1
|
Woo KA, Yoon EJ, Kim S, Kim H, Kim R, Jin B, Lee S, Park H, Nam H, Kim YK, Lee JY. Cognitive Impact of β-Amyloid Load in the Rapid Eye Movement Sleep Behavior Disorder-Lewy Body Disease Continuum. Mov Disord 2024; 39:2259-2270. [PMID: 39400375 DOI: 10.1002/mds.30031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Rapid eye movement sleep behavior disorder (RBD) is linked to the diffuse-malignant subtype and higher cognitive burden in Lewy body disease (LBD). OBJECTIVE This study explores brain β-amyloid deposition and its association with cognitive decline across the RBD-LBD continuum. METHODS Patients with isolated RBD (iRBD), Parkinson's disease with probable RBD (PDRBD), and dementia with Lewy bodies with probable RBD (DLBRBD) underwent 18F-florbetaben positron emission tomography, 3T magnetic resonance imaging scans, and comprehensive neuropsychological assessments. Subjects were categorized as cognitively normal (NC), mild cognitive impairment (MCI), or dementia. Global and regional standardized uptake value ratios (SUVR) were estimated in predefined cognitive volumes of interest (VOI) derived from voxel-wise comparison analysis among the cognitive groups, namely the prefrontal, parietal, precentral cortices, lingual gyrus, and supplementary motor area. Generalized linear models assessed the relationship between 18F-florbetaben SUVRs and neuropsychological testing, adjusting for age and sex. Subgroup analysis focused on the polysomnography-confirmed iRBD-continuum subset (n = 41) encompassing phenoconverters and nonconverters in our prospective iRBD cohort. RESULTS Eighty-six subjects were classified as follows: 14 NC, 54 MCI, and 18 dementia. The proportion of positive β-amyloid scans increased with advanced cognitive stages (P = 0.038). β-Amyloid signals in cognitive VOIs were elevated in subgroups showing impairment in Trail-Making Test B (TMT-B). A linear association between TMT-B z score and global cortical β-amyloid levels was observed in the iRBD-continuum subset (P = 0.013). CONCLUSION Cortical β-amyloid accumulates with declines in executive function within the RBD-LBD continuum. TMT-B performance may be a useful marker associating with β-amyloid load, particularly in the iRBD population. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bora Jin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chen L, Lu H, Mao L, Lin J, Liu P. Unraveling the interplay of β-amyloid pathology and Parkinson's disease progression: Insights from autopsy-confirmed patients. Heliyon 2024; 10:e39194. [PMID: 39524781 PMCID: PMC11543873 DOI: 10.1016/j.heliyon.2024.e39194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests with both motor and non-motor symptoms, with α-synuclein misfolding recognized as a key contributor. Cognitive decline in advanced PD stages prompts interest in amyloid deposition, a hallmark of Alzheimer's disease (AD), as a potential factor. This study explores the impact of β-amyloid (Aβ) pathology in PD patients on disease progression, aiming to elucidate the role of Aβ in PD development and progression. Methods This study included autopsy-confirmed PD patients with post-mortem analyses from the Parkinson's Progression Markers Initiative. Comprehensive clinical assessments, including demographic data, clinical features, CSF markers, and neuroimaging, were conducted. Statistical analyses assessed differences between groups based on the severity of AD neuropathological changes. Results All 16 PD participants exhibited severe Lewy body pathology, with 75 % displaying AD neuropathological changes. At baseline, PD patients with severe or moderate AD neuropathological changes had a lower Aβ42 levels (p = 0.022) and Aβ42/tau ratio (p = 0.001). Longitudinal follow-up data indicated that individuals with severe or moderate AD neuropathological changes exhibited a more rapid decline in MOCA score and BJLOT score, along with a quicker increase in MDS-UPDRS Ⅲ score. Conclusions The study underscores the presence of severe Aβ pathology in PD, suggesting a role in accelerated disease progression. Cross-seeding between Aβ and α-synuclein may contribute to rapid clinical symptom progression. Further research is needed for a comprehensive understanding of neurodegenerative disease complexities and exploring potential therapeutic interventions targeting protein aggregation.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Junxin Lin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
5
|
Liu F, Shi Y, Wu Q, Chen H, Wang Y, Cai L, Zhang N. The value of FDG combined with PiB PET in the diagnosis of patients with cognitive impairment in a memory clinic. CNS Neurosci Ther 2024; 30:e14418. [PMID: 37602885 PMCID: PMC10848040 DOI: 10.1111/cns.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS To analyze the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with amyloid PET in cognitive impairment diagnosis. METHODS A total of 187 patients with dementia or mild cognitive impairment (MCI) who underwent 11 C-Pittsburgh compound B (PiB) and FDG PET scans in a memory clinic were included in the final analysis. RESULTS Amyloid-positive and amyloid-negative dementia patient groups showed a significant difference in the proportion of individuals presenting temporoparietal cortex (p < 0.001) and posterior cingulate/precuneus cortex (p < 0.001) hypometabolism. The sensitivity and specificity of this hypometabolic pattern for identifying amyloid pathology were 72.61% and 77.97%, respectively, in patients clinically diagnosed with AD and 60.87% and 76.19%, respectively, in patients with MCI. The initial diagnosis was changed in 32.17% of patients with dementia after considering both PiB and FDG results. There was a significant difference in both the proportion of patients showing the hypometabolic pattern and PiB positivity between dementia conversion patients and patients with a stable diagnosis of MCI (p < 0.05). CONCLUSION Temporoparietal and posterior cingulate/precuneus cortex hypometabolism on FDG PET suggested amyloid pathology in patients with cognitive impairment and is helpful in diagnostic decision-making and predicting AD dementia conversion from MCI, particularly when combined with amyloid PET.
Collapse
Affiliation(s)
- Fang Liu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yudi Shi
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Health Management CenterTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Qiuyan Wu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Huifeng Chen
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Ying Wang
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Li Cai
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Nan Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| |
Collapse
|
6
|
Weintraub D. What's in a Name? The Time Has Come to Unify Parkinson's Disease and Dementia with Lewy Bodies. Mov Disord 2023; 38:1977-1981. [PMID: 37614069 DOI: 10.1002/mds.29590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Diaz-Galvan P, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR, Min HKP, Jain M, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Ross O, Graff-Radford N, Day GS, Dickson DW, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, Kantarci K. β-Amyloid Load on PET Along the Continuum of Dementia With Lewy Bodies. Neurology 2023; 101:e178-e188. [PMID: 37202168 PMCID: PMC10351554 DOI: 10.1212/wnl.0000000000207393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES β-Amyloid (Aβ) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aβ load at prodromal stages of DLB still needs to be elucidated. We investigated Aβ load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aβ levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aβ-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (β estimate = 0.014, p = 0.02). DISCUSSION In this cross-sectional study, levels of Aβ load was higher further along the DLB continuum. Whereas Aβ levels were comparable with those in CU individuals in iRBD, a significant elevation in Aβ levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aβ levels than APOE ε4 noncarriers, and women tended to have higher Aβ levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.
