1
|
Ebrahimi R, Shahrokhi Nejad S, Falah Tafti M, Karimi Z, Sadr SR, Ramadhan Hussein D, Talebian N, Esmaeilpour K. Microglial activation as a hallmark of neuroinflammation in Alzheimer's disease. Metab Brain Dis 2025; 40:207. [PMID: 40381069 DOI: 10.1007/s11011-025-01631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Microglial activation has emerged as a hallmark of neuroinflammation in Alzheimer's disease (AD). Central to this process is the formation and accumulation of amyloid beta (Aβ) peptide and neurofibrillary tangles, both of which contribute to synaptic dysfunction and neuronal cell death. Aβ oligomers trigger microglial activation, leading to the release of pro-inflammatory cytokines, which further exacerbates neuroinflammation and neuronal damage. Importantly, the presence of activated microglia surrounding amyloid plaques is correlated with heightened production of cytokines such as interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), creating a vicious cycle of inflammation. While microglia play a protective role by clearing Aβ plaques during the early stages of AD, their chronic activation can lead to detrimental outcomes, including enhanced tau pathology and neuronal apoptosis. Recent studies have highlighted the dualistic nature of microglial activation, showcasing both inflammatory (M1) and anti-inflammatory (M2) phenotypes that fluctuate based on the surrounding microenvironment. Disruption in microglial function and regulation can lead to neurovascular dysfunction, further contributing to the cognitive decline seen in AD. Moreover, emerging biomarkers and imaging techniques are unveiling the complexity of microglial responses in AD, providing avenues for targeted therapeutics aimed at modulating these cells. Understanding the intricate interplay between microglia, Aβ, and tau pathology is vital for developing potential interventions to mitigate neuroinflammation and its impact on cognitive decline in AD. This review synthesizes current findings regarding microglial activation and its implications for AD pathogenesis, offering insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Falah Tafti
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Karimi
- Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, PA, USA
| | - Seyyedeh Reyhaneh Sadr
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niki Talebian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Esmaeilpour
- Department of Psychology, University of Toronto Mississagua, Mississauga, ON, Canada.
| |
Collapse
|
2
|
Abstract
Drug-induced cognitive impairment (DICI) is a well-established, yet under-recognised, complication of many types of pharmacological treatment. While there is a large body of scientific literature on DICI, most papers are about drug-induced dementia in the elderly and one specific drug class. However, DICI also comprises subclinical symptoms, domain-specific forms of cognitive impairment as well as mild cognitive impairment (MCI), and delirium. Even mild forms of DICI, if not recognised as such, can have deleterious and life-long consequences. In addition, DICI also occurs in younger adults and in children, and has been reported with many different drug classes. The aim of this review is to raise awareness of DICI by providing an overview on the type(s) and symptoms of observed DICI and the suspected underlying mechanism(s) for various drug classes: antiseizure medications, antidepressants, antiparkinsonian drugs, antipsychotics, lithium, benzodiazepines/Z-drugs, opioids, first-generation antihistamines, drugs for urinary incontinence, proton pump inhibitors, glucocorticoids, NSAIDs, statins, antihypertensives, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Arne Reimers
- Department of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, 22100, Lund, Sweden.
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, 22185, Lund, Sweden.
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Box 117, 22100, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skåne University Hospital, 22185, Lund, Sweden
| | - Hanna Ljung
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Box 117, 22100, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skåne University Hospital, 22185, Lund, Sweden
| |
Collapse
|
3
|
Duggan MR, Morgan DG, Price BR, Rajbanshi B, Martin-Peña A, Tansey MG, Walker KA. Immune modulation to treat Alzheimer's disease. Mol Neurodegener 2025; 20:39. [PMID: 40165251 PMCID: PMC11956194 DOI: 10.1186/s13024-025-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Immune mechanisms play a fundamental role in Alzheimer's disease (AD) pathogenesis, suggesting that approaches which target immune cells and immunologically relevant molecules can offer therapeutic opportunities beyond the recently approved amyloid beta monoclonal therapies. In this review, we provide an overview of immunomodulatory therapeutics in development, including their preclinical evidence and clinical trial results. Along with detailing immune processes involved in AD pathogenesis and highlighting how these mechanisms can be therapeutically targeted to modify disease progression, we summarize knowledge gained from previous trials of immune-based interventions, and provide a series of recommendations for the development of future immunomodulatory therapeutics to treat AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - David G Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Binita Rajbanshi
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Sharma N, An SSA, Kim SY. Medication Exposure and Risk of Dementia and Alzheimer's Disease. Int J Mol Sci 2024; 25:12850. [PMID: 39684561 DOI: 10.3390/ijms252312850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD), a complex neurodegenerative disease (ND), is the most predominant cause of dementia among the elderly. Generally, elderly people have multiple chronic health conditions, like hypertension, arthritis, diabetes, insomnia, bowel problems, and depression. Although prescribed medications have beneficial therapeutic compositions, some may have side effects that could hinder cognitive function or worsen cognitive decline. Hence, we should evaluate those medications to guarantee their safety. In the present mechanistic review, we discussed frequently used categories of medication (analgesics, anticholinergics, benzodiazepines, proton pump inhibitors, and statins), concerning their possible involvement in increasing AD and dementia risks. This review summarized the results of various observational studies, meta-analyses, randomized case-control studies, and systematic reviews. As the results were contradictory, it was difficult to ascertain the clear associations between medication usage and increased risks of dementia or AD. The blood-based biomarkers (BBMs) offer a low-cost and accessible alternative for early diagnosis of AD. Systematic reviews combined with meta-analysis would be crucial tools for accurately assessing and summarizing the efficacy of health interventions, yet randomized clinical trials have always been the best way to help with clinical care decisions. Thus, an open discussion is necessary to help individuals determine whether the advantages of utilizing medications outweigh the possible drawbacks.
Collapse
Affiliation(s)
- Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Seong Soo A An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital & Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si 13620, Republic of Korea
| |
Collapse
|
5
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
6
|
Guo R, Ou YN, Ma LY, Tang L, Yang L, Feng JF, Cheng W, Tan L, Yu JT. Osteoarthritis, osteoarthritis treatment and risk of incident dementia: a prospective cohort study based on UK Biobank. Age Ageing 2024; 53:afae167. [PMID: 39108220 PMCID: PMC11303829 DOI: 10.1093/ageing/afae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND We aimed to investigate the association between OA and treatment with dementia risk and structural brain abnormalities. METHODS We recruited a total of 466,460 individuals from the UK Biobank to investigate the impact of OA on the incidence of dementia. Among the total population, there were 63,081 participants diagnosed with OA. We subsequently categorised the OA patients into medication and surgery groups based on treatment routes. Cox regression models explored the associations between OA/OA treatment and dementia risk, with the results represented as hazard ratios (HRs) and 95% confidence intervals (95% CI). Linear regression models assessed the associations of OA/OA therapy with alterations in cortical structure. RESULTS During an average of 11.90 (± 1.01) years of follow-up, 5,627 individuals were diagnosed with all-cause dementia (ACD), including 2,438 AD (Alzheimer's disease), and 1,312 VaD (vascular dementia) cases. Results revealed that OA was associated with the elevated risk of ACD (HR: 1.116; 95% CI: 1.039-1.199) and AD (HR: 1.127; 95% CI: 1.013-1.254). OA therapy lowered the risk of dementia in both medication group (HR: 0.746; 95% CI: 0.652-0.854) and surgery group (HR: 0.841; 95% CI: 0.736-0.960). OA was negatively associated with cortical area, especially precentral, postcentral and temporal regions. CONCLUSIONS Osteoarthritis increased the likelihood of developing dementia, and had an association with regional brain atrophy. OA treatment lowered the dementia risk. OA is a promising modifiable risk factor for dementia.
