1
|
Li WJ, Feng CL, Nie ZY, Li LY, Guo JH, Liu XY, Su YH, Liu SS, Cui ZZ. A network pharmacological target mendelian randomization study on the neuroprotective effects of active ingredients in mahuang fuzi xixin decoction for multiple sclerosis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-21. [PMID: 40257326 DOI: 10.1080/10286020.2025.2491612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Mahuang Fuzi Xixin Decoction (MFX), a traditional Chinese medicine containing 44 volatile components (97.36% total oil), includes key compounds like α-terpenol (13.34%) and 1,2,3-trimethoxy-5-methyl-benzene (22.64%). Using network pharmacology and Mendelian randomization, 24 active compounds were identified targeting MS-related pathways (NF-κB, NLRP3, Toll-like receptor). Genetic variants in CYP450, GSK3B, CYBB, and PON1 correlated with reduced MS risk. In EAE mice, MFX decreased spinal GSK-3B expression (immunofluorescence) and pro-inflammatory factors (ELISA), demonstrating neuroprotection via anti-inflammatory, antioxidative mechanisms and restored GSK-3B levels, highlighting therapeutic potential for MS.
Collapse
Affiliation(s)
- Wei-Jie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou510000, China
| | - Chong-Lian Feng
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetries and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou510000, China
| | - Zhao-Yuan Nie
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetries and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou510000, China
| | - Ling-Yun Li
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetries and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou510000, China
| | - Jian-Hui Guo
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetries and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou510000, China
| | - Xiang-Yu Liu
- Third Clinical Medical School, Guangzhou Medical University, Guangzhou510150, China
| | - Yang-Hao Su
- Third Clinical Medical School, Guangzhou Medical University, Guangzhou510150, China
| | - Shan-Shan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou510623, China
| | - Zhi-Zhong Cui
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetries and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou510000, China
| |
Collapse
|
2
|
Miclea A, Zurawski J, Healy BC, Saxena S, Lokhande H, Quattrucci M, Chu R, Weiner HL, Bakshi R, Chitnis T. Novel serum biomarker associations with 7 Tesla MRI-defined cortical lesions, leptomeningeal enhancement, and deep gray matter volume in early multiple sclerosis. Sci Rep 2025; 15:12032. [PMID: 40200016 PMCID: PMC11978968 DOI: 10.1038/s41598-025-95229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Gray matter demyelinating lesions, brain atrophy and meningeal inflammation are hypothesized to be relevant in multiple sclerosis (MS) disease pathogenesis, though their relationship to immune alterations in early MS is not well characterized. This study aims to investigate correlations between the concentrations of 112 serum proteins and 7 Tesla MRI-defined measures of disease severity in patients with early MS. In this analysis, patients with CIS or MS having a 7 Tesla brain MRI and blood sample both within five years of MS diagnosis were included (n = 57). Correlational analysis was adjusted for sex, age, and disease duration. Correlation between serum proteins and MRI-defined cortical and thalamic gray matter lesions, leptomeningeal enhancement (presence and foci number), deep gray matter (DGM) structure volumes, whole brain parenchymal volume and total T2 white matter lesion volume was assessed. In this study, cortical lesions were associated with higher IL-15, TNF-alpha, and BAFF levels, and lower levels of FcRL2. Leptomeningeal enhancement was associated with higher levels of PLXNB3 and lower levels of nCDase and CNTN5. Higher IL-1B levels correlated with lower DGM volume while higher levels of CDH6, SIGLEC9, and HAGH correlated with higher DGM volume. These novel associations between serum immune proteins and 7 T MRI outcomes may have relevance as disease biomarkers in early stages of MS.
Collapse
Affiliation(s)
- Andrei Miclea
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Zurawski
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian C Healy
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Biostatistics Center, Massachusetts General Hospital, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Shrishti Saxena
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Hrishikesh Lokhande
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Molly Quattrucci
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Renxin Chu
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rohit Bakshi
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Zhang T, Huang Y, Ji X, Wu T, Xiao P. CCL11 (Eotaxin) Promotes the Advancement of Aging-Related Cardiovascular Diseases. Rev Cardiovasc Med 2025; 26:26020. [PMID: 40026499 PMCID: PMC11868897 DOI: 10.31083/rcm26020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 03/05/2025] Open
Abstract
Aging-related diseases, such as cardiovascular diseases (CVDs), neurodegeneration, cancer, etc., have become important factors that threaten the lifespans of older individuals. A chronic inflammatory response is closely related to aging-related diseases. Establishing inflammatory aging clock (iAGE, deep-learning methods on blood immune biomarkers to construct a metric for age-related chronic inflammation) successfully predicted the positive correlation between several factors, including serum C-C-motif chemokine ligand 11 (CCL11) and aging-related diseases. Recently, the role and mechanism of CCL11, an eosinophilic chemokine, in neurodegenerative diseases have been widely reported. Additionally, many research studies have shown a positive correlation with CVDs, but the underlying mechanism remains unknown. This review focuses on the relationship between chronic inflammation and aging. The role of CCL11 will be discussed and summarized in relation to aging-related diseases, especially CVDs.
Collapse
Affiliation(s)
- Tanwei Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, 211166 Nanjing, Jiangsu, China
| | - Yanhong Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, 211166 Nanjing, Jiangsu, China
| | - Xinmeng Ji
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, 211166 Nanjing, Jiangsu, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, 211166 Nanjing, Jiangsu, China
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhu W, Revu S, Chen C, Dahl M, Ramkumar A, Kelly C, McGeachy MJ, Xia Z. Aging-dependent Change in Th17 and Cytokine Response in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.17.24304425. [PMID: 39763560 PMCID: PMC11702752 DOI: 10.1101/2024.03.17.24304425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease damaging the central nervous system. Diminished inflammatory disease activity (DA) as people with MS (pwMS) age motivated randomized clinical trials assessing disease-modifying therapy (DMT) discontinuation in older pwMS given the concern for risks outweighing benefits. This study aims to examine whether peripheral production of Myelin Basic Protein (MBP)-driven cytokine responses mediate the aging-associated decline in MS inflammatory DA. METHODS We included the clinical data of 669 adult pwMS between 2017 and 2022 who enrolled in a clinic-based prospective cohort. From a subset of 80 participants, we isolated fresh peripheral blood mononuclear cells (PBMCs) and cultured with 50μg/ml of MBP (or heat-killed Candida) for 24 hours. We assayed cell culture supernatants for interleukin 17 (IL-17) and interferon gamma (IFN-γ) using Enzyme-Linked Immunosorbent Assay and a subset of the supernatant samples using a commercial human cytokine/chemokine array. We examined the associations between age and annualized relapse rate (ARR) as well as between age and MBP-stimulated cytokine production (by cultured PBMC) using covariate-adjusted linear regressions. We performed mediation analyses to determine the extent to which MBP-driven cytokine response drives the association between age and ARR. RESULTS Among 669 pwMS (mean age 51.7±12.7 years, 80.7% women, 89.4% non-Hispanic White), ARR declined with age (β=-0.003, p<0.001). Among the subgroup of 80 pwMS whose cultured PBMCs underwent ex vivo MBP stimulation, IL-17 production declined with age in women (β=-0.27, p=0.04) but not men (β=-0.1, p=0.73). MBP-driven IL-17 response partially mediated the association between older age and lower ARR (24.7% in women, 15.3% in men). In exploratory analyses, older pwMS (≥50 years) had marginally lower (IL-4, MCP-2, MCP-3, PDGF-AA, PDGF-AB/BB) and higher (Fractalkine, MDC) concentrations of several cytokines than younger pwMS (<50 years), while certain cytokines (MCP-2, MDC) mediated whereas others negated the effect of age on ARR. CONCLUSION Diminished peripheral IL-17 response as a potential biological mechanism underlying the aging-dependent decline in MS inflammatory DA warrants further investigation.
Collapse
|
5
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Gelibter S, Saraceno L, Pirro F, Susani EL, Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J Neuroimmunol 2024; 391:578368. [PMID: 38761652 DOI: 10.1016/j.jneuroim.2024.578368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
A demographic shift in multiple sclerosis (MS) is leading to an increased number of elderly people with MS (pwMS) and a rise in late-onset MS (LOMS) cases. This shift adds complexity to the treatment management of these patients, due to enhanced treatment-associated risks and the possible interplay between immunosenescence and disease-modifying therapies (DMTs). In the present paper, we performed a systematic review of the current evidence concerning the relationship between aging and treatment management in elderly pwMS. Our literature search identified 35 original studies relevant to this topic. The gathered evidence consistently indicates a diminished efficacy of DMTs in older pwMS, particularly in preventing disability accrual. Against this background, high-efficacy therapies (HETs) appear to show less benefit over moderate-low-efficacy DMTs in older patients. These data mainly derive from observational retrospective studies or meta-analyses conducted on randomized clinical trials (RCTs). RCTs, however, exclude pwMS older than 55 years, limiting our ability to acquire robust evidence regarding this patient group. Regarding treatment discontinuation in elderly pwMS with stable disease, the available data, which mainly focuses on older injectable DMTs, suggests that their suspension appears to be relatively safe in terms of disease activity. Nevertheless, the first RCT specifically targeting treatment discontinuation recently failed to demonstrate the non-inferiority of treatment discontinuation over continuation, in terms of MRI activity. On the other hand, the evidence on the impact of discontinuation on disease progression is more conflicting and less robust. Furthermore, there is an important lack of studies concerning sequestering DMTs and virtually no data on the discontinuation of anti-CD20 monoclonal antibodies. De-escalation strategy is gaining attention as a de-risking approach alternative to complete treatment discontinuation. It may be defined as the decision to shift from HETs to less potent DMTs in elderly pwMS who have a stable disease. This strategy could reduce treatment-related risks, while minimizing the risk of disease activity and progression potentially associated with treatment discontinuation. This approach, however, remains unexplored due to a lack of studies. Given these findings, the present scenario underlines the urgent need for more comprehensive and robust studies to develop optimized, data-driven treatment strategies for elderly pwMS and LOMS, addressing the unique challenges of MS treatment and aging.