Collapse
Affiliation(s)
- Patricia Diaz-Galvan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Paul Min
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Manoj Jain
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Leah K Forsberg
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David T Jones
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Erik K St Louis
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Vijay K Ramanan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Owen Ross
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Gregory S Day
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
8
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Jeong SH, Cha J, Jung JH, Yun M, Sohn YH, Chung SJ, Lee PH. Occipital Amyloid Deposition Is Associated with Rapid Cognitive Decline in the Alzheimer's Disease Continuum. J Alzheimers Dis 2023:JAD230187. [PMID: 37355901 DOI: 10.3233/jad-230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND Clinical significance of additional occipital amyloid-β (Aβ) plaques in Alzheimer's disease (AD) remains unclear. OBJECTIVE In this study, we investigated the effect of regional Aβ deposition on cognition in patients on the AD continuum, especially in the occipital region. METHODS We retrospectively reviewed the medical record of 208 patients with AD across the cognitive continuum (non-dementia and dementia). Multivariable linear regression analyses were performed to determine the effect of regional Aβ deposition on cognitive function. A linear mixed model was used to assess the effect of regional deposition on longitudinal changes in Mini-Mental State Examination (MMSE) scores. Additionally, the patients were dichotomized according to the occipital-to-global Aβ deposition ratio (ratio ≤1, Aβ-OCC- group; ratio >1, Aβ-OCC+ group), and the same statistical analyses were applied for between-group comparisons. RESULTS Regional Aβ burden itself was not associated with baseline cognitive function. In terms of Aβ-OCC group effect, the Aβ-OCC+ group exhibited a poorer cognitive performance on language function compared to the Aβ-OCC- group. High Aβ retention in each region was associated with a rapid decline in MMSE scores, only in the dementia subgroup. Additionally, Aβ-OCC+ individuals exhibited a faster annual decline in MMSE scores than Aβ-OCC- individuals in the non-dementia subgroup (β= -0.77, standard error [SE] = 0.31, p = 0.013). CONCLUSION The present study demonstrated that additional occipital Aβ deposition was associated with poor baseline language function and rapid cognitive deterioration in patients on the AD continuum.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Ho Jung
- Department of Neurology, Inje University Busan Paik Hospital, Busan, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- YONSEI BEYOND LAB, Yongin, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
11
|
Baik K, Kim HR, Park M, Lee Y, Na HK, Sohn YH, Seong JK, Lee PH. Effect of Amyloid on Cognitive Performance in Parkinson's Disease and Dementia with Lewy Bodies. Mov Disord 2023; 38:278-285. [PMID: 36527414 DOI: 10.1002/mds.29295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Concomitant amyloid pathology contributes to the clinical heterogeneity of Lewy body diseases (LBDs). OBJECTIVE The objective of this study was to investigate the pattern and effect of amyloid accumulation on cognitive dysfunction in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). METHODS We retrospectively assessed 205 patients with LBD (91 with DLB and 114 with PD) who underwent 18 F-florbetaben positron emission tomography and divided them into amyloid-positive and amyloid-negative groups depending on global standardized uptake value ratios (SUVRs). We investigated the effect of group on the regional and global SUVRs using general linear models (GLMs) after controlling for age, sex, cognitive status, and score on the Korean version of the Mini-Mental State Examination. Moreover, the effect of amyloid on cognitive function, depending on the type of LBD, was evaluated using GLMs with interaction analysis. RESULTS In all evaluated regions including the striatum, the DLB group showed a higher SUVR than the PD group. Among amyloid-positive patients, the DLB group had a higher regional SUVR than the PD group in the frontal and parietal cortices. There was a significant interaction effect between amyloid and disease groups in language and memory function. In patients with PD, global amyloid load was negatively associated with language (B = -2.03; P = 0.010) and memory functions (B = -1.96; P < 0.001). However, amyloid load was not significantly associated with cognitive performance in the DLB group. CONCLUSIONS Although the burden of amyloid was higher in the DLB group, amyloid accumulation was negatively associated with the memory and language functions in the PD group only. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryun Kim
- Interdisciplinary Studies for Emerging Industries Research Institute, Department of Software Convergence, Seoul Women's University, Seoul, South Korea
| | - Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Chung-Ang University College of Medicine and Graduate School of Medicine, Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Younggun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Kyu Na
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, South Korea.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
13
|
Nojima H, Ito S, Kushida A, Abe A, Motsuchi W, Verbel D, Vandijck M, Jannes G, Vandenbroucke I, Aoyagi K. Clinical utility of cerebrospinal fluid biomarkers measured by LUMIPULSE ® system. Ann Clin Transl Neurol 2022; 9:1898-1909. [PMID: 36321325 PMCID: PMC9735374 DOI: 10.1002/acn3.51681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are well-established in research settings, but their use in routine clinical practice remains a largely unexploited potential. Here, we examined the relationship between CSF biomarkers, measured by a fully automated immunoassay platform, and brain β-amyloid (Aβ) deposition status confirmed by amyloid positron emission tomography (PET). METHODS One hundred ninety-nine CSF samples from clinically diagnosed AD patients enrolled in a clinical study and who underwent amyloid PET were used for the measurement of CSF biomarkers Aβ 1-40 (Aβ40), Aβ 1-42 (Aβ42), total tau (t-Tau), and phosphorylated tau-181 (p-Tau181) using the LUMIPULSE system. These biomarkers and their combinations were compared to amyloid PET classification (negative or positive) using visual read assessments. Several combinations were also analyzed with a multivariable logistic regression model. RESULTS Aβ42, t-Tau, and p-Tau181, and the ratios of Aβ42 with other biomarkers had a good diagnostic agreement with amyloid PET imaging. The multivariable logistic regression analysis showed that amyloid PET status was associated with Aβ40 and Aβ42, but other factors, such as MMSE, sex, t-Tau, and p-Tau181, did not significantly add information to the model. CONCLUSIONS CSF biomarkers measured with the LUMIPULSE system showed good agreement with amyloid PET imaging. The ratio of Aβ42 with the other analyzed biomarkers showed a higher correlation with amyloid PET than Aβ42 alone, suggesting that the combinations of biomarkers could be useful in the diagnostic assessment in clinical research and potentially in routine clinical practice.
Collapse
Affiliation(s)
- Hisashi Nojima
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Satoshi Ito
- Eisai Co., Ltd. 4‐6‐10 KoishikawaBunkyo‐kuTokyo112‐8088Japan,Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Akira Kushida
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Aki Abe
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Wataru Motsuchi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - David Verbel
- Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Manu Vandijck
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | - Geert Jannes
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | | | - Katsumi Aoyagi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| |
Collapse
|
14
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
15
|
Palmieri I, Poloni TE, Medici V, Zucca S, Davin A, Pansarasa O, Ceroni M, Tronconi L, Guaita A, Gagliardi S, Cereda C. Differential Neuropathology, Genetics, and Transcriptomics in Two Kindred Cases with Alzheimer’s Disease and Lewy Body Dementia. Biomedicines 2022; 10:biomedicines10071687. [PMID: 35884993 PMCID: PMC9313121 DOI: 10.3390/biomedicines10071687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) and Lewy body dementia (LBD) are two different forms of dementia, but their pathology may involve the same cortical areas with overlapping cognitive manifestations. Nonetheless, the clinical phenotype is different due to the topography of the lesions driven by the different underlying molecular processes that arise apart from genetics, causing diverse neurodegeneration. Here, we define the commonalities and differences in the pathological processes of dementia in two kindred cases, a mother and a son, who developed classical AD and an aggressive form of AD/LBD, respectively, through a neuropathological, genetic (next-generation sequencing), and transcriptomic (RNA-seq) comparison of four different brain areas. A genetic analysis did not reveal any pathogenic variants in the principal AD/LBD-causative genes. RNA sequencing highlighted high transcriptional dysregulation within the substantia nigra in the AD/LBD case, while the AD case showed lower transcriptional dysregulation, with the parietal lobe being the most involved brain area. The hippocampus (the most degenerated area) and basal ganglia (lacking specific lesions) expressed the lowest level of dysregulation. Our data suggest that there is a link between transcriptional dysregulation and the amount of tissue damage accumulated across time, assessed through neuropathology. Moreover, we highlight that the molecular bases of AD and LBD follow very different pathways, which underlie their neuropathological signatures. Indeed, the transcriptome profiling through RNA sequencing may be an important tool in flanking the neuropathological analysis for a deeper understanding of AD and LBD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Palmieri
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
| | - Tino Emanuele Poloni
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
- Department of Rehabilitation, ASP Golgi-Redaelli, Abbiategrasso, 20081 Milan, Italy
| | - Valentina Medici
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
| | | | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Orietta Pansarasa
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Correspondence:
| | - Mauro Ceroni
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
| | - Livio Tronconi
- U.O. Medicina Legale, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Unit of Legal Medicine and Forensic Sciences “A. Fornari”, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Guaita
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Stella Gagliardi
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
| | - Cristina Cereda
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Department of Women, Mothers and Neonatal Care, Children’s Hospital “V. Buzzi”, 20100 Milan, Italy
| |
Collapse
|
16
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
17
|
Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel) 2022; 13:genes13061034. [PMID: 35741796 PMCID: PMC9222420 DOI: 10.3390/genes13061034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023] Open
Abstract
To date, no neurodegenerative diseases (NDDs) have cures, and the underlying mechanism of their pathogenesis is undetermined. As miRNAs extensively regulate all biological processes and are crucial regulators of healthy brain function, miRNAs differentially expressed in NDDs may provide insight into the factors that contribute to the emergence of protein inclusions and the propagation of deleterious cellular environments. A meta-analysis of miRNAs dysregulated in Alzheimer’s disease, Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and frontotemporal lobar degeneration (TDP43 variant) was performed to determine if diseases within a proteinopathy have distinct or shared mechanisms of action leading to neuronal death, and if proteinopathies can be classified on the basis of their miRNA profiles. Our results identified both miRNAs distinct to the anatomy, disease type and pathology, and miRNAs consistently dysregulated within single proteinopathies and across neurodegeneration in general. Our results also highlight the necessity to minimize the variability between studies. These findings showcase the need for more transcriptomic research on infrequently occurring NDDs, and the need for the standardization of research techniques and platforms utilized across labs and diseases.