Collapse
Affiliation(s)
- Rong Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Li-Yun Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lian Tang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
7
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
8
|
Gao F, Zhang Z, Xue N, Ma Y, Jiao J, Wang C, Zhang K, Lin Y, Li S, Guo Z, An J, Wang P, Xu B, Lei H. Identification of a novel oligopeptide from defatted walnut meal hydrolysate as a potential neuroprotective agent. Food Funct 2024; 15:5566-5578. [PMID: 38712886 DOI: 10.1039/d3fo05501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 μM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Nannan Xue
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yunnan Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jingyi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Cheng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Keyi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yixuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
9
|
Hashim N, Babiker R, Mohammed R, Chaitanya NC, Rahman MM, Gismalla B. Highlighting the Effect of Pro-inflammatory Mediators in the Pathogenesis of Periodontal Diseases and Alzheimer's Disease. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1120-S1128. [PMID: 38882732 PMCID: PMC11174192 DOI: 10.4103/jpbs.jpbs_1120_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that is much more common as people get older. It may start out early or late. Increased levels of pro-inflammatory cytokines and microglial activation, both of which contribute to the central nervous system's inflammatory state, are characteristics of AD. As opposed to this, periodontitis is a widespread oral infection brought on by Gram-negative anaerobic bacteria. By releasing pro-inflammatory cytokines into the systemic circulation, periodontitis can be classified as a "low-grade systemic disease." Periodontitis and AD are linked by inflammation, which is recognized to play a crucial part in both the disease processes. The current review sought to highlight the effects of pro-inflammatory cytokines, which are released during periodontal and Alzheimer's diseases in the pathophysiology of both conditions. It also addresses the puzzling relationship between AD and periodontitis, highlighting the etiology and potential ramifications.
Collapse
Affiliation(s)
- Nada Hashim
- Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Rasha Babiker
- Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Riham Mohammed
- Oral and Maxillofacial Surgery, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Nallan Csk Chaitanya
- Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Muhammed M Rahman
- Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Bakri Gismalla
- Periodontology, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
10
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
11
|
Kaur DP, Bucholc M, Finn DP, Todd S, Wong-Lin KF, McClean PL. Impact of Different Diagnostic Measures on Drug Class Association with Dementia Progression Risk: A Longitudinal Prospective Cohort Study. J Alzheimers Dis 2024; 100:631-644. [PMID: 38905041 DOI: 10.3233/jad-230456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Background The Clinical Dementia Rating Scale Sum of Boxes (CDRSOB) score is known to be highly indicative of cognitive-functional status and is regularly employed for clinical and research purposes. Objective Our aim is to determine whether CDRSOB is consistent with clinical diagnosis in evaluating drug class associations with risk of progression to mild cognitive impairment (MCI) and dementia. Methods We employed weighted Cox regression analysis on longitudinal NACC data, to identify drug classes associated with disease progression risk, using clinical diagnosis and CDRSOB as the outcome. Results Aspirin (antiplatelet/NSAID), angiotensin II inhibitors (antihypertensive), and Parkinson's disease medications were significantly associated with reduced risk of progression to MCI/dementia and Alzheimer's disease medications were associated with increased MCI-to-Dementia progression risk with both clinical diagnosis and CDRSOB as the outcome. However, certain drug classes/subcategories, like anxiolytics, antiadrenergics, calcium (Ca2+) channel blockers, and diuretics (antihypertensives) were associated with reduced risk of disease progression, and SSRIs (antidepressant) were associated with increased progression risk only with CDRSOB. Additionally, metformin (antidiabetic medication) was associated with reduced MCI-to-Dementia progression risk only with clinical diagnosis as the outcome. Conclusions Although the magnitude and direction of the effect were primarily similar for both diagnostic outcomes, we demonstrate that choice of diagnostic measure can influence the significance of risk/protection attributed to drug classes and consequently the conclusion of findings. A consensus must be reached within the research community with respect to the most accurate diagnostic outcome to identify risk and improve reproducibility.
Collapse
Affiliation(s)
- Daman Preet Kaur
- Personalised Medicine Centre, School of Medicine, Ulster University, Altnagelvin Hospital, Derry/Londonderry, Northern Ireland, UK
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry/Londonderry, Northern Ireland, UK
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Ireland, Galway, Ireland
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Derry/Londonderry, Northern Ireland, UK
| | - Kong Fatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry/Londonderry, Northern Ireland, UK
| | - Paula L McClean
- Personalised Medicine Centre, School of Medicine, Ulster University, Altnagelvin Hospital, Derry/Londonderry, Northern Ireland, UK
| |
Collapse
|
12
|
Guo X, Hou C, Tang P, Li R. Chronic Pain, Analgesics, and Cognitive Status: A Comprehensive Mendelian Randomization Study. Anesth Analg 2023; 137:896-905. [PMID: 37171986 DOI: 10.1213/ane.0000000000006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Observational studies have suggested an intricate relationship among chronic pain (CP), use of analgesics, and cognitive status, but it remains unclear whether these associations are of a causal nature. METHODS To investigate the causal relationship among them, summary statistics of 9 types of CP (headache, hip, neck/shoulder, stomach/abdominal, back, knee, facial, general, and multisite CP), analgesics (nonsteroidal anti-inflammatory drugs [NSAIDs], opioids, salicylic acid and derivatives, and anilides), and cognitive status (cognitive function, Alzheimer's disease [AD], vascular dementia, Lewy body dementia [LBD], and dementia) were included in this Mendelian randomization (MR) study. As both CP and analgesic use were associated with cognitive status and vice versa, we performed a bidirectional MR analysis between CP or analgesics and dementia using strong genetic instruments ( P < .001) identified from genome-wide association studies (GWAS). The inverse-variance weighted method was applied to calculate estimates. The MR estimated odds ratio (OR) was interpreted as odds of outcome per unit increase in the exposure. The Benjamini-Hochberg method was applied to adjust the P value for multiple testing, and P < .05 means statistically significant. RESULTS Multisite CP (MCP) was associated with worse cognitive function (OR [95% confidence interval], 0.69 [0.53-0.89], P = .043), but no significant reverse effect of cognitive status on CP was found. There were no significant associations observed between analgesics and cognitive status. Unexpectedly, patients with AD and LBD had significantly lower exposure to anilides (AD: OR = 0.97 [0.94-0.99], P = .034; LBD: OR = 0.97 [0.96-0.99], P = .012) and NSAIDs (AD: OR = 0.96 [0.93-0.98], P = .012; LBD: OR = 0.98 [0.96-0.99], P = .034). CONCLUSIONS Our findings indicate that an elevated number of CP sites predict future cognitive decline. Patients with dementia had lower exposure to anilides and NSAIDs, suggesting that they might not be adequately medicated for pain.