Collapse
Affiliation(s)
- Stefano Gelibter
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Lorenzo Saraceno
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fiammetta Pirro
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Laura Susani
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandra Protti
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
7
|
Zhang Y, Atkinson J, Burd CE, Graves J, Segal BM. Biological aging in multiple sclerosis. Mult Scler 2023; 29:1701-1708. [PMID: 37877740 PMCID: PMC10843499 DOI: 10.1177/13524585231204122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multiple sclerosis (MS) is most likely to adopt a progressive clinical course during middle age or beyond, and the number of older adults with MS is steadily increasing. Developing new strategies to manage progressive forms of MS, which do not respond to currently available disease-modifying therapies (DMTs), will require a deeper understanding of the mechanisms by which biological aging interacts with pathogenic pathways to propel disability accumulation. In experimental autoimmune encephalomyelitis (EAE), a widely used preclinical mouse model of MS, middle-aged animals experience a more severe and protracted clinical course than their younger counterparts. This exacerbated disease course is accompanied by persistent neuroinflammation. Clinical studies of age-related biomarkers, such as telomere length, senescence markers, and DNA methylation, suggest that biological aging is accelerated in people with MS compared with age- and sex-matched healthy controls. Furthermore, distinguishing biological age from chronological may afford more precision in determining aging effects in MS. Here we review the current literature on aging biology and its impact on MS pathogenesis. Future research on this topic may lead to the development of novel biomarkers and senotherapy agents that slow neurological decline in people with progressive MS by targeting relevant aging-related pathways.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Neurology, The Ohio State University Wexner
Medical Center, Columbus, OH
| | - Jeffrey Atkinson
- Department of Neurology, The Ohio State University Wexner
Medical Center, Columbus, OH
| | - Christin E. Burd
- Departments of Molecular Genetics, Cancer Biology and
Genetics, The Ohio State University, Columbus, OH
| | - Jennifer Graves
- Department of Neurosciences, University of California San
Diego, San Diego, CA
| | - Benjamin M. Segal
- Department of Neurology, The Ohio State University Wexner
Medical Center, Columbus, OH
| |
Collapse
|
8
|
Illes Z, Jørgensen MM, Bæk R, Bente LM, Lauridsen JT, Hyrlov KH, Aboo C, Baumbach J, Kacprowski T, Cotton F, Guttmann CRG, Stensballe A. New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis. Biomedicines 2023; 11:3170. [PMID: 38137391 PMCID: PMC10740934 DOI: 10.3390/biomedicines11123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Blood-barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood-barrier disruption as the initial event of the evolution of new lesions. METHODS Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. RESULTS Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. CONCLUSIONS Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, 5230 Odense, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Jørgen T. Lauridsen
- Department of Business and Economics, University of Southern Denmark, 5230 Odense, Denmark;
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Francois Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, France/CREATIS, Université de Lyon, 69007 Lyon, France;
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Clinical Cancer Center, Aalborg University Hospital, 9220 Aalborg, Denmark
| |
Collapse
|
9
|
Nagata S, Yamasaki R, Takase EO, Iida K, Watanabe M, Masaki K, Wijering MHC, Yamaguchi H, Kira JI, Isobe N. Iguratimod Ameliorates the Severity of Secondary Progressive Multiple Sclerosis in Model Mice by Directly Inhibiting IL-6 Production and Th17 Cell Migration via Mitigation of Glial Inflammation. BIOLOGY 2023; 12:1217. [PMID: 37759616 PMCID: PMC10525689 DOI: 10.3390/biology12091217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We previously reported a novel secondary progressive multiple sclerosis (SPMS) model, progressive experimental autoimmune encephalomyelitis (pEAE), in oligodendroglia-specific Cx47-inducible conditional knockout (Cx47 icKO) mice. Based on our prior study showing the efficacy of iguratimod (IGU), an antirheumatic drug, for acute EAE treatment, we aimed to elucidate the effect of IGU on the SPMS animal model. We induced pEAE by immunizing Cx47 icKO mice with myelin oligodendrocyte glycoprotein peptide 35-55. IGU was orally administered from 17 to 50 days post-immunization. We also prepared a primary mixed glial cell culture and measured cytokine levels in the culture supernatant after stimulation with designated cytokines (IL-1α, C1q, TNF-α) and lipopolysaccharide. A migration assay was performed to evaluate the effect of IGU on the migration ability of T cells toward mixed glial cell cultures. IGU treatment ameliorated the clinical signs of pEAE, decreased the demyelinated area, and attenuated glial inflammation on immunohistochemical analysis. Additionally, IGU decreased the intrathecal IL-6 level and infiltrating Th17 cells. The migration assay revealed reduced Th17 cell migration and IL-6 levels in the culture supernatant after IGU treatment. Collectively, IGU successfully mitigated the clinical signs of pEAE by suppressing Th17 migration through inhibition of IL-6 production by proinflammatory-activated glial cells.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ezgi Ozdemir Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kotaro Iida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Marion Heleen Cathérine Wijering
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen (UMCG), MS Center Noord Nederland, 9713 AV Groningen, The Netherlands
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka 811-0213, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Mannion JM, Segal BM, McLoughlin RM, Lalor SJ. Respiratory tract Moraxella catarrhalis and Klebsiella pneumoniae can promote pathogenicity of myelin-reactive Th17 cells. Mucosal Immunol 2023; 16:399-407. [PMID: 37088262 DOI: 10.1016/j.mucimm.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. The airways have been linked with the trafficking of myelin-specific T-cells in the preclinical stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Th17 cells are important pathogenic effectors in MS and EAE but are innocuous immediately following differentiation. Upregulation of the cytokine GM-CSF appears to be a critical step in their acquisition of pathogenic potential, but little is known about the mechanisms that mediate this process. Here, primed myelin-specific Th17 cells were transferred to congenic recipient mice prior to exposure to various human respiratory tract-associated bacteria and T-cell trafficking, phenotype and the severity of resulting EAE were monitored. Disease was exacerbated in mice exposed to the Proteobacteria Moraxella catarrhalis and Klebsiella pneumoniae, but not the Firmicute Veillonella parvula, and this was associated with significantly increased GM-CSF+ and GM-CSF+IFNγ+ ex-Th17-like donor CD4 T cells in the lungs and central nervous system (CNS) of these mice. These findings support the concept that respiratory bacteria may contribute to the pathophysiology of CNS autoimmunity by modulating pathogenicity in crucial T-cell subsets that orchestrate neuroinflammation.
Collapse
Affiliation(s)
- Jenny M Mannion
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, USA; Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- University College Dublin School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
12
|
Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023; 186:1309-1327. [PMID: 37001498 PMCID: PMC10119687 DOI: 10.1016/j.cell.2023.03.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM. Ageing and multiple sclerosis. Lancet Neurol 2023; 22:66-77. [PMID: 36216015 DOI: 10.1016/s1474-4422(22)00184-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
The factor that is most relevant and strongly associated with the clinical course of multiple sclerosis is chronological age. Very young patients exclusively have relapsing remitting disease, whereas those with later onset disease face a more rapid development of permanent disability. For people with progressive multiple sclerosis, the poor response to current disease modifying therapies might be related to ageing in the immune system and CNS. Ageing is also associated with increased risks of side-effects caused by some multiple sclerosis therapies. Both somatic and reproductive ageing processes might contribute to development of progressive multiple sclerosis. Understanding the role of ageing in immune and neural cell function in patients with multiple sclerosis might be key to halting non-relapse-related progression. The growing literature on potential therapies that target senescent cells and ageing processes might provide effective strategies for remyelination and neuroprotection.