Collapse
Affiliation(s)
- Ocana Noronha
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0106, Japan
| | - Lucia Mesarosovo
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Anand Iyer
- Department of Internal Medicine, Erasmus Medicine Center, 3015 GD Rotterdam, The Netherlands;
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Department of Clinical and Experimental Epilepsy, University College London, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross SL9 0RJ, UK
- Correspondence:
| |
Collapse
|
18
|
Minoshima S, Cross D, Thientunyakit T, Foster NL, Drzezga A. 18F-FDG PET Imaging in Neurodegenerative Dementing Disorders: Insights into Subtype Classification, Emerging Disease Categories, and Mixed Dementia with Copathologies. J Nucl Med 2022; 63:2S-12S. [PMID: 35649653 DOI: 10.2967/jnumed.121.263194] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Since the invention of 18F-FDG as a neurochemical tracer in the 1970s, 18F-FDG PET has been used extensively for dementia research and clinical applications. FDG, a glucose analog, is transported into the brain via glucose transporters and metabolized in a concerted process involving astrocytes and neurons. Although the exact cellular mechanisms of glucose consumption are still under investigation, 18F-FDG PET can sensitively detect altered neuronal activity due to neurodegeneration. Various neurodegenerative disorders affect different areas of the brain, which can be depicted as altered 18F-FDG uptake by PET. The spatial patterns and severity of such changes can be reproducibly visualized by statistical mapping technology, which has become widely available in the clinic. The differentiation of 3 major neurodegenerative disorders by 18F-FDG PET, Alzheimer disease (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB), has become standard practice. As the nosology of FTD evolves, frontotemporal lobar degeneration, the umbrella term for pathology affecting the frontal and temporal lobes, has been subclassified clinically into behavioral variant FTD; primary progressive aphasia with 3 subtypes, semantic, nonfluent, and logopenic variants; and movement disorders including progressive supranuclear palsy and corticobasal degeneration. Each of these subtypes is associated with differential 18F-FDG PET findings. The discovery of new pathologic markers and clinicopathologic correlations via larger autopsy series have led to newly recognized or redefined disease categories, such as limbic-predominant age-related TDP-43 encephalopathy, hippocampus sclerosis, primary age-related tauopathy, and argyrophilic grain disease, which have become a focus of investigations by molecular imaging. These findings need to be integrated into the modern interpretation of 18F-FDG PET. Recent pathologic investigations also have revealed a high prevalence, particularly in the elderly, of mixed dementia with overlapping and coexisting pathologies. The interpretation of 18F-FDG PET is evolving from a traditional dichotomous diagnosis of AD versus FTD (or DLB) to a determination of the most predominant underlying pathology that would best explain the patient's symptoms, for the purpose of care guidance. 18F-FDG PET is a relatively low cost and widely available imaging modality that can help assess various neurodegenerative disorders in a single test and remains the workhorse in clinical dementia evaluation.
Collapse
Affiliation(s)
- Satoshi Minoshima
- Department of Radiology and Imaging Sciences, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah;
| | - Donna Cross
- Department of Radiology and Imaging Sciences, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Norman L Foster
- Department of Neurology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Bonn, Germany; and.,Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
19
|
The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Auton Neurosci 2022; 240:102985. [DOI: 10.1016/j.autneu.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
20
|
Garon M, Weis L, Fiorenzato E, Pistonesi F, Cagnin A, Bertoldo A, Anglani M, Cecchin D, Antonini A, Biundo R. Quantification of Brain β-Amyloid Load in Parkinson's Disease With Mild Cognitive Impairment: A PET/MRI Study. Front Neurol 2022; 12:760518. [PMID: 35300351 PMCID: PMC8921107 DOI: 10.3389/fneur.2021.760518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with faster cognitive decline and conversion to dementia. There is uncertainty about the role of β-amyloid (Aβ) co-pathology and its contribution to the variability in PD-MCI profile and cognitive progression. Objective To study how presence of Aβ affects clinical and cognitive manifestations as well as regional brain volumes in PD-MCI. Methods Twenty-five PD-MCI patients underwent simultaneous PET/3T-MRI with [18F]flutemetamol and a clinical and neuropsychological examination allowing level II diagnosis. We tested pairwise differences in motor, clinical, and cognitive features with Mann–Whitney U test. We calculated [18F]flutemetamol (FMM) standardized uptake value ratios (SUVR) in striatal and cortical ROIs, and we performed a univariate linear regression analysis between the affected cognitive domains and the mean SUVR. Finally, we investigated differences in cortical and subcortical brain regional volumes with magnetic resonance imaging (MRI). Results There were 8 Aβ+ and 17 Aβ- PD-MCI. They did not differ for age, disease duration, clinical, motor, behavioral, and global cognition scores. PD-MCI-Aβ+ showed worse performance in the overall executive domain (p = 0.037). Subcortical ROIs analysis showed significant Aβ deposition in PD-MCI-Aβ+ patients in the right caudal and rostral middle frontal cortex, in precuneus, in left paracentral and pars triangularis (p < 0.0001), and bilaterally in the putamen (p = 0.038). Cortical regions with higher amyloid load correlated with worse executive performances (p < 0.05). Voxel-based morphometry (VBM) analyses showed no between groups differences. Conclusions Presence of cerebral Aβ worsens executive functions, but not motor and global cognitive abilities in PD-MCI, and it is not associated with middle-temporal cortex atrophy. These findings, together with the observation of significant proportion of PD-MCI-Aβ-, suggest that Aβ may not be the main pathogenetic determinant of cognitive deterioration in PD-MCI, but it would rather aggravate deficits in domains vulnerable to Parkinson primary pathology.
Collapse
Affiliation(s)
- Michela Garon
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Department of Information Engineering, University of Padua, Padua, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Nuclear Medicine Unit, Department of Medicine - DIMED, Padua University Hospital, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Neuropathological substrates of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:177-193. [PMID: 35248194 DOI: 10.1016/bs.pbr.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autopsy validation is still required for a definitive diagnosis of Parkinson's disease (Postuma et al., 2015), where the presence of Lewy bodies and Lewy neurites, composed primarily of alpha-synuclein, are observed in stereotyped patterns throughout regions of the brainstem, limbic, and neocortical regions of the brain (Braak et al., 2003). In spite of these relatively reliable observed patterns of alpha-synuclein pathology, there is a large degree of heterogeneity in the timing and features of neuropsychiatric and cognitive dysfunction in Parkinson's disease (Fereshtehnejad et al., 2015; Selikhova et al., 2009; Williams-Gray et al., 2013). Detailed studies of their neuropathological substrates of cognitive dysfunction and their associations with a variety of in vivo biomarkers have begun to disentangle this complex relationship, but ongoing multicentered, longitudinal studies of well-characterized and autopsy validated cases are still required.
Collapse
|
22
|
Palermo G, Belli E, Tommasini L, Morganti R, Frosini D, Nicoletti V, Tognoni G, Siciliano G, Bonuccelli U, Baldacci F, Ceravolo R. Dissecting the Interplay Between Time of Dementia and Cognitive Profiles in Lewy Body Dementias. J Alzheimers Dis 2021; 84:757-766. [PMID: 34602466 DOI: 10.3233/jad-210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are differentiated by the time of onset of cognitive and motor symptoms ('1-year rule'). We explored the neuropsychological continuum of DLB and PDD subjects with different timing of dementia onset. OBJECTIVE Our aim was to compare the neuropsychological profile of DLB and PDD patients with different timing of dementia onset. METHODS Neuropsychological findings at the diagnosis of dementia of 66 PDD and 42 DLB patients were retrospectively compared. Patients with PDD were divided into three tertile subgroups according to the time interval between the onset of parkinsonism and dementia (N = 24, 2-4 years; N = 17, 5-7 years; N = 25 ≥8 years, respectively). RESULTS DLB patients performed worse on the Stroop and semantic fluency tests than PDD, even in comparison to PD with early dementia onset. No significant differences among PDD subgroups were reported. CONCLUSION Executive and semantic language tests could differentiate DLB and PD patients with earlier development of dementia relative to parkinsonism.