Collapse
Affiliation(s)
- Xingzhi Guo
- From the Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Hou
- From the Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Peng Tang
- From the Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Rui Li
- From the Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Sbai O, Bazzani V, Tapaswi S, McHale J, Vascotto C, Perrone L. Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer's disease? Front Mol Neurosci 2023; 16:1166879. [PMID: 37251647 PMCID: PMC10213291 DOI: 10.3389/fnmol.2023.1166879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Recent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD. AD is also characterized by mitochondrial dysfunction, which affects the energy homeostasis of the brain. The role of mitochondrial dysfunction has been characterized mostly in neuronal cells. However, recent data are demonstrating that mitochondrial dysfunction occurs also in inflammatory cells, promoting inflammation and the secretion of pro-inflammatory cytokines, which in turn induce neurodegeneration. In this review, we summarize the recent finding supporting the hypothesis of the inflammatory-amyloid cascade in AD. Moreover, we describe the recent data that demonstrate the link between altered mitochondrial dysfunction and the inflammatory cascade. We focus in summarizing the role of Drp1, which is involved in mitochondrial fission, showing that altered Drp1 activation affects the mitochondrial homeostasis and leads to the activation of the NLRP3 inflammasome, promoting the inflammatory cascade, which in turn aggravates Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the relevance of this pro-inflammatory pathway as an early event in AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis, Tunisia
| | | | | | - Joshua McHale
- Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
14
|
Friesen KJ, Falk J, Chateau D, Kuo IF, Bugden S. Signal and Noise: Proton Pump Inhibitors and the Risk of Dementia? Clin Pharmacol Ther 2023; 113:152-159. [PMID: 36260313 DOI: 10.1002/cpt.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
The association between proton pump inhibitor (PPI) use and dementia remains controversial. This cohort study re-examines this issue, addressing shortcomings identified in previous publications using a population-based and a high-dimension propensity-score matched cohort to follow patients for up to 22 years. Cox regression models using baseline characteristics, a lag period, and time-varying variables were used to examine the risk of dementia by cumulative PPI exposure. High-dose PPI users (> 180 days of use) had significantly higher risk of dementia in crude Cox models. After adjustment for medical diagnoses and prescription drug use, these associations disappeared. Among high-dose users starting PPI therapy between 46 and 55 years old, the unadjusted hazard ratio (HR) was 1.55 (95% confidence interval (CI) 1.14, 2.10); the adjusted hazard ratio (aHR) was 1.10 (95% CI 0.80, 1.51). For high-dose users starting therapy between 56 and 65 years, HR = 1.22 (95% CI1.03, 1.44); aHR = 0.99 (95% CI 0.83, 1.17). High-dose users between the ages of 66 and 75 years had no association with the risk of dementia. The use of lag models or time-varying parameters similarly found some association with dementia in crude, but not multivariable Cox models. Although high-dose PPI users were more likely to develop dementia, they were more likely to be diagnosed with dementia risk factors, such as diabetes and cardiovascular disease, which are risk factors for dementia. Controlling for these conditions using multivariable models or a propensity-score matched cohort eliminated this association.
Collapse
Affiliation(s)
- Kevin J Friesen
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jamie Falk
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dan Chateau
- Research School of Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - I Fan Kuo
- Optimal Use and Evaluation, Clinical Services and Evaluation Branch, Pharmaceutical, Laboratory & Blood Services, British Columbia Ministry of Health, Victoria, British Columbia, Canada
| | - Shawn Bugden
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
15
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
16
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
17
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Sepulveda J, Luo N, Nelson M, Ng CAS, Rebeck GW. Independent APOE4 knock-in mouse models display reduced brain APOE protein, altered neuroinflammation, and simplification of dendritic spines. J Neurochem 2022; 163:247-259. [PMID: 35838553 PMCID: PMC9613529 DOI: 10.1111/jnc.15665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
APOE is an immunomodulator in the brain and the major genetic risk factor for late-onset Alzheimer's disease (AD). Targeted replacement APOE mice (APOE-TR) have been a useful tool to study the effects of APOE isoforms on brain neurochemistry and activity prior to and during AD. We use newly available APOE knock-in mice (JAX-APOE) to compare phenotypes associated with APOE4 across models. Similar to APOE4-TR mice, JAX-E4 mouse brains showed 27% lower levels of APOE protein compared with JAX-E3 (p < 0.001). We analyzed several neuroinflammatory molecules that have been associated with APOE genotype. SerpinA3 was much higher in APOE4-TR mice to APOE3-TR mice, but this effect was not seen in JAX-APOE mice. There were higher levels of IL-3 in JAX-E4 brains compared with JAX-E3, but other neuroinflammatory markers (IL6, TNFα) were not affected by APOE genotype. In terms of neuronal structure, basal dendritic spine density in the entorhinal cortex was 39% lower in JAX-E4 mice compared with JAX-E3 mice (p < 0.001), again similar to APOE-TR mice. One-week treatment with ibuprofen significantly increased dendritic spine density in the JAX-E4 mice, consistent with our previous finding in APOE-TR mice. Behaviorally, there was no effect of APOE genotype on Barnes Maze learning and memory in 6-month-old JAX-APOE mice. Overall, the experiments performed in JAX-APOE mice validated findings from APOE-TR mice, identifying particularly strong effects of APOE4 genotype on lower APOE protein levels and simplified neuron structure. These data demonstrate pathways that could promote susceptibility of APOE4 brains to AD pathological changes.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington D.C. 20007
| | - Nancy Luo
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington D.C. 20007
| | - Matthew Nelson
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington D.C. 20007
| | - Christi Anne S. Ng
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington D.C. 20007
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington D.C. 20007
| |
Collapse
|
19
|
Russo M, De Rosa MA, Calisi D, Consoli S, Evangelista G, Dono F, Santilli M, Granzotto A, Onofrj M, Sensi SL. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. Int J Mol Sci 2022; 23:11418. [PMID: 36232720 PMCID: PMC9569564 DOI: 10.3390/ijms231911418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Migraine is a common neurological disorder impairing the quality of life of patients. The condition requires, as an acute or prophylactic line of intervention, the frequent use of drugs acting on the central nervous system (CNS). The long-term impact of these medications on cognition and neurodegeneration has never been consistently assessed. The paper reviews pharmacological migraine treatments and discusses their biological and clinical effects on the CNS. The different anti-migraine drugs show distinct profiles concerning neurodegeneration and the risk of cognitive deficits. These features should be carefully evaluated when prescribing a pharmacological treatment as many migraineurs are of scholar or working age and their performances may be affected by drug misuse. Thus, a reconsideration of therapy guidelines is warranted. Furthermore, since conflicting results have emerged in the relationship between migraine and dementia, future studies must consider present and past pharmacological regimens as potential confounding factors.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo A. De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Consoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giacomo Evangelista
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fedele Dono
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Santilli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Granzotto
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA 92697, USA
- ITAB—Institute of Advanced Biomedical Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Guo R, Ou YN, Hu HY, Ma YH, Tan L, Yu JT. The Association Between Osteoarthritis with Risk of Dementia and Cognitive Impairment: A Meta-Analysis and Systematic Review. J Alzheimers Dis 2022; 89:1159-1172. [DOI: 10.3233/jad-220568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The relationship between osteoarthritis (OA) and risk of dementia and cognitive impairment (CIM) has long been debated; however, uncertainties still persist. Objective: The aim of our present meta-analysis and systematic review was to roundly illuminate the association between OA and the risk of dementia and CIM. Methods: We identified relevant studies by searching PubMed, Embase, and Web of Science up to October 2021. The relative risk (RR) or odds ratio (OR) with 95% confidence interval (CI) were aggregated using random-effects methods. Credibility of each meta-analysis was assessed. Meta-regression and subgroup analyses were conducted. Publication bias was explored using funnel plot. Results: Of 21,925 identified literatures, 8 were eligible for inclusion in the systematic review and 19 observational studies involving 724,351 individuals were included in the meta-analysis. The risk of developing dementia and CIM among OA patients was demonstrated in 11 prospective studies (RR = 1.42, 95% CI = 1.07–1.86, I2 = 98.9%, p < 0.001), 2 retrospective cohort studies (RR = 1.35, 95% CI = 1.19–1.52, I2 = 61.0%, p = 0.109), 3 retrospective case-control studies (OR = 1.21, 95% CI = 0.96–1.53, I2 = 95.2%, p < 0.001), and 4 cross-sectional studies (OR = 1.51, 95% CI = 1.09–2.09, I2 = 75.8%, p = 0.006). Meta-regression analyses did not find any valid moderators. Heterogeneity in subgroup analyses for population age, OA location, year of publication, outcome type, adjusted for BMI, depression, and comorbidity decreased to zero. No significant evidence of publication bias was found. Conclusion: OA associated with an increased risk of dementia and CIM. Effective interventions in OA patients may decrease new incidence of dementia or CIM.