Collapse
Affiliation(s)
- Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, CA, USA; Pediatric Multiple Sclerosis Center, Rady Children's Hospital, San Diego, CA, USA; Department of Neurology, San Diego VA Hospital, San Diego, CA, USA.
| | - Kristen M Krysko
- Division of Neurology, Department of Medicine, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Le H Hua
- Department of Neurology, Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Pierre K, Molina V, Shukla S, Avila A, Fong N, Nguyen J, Lucke-Wold B. Chronic traumatic encephalopathy: Diagnostic updates and advances. AIMS Neurosci 2022; 9:519-535. [PMID: 36660076 PMCID: PMC9826753 DOI: 10.3934/neuroscience.2022030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs secondary to repetitive mild traumatic brain injury. Current clinical diagnosis relies on symptomatology and structural imaging findings which often vary widely among those with the disease. The gold standard of diagnosis is post-mortem pathological examination. In this review article, we provide a brief introduction to CTE, current diagnostic workup and the promising research on imaging and fluid biomarker diagnostic techniques. For imaging, we discuss quantitative structural analyses, DTI, fMRI, MRS, SWI and PET CT. For fluid biomarkers, we discuss p-tau, TREM2, CCL11, NfL and GFAP.
Collapse
Affiliation(s)
- Kevin Pierre
- University of Florida Department of Radiology, Gainesville 32603, Florida, USA
| | - Vanessa Molina
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Shil Shukla
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Anthony Avila
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Nicholas Fong
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Jessica Nguyen
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Brandon Lucke-Wold
- University of Florida Department of Neurosurgery, Gainesville 32603, Florida, USA,* Correspondence:
| |
Collapse
|
15
|
Reiszadeh-Jahromi S, Haddadi M, Mousavi P, Sanadgol N. Prophylactic effects of cucurbitacin B in the EAE Model of multiple sclerosis by adjustment of STAT3/IL-23/IL-17 axis and improvement of neuropsychological symptoms. Metab Brain Dis 2022; 37:2937-2953. [PMID: 36287356 DOI: 10.1007/s11011-022-01083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system. Although remarkable progress has been made in treating MS, current therapies are less effective in protecting against the progression of the disease. Since cucurbitacins have shown an extreme range of pharmacological properties, in this study, we aimed to investigate the prophylactic effect of cucurbitacin B (CuB) in the experimental MS model. Experimental autoimmune encephalomyelitis (EAE) induced by subcutaneous immunization of MOG35-55 in C57BL/6 mice. CuB interventions (0.5 and 1 mg/kg, i.p.) were performed every other day from the first day of EAE induction. Assessment of clinical scores and motor function, inflammatory responses, and microglial activation were assessed by qRT-PCR, western blotting, and immunohistochemical (IHC) analyses. CuB (1 mg/kg) significantly decreased the population of CD45+ (P < 0.01), CD11b+ (P < 0.01) and CD45+/CD11b+ (P < 0.05) cells in cortical lesions of EAE mice. In addition, activation of STAT3 (P < 0.001), expression of IL-17 A and IL-23 A (both mRNA and protein), and transcription of Iba-1 significantly decreased. On the contrary, CuB (1 mg/kg) significantly increased the transcription of MBP and Olig-2. Furthermore, a significant decrease in the severity of EAE (P < 0.05), and an improvement in motor function (P < 0.05) and coordination (P < 0.05) were observed after treatment with a high dose of CuB. Our results suggest that CuB may have a wide-ranging effect on autoimmune responses in MS via a reduction in STAT3 activation, microgliosis, and adaptation of the IL-23/IL-17 axis. Further studies are needed to investigate the exact effect of CuB in glial cells and its efficiency and bioavailability in other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
16
|
Dias de Sousa MA, Desidério CS, da Silva Catarino J, Trevisan RO, Alves da Silva DA, Rocha VFR, Bovi WG, Timoteo RP, Bonatti RCF, da Silva AE, Fernandez AL, Sales-Campos H, Rodrigues Junior V, da Silva MV, de Oliveira CJF. Role of Cytokines, Chemokines and IFN-γ+ IL-17+ Double-Positive CD4+ T Cells in Patients with Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10092062. [PMID: 36140164 PMCID: PMC9495686 DOI: 10.3390/biomedicines10092062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is mediated by self-reactive myelin T and B cells that lead to axonal and myelin damage. The immune response in multiple sclerosis involves the participation of CD4+ T cells that produce cytokines and chemokines. This participation is important to find markers for the diagnosis and progression of the disease. In our work, we evaluated the profile of cytokines and chemokines, as well as the production of double positive CD4+ T cells for the production of IFNγ IL-17 in patients with multiple sclerosis, at different stages of the disease and undergoing different treatments. We found that relapsing–remitting patients had a significant increase in IL-12 production. About IL-5, its production showed significantly higher levels in secondarily progressive patients when compared to relapsing–remitting patients. IFN-γ production by PBMCs from secondarily progressive patients showed significantly higher levels. This group also had a higher percentage of CD4+ IFNγ+ IL-17+ T cells. The combination of changes in certain cytokines and chemokines together with the presence of IFNγ+ IL-17+ double positive lymphocytes can be used to better understand the clinical forms of the disease and its progression.
Collapse
Affiliation(s)
- Marlos Aureliano Dias de Sousa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
- Department of Neurology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Chamberttan Souza Desidério
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Jonatas da Silva Catarino
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rafael Obata Trevisan
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Djalma Alexandre Alves da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Vinicius Ferreira Resende Rocha
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Weslley Guimarães Bovi
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Rodolfo Pessato Timoteo
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Alex Eduardo da Silva
- Department of Neurology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania 74605-050, GO, Brazil
| | - Virmondes Rodrigues Junior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Carlo José Freire de Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
- Laboratory of Immunology and Bioinformatics, Universidade Federal do Triângulo Mineiro, Rua Vigário Carlos, 100, 8th Floor, Uberaba 38025-350, MG, Brazil
- Correspondence: ; Tel.: +55-34-33185203
| |
Collapse
|
17
|
Atkinson JR, Jerome AD, Sas AR, Munie A, Wang C, Ma A, Arnold WD, Segal BM. Biological aging of CNS-resident cells alters the clinical course and immunopathology of autoimmune demyelinating disease. JCI Insight 2022; 7:e158153. [PMID: 35511417 PMCID: PMC9309055 DOI: 10.1172/jci.insight.158153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing-remitting MS typically presents in the third or fourth decade, whereas the mean age of presentation of progressive MS (PMS) is 45 years old. Here, we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, was more severe, and less likely to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils were more abundant, while B cells were relatively sparse, in CNS infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrated that radio-resistant, nonhematopoietic cells played a dominant role in shaping age-dependent features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of PMS, EAE in middle-aged adoptive transfer recipients was characterized by widespread microglial activation. Microglia from older mice expressed a distinctive transcriptomic profile suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Jeffrey R. Atkinson
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew D. Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew R. Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Munie
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - William D. Arnold
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin M. Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Gottlieb A, Pham HPT, Lindsey JW. Brain Antigens Stimulate Proliferation of T Lymphocytes With a Pathogenic Phenotype in Multiple Sclerosis Patients. Front Immunol 2022; 13:835763. [PMID: 35173742 PMCID: PMC8841344 DOI: 10.3389/fimmu.2022.835763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
A method to stimulate T lymphocytes with a broad range of brain antigens would facilitate identification of the autoantigens for multiple sclerosis and enable definition of the pathogenic mechanisms important for multiple sclerosis. In a previous work, we found that the obvious approach of culturing leukocytes with homogenized brain tissue does not work because the brain homogenate suppresses antigen-specific lymphocyte proliferation. We now report a method that substantially reduces the suppressive activity. We used this non-suppressive brain homogenate to stimulate leukocytes from multiple sclerosis patients and controls. We also stimulated with common viruses for comparison. We measured proliferation, selected the responding CD3+ cells with flow cytometry, and sequenced their transcriptomes for mRNA and T-cell receptor sequences. The mRNA expression suggested that the brain-responding cells from MS patients are potentially pathogenic. The T-cell receptor repertoire of the brain-responding cells was clonal with minimal overlap with virus antigens.
Collapse
Affiliation(s)
- Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hoai Phuong T. Pham
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John William Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: John William Lindsey,
| |
Collapse
|
19
|
Charabati M, Grasmuck C, Ghannam S, Bourbonnière L, Fournier AP, Lécuyer MA, Tastet O, Kebir H, Rébillard RM, Hoornaert C, Gowing E, Larouche S, Fortin O, Pittet C, Filali-Mouhim A, Lahav B, Moumdjian R, Bouthillier A, Girard M, Duquette P, Cayrol R, Peelen E, Quintana FJ, Antel JP, Flügel A, Larochelle C, Arbour N, Zandee S, Prat A. DICAM promotes T H17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Sci Transl Med 2022; 14:eabj0473. [PMID: 34985970 DOI: 10.1126/scitranslmed.abj0473] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Camille Grasmuck
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Soufiane Ghannam
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Antoine P Fournier
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Olivier Tastet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hania Kebir
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Chloé Hoornaert
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Elizabeth Gowing
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sandra Larouche
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Olivier Fortin
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Camille Pittet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Ali Filali-Mouhim
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Boaz Lahav
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Robert Moumdjian
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Marc Girard
- Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Pierre Duquette
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Romain Cayrol
- Department of Pathology, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Evelyn Peelen
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Francisco J Quintana
- Ann Romney Carter for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
20
|
Jia H, Chen M, Cai Y, Luo X, Hou G, Li Y, Cai C, Chen J, Li Q, Miu KK, Fung SH, Wang Z, Huang R, Shen H, Lu L. A new and spontaneous animal model for ankylosing spondylitis is found in cynomolgus monkeys. Arthritis Res Ther 2022; 24:1. [PMID: 34980262 PMCID: PMC8722021 DOI: 10.1186/s13075-021-02679-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies. METHODS We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing. RESULTS The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients. CONCLUSION The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.