Collapse
Affiliation(s)
- Giovanni Palermo
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Luca Tommasini
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | | | - Daniela Frosini
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Valentina Nicoletti
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Plewa S, Poplawska-Domaszewicz K, Florczak-Wyspianska J, Klupczynska-Gabryszak A, Sokol B, Miltyk W, Jankowski R, Kozubski W, Kokot ZJ, Matysiak J. The Metabolomic Approach Reveals the Alteration in Human Serum and Cerebrospinal Fluid Composition in Parkinson's Disease Patients. Pharmaceuticals (Basel) 2021; 14:ph14090935. [PMID: 34577635 PMCID: PMC8465898 DOI: 10.3390/ph14090935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is a major public health problem. Since currently there are no reliable diagnostic tools to reveal the early steps of PD, new methods should be developed, including those searching the variations in human metabolome. Alterations in human metabolites could help to establish an earlier and more accurate diagnosis. The presented research shows a targeted metabolomics study of both of the serum and CSF from PD patients, atypical parkinsonian disorders (APDs) patients, and the control. The use of the LC-MS/MS system enabled to quantitate 144 analytes in the serum and 51 in the CSF. This information about the concentration enabled for selection of the metabolites useful for differentiation between the studied group of patients, which should be further evaluated as candidates for markers of screening and differential diagnosis of PD and APDs. Among them, the four compounds observed to be altered in both the serum and CSF seem to be the most important: tyrosine, putrescine, trans-4-hydroxyproline, and total dimethylarginine. Furthermore, we indicated the metabolic pathways potentially related to neurodegeneration processes. Our studies present evidence that the proline metabolism might be related to neurodegeneration processes underlying PD and APDs. Further studies on the proposed metabolites and founded metabolic pathways may significantly contribute to understanding the molecular background of PD and improving the diagnostics and treatment in the future.
Collapse
Affiliation(s)
- Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (J.M.)
- Correspondence:
| | | | - Jolanta Florczak-Wyspianska
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.P.-D.); (J.F.-W.); (W.K.)
| | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (J.M.)
| | - Bartosz Sokol
- Department of Neurosurgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.S.); (R.J.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Roman Jankowski
- Department of Neurosurgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.S.); (R.J.)
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.P.-D.); (J.F.-W.); (W.K.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (J.M.)
| |
Collapse
|
24
|
Lee YH, Jeon S, Yoo HS, Chung SJ, Jung JH, Baik K, Sohn YH, Lee PH, Yun M, Evans AC, Ye BS. Effect of Alzheimer's Disease and Lewy Body Disease on Metabolic Changes. J Alzheimers Dis 2021; 79:1471-1487. [PMID: 33459638 DOI: 10.3233/jad-201094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship among amyloid-β (Aβ) deposition on amyloid positron emission tomography (PET), cortical metabolism on 18F-fluoro-2-deoxy-D-glucose (FDG)-PET, and clinical diagnosis has not been elucidated for both Alzheimer's disease (AD) and Lewy body disease (LBD). OBJECTIVE We investigated the patterns of cerebral metabolism according to the presence of AD and LBD. METHODS A total of 178 subjects were enrolled including 42 pure AD, 32 pure LBD, 34 Lewy body variant AD (LBVAD), 15 LBD with amyloid, 26 AD with dementia with Lewy bodies (DLB), and 29 control subjects. Pure AD, LBVAD, and AD with DLB groups had biomarker-supported diagnoses of typical AD, while pure LBD, LBD with amyloid, and AD with DLB groups had biomarker-supported diagnoses of typical LBD. Typical AD and LBD with amyloid showed amyloid-positivity on 18F-florbetaben (FBB) PET, while typical LBD and LBVAD had abnormalities on dopamine transporter PET. We measured regional patterns of glucose metabolism using FDG-PET and evaluated their relationship with AD and LBD. RESULTS Compared with control group, typical AD and typical LBD commonly exhibited hypometabolism in the bilateral temporo-parietal junction, precuneus, and posterior cingulate cortex. Typical AD showed an additional hypometabolism in the entorhinal cortex, while patients with dopamine transporter abnormality-supported diagnosis of LBD showed diffuse hypometabolism that spared the sensory-motor cortex. Although the diffuse hypometabolism in LBD also involved the occipital cortex, prominent occipital hypometabolism was only seen in LBD with amyloid group. CONCLUSION Combining clinical and metabolic evaluations may enhance the diagnostic accuracy of AD, LBD, and mixed disease cases.
Collapse
Affiliation(s)
- Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seun Jeon
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Alan C Evans
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Jung JH, Jeon S, Baik K, Lee YH, Chung SJ, Yoo HS, Jeong SH, Sohn YH, Lee PH, Ye BS. Apolipoprotein E4, amyloid, and cognition in Alzheimer's and Lewy body disease. Neurobiol Aging 2021; 106:45-54. [PMID: 34242895 DOI: 10.1016/j.neurobiolaging.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
The role of apolipoprotein E4 (APOE4) in the risk of Alzheimer's disease (AD) and Lewy body disease (LBD), and their relationship with β-amyloid deposition and cognitive dysfunction, remain unclear. Using amyloid and dopamine transporter imaging, we enrolled 126 controls and 208 patients with typical AD (pure AD and Lewy body variant of AD), AD with dementia with Lewy bodies, or typical LBD (dementia with Lewy bodies with amyloid deposition and pure LBD). APOE4 was associated with an increased risk of all disease subtypes except pure LBD. APOE4 was associated with increased frontal β-amyloid burden, and typical LBD was associated with increased occipital β-amyloid levels through its interaction with APOE4. APOE4 was associated with deteriorated general cognition and memory dysfunction via its interaction with typical LBD and AD, respectively. In conclusion, the impact of APOE4 on disease risk depends on its effects on β-amyloid deposition, and APOE4 is associated with β-amyloid deposition regardless of the clinical diagnosis. However, it interacts with typical LBD to cause occipital β-amyloid deposition.
Collapse
Affiliation(s)
- Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
26
|
Baik K, Yang JJ, Jung JH, Lee YH, Chung SJ, Yoo HS, Sohn YH, Lee PH, Lee JM, Ye BS. Structural connectivity networks in Alzheimer's disease and Lewy body disease. Brain Behav 2021; 11:e02112. [PMID: 33792194 PMCID: PMC8119831 DOI: 10.1002/brb3.2112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We evaluated disruption of the white matter (WM) network related with Alzheimer's disease (AD) and Lewy body disease (LBD), which includes Parkinson's disease and dementia with Lewy bodies. METHODS We consecutively recruited 37 controls and 77 patients with AD-related cognitive impairment (ADCI) and/or LBD-related cognitive impairment (LBCI). Diagnoses of ADCI and LBCI were supported by amyloid PET and dopamine transporter PET, respectively. There were 22 patients with ADCI, 19 patients with LBCI, and 36 patients with mixed ADCI/LBCI. We investigated the relationship between ADCI, LBCI, graph theory-based network measures on diffusion tensor images, and cognitive dysfunction using general linear models after controlling for age, sex, education, deep WM hyperintensities (WMH), periventricular WMH, and intracranial volume. RESULTS LBCI, especially mixed with ADCI, was associated with increased normalized path length and decreased normalized global efficiency. LBCI was related to the decreased nodal degree of left caudate, which was further associated with broad cognitive dysfunction. Decreased left caudate nodal degree was associated with decreased fractional anisotropy (FA) in the brain regions vulnerable to LBD. Compared with the control group, the LBCI group had an increased betweenness centrality in the occipital nodes, which was associated with decreased FA in the WM adjacent to the striatum and visuospatial dysfunction. CONCLUSION Concomitant ADCI and LBCI are associated with the accentuation of LBCI-related WM network disruption centered in the left caudate nucleus. The increase of occipital betweenness centrality could be a characteristic biologic change associated with visuospatial dysfunction in LBCI.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Jellinger KA. Significance of cerebral amyloid angiopathy and other co-morbidities in Lewy body diseases. J Neural Transm (Vienna) 2021; 128:687-699. [PMID: 33928445 DOI: 10.1007/s00702-021-02345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Lewy body dementia (LBD) and Parkinson's disease-dementia (PDD) are two major neurocognitive disorders with Lewy bodies (LB) of unknown etiology. There is considerable clinical and pathological overlap between these two conditions that are clinically distinguished based on the duration of Parkinsonism prior to development of dementia. Their morphology is characterized by a variable combination of LB and Alzheimer's disease (AD) pathologies. Cerebral amyloid angiopathy (CAA), very common in aged persons and particularly in AD, is increasingly recognized for its association with both pathologies and dementia. To investigate neuropathological differences between LB diseases with and without dementia, 110 PDD and 60 LBD cases were compared with 60 Parkinson's disease (PD) cases without dementia (PDND). The major demographic and neuropathological data were assessed retrospectively. PDD patients were significantly older than PDND ones (83.9 vs 77.8 years; p < 0.05); the age of LB patients was in between both groups (mean 80.2 years), while the duration of disease was LBD < PDD < PDND (mean 6.7 vs 12.5 and 14.3 years). LBD patients had higher neuritic Braak stages (mean 5.1 vs 4.5 and 4.0, respectively), LB scores (mean 5.3 vs 4.2 and 4.0, respectively), and Thal amyloid phases (mean 4.1 vs 3.0 and 2.3, respectively) than the two other groups. CAA was more common in LBD than in the PDD and PDND groups (93 vs 50 and 21.7%, respectively). Its severity was significantly greater in LBD than in PDD and PDND (p < 0.01), involving mainly the occipital lobes. Moreover, striatal Aβ deposition highly differentiated LBD brains from PDD. Braak neurofibrillary tangle (NFT) stages, CAA, and less Thal Aβ phases were positively correlated with LB pathology (p < 0.05), which was significantly higher in LBD than in PDD < PDND. Survival analysis showed worse prognosis in LBD than in PDD (and PDND), which was linked to both increased Braak tau stages and more severe CAA. These and other recent studies imply the association of CAA-and both tau and LB pathologies-with cognitive decline and more rapid disease progression that distinguishes LBD from PDD (and PDND).