Collapse
Affiliation(s)
- Rong Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Neuroprotective effects of onion and garlic root extracts against Alzheimer's disease in rats: antimicrobial, histopathological, and molecular studies. BIOTECHNOLOGIA 2022; 103:153-167. [PMID: 36606073 PMCID: PMC9642951 DOI: 10.5114/bta.2022.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder and the main reason for dementia. In this regard, there is a need to understand the alterations that occur during aging to develop treatment strategies to mitigate or prevent neurodegenerative consequences. Onion and garlic root extracts contain natural polyphenols with high antioxidant capacity; therefore, the present study aimed to investigate the protective effect of these extracts free from mycotoxin contamination on a rat model of AD. Antifungal and antibacterial assays were performed for onion and garlic extracts. Several groups of AD-induced rats were administered 1, 2, and 3 mg/kg onion or garlic extract through intragastric intubation for 30 days. After treatment, histopathological analysis, expression of apoptosis-related genes, and analyses of DNA damage and reactive oxygen species (ROS) generation were conducted in the brain tissues. The results indicate that treatment of AD-induced rats with several doses of onion and garlic root extracts decreased histopathological lesions, the expression levels of apoptotic genes, and the rate of DNA damage and inhibited intracellular ROS generation in the brain tissues. The results suggest that the protective role of onion root extract could be attributed to its content of flavonoids and flavonoid compounds through the improvement of antioxidant capacity and regulation of gene expression patterns. The higher activity levels of free radical scavenging of azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and antioxidant ferric reducing antioxidant power (FRAP) levels found in garlic root extract are most probably responsible for its protective effect against neurodegenerative damage.
Collapse
|
22
|
Penfold RB, Carrell DS, Cronkite DJ, Pabiniak C, Dodd T, Glass AM, Johnson E, Thompson E, Arrighi HM, Stang PE. Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening. BMC Med Inform Decis Mak 2022; 22:129. [PMID: 35549702 PMCID: PMC9097352 DOI: 10.1186/s12911-022-01864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients and their loved ones often report symptoms or complaints of cognitive decline that clinicians note in free clinical text, but no structured screening or diagnostic data are recorded. These symptoms/complaints may be signals that predict who will go on to be diagnosed with mild cognitive impairment (MCI) and ultimately develop Alzheimer's Disease or related dementias. Our objective was to develop a natural language processing system and prediction model for identification of MCI from clinical text in the absence of screening or other structured diagnostic information. METHODS There were two populations of patients: 1794 participants in the Adult Changes in Thought (ACT) study and 2391 patients in the general population of Kaiser Permanente Washington. All individuals had standardized cognitive assessment scores. We excluded patients with a diagnosis of Alzheimer's Disease, Dementia or use of donepezil. We manually annotated 10,391 clinic notes to train the NLP model. Standard Python code was used to extract phrases from notes and map each phrase to a cognitive functioning concept. Concepts derived from the NLP system were used to predict future MCI. The prediction model was trained on the ACT cohort and 60% of the general population cohort with 40% withheld for validation. We used a least absolute shrinkage and selection operator logistic regression approach (LASSO) to fit a prediction model with MCI as the prediction target. Using the predicted case status from the LASSO model and known MCI from standardized scores, we constructed receiver operating curves to measure model performance. RESULTS Chart abstraction identified 42 MCI concepts. Prediction model performance in the validation data set was modest with an area under the curve of 0.67. Setting the cutoff for correct classification at 0.60, the classifier yielded sensitivity of 1.7%, specificity of 99.7%, PPV of 70% and NPV of 70.5% in the validation cohort. DISCUSSION AND CONCLUSION Although the sensitivity of the machine learning model was poor, negative predictive value was high, an important characteristic of models used for population-based screening. While an AUC of 0.67 is generally considered moderate performance, it is also comparable to several tests that are widely used in clinical practice.
Collapse
Affiliation(s)
- Robert B Penfold
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA.
| | - David S Carrell
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - David J Cronkite
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Chester Pabiniak
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Tammy Dodd
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Ashley Mh Glass
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Eric Johnson
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Ella Thompson
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | | | - Paul E Stang
- Janssen Research and Development, LLC, Raritan, USA
| |
Collapse
|
23
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher LA. Naproxen as a potential candidate for promoting rivastigmine anti-Alzheimer activity against aluminum chloride-prompted Alzheimer's-like disease in rats; neurogenesis and apoptosis modulation as a possible underlying mechanism. Eur J Pharmacol 2022; 915:174695. [PMID: 34914971 DOI: 10.1016/j.ejphar.2021.174695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is one of the leading causes of dependence and disability among the elderly worldwide. The traditional anti-Alzheimer medication, rivastigmine, one of the cholinesterase inhibitors (ChEIs), fails to achieve a definitive cure. We tested the hypothesis that naproxen administration to the rivastigmine-treated aluminum chloride (AlCl3) Alzheimer's rat model could provide an additive neuroprotective effect compared to rivastigmine alone. MATERIALS AND METHODS The studied groups were control (Cont), AlCl3 treated (Al), rivastigmine treated (RIVA), naproxen treated (Napro), and combined rivastigmine and naproxen treated (RIVA + Napro). Rats' memory, spatial learning, and cognitive behavior were assessed followed by evaluation of hippocampal acetylcholinesterase (AChE) activity. Hippocampal and cerebellar histopathology were thoroughly examined. Activated caspase-3 and the neuroepithelial stem cells marker; nestin expressions were immunohistochemically assayed. RESULTS AD rats displayed significantly impaired memory and cognitive function, augmented hippocampal AChE activity; massive neurodegeneration associated with enhanced astrogliosis, apoptosis, and impaired neurogenesis. Except for the enhancement of neurogenesis and suppression of apoptosis, the combination therapy had no additional neuroprotective benefit over rivastigmine-only therapy. CONCLUSION Naproxen's efficacy was established by its ability to function at the cellular level, improved neurogenesis, and decreased, apoptosis without having an additional mitigating impact on cognitive impairment in rivastigmine-treated AD rats.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham G Elsaady
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
25
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
26
|
Peters R, Breitner J, James S, Jicha GA, Meyer P, Richards M, Smith AD, Yassine HN, Abner E, Hainsworth AH, Kehoe PG, Beckett N, Weber C, Anderson C, Anstey KJ, Dodge HH. Dementia risk reduction: why haven't the pharmacological risk reduction trials worked? An in-depth exploration of seven established risk factors. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12202. [PMID: 34934803 PMCID: PMC8655351 DOI: 10.1002/trc2.12202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Identifying the leading health and lifestyle factors for the risk of incident dementia and Alzheimer's disease has yet to translate to risk reduction. To understand why, we examined the discrepancies between observational and clinical trial evidence for seven modifiable risk factors: type 2 diabetes, dyslipidemia, hypertension, estrogens, inflammation, omega-3 fatty acids, and hyperhomocysteinemia. Sample heterogeneity and paucity of intervention details (dose, timing, formulation) were common themes. Epidemiological evidence is more mature for some interventions (eg, non-steroidal anti-inflammatory drugs [NSAIDs]) than others. Trial data are promising for anti-hypertensives and B vitamin supplementation. Taken together, these risk factors highlight a future need for more targeted sample selection in clinical trials, a better understanding of interventions, and deeper analysis of existing data.