Collapse
Affiliation(s)
- Huanhuan Jia
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Meili Chen
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yanzhen Cai
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoling Luo
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gang Hou
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongfeng Li
- Guangzhou Blooming-Spring Biological Research Institute, Guangzhou, China
| | - Chunmei Cai
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Chen
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingnan Li
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin-Hang Fung
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Lu
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
21
|
Bartolini L, Moran MP, Norato G, Thomas B, Dick AD, Wells E, Suslovic W, Bumbut A, Chamberlain JM, Theodore WH, Gaillard WD, Jacobson S. Differential activation of neuroinflammatory pathways in children with seizures: A cross-sectional study. Seizure 2021; 91:150-158. [PMID: 34161903 DOI: 10.1016/j.seizure.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Inflammation plays a crucial role in epileptogenesis. We analyzed inflammatory cytokines in plasma and saliva from children with seizures and healthy controls and measured their associations with HHV6 and EBV infection. METHODS We analyzed plasma from 36 children within 24 h of seizures (cases) and 43 healthy controls and saliva from 44 cases and 44 controls with a multiplex immunoassay. Saliva from all controls and 65 cases and blood from 26 controls and 35 cases were also analyzed by PCR for viral DNA. Primary outcome was cytokine levels in cases vs. controls. Secondary outcomes included detection of HHV-6 and EBV viral DNA in cases vs. controls and viral loads in cases vs. controls. Statistical analysis included the Wilcoxon Rank Sum test, Fisher's exact test, ANOVA, and Spearman correlation. RESULTS Compared to controls, patients had higher levels of CCL11 (p = 0.0018), CCL26 (p<0.001), IL10 (p = 0.044), IL6 (p<0.001), IL8 (p = 0.018), and MIP1β (p = 0.0012). CCL11 was higher with 3 or more seizures (p = 0.01), seizures longer than 10 min (p = 0.001), and when EEG showed focal slowing (p = 0.02). In saliva, febrile seizures had higher levels of IL-1β (n = 7, p = 0.04) and new onset seizures had higher IL-6 (n = 15, p = 0.02). Plasma and saliva cytokine levels did not show a correlation. The frequency of HHV-6 and EBV detection was similar across groups and not different than controls. We found no correlation between viral load and cytokine levels. CONCLUSIONS We showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to viral infection.
Collapse
Affiliation(s)
- Luca Bartolini
- The Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, United States.
| | - Michael P Moran
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| | - Gina Norato
- Office of Biostatistics, NINDS, NIH, Bethesda, MD, United States
| | - Bobbe Thomas
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | - Alexander D Dick
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Elizabeth Wells
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - William Suslovic
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Adrian Bumbut
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - James M Chamberlain
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | | | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
22
|
Doss PMIA, Umair M, Baillargeon J, Fazazi R, Fudge N, Akbar I, Yeola AP, Williams JB, Leclercq M, Joly-Beauparlant C, Beauchemin P, Ruda GF, Alpaugh M, Anderson AC, Brennan PE, Droit A, Lassmann H, Moore CS, Rangachari M. Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Rep 2021; 34:108833. [PMID: 33691111 DOI: 10.1016/j.celrep.2021.108833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in multiple sclerosis (MS) incidence and severity have long been recognized. However, the underlying cellular and molecular mechanisms for why male sex is associated with more aggressive disease remain poorly defined. Using a T cell adoptive transfer model of chronic experimental autoimmune encephalomyelitis (EAE), we find that male Th17 cells induce disease of increased severity relative to female Th17 cells, irrespective of whether transferred to male or female recipients. Throughout the disease course, a greater frequency of male Th17 cells produce IFNγ, a hallmark of pathogenic Th17 responses. Intriguingly, XY chromosomal complement increases the pathogenicity of male Th17 cells. An X-linked immune regulator, Jarid1c, is downregulated in pathogenic male murine Th17 cells, and functional experiments reveal that it represses the severity of Th17-mediated EAE. Furthermore, Jarid1c expression is downregulated in CD4+ T cells from MS-affected individuals. Our data indicate that male sex chromosomal complement critically regulates Th17 cell pathogenicity.
Collapse
Affiliation(s)
- Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Muhammad Umair
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Reda Fazazi
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Mickael Leclercq
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Charles Joly-Beauparlant
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Philippe Beauchemin
- Department of Neurology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Gian Filipo Ruda
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Melanie Alpaugh
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Paul E Brennan
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Arnaud Droit
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Hans Lassmann
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada; Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Aqel SI, Yang X, Kraus EE, Song J, Farinas MF, Zhao EY, Pei W, Lovett-Racke AE, Racke MK, Li C, Yang Y. A STAT3 inhibitor ameliorates CNS autoimmunity by restoring Teff:Treg balance. JCI Insight 2021; 6:142376. [PMID: 33411696 PMCID: PMC7934926 DOI: 10.1172/jci.insight.142376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Reestablishing an appropriate balance between T effector cells (Teff) and Tregs is essential for correcting autoimmunity. Multiple sclerosis (MS) is an immune-mediated chronic CNS disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teffs Th1 and Th17 cells. STAT3 is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a potentially novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4+ T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest that selective inhibition of STAT3 by the small molecule LLL12b recalibrates the effector and regulatory arms of CD4+ T responses, representing a potentially clinically translatable therapeutic strategy for MS.
Collapse
Affiliation(s)
- Saba I Aqel
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA
| | - Xiaozhi Yang
- Division of Medicinal Chemistry, College of Pharmacy, OSU, Columbus, Ohio, USA.,Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Emma E Kraus
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA
| | - Jinhua Song
- Division of Medicinal Chemistry, College of Pharmacy, OSU, Columbus, Ohio, USA.,Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Marissa F Farinas
- Neuroscience program, College of Arts and Sciences, OSU, Columbus, Ohio, USA
| | - Erin Y Zhao
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA
| | - Wei Pei
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, OSU Wexner Medical Center, Columbus, Ohio, USA
| | - Michael K Racke
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA.,Quest Diagnostics, Secaucus, New Jersey, USA
| | - Chenglong Li
- Division of Medicinal Chemistry, College of Pharmacy, OSU, Columbus, Ohio, USA.,Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Yuhong Yang
- Department of Neurology, Ohio State University (OSU) Wexner Medical Center, Columbus, Ohio, USA.,Department of Microbial Infection and Immunity, OSU Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
24
|
Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, Eslami S, Babaie F, Aslani S, Torkamandi S, Mohammadi H. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88:107024. [PMID: 33182024 DOI: 10.1016/j.intimp.2020.107024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal microbiota, also known as the gut microbiota living in the human gastrointestinal tract, has been shown to have a significant impact on several human disorders including rheumatoid arthritis, diabetes, obesity, and multiple sclerosis (MS). MS is an inflammatory disease characterized by the destruction of the spinal cord and nerve cells in the brain due to an attack of immune cells, causing a wide range of harmful symptoms related to inflammation in the central nervous system (CNS). Despite extensive studies on MS that have shown that many external and genetic factors are involved in its pathogenesis, the exact role of external factors in the pathophysiology of MS is still unclear. Recent studies on MS and experimental autoimmune encephalomyelitis (EAE), an animal model of encephalitis, have shown that intestinal microbiota may play a key role in the pathogenesis of MS. Therefore, modification of the intestinal microbiome could be a promising strategy for the future treatment of MS. In this study, the characteristics of intestinal microbiota, the relationship between intestine and brain despite the blood-brain barrier, various factors involved in intestinal microbiota modification, changes in intestinal microbial composition in MS, intestinal microbiome modification strategies, and possible use of intestinal microbiome and factors affecting it have been discussed.
Collapse
Affiliation(s)
- Mohammad Esmaeil Amini
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Bakhshi
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
25
|
Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med 2020; 217:jem.20190460. [PMID: 31611252 PMCID: PMC7037255 DOI: 10.1084/jem.20190460] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system that is believed to have an autoimmune etiology. As MS is the most common nontraumatic disease that causes disability in young adults, extensive research has been devoted to identifying therapeutic targets. In this review, we discuss the current understanding derived from studies of patients with MS and animal models of how specific cytokines produced by autoreactive CD4 T cells contribute to the pathogenesis of MS. Defining the roles of these cytokines will lead to a better understanding of the potential of cytokine-based therapies for patients with MS.