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
28
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
29
|
Howard E, Irwin DJ, Rascovsky K, Nevler N, Shellikeri S, Tropea TF, Spindler M, Deik A, Chen-Plotkin A, Siderowf A, Dahodwala N, Weintraub D, Shaw LM, Trojanowski JQ, Vaishnavi SN, Wolk DA, Mechanic-Hamilton D, Morley JF, Duda JE, Grossman M, Cousins KAQ. Cognitive Profile and Markers of Alzheimer Disease-Type Pathology in Patients With Lewy Body Dementias. Neurology 2021; 96:e1855-e1864. [PMID: 33593865 PMCID: PMC8105963 DOI: 10.1212/wnl.0000000000011699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether patients with Lewy body dementia (LBD) with likely Alzheimer disease (AD)-type copathology are more impaired on confrontation naming than those without likely AD-type copathology. METHODS We selected 57 patients with LBD (dementia with Lewy bodies [DLB], n = 38; Parkinson disease dementia [PDD], n = 19) with available AD CSF biomarkers and neuropsychological data. CSF β-amyloid1-42 (Aβ42), phosphorylated-tau (p-tau), and total-tau (t-tau) concentrations were measured. We used an autopsy-validated CSF cut point (t-tau:Aβ42 ratio > 0.3, n = 43), or autopsy data when available (n = 14), to categorize patients as having LBD with (LBD + AD, n = 26) and without (LBD - AD, n = 31) likely AD-type copathology. Analysis of covariance tested between-group comparisons across biologically defined groups (LBD + AD, LBD - AD) and clinical phenotypes (DLB, PDD) on confrontation naming (30-item Boston Naming Test [BNT]), executive abilities (letter fluency [LF], reverse digit span [RDS]), and global cognition (Mini-Mental State Examination [MMSE]), with adjustment for age at dementia onset, time from dementia onset to test date, and time from CSF to test date. Spearman correlation related cognitive performance to CSF analytes. RESULTS Patients with LBD + AD performed worse on BNT than patients with LBD - AD (F = 4.80, p = 0.03); both groups performed similarly on LF, RDS, and MMSE (all p > 0.1). Clinically defined PDD and DLB groups did not differ in performance on any of these measures (all p > 0.05). A correlation across all patients showed that BNT score was negatively associated with CSF t-tau (ρ = -0.28, p < 0.05) and p-tau (ρ = -0.26, p = 0.05) but not Aβ42 (p > 0.1). CONCLUSION Markers of AD-type copathology are implicated in impaired language performance in LBD. Biologically based classification of LBD may be advantageous over clinically defined syndromes to elucidate clinical heterogeneity.
Collapse
Affiliation(s)
- Erica Howard
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - David J Irwin
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Katya Rascovsky
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Naomi Nevler
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Sanjana Shellikeri
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Thomas F Tropea
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Meredith Spindler
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Andres Deik
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Alice Chen-Plotkin
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Andrew Siderowf
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Nabila Dahodwala
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Daniel Weintraub
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Leslie M Shaw
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - John Q Trojanowski
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Sanjeev N Vaishnavi
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - David A Wolk
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Dawn Mechanic-Hamilton
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - James F Morley
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - John E Duda
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Murray Grossman
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Katheryn A Q Cousins
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA.
| |
Collapse
|
30
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
31
|
Chen Q, Lowe VJ, Boeve BF, Przybelski SA, Miyagawa T, Senjem ML, Jack CR, Lesnick TG, Kremers WK, Fields JA, Min HK, Schwarz CG, Gunter JL, Graff-Radford J, Savica R, Knopman DS, Jones D, Ferman TJ, Graff-Radford NR, Petersen RC, Kantarci K. β-Amyloid PET and 123I-FP-CIT SPECT in Mild Cognitive Impairment at Risk for Lewy Body Dementia. Neurology 2021; 96:e1180-e1189. [PMID: 33408148 PMCID: PMC8055344 DOI: 10.1212/wnl.0000000000011454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To determine the clinical phenotypes associated with the β-amyloid PET and dopamine transporter imaging (123I-FP-CIT SPECT) findings in mild cognitive impairment (MCI) with the core clinical features of dementia with Lewy bodies (DLB; MCI-LB). METHODS Patients with MCI who had at least 1 core clinical feature of DLB (n = 34) were grouped into β-amyloid A+ or A- and 123I-FP-CIT SPECT D+ or D- groups based on previously established abnormality cut points for A+ with Pittsburgh compound B PET standardized uptake value ratio (PiB SUVR) ≥1.48 and D+ with putamen z score with DaTQUANT <-0.82 on 123I-FP-CIT SPECT. Individual patients with MCI-LB fell into 1 of 4 groups: A+D+, A+D-, A-D+, or A-D-. Log-transformed PiB SUVR and putamen z score were tested for associations with patient characteristics. RESULTS The A-D+ biomarker profile was most common (38.2%), followed by A+D+ (26.5%) and A-D- (26.5%). The least common was the A+D- biomarker profile (8.8%). The A+ group was older, had a higher frequency of APOE ε4 carriers, and had a lower Mini-Mental State Examination score than the A- group. The D+ group was more likely to have probable REM sleep behavior disorder. Lower putamen DaTQUANT z scores and lower PiB SUVRs were independently associated with higher Unified Parkinson's Disease Rating Scale-III scores. CONCLUSIONS A majority of patients with MCI-LB are characterized by low β-amyloid deposition and reduced dopaminergic activity. β-Amyloid PET and 123I-FP-CIT SPECT are complementary in characterizing clinical phenotypes of patients with MCI-LB.
Collapse
Affiliation(s)
- Qin Chen
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Bradley F Boeve
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Min
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David Jones
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill R Graff-Radford
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
32
|
Patel KP, Wymer DT, Bhatia VK, Duara R, Rajadhyaksha CD. Multimodality Imaging of Dementia: Clinical Importance and Role of Integrated Anatomic and Molecular Imaging. Radiographics 2021; 40:200-222. [PMID: 31917652 DOI: 10.1148/rg.2020190070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are a devastating group of disorders that can be difficult to accurately diagnose. Although these disorders are difficult to manage owing to relatively limited treatment options, an early and correct diagnosis can help with managing symptoms and coping with the later stages of these disease processes. Both anatomic structural imaging and physiologic molecular imaging have evolved to a state in which these neurodegenerative processes can be identified relatively early with high accuracy. To determine the underlying disease, the radiologist should understand the different distributions and pathophysiologic processes involved. High-spatial-resolution MRI allows detection of subtle morphologic changes, as well as potential complications and alternate diagnoses, while molecular imaging allows visualization of altered function or abnormal increased or decreased concentration of disease-specific markers. These methodologies are complementary. Appropriate workup and interpretation of diagnostic studies require an integrated, multimodality, multidisciplinary approach. This article reviews the protocols and findings at MRI and nuclear medicine imaging, including with the use of flurodeoxyglucose, amyloid tracers, and dopaminergic transporter imaging (ioflupane). The pathophysiology of some of the major neurodegenerative processes and their clinical presentations are also reviewed; this information is critical to understand how these imaging modalities work, and it aids in the integration of clinical data to help synthesize a final diagnosis. Radiologists and nuclear medicine physicians aiming to include the evaluation of neurodegenerative diseases in their practice should be aware of and familiar with the multiple imaging modalities available and how using these modalities is essential in the multidisciplinary management of patients with neurodegenerative diseases.©RSNA, 2020.