Collapse
Affiliation(s)
- Ruth Peters
- Neuroscience ResearchSydneyNew South WalesAustralia
- Department of Psychology University of New South WalesSydneyNew South WalesAustralia
| | - John Breitner
- Douglas Hospital Research Center and McGill UniversityQuebecCanada
| | - Sarah James
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | | | - Pierre‐Francois Meyer
- Center for Studies on the Prevention of Alzheimer's Disease (PREVENT‐AD)VerdunQuebecCanada
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | - A. David Smith
- OPTIMADepartment of PharmacologyUniversity of OxfordOxfordUK
| | - Hussein N. Yassine
- Departments of Medicine and NeurologyUniversity of Southern CaliforniaCaliforniaUSA
| | - Erin Abner
- University of KentuckyLexingtonKentuckyUSA
| | - Atticus H. Hainsworth
- Molecular and Clinical Sciences Research InstituteSt GeorgesUniversity of LondonLondonUK
- Department of NeurologySt George's HospitalLondonUK
| | | | | | | | - Craig Anderson
- The George Institute for Global HealthSydneyNew South WalesAustralia
| | - Kaarin J. Anstey
- Neuroscience ResearchSydneyNew South WalesAustralia
- Department of Psychology University of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|
27
|
Kronzer VL, Crowson CS, Davis JM, Vassilaki M, Mielke MM, Myasoedova E. Trends in incidence of dementia among patients with rheumatoid arthritis: A population-based cohort study. Semin Arthritis Rheum 2021; 51:853-857. [PMID: 34174733 PMCID: PMC8384708 DOI: 10.1016/j.semarthrit.2021.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We aimed to assess the incidence of dementia over time in patients with incident rheumatoid arthritis (RA) as compared to non-RA referents. METHODS This population-based, retrospective cohort study included Olmsted County, Minnesota residents with incident RA by ACR 1987 criteria, diagnosed between 1980 and 2009. We matched non-RA referents 1:1 on age, sex, and calendar year and followed all individuals until 12/31/2019. Incident dementia was defined as two codes for Alzheimer's disease and related dementias (ADRD) at least 30 days apart. Cumulative incidence of ADRD was assessed, adjusting for the competing risk of death. Cox proportional hazards models calculated hazard ratios (HR) with 95% confidence intervals (CI) for incident ADRD by decade. RESULTS After excluding individuals with prior dementia, we included 897 persons with incident RA (mean age 56 years; 69% female) and 885 referents. The 10-year cumulative incidence of ADRD in individuals diagnosed with RA during the 1980s was 12.7% (95%CI:7.9-15.7%), 1990s was 7.2% (95%CI:3.7-9.4%), and 2000s was 6.2% (95%CI:3.6-7.8%). Individuals with RA diagnosed in 2000s had insignificantly lower cumulative incidence of ADRD than those in the 1980s (HR 0.66; 95%CI:0.38-1.16). The overall HR of ADRD in individuals with RA was 1.37 (vs. referents; 95%CI:1.04-1.81). When subdivided by decade, however, the risk of ADRD in individuals diagnosed with RA was higher than referents in the 1990s (HR 1.72, 95%CI:1.09-2.70) but not 2000s (HR 0.86, 95%CI:0.51-1.45). CONCLUSIONS The risk of dementia in individuals with RA appears to be declining over time, including when compared to general population referents.
Collapse
Affiliation(s)
| | - Cynthia S Crowson
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - John M Davis
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Elena Myasoedova
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Voigt RM, Raeisi S, Yang J, Leurgans S, Forsyth CB, Buchman AS, Bennett DA, Keshavarzian A. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer's disease. PLoS One 2021; 16:e0240342. [PMID: 33661922 PMCID: PMC7932071 DOI: 10.1371/journal.pone.0240342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce neurodegeneration and the development of Alzheimer's disease (AD) and Alzheimer's dementia. One potential source of inflammation is the intestine which harbors pro-inflammatory microorganisms capable of promoting neuroinflammation. Systemic inflammation is robustly associated with neuroinflammation as well as low levels of brain derived neurotrophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated with changes in global cognition, working memory, and perceptual speed but not risk of death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains), or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathology. However, since MCI and AD are related to global cognition, the findings with BDNF and the contiguous cognitive measures suggest low power with the trichotomous cognitive status measures. Future studies with larger sample sizes are necessary to further investigate the results from this pilot study.
Collapse
Affiliation(s)
- Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohreh Raeisi
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sue Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
30
|
Lobine D, Sadeer N, Jugreet S, Suroowan S, Keenoo BS, Imran M, Venugopala KN, Ibrahim FM, Zengin G, Mahomoodally MF. Potential of Medicinal Plants as Neuroprotective and Therapeutic Properties Against Amyloid-β-Related Toxicity, and Glutamate-Induced Excitotoxicity in Human Neural Cells. Curr Neuropharmacol 2021; 19:1416-1441. [PMID: 33845746 PMCID: PMC8762182 DOI: 10.2174/1570159x19666210412095251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are notorious neurodegenerative diseases amongst the general population. Being age-associated diseases, the prevalence of AD and PD is forecasted to rapidly escalate with the progressive aging population of the world. These diseases are complex and multifactorial. Among different events, amyloid β peptide (Aβ) induced toxicity is a well-established pathway of neuronal cell death, which plays a vital function in AD. Glutamate, the major excitatory transmitter, acts as a neurotoxin when present in excess at the synapses; this latter mechanism is termed excitotoxicity. It is hypothesised that glutamate-induced excitotoxicity contributes to the pathogenesis of AD and PD. No cure for AD and PD is currently available and the currently approved drugs available to treat these diseases have limited effectiveness and pose adverse effects. Indeed, plants have been a major source for the discovery of novel pharmacologically active compounds for distinct pathological conditions. Diverse plant species employed for brain-related disorders in traditional medicine are being explored to determine the scientific rationale behind their uses. Herein, we present a comprehensive review of plants and their constituents that have shown promise in reversing the (i) amyloid-β -related toxicity in AD models and (ii) glutamate-induced excitotoxicity in AD and PD models. This review summarizes information regarding the phytochemistry, biological and cellular activities, and clinical trials of several plant species in view to provide adequate scientific baseline information that could be used in the drug development process, thereby providing effective leads for AD and PD.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Nabeelah Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Bibi Sumera Keenoo
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Pakistan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Dept., National Research Center, 33 El Bohouth St., Dokki, Giza, P.O.12622, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
31
|
The pathogenesis of age-related macular degeneration is not inflammatory mediated but is instead due to immunosenescence-related failure of tissue repair. Med Hypotheses 2020; 146:110392. [PMID: 33246696 DOI: 10.1016/j.mehy.2020.110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 01/13/2023]
Abstract
A natural consequence of everyday tissue metabolism is cell injury or stress. This injury activates a canonical immune-mediated inflammatory response in order to achieve tissue repair so that homeostasis is maintained. With aging there is increased tissue injury and therefore increasing demands placed on an immune system, which itself is aging (immunosenescence). Thus, the increased reparative demands are reflected by an increased inflammatory load both locally and systemically. Eventually, if the reparative demands are excessive, the aging immune system is overwhelmed and disease ensues. In the macula this age-related failure in repair gives rise to age-related macular degeneration (AMD). The hypothesis proposed herein is therefore, that AMD is due to age-related failure of tissue repair and the chronic inflammation associated with this failure ('inflammaging') is both a surrogate and biomarker of this reparative failure and not in itself the primary cause of disease. Such a hypothesis can be applied to all the diseases of aging and by extension suggests that effective therapies should be aimed at facilitating repair through immunotherapy, possibly and perhaps controversially, through the promotion of inflammation rather than the current approach of its inhibition (anti-inflammatory strategies), the latter which can ultimately only hinder the repair process and thereby lead to the persistence of disease.