Collapse
Affiliation(s)
| | - Pamela J Roqué
- Department of Immunology, University of Washington, Seattle, WA
| | - Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
26
|
Kadowaki A, Saga R, Lin Y, Sato W, Yamamura T. Gut microbiota-dependent CCR9+CD4+ T cells are altered in secondary progressive multiple sclerosis. Brain 2019; 142:916-931. [PMID: 30770703 PMCID: PMC6439331 DOI: 10.1093/brain/awz012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/28/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanism underlying the progression of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis (SPMS), characterized by accumulating fixed disability, is yet to be fully understood. Although alterations in the gut microbiota have recently been highlighted in multiple sclerosis pathogenesis, the mechanism linking the altered gut environment with the remote CNS pathology remains unclear. Here, we analyse human CD4+ memory T cells expressing the gut-homing chemokine receptor CCR9 and found a reduced frequency of CCR9+ memory T cells in the peripheral blood of patients with SPMS relative to healthy controls. The reduction in the proportion of CCR9+ cells among CD4+ memory T cells (%CCR9) in SPMS did not correlate with age, disease duration or expanded disability status scale score, although %CCR9 decreased linearly with age in healthy controls. During the clinical relapse of both, relapsing-remitting multiple sclerosis and neuromyelitis optica, a high proportion of cells expressing the lymphocyte activating 3 gene (LAG3) was detected among CCR9+ memory T cells isolated from the CSF, similar to that observed for mouse regulatory intraepithelial lymphocytes. In healthy individuals, CCR9+ memory T cells expressed higher levels of CCR6, a CNS-homing chemokine receptor, and exhibited a regulatory profile characterized by both the expression of C-MAF and the production of IL-4 and IL-10. However, in CCR9+ memory T cells, the expression of RORγt was specifically upregulated, and the production of IL-17A and IFNγ was high in patients with SPMS, indicating a loss of regulatory function. The evaluation of other cytokines supported the finding that CCR9+ memory T cells acquire a more inflammatory profile in SPMS, reporting similar aspects to CCR9+ memory T cells of the elderly healthy controls. CCR9+ memory T cell frequency decreased in germ-free mice, whereas antibiotic treatment increased their number in specific pathogen-free conditions. Here, we also demonstrate that CCR9+ memory T cells preferentially infiltrate into the inflamed CNS resulting from the initial phase and that they express LAG3 in the late phase in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Antibiotic treatment reduced experimental autoimmune encephalomyelitis symptoms and was accompanied by an increase in CCR9+ memory T cells in the peripheral blood. Antibodies against mucosal vascular addressin cell adhesion molecule 1 (MADCAM1), which is capable of blocking cell migration to the gut, also ameliorated experimental autoimmune encephalomyelitis. Overall, we postulate that the alterations in CCR9+ memory T cells observed, caused by either the gut microbiota changes or ageing, may lead to the development of SPMS.
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan.,Department of Neurology, Brigham and Women's Hospital Biomedical Research Institute, 60 Fenwood Rd, Boston, MA, USA
| | - Ryoko Saga
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| | - Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| |
Collapse
|
27
|
Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, Yan T, Cheng Y. Cerebrospinal Fluid and Blood Cytokines as Biomarkers for Multiple Sclerosis: A Systematic Review and Meta-Analysis of 226 Studies With 13,526 Multiple Sclerosis Patients. Front Neurosci 2019; 13:1026. [PMID: 31636528 PMCID: PMC6787166 DOI: 10.3389/fnins.2019.01026] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Multiple sclerosis (MS) biomarker identification is important for pathogenesis research and diagnosis in routine clinical practice. Cerebrospinal fluid (CSF) and blood cytokines as potential biomarkers that can inform MS pathogenesis, diagnosis and response to treatment have been assessed in numerous studies. However, there have been no comprehensive meta-analyses to pool cytokine data and to address their diagnostic performance. We systematically reviewed literature with meta-analyses to assess the alteration levels of cytokines and chemokines in MS. Methods: We searched PubMed and Web of Science for articles published between January 1, 1990 and April 30, 2018 for this systematic review and meta-analysis. Data were extracted from 226 included studies encompassing 13,526 MS patients and 8,428 controls. Biomarker performance was rated by a random-effects meta-analysis based on the standard mean difference between cytokine concentration in patients with MS and controls, or patients before and after treatments. Results: Of the 26 CSF cytokines and 37 blood cytokines for potential differentiation between MS patients and controls, the random-effects meta-analysis showed that 13 CSF cytokines and 21 blood cytokines were significantly increased in MS patients in comparison to the controls. Interestingly, TNF-α, CXCL8, IL-15, IL-12p40, and CXCL13 were increased in both blood and CSF of MS patients. For those cytokines analyzed in at least 10 studies, differentiation between case and control was strong for CSF CXCL13, blood IL-2R, and blood IL-23; CSF CXCL8, blood IL-2, and blood IL-17 also performed well in differentiating between MS patients and controls, whereas those of CSF TNF-α and blood TNF-α, CXCL8, IL-12, IFN-γ were moderate. Furthermore, CSF IL-15, CCL19, CCL11, CCL-3, and blood CCL20, IL-12p40, IL-21, IL-17F, IL-22 had large effective sizes when differentiating between MS patients and controls but had a relatively small number of studies (three to seven studies). Conclusion: Our findings clarified the circulating cytokine profile in MS, which provide targets for disease modifying treatments, and suggest that cytokines have the potential to be used as biomarkers for MS.
Collapse
Affiliation(s)
- Zhile Bai
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Luyao Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Zhao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tiantian Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Yu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
28
|
Shou J, Peng J, Zhao Z, Huang X, Li H, Li L, Gao X, Xing Y, Liu H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 333:576967. [DOI: 10.1016/j.jneuroim.2019.576967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
|
29
|
Segal BM. Modulation of the Innate Immune System: A Future Approach to the Treatment of Neurological Disease. Clin Immunol 2019; 189:1-3. [PMID: 29628125 DOI: 10.1016/j.clim.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Benjamin M Segal
- Holtom-Garrett Family Program in Neuroimmunology and the Multiple Sclerosis Center, Department of Neurology, University of Michigan, Ann Arbor, MI; Neurology Service, VA Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
30
|
The Diversity of Encephalitogenic CD4+ T Cells in Multiple Sclerosis and Its Animal Models. J Clin Med 2019; 8:jcm8010120. [PMID: 30669462 PMCID: PMC6352150 DOI: 10.3390/jcm8010120] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Autoreactive CD4+ T cells, which target antigens in central nervous system (CNS) myelin, are widely believed to play a critical role in the pathogenesis of multiple sclerosis (MS) in concert with other immune effectors. This theory is supported by data from animal model experiments, genome-wide association studies, and immune profiles of individuals with MS. Furthermore, disease modifying agents that target lymphocytes significantly reduce the rate of MS clinical exacerbations. However, the properties of myelin-reactive CD4+ T cells that are critical for their pathogenic activities are not understood completely. This article reviews the literature on encephalitogenic CD4+ T cells, with an emphasis on T-helper (Th) lineage and cytokine production. An increased understanding of the spectrum of encephalitogenic T cells and how they differ from protective subsets is necessary for the development of the next generation of more effective and safer immunomodulatory therapies customized for individuals with MS and related disorders.
Collapse
|
31
|
Cheng Y, Skinner DD, Lane TE. Innate Immune Responses and Viral-Induced Neurologic Disease. J Clin Med 2018; 8:jcm8010003. [PMID: 30577473 PMCID: PMC6352557 DOI: 10.3390/jcm8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.
Collapse
Affiliation(s)
- Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Pacheco-Lugo L, Sáenz-García J, Navarro Quiroz E, González Torres H, Fang L, Díaz-Olmos Y, Garavito de Egea G, Egea Bermejo E, Aroca Martínez G. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus 2018; 28:34-43. [DOI: 10.1177/0961203318812679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Systemic lupus erythematosus is a heterogeneous chronic inflammatory autoimmune disorder characterized by an exacerbated expression of cytokines and chemokines in different tissues and organs. Renal involvement is a significant contributor to the morbidity and mortality of systemic lupus erythematosus, and its diagnosis is based on renal biopsy, an invasive procedure with a high risk of complications. Therefore, the development of alternative, non-invasive diagnostic tests for kidney disease in patients with systemic lupus erythematosus is a priority. Aim To evaluate the plasma levels of a panel of cytokines and chemokines using multiplex xMAP technology in a cohort of Colombian patients with active and inactive systemic lupus erythematosus, and to evaluate their potential as biomarkers of renal involvement. Results Plasma from 40 systemic lupus erythematosus non-nephritis patients and 80 lupus nephritis patients with different levels of renal involvement were analyzed for 39 cytokines using Luminex xMAP technology. Lupus nephritis patients had significantly increased plasma eotaxin, TNF-α, interleukin-17-α, interleukin-10, and interleukin-15 as compared to the systemic lupus erythematosus non-nephritis group. Macrophage-derived chemokine, growth regulated oncogene alpha, and epidermal growth factor were significantly elevated in systemic lupus erythematosus non-nephritis patients when compared to lupus nephritis individuals. Plasma eotaxin levels allowed a discrimination between systemic lupus erythematosus non-nephritis and lupus nephritis patients, for which we performed a receiver operating characteristic curve to confirm. We observed a correlation of eotaxin levels with active nephritis (Systemic Lupus Erythematosus Disease Activity Index). Our data indicate that circulating cytokines and chemokines could be considered good predictors of renal involvement in individuals with systemic lupus erythematosus.