Collapse
Affiliation(s)
- Kunal P Patel
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - David T Wymer
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Vinay K Bhatia
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Ranjan Duara
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Chetan D Rajadhyaksha
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| |
Collapse
|
33
|
Ahmed TF, Ahmed A, Imtiaz F. History in perspective: How Alzheimer's Disease came to be where it is? Brain Res 2021; 1758:147342. [PMID: 33548268 DOI: 10.1016/j.brainres.2021.147342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/03/2023]
Abstract
Treatment of Alzheimer's Disease (AD) remains an unsolved issue despite the pronounced global attention it has received from researchers over the last four decades. Determining the primary cause of the disease is challenging due to its long prodromal phase and multifactorial etiology. Regardless, academic disagreements amongst the scientific community have helped in making significant advancements in underpinning the molecular basis of disease pathogenesis. Substantial development in fluid and imaging biomarkers for AD led to a sharp turn in defining the disease as a molecular construct, dispensing its clinical definition. With conceptual progress, revisions in the diagnostic criteria of AD were made, culminating into the research framework proposed by National Institute on Aging and Alzheimer's Association in 2018 which unified different stages of the disease continuum, giving a common language of AT(N)1 classification to researchers. With realization that dementia is the final stage of AD spectrum, its early diagnosis by means of cerebrospinal fluid biomarkers, Positron Emission Tomography and Magnetic Resonance Imaging of the brain holds crucial importance in discovering ways of halting the disease progression. This article maps the insights into the pathogenesis as well as the diagnostic criteria and tests for AD as these have evolved over time. A contextualized timeline of how the understanding of AD has matured with advancing knowledge allows future research to be directed and unexplored avenues to be prioritized.
Collapse
Affiliation(s)
- Tehniat F Ahmed
- Department of Biochemistry, Institute of Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan.
| | - Affan Ahmed
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Fauzia Imtiaz
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
34
|
Chung SJ, Lee S, Yoo HS, Baik K, Lee HS, Jung JH, Choi Y, Hong JM, Kim YJ, Ye BS, Sohn YH, Yun M, Lee PH. Different patterns of β-amyloid deposition in patients with Alzheimer's disease according to the presence of mild parkinsonism. Neurobiol Aging 2021; 101:199-206. [PMID: 33631471 DOI: 10.1016/j.neurobiolaging.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to compare the patterns of β-amyloid deposition between patients with early-stage Alzheimer's disease (AD) with mild parkinsonism and those without parkinsonism. Sixty-one patients with early-stage AD (Clinical Dementia Rating [CDR], 0.5 or 1) who underwent 18F-florbetaben (18F-FBB) PET scans were enrolled. We performed comparative analyses of regional FBB uptake in the frontal, parietal, lateral temporal, medial temporal, occipital, anterior cingulate, and posterior cingulate cortices and in the precuneus, striatum, and thalamus between AD patients with mild parkinsonism (AD-p+; n = 23) and those without parkinsonism (AD-p-; n = 38). There was no significant difference in age, sex, years of education, Mini-Mental State Examination score, and white matter hyperintensity severity between groups. The AD-p+ group had lower composite scores in frontal/executive function domain than the AD-p- group. The AD-p+ group had a higher FBB uptake in the occipital cortex, but not in other cortical regions, than the AD-p- group. Our findings suggest that additional β-amyloid deposition in the occipital region is associated with mild parkinsonism in early-stage AD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yonghoon Choi
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
35
|
Compta Y, Revesz T. Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. JOURNAL OF PARKINSONS DISEASE 2021; 11:107-121. [PMID: 33325398 PMCID: PMC7990431 DOI: 10.3233/jpd-202323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid-β peptide (Aβ) and tau lesions of the Alzheimer-type are common in PD and α-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of Aβ and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of α-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for α-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond α-synuclein, tau and Aβ might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain.,Institut de Neurociències, Maextu's excellence center, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
36
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|
37
|
Abstract
Amyloid-β (Aβ) PET imaging has now been available for over 15 years. The ability to detect Aβ in vivo has greatly improved the clinical and research landscape of Alzheimer's disease (AD) and other neurodegenerative conditions. Aβ imaging provides very reliable, accurate, and reproducible measurements of regional and global Aβ burden in the brain. It has proved invaluable in anti-Aβ therapy trials, and is now recognized as a powerful diagnostic tool. The appropriate use of Aβ PET, when combined with comprehensive clinical evaluation by a dementia-trained specialist, can improve the accuracy of a clinical diagnosis of AD and substantially alter management. It can assist in differentiating AD from other neurodegenerative conditions, often by its ability to rule out the presence of Aβ. When combined with tau imaging, further increase in specificity for the diagnosis of AD can be achieved. The integration of Aβ PET, in conjunction with biomarkers of tau, neurodegeneration and neuroinflammation, into large, longitudinal, observational cohort studies continues to increase our understanding of the development of AD. Its incorporation into clinical trials has been pivotal in defining the most effective anti-Aβ biological therapies and optimal dosing so that effective disease modifying therapy now appears imminent. Aβ deposition is a gradual and protracted process, permitting a wide treatment window for anti-Aβ therapies and Aβ PET has made trials in this preclinical AD period feasible. Continuing improvement in Aβ tracer target to background ratio is allowing trials in earlier AD that tailor drug dosage to Aβ level. The quest to standardize quantification and define universally applicable thresholds for all Aβ tracers has produced the Centiloid method. Centiloid values that correlate well with neuropathologic findings and prognosis have been identified. Rapid cloud-based automated individual scan analysis is now possible and does not require MRI. Challenges remain, particularly around cross camera standardized uptake value ratio variation that need to be addressed. This review will compare available Aβ radiotracers, discuss approaches to quantification, as well as the clinical and research applications of Aβ PET.
Collapse
Affiliation(s)
- Natasha Krishnadas
- Florey Department of Neurosciences and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Austin Health, Victoria, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Victoria, Australia
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Victoria, Australia; Health and Biosecurity Flagship, The Australian eHealth Research Centre, CSIRO, Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Victoria, Australia; The Australian Dementia Network (ADNeT), Melbourne, Australia; The University of Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Jung J, Bae SH, Han JH, Kwak SH, Nam GS, Lee PH, Sohn YH, Yun M, Ye BS. Relationship between Hearing Loss and Dementia Differs According to the Underlying Mechanism. J Clin Neurol 2021; 17:290-299. [PMID: 33835751 PMCID: PMC8053549 DOI: 10.3988/jcn.2021.17.2.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose The associations between hearing loss (HL) and the mechanisms underlying cognitive impairment (CI) remain unclear. We evaluated the effects of clinical factors, vascular magnetic resonance imaging (MRI) markers, and CI mechanisms on HL. Methods In total, 112 patients with CI (59% demented) and subjective HL prospectively underwent MRI, amyloid positron-emission tomography (PET), hearing evaluations, and neuropsychological tests including a language comprehension test. Patients were categorized into pure-Alzheimer's disease-related CI (ADCI), pure-Lewy-body disease-related CI (LBCI), mixed-ADCI/LBCI, and non-ADCI/LBCI groups based on clinical features and PET biomarkers. Results The risk of peripheral HL [defined as a pure-tone average (PTA) threshold >40 dB] was higher in the pure-LBCI group than in the pure-ADCI and mixed-ADCI/LBCI groups, and lower in the presence of ADCI. The non-ADCI/LBCI group had the most-severe vascular MRI markers and showed a higher risk of peripheral HL than did the pure-ADCI and mixed-ADCI/LBCI groups. While the pure-LBCI group had a higher risk of comprehension dysfunction than the pure-ADCI group regardless of the PTA and the score on the Korean version of the Mini Mental State Examination (K-MMSE), those in the pure-LBCI group even with a better K-MMSE score had a risk of comprehension dysfunction comparable to that in the mixed-ADCI/LBCI group due to a worse PTA. Conclusions Peripheral HL could be associated with the absence of significant β-amyloid deposition in patients with CI and characteristic of the pure-LBCI and non-ADCI/LBCI groups.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Graduate school of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyuk Han
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Kwak
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Gi Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Byung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
40
|
Miyagawa T, Przybelski SA, Maltais D, Min HK, Jordan L, Lesnick TG, Chen Q, Graff-Radford J, Jones D, Savica R, Knopman D, Petersen R, Kremers WK, Forsberg LK, Fields JA, Ferman TJ, Allen L, Parisi J, Reichard RR, Murray M, Dickson D, Boeve BF, Kantarci K, Lowe VJ. The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of dementia with Lewy bodies and Alzheimer's disease dementia. Neurobiol Aging 2020; 99:11-18. [PMID: 33422890 DOI: 10.1016/j.neurobiolaging.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
Reduced nigrostriatal uptake on N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-[123I]iodophenyl) nortropane (123I-FP-CIT) SPECT reflects dopamine dysfunction, while other imaging markers could be complementary when used together. We assessed how well 123I-FP-CIT SPECT differentiates dementia with Lewy bodies (DLBs) from Alzheimer's disease dementia (ADem) and whether multimodal imaging provides additional value. 123I-FP-CIT SPECT, magnetic resonance imaging, [18F]2-fluoro-deoxy-D-glucose-positron emission tomography (PET), and 11C-Pittsburgh compound B (PiB)-PET were assessed in 35 participants with DLBs and 14 participants with ADem (autopsy confirmation in 9 DLBs and 4 ADem). Nigrostriatal dopamine transporter uptake was evaluated with 123I-FP-CIT SPECT using DaTQUANT software. Hippocampal volume was calculated with magnetic resonance imaging, cingulate island sign ratio with FDG-PET, and global cortical PiB retention with PiB-PET. The DaTQUANT z-scores of the putamen showed the highest c-statistic of 0.916 in differentiating DLBs from ADem among the analyzed imaging biomarkers. Adding another imaging modality to 123I-FP-CIT SPECT had c-statistics ranging from 0.968 to 0.975, and 123I-FP-CIT SPECT in combination with 2 other imaging modalities presented c-statistics ranging from 0.987 to 0.996. These findings suggest that multimodal imaging with 123I-FP-CIT SPECT aids in differentiating DLBs and ADem and in detecting comorbid Lewy-related and Alzheimer's disease pathology in patients with DLBs and ADem.