Collapse
|
32
|
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 2020; 180:114147. [PMID: 32653589 PMCID: PMC7347500 DOI: 10.1016/j.bcp.2020.114147] [Citation(s) in RCA: 840] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101 India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054 India.
| |
Collapse
|
33
|
Jordan F, Quinn TJ, McGuinness B, Passmore P, Kelly JP, Tudur Smith C, Murphy K, Devane D. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia. Cochrane Database Syst Rev 2020; 4:CD011459. [PMID: 32352165 PMCID: PMC7192366 DOI: 10.1002/14651858.cd011459.pub2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dementia is a worldwide concern. Its global prevalence is increasing. At present, there is no medication licensed to prevent or delay the onset of dementia. Inflammation has been suggested as a key factor in dementia pathogenesis. Therefore, medications with anti-inflammatory properties could be beneficial for dementia prevention. OBJECTIVES To evaluate the effectiveness and adverse effects of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) for the primary or secondary prevention of dementia. SEARCH METHODS We searched ALOIS, the specialised register of the Cochrane Dementia and Cognitive Improvement Group up to 9 January 2020. ALOIS contains records of clinical trials identified from monthly searches of several major healthcare databases, trial registries and grey literature sources. We ran additional searches across MEDLINE (OvidSP), Embase (OvidSP) and six other databases to ensure that the searches were as comprehensive and up-to-date as possible. We also reviewed citations of reference lists of included studies. SELECTION CRITERIA We searched for randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing aspirin or other NSAIDs with placebo for the primary or secondary prevention of dementia. We included trials with cognitively healthy participants (primary prevention) or participants with mild cognitive impairment (MCI) or cognitive complaints (secondary prevention). DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the strength of evidence for each outcome using the GRADE approach. MAIN RESULTS We included four RCTs with 23,187 participants. Because of the diversity of these trials, we did not combine data to give summary estimates, but presented a narrative description of the evidence. We identified one trial (19,114 participants) comparing low-dose aspirin (100 mg once daily) to placebo. Participants were aged 70 years or older with no history of dementia, cardiovascular disease or physical disability. Interim analysis indicated no significant treatment effect and the trial was terminated slightly early after a median of 4.7 years' follow-up. There was no evidence of a difference in incidence of dementia between aspirin and placebo groups (risk ratio (RR) 0.98, 95% CI 0.83 to 1.15; high-certainty evidence). Participants allocated aspirin had higher rates of major bleeding (RR 1.37, 95% CI 1.17 to 1.60, high-certainty evidence) and slightly higher mortality (RR 1.14, 95% CI 1.01 to 1.28; high-certainty evidence). There was no evidence of a difference in activities of daily living between groups (RR 0.84, 95% CI 0.70 to 1.02; high-certainty evidence). We identified three trials comparing non-aspirin NSAIDs to placebo. All three trials were terminated early due to adverse events associated with NSAIDs reported in other trials. One trial (2528 participants) investigated the cyclo-oxygenase-2 (COX-2) inhibitor celecoxib (200 mg twice daily) and the non-selective NSAID naproxen (220 mg twice daily) for preventing dementia in cognitively healthy older adults with a family history of Alzheimer's disease (AD). Median follow-up was 734 days. Combining both NSAID treatment arms, there was no evidence of a difference in the incidence of AD between participants allocated NSAIDs and those allocated placebo (RR 1.91, 95% CI 0.89 to 4.10; moderate-certainty evidence). There was also no evidence of a difference in rates of myocardial infarction (RR 1.21, 95% CI 0.61 to 2.40), stroke (RR 1.82, 95% CI 0.76 to 4.37) or mortality (RR 1.37, 95% CI 0.78 to 2.43) between treatment groups (all moderate-certainty evidence). One trial (88 participants) assessed the effectiveness of celecoxib (200 mg or 400 mg daily) in delaying cognitive decline in participants aged 40 to 81 years with mild age-related memory loss but normal memory performance scores. Mean duration of follow-up was 17.6 months in the celecoxib group and 18.1 months in the placebo group. There was no evidence of a difference between groups in test scores in any of six cognitive domains. Participants allocated celecoxib experienced more gastrointestinal adverse events than those allocated placebo (RR 2.66, 95% CI 1.05 to 6.75; low-certainty evidence). One trial (1457 participants) assessed the effectiveness of the COX-2 inhibitor rofecoxib (25 mg once daily) in delaying or preventing a diagnosis of AD in participants with MCI. Median duration of study participation was 115 weeks in the rofecoxib group and 130 weeks in the placebo group. There was a higher incidence of AD in the rofecoxib than the placebo group (RR 1.32, 95% CI 1.01 to 1.72; moderate-certainty evidence). There was no evidence of a difference between groups in cardiovascular adverse events (RR 1.07, 95% CI 0.68 to 1.66; moderate-certainty evidence) or mortality (RR 1.62, 95% CI 0.85 to 3.05; moderate-certainty evidence). Participants allocated rofecoxib had more upper gastrointestinal adverse events (RR 3.53, 95% CI 1.17 to 10.68; moderate-certainty evidence). Reported annual mean difference scores showed no evidence of a difference between groups in activities of daily living (year 1: no data available; year 2: 0.0, 95% CI -0.1 to 0.2; year 3: 0.1, 95% CI -0.1 to 0.3; year 4: 0.1, 95% CI -0.1 to 0.4; moderate-certainty evidence). AUTHORS' CONCLUSIONS There is no evidence to support the use of low-dose aspirin or other NSAIDs of any class (celecoxib, rofecoxib or naproxen) for the prevention of dementia, but there was evidence of harm. Although there were limitations in the available evidence, it seems unlikely that there is any need for further trials of low-dose aspirin for dementia prevention. If future studies of NSAIDs for dementia prevention are planned, they will need to be cognisant of the safety concerns arising from the existing studies.
Collapse
Affiliation(s)
- Fionnuala Jordan
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - John P Kelly
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Kathy Murphy
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
34
|
Meyer PF, Savard M, Poirier J, Morgan D, Breitner J. Hypothesis: cerebrospinal fluid protein markers suggest a pathway toward symptomatic resilience to AD pathology. Alzheimers Dement 2019; 15:1160-1171. [PMID: 31405825 DOI: 10.1016/j.jalz.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
Abstract
INTRODUCTION We sought biological pathways that explained discordance between Alzheimer's disease (AD) pathology and symptoms. METHODS In 306 Alzheimer's Disease Neuroimaging Initiative (ADNI)-1 participants across the AD clinical spectrum, we investigated association between cognitive outcomes and 23 cerebrospinal fluid (CSF) analytes associated with abnormalities in the AD biomarkers amyloid β1-42 and total-tau. In a 200-person "training" set, Least Absolute Shrinkage and Selection Operator regression estimated model weights for the 23 proteins, and for the AD biomarkers themselves, as predictors of ADAS-Cog11 scores. In the remaining 106 participants ("validation" set), fully adjusted regression models then tested the Least Absolute Shrinkage and Selection Operator-derived models and a related protein marker summary score as predictors of ADAS-Cog11, ADNI diagnostic category, and longitudinal cognitive trajectory. RESULTS AD biomarkers alone explained 26% of the variance in validation set cognitive scores. Surprisingly, the 23 AD-related proteins explained 31% of this variance. The biomarkers and protein markers appeared independent in this respect, jointly explaining 42% of test score variance. The composite protein marker score also predicted ADNI diagnosis and subsequent cognitive trajectory. Cognitive outcome prediction redounded principally to ten markers related to lipid or vascular functions or to microglial activation or chemotaxis. In each analysis, apoE protein and four markers in the latter immune-activation group portended better outcomes. DISCUSSION CSF markers of vascular, lipid-metabolic and immune-related functions may explain much of the disjunction between AD biomarker abnormality and symptom severity. In particular, our results suggest the hypothesis that innate immune activation improves cognitive outcomes in persons with AD pathology. This hypothesis should be tested by further study of cognitive outcomes related to CSF markers of innate immune activation.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Faculty of Medicine, McGill University, Montréal, QC, Canada; Center for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Melissa Savard
- McGill Center for Studies on Aging, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Judes Poirier
- Faculty of Medicine, McGill University, Montréal, QC, Canada; Center for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Montréal, QC, Canada; Douglas Mental Health University Institute Research Centre, Montréal, QC, Canada
| | - David Morgan
- College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Faculty of Medicine, McGill University, Montréal, QC, Canada; Center for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Montréal, QC, Canada; Douglas Mental Health University Institute Research Centre, Montréal, QC, Canada.