Collapse
Affiliation(s)
- L. Pacheco-Lugo
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
| | - J. Sáenz-García
- Grupo de Genómica Funcional de Parásitos, Universidad Federal de Paraná, Curitiba, Brasil
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Nicaragua, Managua, Nicaragua
| | - E Navarro Quiroz
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - L. Fang
- Universidad del Norte, Barranquilla, Colombia
| | | | | | | | - G. Aroca Martínez
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
- Clínica de la Costa, Barranquilla, Colombia
| |
Collapse
|
33
|
Giles DA, Duncker PC, Wilkinson NM, Washnock-Schmid JM, Segal BM. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest 2018; 128:5322-5334. [PMID: 30226829 DOI: 10.1172/jci123708] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), induced by the adoptive transfer of myelin-reactive CD4+ T cells into naive syngeneic mice. It is widely used as a rodent model of multiple sclerosis (MS). The development of EAE lesions is initiated when transferred CD4+ T cells access the CNS and are reactivated by local antigen-presenting cells (APCs) bearing endogenous myelin peptide/MHC class II complexes. The identity of the CNS-resident, lesion-initiating APCs is widely debated. Here we demonstrate that classical dendritic cells (cDCs) normally reside in the meninges, brain, and spinal cord in the steady state. These cells are unique among candidate CNS APCs in their ability to stimulate naive, as well as effector, myelin-specific T cells to proliferate and produce proinflammatory cytokines directly ex vivo. cDCs expanded in the meninges and CNS parenchyma in association with disease progression. Selective depletion of cDCs led to a decrease in the number of myelin-primed donor T cells in the CNS and reduced the incidence of clinical EAE by half. Based on our findings, we propose that cDCs, and the factors that regulate them, be further investigated as potential therapeutic targets in MS.
Collapse
Affiliation(s)
- David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and.,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick C Duncker
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and
| | | | | | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and.,Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Lomakin Y, Kudriaeva A, Kostin N, Terekhov S, Kaminskaya A, Chernov A, Zakharova M, Ivanova M, Simaniv T, Telegin G, Gabibov A, Belogurov A. Diagnostics of autoimmune neurodegeneration using fluorescent probing. Sci Rep 2018; 8:12679. [PMID: 30139963 PMCID: PMC6107501 DOI: 10.1038/s41598-018-30938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
The discovery of antibody-mediated catalysis was a breakthrough that showed antibody function is not limited to specific binding interactions, and that immunoglobulins (Igs) may also chemically transform their target antigens. Recently, so-called “natural catalytic antibodies” have been intimately linked with several pathologies, where they either protect the organism or contribute to the development of autoimmune abnormalities. Previously, we showed that myelin-reactive autoantibodies from patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE) exhibit the ability to recognize and hydrolyse distinct epitopes within myelin basic protein (MBP). Further, the antibody-mediated cleavage of encephalitogenic MBP peptide 81–103, flanked by two fluorescent proteins, can serve as a novel biomarker for MS. Here, we report the next generation of this biomarker, based on the antibody-mediated degradation of a novel chemically synthesized FRET substrate, comprising the fluorophore Cy5 and the quencher QXL680, interconnected by the MBP peptide 81–99: Cy5-MBP81–99-QXL680. This substrate is degraded upon incubation with either purified antibodies from MS patients but not healthy donors or purified antibodies and splenocytes from EAE but not from non-immunized mice. Data presented herein suggest the elaboration of potential specific, rapid, and sensitive diagnostic criteria of active progressive MS.
Collapse
Affiliation(s)
- Yakov Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Nikita Kostin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Stanislav Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alena Kaminskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexander Chernov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Maria Zakharova
- Neurorehabilitation Department of the Research Center of Neurology, Moscow, Russia
| | - Maria Ivanova
- Neurorehabilitation Department of the Research Center of Neurology, Moscow, Russia
| | - Taras Simaniv
- Neurorehabilitation Department of the Research Center of Neurology, Moscow, Russia
| | - Georgy Telegin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
35
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
36
|
Grist JJ, Marro B, Lane TE. Neutrophils and viral-induced neurologic disease. Clin Immunol 2018; 189:52-56. [PMID: 27288312 PMCID: PMC5145788 DOI: 10.1016/j.clim.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 10/27/2022]
Abstract
Infection of the central nervous system (CNS) by neurotropic viruses represents an increasing worldwide problem in terms of morbidity and mortality for people of all ages. Although unique structural features of the blood-brain-barrier (BBB) provide a physical and physiological barrier, a number of neurotropic viruses are able to enter the CNS resulting in a variety of pathological outcomes. Nonetheless, antigen-specific lymphocytes are ultimately able to accumulate within the CNS and contribute to defense by reducing or eliminating the invading viral pathogen. Alternatively, infiltration of activated cells of the immune system may be detrimental, as these cells can contribute to neuropathology that may result in long-term cellular damage or death. More recently, myeloid cells e.g. neutrophils have been implicated in contributing to both host defense and disease in response to viral infection of the CNS. This review highlights recent studies using coronavirus-induced neurologic disease as a model to determine how neutrophils affect effective control of viral replication as well as demyelination.
Collapse
Affiliation(s)
- Jonathan J Grist
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - Brett Marro
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
37
|
Giles DA, Washnock-Schmid JM, Duncker PC, Dahlawi S, Ponath G, Pitt D, Segal BM. Myeloid cell plasticity in the evolution of central nervous system autoimmunity. Ann Neurol 2018; 83:131-141. [PMID: 29283442 PMCID: PMC5876132 DOI: 10.1002/ana.25128] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Myeloid cells, including macrophages and dendritic cells, are a prominent component of central nervous system (CNS) infiltrates during multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). Although myeloid cells are generally thought to be proinflammatory, alternatively polarized subsets can serve noninflammatory and/or reparative functions. Here we investigate the heterogeneity and biological properties of myeloid cells during central nervous system autoimmunity. METHODS Myeloid cell phenotypes in chronic active MS lesions were analyzed by immunohistochemistry. In addition, immune cells were isolated from the CNS during exacerbations and remissions of EAE and characterized by flow cytometric, genetic, and functional assays. RESULTS Myeloid cells expressing inducible nitric oxide synthase (iNOS), indicative of a proinflammatory phenotype, were detected in the actively demyelinating rim of chronic active MS lesions, whereas macrophages expressing mannose receptor (CD206), a marker of alternatively polarized human myeloid cells, were enriched in the quiescent lesion core. During EAE, CNS-infiltrating myeloid cells, as well as microglia, shifted from expression of proinflammatory markers to expression of noninflammatory markers immediately prior to clinical remissions. Murine CNS myeloid cells expressing the alternative lineage marker arginase-1 (Arg1) were partially derived from iNOS+ precursors and were deficient in activating encephalitogenic T cells compared with their Arg1- counterparts. INTERPRETATION These observations demonstrate the heterogeneity of CNS myeloid cells, their evolution during the course of autoimmune demyelinating disease, and their plasticity on the single cell level. Future therapeutic strategies for disease modification in individuals with MS may be focused on accelerating the transition of CNS myeloid cells from a proinflammatory to a noninflammatory phenotype. Ann Neurol 2018;83:131-141.
Collapse
Affiliation(s)
- David A. Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jesse M. Washnock-Schmid
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Patrick C. Duncker
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Somiah Dahlawi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Gerald Ponath
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - David Pitt
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin M. Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Duncker PC, Stoolman JS, Huber AK, Segal BM. GM-CSF Promotes Chronic Disability in Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous System-Infiltrating Cells, but Is Dispensable for Disease Induction. THE JOURNAL OF IMMUNOLOGY 2017; 200:966-973. [PMID: 29288202 DOI: 10.4049/jimmunol.1701484] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
Abstract
GM-CSF has been portrayed as a critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 The mechanism of action of GM-CSF in EAE is poorly understood. In this study, we show that GM-CSF augments the accumulation of MOG35-55-specific T cells in the skin draining lymph nodes of primed mice, but it is not required for the development of encephalitogenic T cells. Abrogation of GM-CSF receptor signaling in adoptive transfer recipients of MOG35-55-specific T cells did not alter the incidence of EAE or the trajectory of its initial clinical course, but it limited the extent of chronic CNS tissue damage and neurologic disability. The attenuated clinical course was associated with a relative dearth of MOG35-55-specific T cells, myeloid dendritic cells, and neutrophils, as well as an abundance of B cells, within CNS infiltrates. Our data indicate that GM-CSF drives chronic tissue damage and disability in EAE via pleiotropic pathways, but it is dispensable during early lesion formation and the onset of neurologic deficits.
