resulting in cerebral hypothyroidism. Treatment options for MCT8-deficient patients are limited and are focused on overcoming the brain barriers. The aim of this study was to evaluate the ability of the TH analog sobetirome and its prodrug Sob-AM2 to access the brain and exert thyromimetic actions in the absence of Mct8. METHODS Juvenile wild-type (Wt) mice and mice lacking Mct8 and deiodinase type 2 (Mct8/Dio2KO) were treated systemically with daily injections of vehicle, 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for seven days. Sobetirome content was measured using liquid chromatography-tandem mass spectrometry, and T4 and T3 levels by specific radioimmunoassays. The effect of sobetirome treatment in the expression of T3-dependent genes was measured in the heart, liver, and cerebral cortex by real-time polymerase chain reaction. RESULTS Sob-AM2 treatment in Mct8/Dio2KO animals led to 1.8-fold more sobetirome content in the brain and 2.5-fold less in plasma in comparison to the treatment with the parent drug sobetirome. Both sobetirome and Sob-AM2 treatments in Mct8/Dio2KO mice greatly decreased plasma T4 and T3 levels. Dio1 and Ucp2 gene expression was altered in the liver of Mct8/Dio2KO mice and was not affected by the treatments. In the heart, Hcn2 but not Atp2a2 expression was increased after treatment with the analogs. Interestingly, both sobetirome and Sob-AM2 treatments increased the expression of several T3-dependent genes in the brain such as Hr, Abcd2, Mme, and Flywch2 in Mct8/Dio2KO mice. CONCLUSIONS Sobetirome and its amide prodrug Sob-AM2 can access the brain in the absence of Mct8 and exert thyromimetic actions modulating the expression of T3-dependent genes. At the peripheral level, the administration of these TH analogs results in the depletion of circulating T4 and T3. Therefore, sobetirome and Sob-AM2 have the potential to address the cerebral hypothyroidism and the peripheral hyperthyroidism characteristic of MCT8 deficiency.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Meredith D. Hartley
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
| | - Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
- Address correspondence to:Thomas S. Scanlan, PhDDepartment of Physiology and Pharmacology and Program in Chemical BiologyOregon Health and Science UniversityPortland, OR 97239
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Ana Guadaño-Ferraz, PhDDepartment of Endocrine and Nervous System PathophysiologyInstituto de Investigaciones Biomédicas Alberto SolsConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridArturo Duperier 4E-28029 MadridSpain
| |
Collapse
|
50
|
Groeneweg S, van den Berge A, Meima ME, Peeters RP, Visser TJ, Visser WE. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology 2018; 159:1290-1302. [PMID: 29309566 DOI: 10.1210/en.2017-00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in severe intellectual and motor disability. At present, no effective therapy is available to restore TH signaling in MCT8-dependent tissues. Recent in vitro studies in stable overexpression cell models suggested that the function of certain mutant MCT8 proteins, specifically those that affect protein stability and intracellular trafficking (e.g., p.F501del), could be partially recovered by chemical chaperones. However, the effects of chaperones have not been demonstrated in other commonly used models for MCT8 deficiency, including transient overexpression models and patient-derived fibroblasts. Here, we demonstrate that the chemical chaperone 4-phenylbutyric acid (PBA) similarly potentiates the T3 transport function of wild-type and p.F501del mutant MCT8 in transiently transfected COS-1 cells by increasing MCT8 messenger RNA, total protein, and cell surface expression levels. Although PBA also increased the cell surface expression levels of the p.R445L mutant, no functional improvement was observed, which is in line with the proposed important role of Arg445 in substrate translocation. In contrast, PBA showed only minimal effects in ex vivo studies using control or p.F501del patient-derived fibroblasts. Moreover, the MCT8-specific inhibitor silychristin did not change these minimal effects, suggesting that the underlying mechanism is unrelated to the rescue of functional MCT8. Together, these findings indicate that the potency of chaperones to rescue mutant MCT8 function strongly depends on the cellular model and stress the need for further preclinical studies before clinically available chaperones should be considered as a treatment option in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Amanda van den Berge
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|