| | | |
Collapse
|
35
|
Meyer PF, Tremblay-Mercier J, Leoutsakos J, Madjar C, Lafaille-Magnan ME, Savard M, Rosa-Neto P, Poirier J, Etienne P, Breitner J. INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 2019; 92:e2070-e2080. [PMID: 30952794 PMCID: PMC6512884 DOI: 10.1212/wnl.0000000000007232] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of low-dose naproxen for prevention of progression in presymptomatic Alzheimer disease (AD) among cognitively intact persons at risk. METHODS Investigation of Naproxen Treatment Effects in Pre-symptomatic Alzheimer's Disease (INTREPAD), a 2-year double-masked pharmaco-prevention trial, enrolled 195 AD family history-positive elderly (mean age 63 years) participants screened carefully to exclude cognitive disorder (NCT-02702817). These were randomized 1:1 to naproxen sodium 220 mg twice daily or placebo. Multimodal imaging, neurosensory, cognitive, and (in ∼50%) CSF biomarker evaluations were performed at baseline, 3, 12, and 24 months. A modified intent-to-treat analysis considered 160 participants who remained on-treatment through their first follow-up examination. The primary outcome was rate of change in a multimodal composite presymptomatic Alzheimer Progression Score (APS). RESULTS Naproxen-treated individuals showed a clear excess of adverse events. Among treatment groups combined, the APS increased by 0.102 points/year (SE 0.014; p < 10-12), but rate of change showed little difference by treatment assignment (0.019 points/year). The treatment-related rate ratio of 1.16 (95% confidence interval 0.64-1.96) suggested that naproxen does not reduce the rate of APS progression by more than 36%. Secondary analyses revealed no notable treatment effects on individual CSF, cognitive, or neurosensory biomarker indicators of progressive presymptomatic AD. CONCLUSIONS In cognitively intact individuals at risk, sustained treatment with naproxen sodium 220 mg twice daily increases frequency of adverse health effects but does not reduce apparent progression of presymptomatic AD. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that, for people who are cognitively intact, low-dose naproxen does not significantly reduce progression of a composite indicator of presymptomatic AD.
Collapse
Affiliation(s)
- Pierre-François Meyer
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Jennifer Tremblay-Mercier
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Jeannie Leoutsakos
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Cécile Madjar
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Marie-Elyse Lafaille-Magnan
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Melissa Savard
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Pedro Rosa-Neto
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Judes Poirier
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Pierre Etienne
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - John Breitner
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD.
| |
Collapse
|
36
|
Abstract
Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.
Collapse
|
37
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
38
|
Flanagan ME, Larson EB, Walker RL, Keene CD, Postupna N, Cholerton B, Sonnen JA, Dublin S, Crane PK, Montine TJ. Associations between Use of Specific Analgesics and Concentrations of Amyloid-β 42 or Phospho-Tau in Regions of Human Cerebral Cortex. J Alzheimers Dis 2019; 61:653-662. [PMID: 29226863 DOI: 10.3233/jad-170414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analgesics are commonly used by older adults, raising the question of whether their use might contribute to dementia risk and neuropathologic changes of Alzheimer's disease (AD). The Adult Changes in Thought (ACT) study is a population-based study of brain aging and incident dementia among people 65 years or older who are community dwelling and not demented at entry. Amyloid-β (Aβ)42 and phospho-tau were quantified using Histelide in regions of cerebral cortex from 420 brain autopsies. Total standard daily doses of prescription opioid and non-aspirin nonsteroidal anti-inflammatory drug (NSAID) exposure during a defined 10-year exposure window were identified using automated pharmacy dispensing data and used to classify people as having no/low, intermediate, or high exposure. People with high NSAID exposure had significantly greater Aβ42 concentration in middle frontal gyrus and superior and middle temporal gyri, but not inferior parietal lobule; no Aβ42 regional concentration was associated with prescription opioid usage. People with high opioid usage had significantly greater concentration of phospho-tau in middle frontal gyrus than people with little-to-no opioid usage. Consistent with our previous studies, findings suggest that high levels of NSAID use in older individuals may promote Aβ42 accumulation in cerebral cortex.
Collapse
Affiliation(s)
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rod L Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Joshua A Sonnen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Sascha Dublin
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
39
|
Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID Exposure and Risk of Alzheimer's Disease: An Updated Meta-Analysis From Cohort Studies. Front Aging Neurosci 2018; 10:83. [PMID: 29643804 PMCID: PMC5882872 DOI: 10.3389/fnagi.2018.00083] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Initial observational studies and a systematic review published recently have suggested that non-steroidal anti-inflammatory drug (NSAID) use has the trend to be associated with reduced risk of Alzheimer's disease (AD), while results remain conflicting. Thus, we performed an updated meta-analysis to reevaluate the evidence on this association. Methods: Data sources from PUBMED, Embase and Cochrane Library from inception through April 2017 were searched by two independent reviewers. Eligible cohort studies were selected according to predefined keywords. We did a meta-analysis of available study data using a random-effects model to calculate overall relative risks (RRs) for associations between NSAID exposure and AD risk. Results: From 121 potentially relevant studies, 16 cohort studies including 236,022 participants, published between 1995 and 2016, were included in this systematic review. Meta-analysis demonstrated that current or former NSAID use was significantly associated with reduced risk of AD (RR, 0.81, 95% CI0.70 to 0.94) compared with those who did not use NSAIDs. This association existed in studies including all NSAID types, but not in aspirin (RR, 0.89, 95% CI 0.70 to 1.13), acetaminophen (RR, 0.87, 95% CI 0.40 to 1.91) or non-aspirin NSAID (RR, 0.84, 95% CI 0.58 to 1.23). Conclusions: Current evidence suggests that NSAID exposure might be significantly associated with reduced risk of AD. However, further large-scale prospective studies are needed to reevaluate this association, especially the associations in individual NSAID type.
Collapse
Affiliation(s)
- Caixia Zhang
- Second Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| | - Yan Wang
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dongyin Wang
- Huixian People's Hospital of Henan Province, Henan, China
| | - Jidong Zhang
- Huixian Second People's Hospital of Henan Province, Henan, China
| | - Fangfang Zhang
- Second Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
40
|
Neuroinflammatory responses in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:771-779. [PMID: 29273951 DOI: 10.1007/s00702-017-1831-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/21/2022]
Abstract
Neuroinflammatory responses in Alzheimer's disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease. The outcome of these responses on the pathophysiology of AD depends on several factors and can be either beneficial or detrimental. Thus, understanding the role of neuroinflammation in AD could help to develop safer and more efficient therapeutic strategies. This review discusses recent knowledge on microglia responses toward amyloid and tau pathology in AD, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.