Collapse
Affiliation(s)
- Patrick C Duncker
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and
| | - Joshua S Stoolman
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109; .,Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and.,Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Pulido-Valdeolivas I, Zubizarreta I, Martinez-Lapiscina EH, Villoslada P. Precision medicine for multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision making. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1393315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Irene Pulido-Valdeolivas
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Institut d’Investigacions Biomediques August Pi Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Cherry JD, Stein TD, Tripodis Y, Alvarez VE, Huber BR, Au R, Kiernan PT, Daneshvar DH, Mez J, Solomon TM, Alosco ML, McKee AC. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease. PLoS One 2017; 12:e0185541. [PMID: 28950005 PMCID: PMC5614644 DOI: 10.1371/journal.pone.0185541] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
CCL11, a protein previously associated with age-associated cognitive decline, is observed to be increased in the brain and cerebrospinal fluid (CSF) in chronic traumatic encephalopathy (CTE) compared to Alzheimer's disease (AD). Using a cohort of 23 deceased American football players with neuropathologically verified CTE, 50 subjects with neuropathologically diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorsolateral frontal cortex (DLFC) and CSF. CCL11 levels were significantly increased in the DLFC in subjects with CTE (fold change = 1.234, p < 0.050) compared to non-athlete controls and AD subjects with out a history of head trauma. This increase was also seen to correlate with years of exposure to American football (β = 0.426, p = 0.048) independent of age (β = -0.046, p = 0.824). Preliminary analyses of a subset of subjects with available post-mortem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069) mirroring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels and the number of years exposed to football (β = 0.685, p = 0.040) was observed independent of age (β = -0.103, p = 0.716). Finally, a receiver operating characteristic (ROC) curve analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete controls and AD subjects (AUC = 0.839, 95% CI 0.62-1.058, p = 0.028). Overall, the current findings provide preliminary evidence that CCL11 may be a novel target for future CTE biomarker studies.
Collapse
Affiliation(s)
- Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
- * E-mail:
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- Department of Veterans Affairs Medical Center, Bedford, MA, United States of America
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
- Department of Veterans Affairs Medical Center, Bedford, MA, United States of America
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
| | - Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States of America
| | - Patrick T. Kiernan
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
| | - Daniel H. Daneshvar
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
| | - Todd M. Solomon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, MA. United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
- Department of Veterans Affairs Medical Center, Bedford, MA, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
41
|
Arellano G, Acuña E, Reyes LI, Ottum PA, De Sarno P, Villarroel L, Ciampi E, Uribe-San Martín R, Cárcamo C, Naves R. Th1 and Th17 Cells and Associated Cytokines Discriminate among Clinically Isolated Syndrome and Multiple Sclerosis Phenotypes. Front Immunol 2017; 8:753. [PMID: 28713377 PMCID: PMC5491887 DOI: 10.3389/fimmu.2017.00753] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/13/2017] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and demyelinating disease of the central nervous system. It is a heterogeneous pathology that can follow different clinical courses, and the mechanisms that underlie the progression of the immune response across MS subtypes remain incompletely understood. Here, we aimed to determine differences in the immunological status among different MS clinical subtypes. Blood samples from untreated patients diagnosed with clinically isolated syndrome (CIS) (n = 21), different clinical forms of MS (n = 62) [relapsing–remitting (RRMS), secondary progressive, and primary progressive], and healthy controls (HCs) (n = 17) were tested for plasma levels of interferon (IFN)-γ, IL-10, TGF-β, IL-17A, and IL-17F by immunoanalysis. Th1 and Th17 lymphocyte frequencies were determined by flow cytometry. Our results showed that IFN-γ levels and the IFN-γ/IL-10 ratio were higher in CIS patients than in RRMS patients and HC. Th1 cell frequencies were higher in CIS and RRMS than in progressive MS, and RRMS had a higher Th17 frequency than CIS. The Th1/Th17 cell ratio was skewed toward Th1 in CIS compared to MS phenotypes and HC. Receiver operating characteristic statistical analysis determined that IFN-γ, the IFN-γ/IL-10 ratio, Th1 cell frequency, and the Th1/Th17 cell ratio discriminated among CIS and MS subtypes. A subanalysis among patients expressing high IL-17F levels showed that IL-17F and the IFN-γ/IL-17F ratio discriminated between disease subtypes. Overall, our data showed that CIS and MS phenotypes displayed distinct Th1- and Th17-related cytokines and cell profiles and that these immune parameters discriminated between clinical forms. Upon validation, these parameters might be useful as biomarkers to predict disease progression.
Collapse
Affiliation(s)
- Gabriel Arellano
- School of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Eric Acuña
- School of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián, Santiago, Chile
| | - Payton A Ottum
- School of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Patrizia De Sarno
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luis Villarroel
- Department of Public Health, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ethel Ciampi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Neurology Service, Hospital Sotero del Río, Santiago, Chile
| | - Reinaldo Uribe-San Martín
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Neurology Service, Hospital Sotero del Río, Santiago, Chile
| | - Claudia Cárcamo
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Naves
- School of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
42
|
Pardo E, Cárcamo C, Uribe-San Martín R, Ciampi E, Segovia-Miranda F, Curkovic-Peña C, Montecino F, Holmes C, Tichauer JE, Acuña E, Osorio-Barrios F, Castro M, Cortes P, Oyanadel C, Valenzuela DM, Pacheco R, Naves R, Soza A, González A. Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. PLoS One 2017. [PMID: 28650992 PMCID: PMC5484466 DOI: 10.1371/journal.pone.0177472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Galectin-8 (Gal-8) is a member of a glycan-binding protein family that regulates the immune system, among other functions, and is a target of antibodies in autoimmune disorders. However, its role in multiple sclerosis (MS), an autoimmune inflammatory disease of the central nervous system (CNS), remains unknown. We study the consequences of Gal-8 silencing on lymphocyte subpopulations and the development of experimental autoimmune encephalitis (EAE), to then assess the presence and clinical meaning of anti-Gal-8 antibodies in MS patients. Lgals8/Lac-Z knock-in mice lacking Gal-8 expression have higher polarization toward Th17 cells accompanied with decreased CCR6+ and higher CXCR3+ regulatory T cells (Tregs) frequency. These conditions result in exacerbated MOG35-55 peptide-induced EAE. Gal-8 eliminates activated Th17 but not Th1 cells by apoptosis and ameliorates EAE in C57BL/6 wild-type mice. β-gal histochemistry reflecting the activity of the Gal-8 promoter revealed Gal-8 expression in a wide range of CNS regions, including high expression in the choroid-plexus. Accordingly, we detected Gal-8 in human cerebrospinal fluid, suggesting a role in the CNS immune-surveillance circuit. In addition, we show that MS patients generate function-blocking anti-Gal-8 antibodies with pathogenic potential. Such antibodies block cell adhesion and Gal-8-induced Th17 apoptosis. Furthermore, circulating anti-Gal-8 antibodies associate with relapsing-remitting MS (RRMS), and not with progressive MS phenotypes, predicting clinical disability at diagnosis within the first year of follow-up. Our results reveal that Gal-8 has an immunosuppressive protective role against autoimmune CNS inflammation, modulating the balance of Th17 and Th1 polarization and their respective Tregs. Such a role can be counteracted during RRMS by anti-Gal-8 antibodies, worsening disease prognosis. Even though anti-Gal-8 antibodies are not specific for MS, our results suggest that they could be a potential early severity biomarker in RRMS.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Autoantibodies/immunology
- Brain/immunology
- Brain/metabolism
- Cell Adhesion/physiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Galectins/genetics
- Galectins/immunology
- Galectins/metabolism
- Gene Silencing
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Prognosis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Evelyn Pardo
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudia Cárcamo
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Uribe-San Martín
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ethel Ciampi
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Segovia-Miranda
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristobal Curkovic-Peña
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Montecino
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher Holmes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Enrique Tichauer
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eric Acuña
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Marjorie Castro
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Santiago, Chile
| | - Priscilla Cortes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | | | - Rodrigo Pacheco
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Soza
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
- * E-mail: (AG); (AS)
| | - Alfonso González
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
- * E-mail: (AG); (AS)
| |
Collapse
|
43
|
Characterization of naïve, memory and effector T cells in progressive multiple sclerosis. J Neuroimmunol 2017; 310:17-25. [PMID: 28778440 DOI: 10.1016/j.jneuroim.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023]
Abstract
We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4+ and CD8+ T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26+ CD28+ CD4+ TEMRA T cells were increased in all subtypes of MS, and CD26+ CD28+ CD8+ TEMRA T cells were increased in relapsing-remitting and secondary progressive MS. Conversely, in progressive MS, CD49d+ CM T cells were decreased and natalizumab increased the circulating number of all six subsets but reduced the frequency of most subsets expressing CD49d and CD26.