Collapse
Affiliation(s)
- Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lennon Jordan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Qin Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - David Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Walter K Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Laura Allen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph Parisi
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
42
|
Mak E, Nicastro N, Malpetti M, Savulich G, Surendranathan A, Holland N, Passamonti L, Jones PS, Carter SF, Su L, Hong YT, Fryer TD, Williams GB, Aigbirhio F, Rowe JB, O'Brien JT. Imaging tau burden in dementia with Lewy bodies using [ 18F]-AV1451 positron emission tomography. Neurobiol Aging 2020; 101:172-180. [PMID: 33631469 PMCID: PMC8209140 DOI: 10.1016/j.neurobiolaging.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) pathology is frequently observed as a comorbidity in people with dementia with Lewy bodies (DLB). Here, we evaluated the in vivo distribution of tau burden and its influence on the clinical phenotype of DLB. Tau deposition was quantified using [18F]-AV1451 positron emission tomography in people with DLB (n = 10), AD (n = 27), and healthy controls (n = 14). A subset of patients with Lewy body diseases (n = 4) also underwent [11C]-PK11195 positron emission tomography to estimate microglial activation. [18F]-AV1451 BPND was lower in DLB than AD across widespread regions. The medial temporal lobe [18F]-AV1451 BPND distinguished people with DLB from AD (AUC = 0.87), and negatively correlated with Addenbrooke's Cognitive Examination-Revised and Mini-Mental State Examination. There was a high degree of colocalization between [18F]-AV1451 and [11C]-PK11195 binding (p < 0.001). Our findings of minimal tau burden in DLB confirm previous studies. Nevertheless, the associations of [18F]-AV1451 binding with cognitive impairment suggest that tau may interact synergistically with other pathologic processes to aggravate disease severity in DLB. We evaluated [18F]-AV1451 uptake in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). There is minimal tau deposition in DLB compared to healthy controls. Tau imaging may be useful for differential diagnosis of DLB and AD. Tau deposition was correlated with cognitive impairment in DLB.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nicolas Nicastro
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Maura Malpetti
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ajenthan Surendranathan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Negin Holland
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Franklin Aigbirhio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Na S, Jeong H, Park JS, Chung YA, Song IU. The Impact of Amyloid-Beta Positivity with 18F-Florbetaben PET on Neuropsychological Aspects in Parkinson's Disease Dementia. Metabolites 2020; 10:metabo10100380. [PMID: 32977481 PMCID: PMC7598210 DOI: 10.3390/metabo10100380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023] Open
Abstract
The neuropathology of Parkinson’s disease dementia (PDD) is heterogenous, and the impacts of each pathophysiology and their synergistic effects are not fully understood. The aim of this study was to evaluate the frequency and impacts of co-existence with Alzheimer’s disease in patients with PDD by using 18F-florbetaben PET imaging. A total of 23 patients with PDD participated in the study. All participants underwent 18F-florbetaben PET and completed a standardized neuropsychological battery and assessment of motor symptoms. The results of cognitive tests, neuropsychiatric symptoms, and motor symptoms were analyzed between the positive and negative 18F-florbetaben PET groups. Four patients (17.4%) showed significant amyloid burden. Patients with amyloid-beta showed poorer performance in executive function and more severe neuropsychiatric symptoms than those without amyloid-beta. Motor symptoms assessed by UPDRS part III and the modified H&Y Scale were not different between the two groups. The amyloid PET scan of a patient with PDD can effectively reflect a co-existing Alzheimer’s disease pathology. Amyloid PET scans might be able to help physicians of PDD patients showing rapid progression or severe cognitive/behavioral features.
Collapse
Affiliation(s)
- Seunghee Na
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea;
- Department of Nuclear Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea
| | - Jong-Sik Park
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea;
- Department of Nuclear Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea
- Correspondence: (Y.-A.C.); (I.-U.S.); Tel.: +82-32-280-5242 (Y.-A.C.); Tel.: +82-32-280-5010 (I.-U.S.); Fax: +82-32-280-5244 (Y.-A.C. & I.-U.S.)
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
- Correspondence: (Y.-A.C.); (I.-U.S.); Tel.: +82-32-280-5242 (Y.-A.C.); Tel.: +82-32-280-5010 (I.-U.S.); Fax: +82-32-280-5244 (Y.-A.C. & I.-U.S.)
| |
Collapse
|
44
|
Stewart T, Shi M, Mehrotra A, Aro P, Soltys D, Kerr KF, Zabetian CP, Peskind ER, Taylor P, Shaw LM, Trojanowski JQ, Zhang J. Impact of Pre-Analytical Differences on Biomarkers in the ADNI and PPMI Studies: Implications in the Era of Classifying Disease Based on Biomarkers. J Alzheimers Dis 2020; 69:263-276. [PMID: 30958379 DOI: 10.3233/jad-190069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Neurodegenerative diseases require characterization based on underlying biology using biochemical biomarkers. Mixed pathology complicates discovery of biomarkers and characterization of cohorts, but inclusion of greater numbers of patients with different, related diseases with frequently co-occurring pathology could allow better accuracy. Combining cohorts collected from different studies would be a more efficient use of resources than recruiting subjects from each population of interest for each study. OBJECTIVE To explore the possibility of combining existing datasets by controlling pre-analytic variables in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Parkinson's Progression Markers Initiative (PPMI) studies. METHODS Cerebrospinal fluid (CSF) was collected and processed from 30 subjects according to both the ADNI and PPMI protocols. Relationships between reported levels of Alzheimer's disease (AD) and Parkinson's disease (PD) biomarkers in the same subject under each protocol were examined. RESULTS Protocol-related differences were observed for Aβ, but not t-tau or α-syn, and trended different for p-tau and pS129. Values of α-syn differed by platform. Conversion of α-syn values between ADNI and PPMI platforms did not completely eliminate differences in distribution. DISCUSSION Factors not captured in the pre-analytical sample handling influence reported biomarker values. Assay standardization and better harmonized characterization of cohorts should be included in future studies of CSF biomarkers.