Collapse
|
44
|
Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev 2017; 16:294-307. [PMID: 28161558 DOI: 10.1016/j.autrev.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
|
45
|
Walker LE, Griffiths MJ, McGill F, Lewthwaite P, Sills GJ, Jorgensen A, Antoine DJ, Solomon T, Marson AG, Pirmohamed M. A comparison of HMGB1 concentrations between cerebrospinal fluid and blood in patients with neurological disease. Biomarkers 2016; 22:635-642. [PMID: 27899037 DOI: 10.1080/1354750x.2016.1265003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS To determine whether a correlation exists between paired cerebrospinal fluid (CSF) and serum levels of a novel inflammatory biomarker, high-mobility group box 1 (HMGB1), in different neurological conditions. METHODS HMGB1 was measured in the serum and CSF of 46 neurological patients (18 idiopathic intracranial hypertension [IIH], 18 neurological infection/inflammation [NII] and 10 Rasmussen's encephalitis [RE]). RESULTS Mean serum (± SD) HMGB1 levels were 1.43 ± 0.54, 25.28 ± 27.9 and 1.89 ± 1.49 ng/ml for the patients with IIH, NII and RE, respectively. Corresponding mean (± SD) CSF levels were 0.35 ± 0.22, 4.48 ± 6.56 and 2.24 ± 2.35 ng/ml. Both CSF and serum HMGB1 was elevated in NII. Elevated CSF HMGB1 was demonstrated in RE. There was no direct correlation between CSF and serum levels of HMGB1. CONCLUSION Serum HMGB1 cannot be used as a surrogate measure for CSF levels. CSF HMGB1 was elevated in NII and RE, its role as a prognostic/stratification biomarker needs further study.
Collapse
Affiliation(s)
- Lauren Elizabeth Walker
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| | - Michael John Griffiths
- b Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health UK , University of Liverpool , Liverpool , United Kingdom.,c NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , University of Liverpool , Liverpool , United Kingdom
| | - Fiona McGill
- b Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health UK , University of Liverpool , Liverpool , United Kingdom.,c NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , University of Liverpool , Liverpool , United Kingdom
| | - Penelope Lewthwaite
- e Department of Infectious Diseases, Leeds Teaching Hospitals NHS Trust, West Yorkshire , Leeds, United Kingdom
| | - Graeme John Sills
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| | - Andrea Jorgensen
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| | - Daniel James Antoine
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| | - Tom Solomon
- b Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health UK , University of Liverpool , Liverpool , United Kingdom.,c NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , University of Liverpool , Liverpool , United Kingdom.,d The Walton Centre NHS Foundation Trust , Liverpool , United Kingdom
| | - Anthony Guy Marson
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| | - Munir Pirmohamed
- a Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
46
|
De Biasi S, Simone AM, Nasi M, Bianchini E, Ferraro D, Vitetta F, Gibellini L, Pinti M, Del Giovane C, Sola P, Cossarizza A. iNKT Cells in Secondary Progressive Multiple Sclerosis Patients Display Pro-inflammatory Profiles. Front Immunol 2016; 7:555. [PMID: 27965675 PMCID: PMC5127814 DOI: 10.3389/fimmu.2016.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), an autoimmune disease with neurodegeneration and inflammation is characterized by several alterations of different T cell subsets. However, few data exist on the role of iNKT lymphocytes. OBJECTIVE To identify possible changes in the phenotype of iNKT cells in patients with different clinical forms of MS and find alterations in their polyfunctionality [i.e., ability to produce simultaneously up to four cytokines such as IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-4]. METHODS We studied a total of 165 patients, 91 with a relapsing-remitting form [RR; 31 were treated with interferon (IFN)1a-β, 25 with natalizumab (NAT), 29 with glatiramer acetate; 17 were newly diagnosed RR without treatment, 19 not-active RR without treatment]. Forty-four patients had a progressive MS: 20 primary progressive (PP) and 24 secondary progressive (SP). A total of 55 age- and sex-matched subjects represented healthy controls (CTR). Among fresh peripheral blood mononuclear cells, iNKT cells were identified by flow cytometry. Moreover, the capability of iNKT cells to produce different cytokines (IL-17, TNF-α, IFN-γ, and IL-4) after in vitro stimulation were evaluated in 18 RR (11 treated with NAT and 7 with IFN), 4 PP, 6 SP, and 16 CTR. RESULTS No main differences were found in iNKT cell phenotype among MS patients with different MS forms or during different treatments. However, the polyfunctional response of iNKT cells showed Th1 and Th17 profiles. This was well evident in patients with SP form, who are characterized by high levels of inflammation and neurodegeneration, and exhibited a sustained increase in the production of Th17 cytokines. Patients treated with NAT displayed lower levels of iNKT cells producing IL-17, TNF-α, and IFN-γ. CONCLUSION Our data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype. Compared to other treatments, NAT was able to modulate iNKT cell function.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Cinzia Del Giovane
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia , Modena , Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
47
|
Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol 2016; 189:29-33. [PMID: 27664933 DOI: 10.1016/j.clim.2016.09.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Johnson MC, Pierson ER, Spieker AJ, Nielsen AS, Posso S, Kita M, Buckner JH, Goverman JM. Distinct T cell signatures define subsets of patients with multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e278. [PMID: 27606354 PMCID: PMC4996538 DOI: 10.1212/nxi.0000000000000278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/20/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We investigated T cell responses to myelin proteins in the blood of healthy controls and 2 groups of patients with relapsing-remitting multiple sclerosis (RRMS) who exhibited lesions either predominantly in the brain or predominantly in the spinal cord in order to assess whether distinct neuroinflammatory patterns were associated with different myelin protein-specific T cell effector function profiles and whether these profiles differed from healthy controls. METHODS Peripheral blood mononuclear cells were obtained from patients with brain-predominant RRMS, patients with spinal cord-predominant RRMS, and age-matched healthy controls and analyzed by enzyme-linked immunosorbent spot assays to quantify interferon gamma-secreting (Th1) and interleukin 17-secreting (Th17) cells responding directly ex vivo to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG). RESULTS Although MBP and MOG elicited different responses, patients with multiple sclerosis (MS) who had spinal cord-predominant lesions exhibited significantly higher Th17:Th1 ratios in response to both MBP and MOG compared to patients with brain-predominant MS. Incorporating the cytokine responses to both antigens into logistic regression models showed that these cytokine responses were able to provide good discrimination between patients with distinct neuroinflammatory patterns. CONCLUSIONS Our findings suggest that the localization of lesions within the brain vs the spinal cord in patients with MS is associated with different effector T cell responses to myelin proteins. Further investigation of the relationship between T cell effector function, antigen specificities, and lesion sites may reveal features of pathogenic pathways that are distinct to patients with different neuroinflammatory patterns.
Collapse
Affiliation(s)
- Mark C Johnson
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Emily R Pierson
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Andrew J Spieker
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - A Scott Nielsen
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Sylvia Posso
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Mariko Kita
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Jane H Buckner
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| | - Joan M Goverman
- Departments of Immunology (M.C.J., E.R.P., J.M.G.) and Biostatistics (A.J.S.), University of Washington, Seattle; Neuroscience Institute (A.S.N., M.K.), Virginia Mason Medical Center, Seattle; and Translational Research Program at the Benaroya Research Institute at Virginia Mason (S.P., J.H.B.), Seattle, WA
| |
Collapse
|
49
|
Lebrun C, Cohen M, Pignolet B, Seitz-Polski B, Bucciarelli F, Benzaken S, Kantarci O, Siva A, Okuda D, Pelletier D, Brassat D. Interleukin 17 alone is not a discriminant biomarker in early demyelinating spectrum disorders. J Neurol Sci 2016; 368:334-6. [PMID: 27538659 DOI: 10.1016/j.jns.2016.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Radiologically isolated syndrome (RIS) is a sub clinical demyelinating neurological disorder and to date no biomarker that triggers the seminal event has been identified. As for multiple sclerosis (MS), disease activity and clinical course are unpredictable. In MS, exploratory studies reported increased IL-17 levels in CSF but results in detecting IL-17 in serum at different stage of the disease are controversial. OBJECTIVES We investigate levels of IL-17 in serum and CSF in patients diagnosed at different stages of demyelinating diseases (RIS, CIS, relapsing remitting (RR) or active multiple sclerosis patients:AMS) as a marker of inflammatory condition. METHODS 1417 sera has been tested for IL-17A (1177 from active MS, 80 RRMS, 35 RIS, 35 CIS, 10 IIH: idiopathic intracranial hypertension, and 80 controls) and 240 CSF from RIS, CIS, IIH and controls. RESULTS No difference has been found between RIS who early clinically converted and CIS patients who rapidly evolve in McDonald or clinically definite MS, nor active MS. No correlation was found with usual MRI or CSF criteria. CONCLUSION Our results do not confirm that IL-17 can be considerate as a reliable marker of inflammation in the demyelinating spectrum disorders, either in blood or CSF.
Collapse
|
50
|
Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Salapa H. Autoantibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNPA1) cause altered 'ribostasis' and neurodegeneration; the legacy of HAM/TSP as a model of progressive multiple sclerosis. J Neuroimmunol 2016; 304:56-62. [PMID: 27449854 DOI: 10.1016/j.jneuroim.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Several years following its discovery in 1980, infection with human T-lymphotropic virus type 1 (HTLV-1) was shown to cause HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease biologically similar to progressive forms of multiple sclerosis (MS). In this manuscript, we review some of the clinical, pathological, and immunological similarities between HAM/TSP and MS with an emphasis on how autoantibodies to an RNA binding protein, heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), might contribute to neurodegeneration in immune mediated diseases of the central nervous system.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lidia A Gardner
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N Douglas
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hannah Salapa
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|