Collapse
Affiliation(s)
- Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aanchal Mehrotra
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Aro
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Soltys
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cyrus P Zabetian
- Parkinson's Disease Research and Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- Veterans Affairs Northwest Network, Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
45
|
Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol 2020; 16:265-284. [PMID: 32322100 DOI: 10.1038/s41582-020-0348-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK.,Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Stuart Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Suárez-Calvet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Memory Research Unit, Lund University, Malmö, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | | | - Tibor Hortobágyi
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Per Svenningsson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK. .,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
46
|
Schumacher J, Thomas AJ, Peraza LR, Firbank M, Cromarty R, Hamilton CA, Donaghy PC, O'Brien JT, Taylor JP. EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer's disease. Alzheimers Res Ther 2020; 12:46. [PMID: 32321573 PMCID: PMC7178985 DOI: 10.1186/s13195-020-00613-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 11/14/2023]
Abstract
BACKGROUND Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), is characterised by marked deficits within the cholinergic system which are more severe than in Alzheimer's disease (AD) and are mainly caused by degeneration of the nucleus basalis of Meynert (NBM) whose widespread cholinergic projections provide the main source of cortical cholinergic innervation. EEG alpha reactivity, which refers to the reduction in alpha power over occipital electrodes upon opening the eyes, has been suggested as a potential marker of cholinergic system integrity. METHODS Eyes-open and eyes-closed resting state EEG data were recorded from 41 LBD patients (including 24 patients with DLB and 17 with PDD), 21 patients with AD, and 40 age-matched healthy controls. Alpha reactivity was calculated as the relative reduction in alpha power over occipital electrodes when opening the eyes. Structural MRI data were used to assess volumetric changes within the NBM using a probabilistic anatomical map. RESULTS Alpha reactivity was reduced in AD and LBD patients compared to controls with a significantly greater reduction in LBD compared to AD. Reduced alpha reactivity was associated with smaller volumes of the NBM across all groups (ρ = 0.42, pFDR = 0.0001) and in the PDD group specifically (ρ = 0.66, pFDR = 0.01). CONCLUSIONS We demonstrate that LBD patients show an impairment in alpha reactivity upon opening the eyes which distinguishes this form of dementia from AD. Furthermore, our results suggest that reduced alpha reactivity might be related to a loss of cholinergic drive from the NBM, specifically in PDD.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK.
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| | | | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| | - Ruth Cromarty
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| | - John T O'Brien
- Department of Psychiatry, School of Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Biomedical Research Building 3rd floor, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
47
|
Abstract
PURPOSE To study the imaging patterns of Posterior cortical atrophy (PCA) and Dementia with Lewy bodies (DLB) on fluoro-deoxyglucose positron emission tomography computed tomography ([F]FDG PET/CT), identify areas of overlap and differences and to develop a prediction model to assist in diagnosis using univariate and multivariate analysis. METHODS A retrospective analysis of 72 patients clinically suspected of having posterior dementia was done. All patients underwent [FF]FDG PET/CT of the brain and dopamine transporter imaging with [[Tc]TRODAT-1 SPECT scan on separate days. The patients were divided into PCA with normal TRODAT uptake (n=34) and DLB with abnormal TRODAT uptake (n=38). The FDG PET/CT uptake patterns were recorded and areas of significant hypometabolism by z score analysis were considered as abnormal. Receiver operator characteristics (ROC) curve analysis was used to determine cutoff z scores and binary logistic regression analysis was used to determine the Odds ratio of being in the predicted groups. RESULTS Significantly hypometabolism was found in parieto-temporo-occipital association cortices and cingulate cortices in PCA patients. DLB patients showed significantly reduced uptake in the visual cortex. No significant difference was found between z score of occipital association cortex which showed hypometabolism in both groups. The cut-off z-score values derived from the ROC curve analysis were as follows- parietal association (cut-off-3, sensitivity-65.6%, specificity - 68.7%), temporal association (cut-off-2, sensitivity-78%, specificity-75%) and posterior cingulate (cut-off-0.5, sensitivity-93.7%, specificity-40.6%), their respective Odds ratio (with 95% confidence interval) for being in the PCA group as derived from univariate logistic regression were 3.66 (1.30-10.32), 10.71 (3.36-34.13) and 7.85 (1.57-39.17). The cut-off z score of primary visual cortex as derived from ROC curve was zero with sensitivity of 87.5%, specificity of 71.9%, and the Odds ratio for being the in the DLB group was 24.7 with 95% confidence interval of 5.99-101.85. CONCLUSION [F]FDG PET may be useful as a non-invasive diagnostic modality in differentiating the two posterior cortical dementias, despite significant overlap. Primary visual cortical hypometabolism can serve as an independent diagnostic marker for DLB, even in the absence of TRODAT imaging.
Collapse
|
48
|
Yoo HS, Lee S, Chung SJ, Lee YH, Lee PH, Sohn YH, Lee S, Yun M, Ye BS. Dopaminergic Depletion, β-Amyloid Burden, and Cognition in Lewy Body Disease. Ann Neurol 2020; 87:739-750. [PMID: 32078179 DOI: 10.1002/ana.25707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We aimed to determine the association between striatal dopaminergic depletion, cerebral β-amyloid deposition, and cognitive dysfunction in Lewy body disease (LBD). METHODS This cross-sectional study recruited 48 LBD patients (30 with dementia, 18 with mild cognitive impairment) and 15 control subjects from a university-based hospital. We measured the striatal dopamine transporter (DAT) activity and regional β-amyloid burden using N-(3-[18 F]fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography (PET) and 18 F-florbetaben (FBB) PET, respectively. The relationship between striatal FP-CIT uptake, regional cortical FBB uptake, and cognitive function scores was evaluated using path analyses. We also investigated the effects of striatal FP-CIT uptake and cortical FBB uptake on the interval between motor symptom and dementia onset. RESULTS Reduced striatal FP-CIT uptake was associated with increased FBB uptake in the posterior cortical regions, most prominently in the occipital cortices. Reduced FP-CIT uptake in the anterior putamen was associated with visuospatial dysfunction with mediation of increased occipital FBB uptake. Reduced FP-CIT uptake in the posterior putamen and an increased parietal FBB uptake were independently associated with memory dysfunction. Reduced striatal FP-CIT uptake was associated with attention, language, and frontal/executive dysfunction, independent of amyloid deposition. Increased FBB uptake, especially in the parietal cortex, was associated with earlier onset of dementia. INTERPRETATION Our results suggest that occipital β-amyloid deposition may contribute to the association between striatal dopaminergic depletion and visuospatial dysfunction in LBD patients. Although the effects of reduced DAT activity are more prominent than those of β-amyloid burden on cognitive dysfunction, the latter affects the onset of cognitive dysfunction. ANN NEUROL 2020;87:739-750.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Fujishiro H, Kosaka K. When does cerebral β‐amyloid deposition begin in Lewy body dementia? ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshige Fujishiro
- Department of Psychiatry Kawasaki Memorial Hospital Miyamae Kawasaki Japan
- Department of Psychiatry Nagoya University Graduate School of Medicine Showa, Nagoya Japan
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| | - Kenji Kosaka
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| |
Collapse
|
50
|
Yoo HS, Lee S, Chung SJ, Lee YH, Ye BS, Sohn YH, Yun M, Lee PH. Clinical and striatal dopamine transporter predictors of β-amyloid in dementia with Lewy bodies. Neurology 2020; 94:e1344-e1352. [PMID: 32086384 DOI: 10.1212/wnl.0000000000009168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationship between β-amyloid (Aβ) deposition and striatal dopamine depletion, cognitive functions, and neuropsychiatric symptoms in dementia with Lewy bodies (DLB). METHODS We consecutively recruited 51 patients with DLB who had undergone a neuropsychological test, Neuropsychiatric Inventory assessment, brain MRI, N-(3-[18F]fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) PET, and 18F-florbetaben PET within 6 months. The patients were divided into Aβ-negative (DLB-Aβ-, n = 20) and Aβ-positive (DLB-Aβ+, n = 31) groups according to the brain amyloid plaque load score. We performed comparative analyses of dopamine transporter (DAT) activity, neuropsychological profile, and neuropsychiatric symptoms between the 2 groups. RESULTS Compared to the DLB-Aβ- group, the DLB-Aβ+ group had a younger age at diagnosis (p = 0.017), poorer performance in attention (p = 0.028) and visuospatial (p = 0.006) functions, and higher proportion of anxiety (p = 0.006) and total neuropsychiatric burden (p = 0.013). Those in the DLB-Aβ+ group also had lower DAT activity in the anterior putamen (p = 0.015) and ventral striatum (p = 0.006) regardless of age, sex, and years of education. In addition, lower DAT activity in the ventral striatum was significantly associated with anxiety and total neuropsychiatric burden in DLB. CONCLUSIONS This study demonstrated that Aβ deposition in DLB is associated with diagnosis at a younger age, higher cognitive and neuropsychiatric burden, and decreased DAT activity, suggesting that evaluation of clinical features and DAT activity can predict the presence of Aβ in DLB.
Collapse
Affiliation(s)
- Han Soo Yoo
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Sangwon Lee
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| | - Seok Jong Chung
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| | - Byoung Seok Ye
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| | - Phil Hyu Lee
- From the Department of Neurology (H.S.Y., S.J.C., Y.H.L., B.S.Y., Y.H.S., P.H.L.), the Department of Nuclear Medicine (S.L., M.Y.), and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|