Collapse
|
41
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) may prevent dementia, but previous studies have yielded conflicting results. This study estimated the association of prior NSAID use with incident cognitive impairment in the population-based Epidemiology of Hearing Loss Study (EHLS, n=2422 without cognitive impairment in 1998-2000). Prospectively collected medication data from 1988-1990, 1993-1995, and 1998-2000 were used to categorize NSAID use history at the cognitive baseline (1998-2000). Aspirin use and nonaspirin NSAID use were separately examined. Cox regression models were used to estimate the associations between NSAID use history at baseline and incident cognitive impairment in 2003-2005 or 2009-2010. Logistic regression analyses were used to estimate associations with a second outcome, mild cognitive impairment/dementia, available in 2009-2010. Participants using aspirin at baseline but not 5 years prior were more likely to develop cognitive impairment (adjusted hazard ratio=1.77; 95% confidence interval=1.11, 2.82; model 2), with nonsignificant associations for longer term use. Nonaspirin NSAID use was not associated with incident cognitive impairment or mild cognitive impairment/dementia odds. These results provided no evidence to support a potential protective effect of NSAIDs against dementia.
Collapse
|
42
|
Lodeiro M, Puerta E, Ismail MAM, Rodriguez-Rodriguez P, Rönnbäck A, Codita A, Parrado-Fernandez C, Maioli S, Gil-Bea F, Merino-Serrais P, Cedazo-Minguez A. Aggregation of the Inflammatory S100A8 Precedes Aβ Plaque Formation in Transgenic APP Mice: Positive Feedback for S100A8 and Aβ Productions. J Gerontol A Biol Sci Med Sci 2017; 72:319-328. [PMID: 27131040 DOI: 10.1093/gerona/glw073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Inflammation plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Although chronic inflammation in later stages of AD is well described, little is known about the inflammatory processes in preclinical or early stages of the disease prior to plaque deposition. In this study, we report that the inflammatory mediator S100A8 is increased with aging in the mouse brain. It is observed as extracellular aggregates, which do not correspond to corpora amylacea. S100A8 aggregation is enhanced in the hippocampi of two different mouse models for amyloid-β (Aβ) overproduction (Tg2576 and TgAPParctic mice). S100A8 aggregates are seen prior the formation of Aβ plaques and do not colocalize. In vitro treatment of glial cells from primary cultures with Aβ42 resulted in an increased production of S100A8. In parallel, treatment of a neuronal cell line with recombinant S100A8 protein resulted in enhanced Aβ42 and decreased Aβ40 production. Our results suggest that important inflammatory processes are occurring prior to Aβ deposition and the existence of a positive feedback between S100A8 and Aβ productions. The possible relevance of aging- or AD-dependent formation of S100A8 aggregates in the hippocampus thus affecting learning and memory processes is discussed.
Collapse
Affiliation(s)
- Maria Lodeiro
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Elena Puerta
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad-Al-Mustafa Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Annica Rönnbäck
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Alina Codita
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Gil-Bea
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosciences, Department of Cellular and Molecular Neuropharmacology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paula Merino-Serrais
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Lee KH, Rondeau V, Haneuse S. Accelerated failure time models for semi-competing risks data in the presence of complex censoring. Biometrics 2017; 73:1401-1412. [PMID: 28395116 DOI: 10.1111/biom.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 10/19/2022]
Abstract
Statistical analyses that investigate risk factors for Alzheimer's disease (AD) are often subject to a number of challenges. Some of these challenges arise due to practical considerations regarding data collection such that the observation of AD events is subject to complex censoring including left-truncation and either interval or right-censoring. Additional challenges arise due to the fact that study participants under investigation are often subject to competing forces, most notably death, that may not be independent of AD. Towards resolving the latter, researchers may choose to embed the study of AD within the "semi-competing risks" framework for which the recent statistical literature has seen a number of advances including for the so-called illness-death model. To the best of our knowledge, however, the semi-competing risks literature has not fully considered analyses in contexts with complex censoring, as in studies of AD. This is particularly the case when interest lies with the accelerated failure time (AFT) model, an alternative to the traditional multiplicative Cox model that places emphasis away from the hazard function. In this article, we outline a new Bayesian framework for estimation/inference of an AFT illness-death model for semi-competing risks data subject to complex censoring. An efficient computational algorithm that gives researchers the flexibility to adopt either a fully parametric or a semi-parametric model specification is developed and implemented. The proposed methods are motivated by and illustrated with an analysis of data from the Adult Changes in Thought study, an on-going community-based prospective study of incident AD in western Washington State.
Collapse
Affiliation(s)
- Kyu Ha Lee
- Epidemiology and Biostatistics Core, The Forsyth Institute, Cambridge, Massachusetts, U.S.A.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, Massachusetts, U.S.A
| | - Virginie Rondeau
- Centre INSERM U-897-Epidemiologie-Biostatistique, INSERM, Bordeaux, France
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, U.S.A
| |
Collapse
|
44
|
Wang Z, Xiong L, Wan W, Duan L, Bai X, Zu H. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice. Front Mol Neurosci 2017; 10:32. [PMID: 28228716 PMCID: PMC5296319 DOI: 10.3389/fnmol.2017.00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis.
Collapse
Affiliation(s)
- Zigao Wang
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Lu Xiong
- Department of Anesthesiology, Tinglin Hospital Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
45
|
Deng Y, Long L, Wang K, Zhou J, Zeng L, He L, Gong Q. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Front Pharmacol 2017; 8:39. [PMID: 28210222 PMCID: PMC5288340 DOI: 10.3389/fphar.2017.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Long Long
- Department of Pharmacy, Zunyi Medical UniversityGuizhou, China
| | - Keke Wang
- Zunyi Medical and Pharmaceutical CollegeGuizhou, China
| | - Jiayin Zhou
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lingrong Zeng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lianzi He
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| |
Collapse
|
46
|
Crane PK, Walker RL, Sonnen J, Gibbons LE, Melrose R, Hassenstab J, Keene CD, Postupna N, Montine TJ, Larson EB. Glucose levels during life and neuropathologic findings at autopsy among people never treated for diabetes. Neurobiol Aging 2016; 48:72-82. [PMID: 27644076 PMCID: PMC5441884 DOI: 10.1016/j.neurobiolaging.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/06/2023]
Abstract
We evaluated associations between glucose and dementia-related neuropathologic findings among people without diabetes treatment history to elucidate mechanisms of glucose's potential effect on dementia. We used glucose and hemoglobin A1c values to characterize glucose exposures over 5 years before death (primary) and age bands from 55-59 through 80-84 (secondary). Autopsy evaluations included Braak stage for neurofibrillary tangles, Consortium to Establish a Registry for Alzheimer's Disease grade for neuritic plaques, macroscopic infarcts including lacunar infarcts, Lewy bodies, cerebral microinfarcts, and hippocampal sclerosis. Of 529 who came to autopsy, we included 430 with no history of diabetes treatment. We found no associations between glucose levels and Braak stage or Consortium to Establish a Registry for Alzheimer's Disease grade. There was a suggestion of a relationship between glucose and hippocampal sclerosis, although this was inconsistent across analyses. There was higher risk of Lewy bodies in substantia nigra and locus ceruleus with higher glucose levels in age band analyses. We did not find interactions between glucose levels, neuropathologic findings, and dementia. The mechanism by which glucose may impact dementia risk is still unknown.
Collapse
Affiliation(s)
- Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Rod L Walker
- Group Health Research Institute, Seattle, WA, USA
| | - Joshua Sonnen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca Melrose
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
47
|
Ribe EM, Lovestone S. Insulin signalling in Alzheimer's disease and diabetes: from epidemiology to molecular links. J Intern Med 2016; 280:430-442. [PMID: 27739227 DOI: 10.1111/joim.12534] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As populations across the world both age and become more obese, the numbers of individuals with Alzheimer's disease and diabetes are increasing; posing enormous challenges for society and consequently becoming priorities for governments and global organizations. These issues, an ageing population at risk of neurodegenerative diseases such as Alzheimer's disease and an increasingly obese population at risk of metabolic alterations such as type 2 diabetes, are usually considered as independent conditions, but increasing evidence from both epidemiological and molecular studies link these disorders. The aim of this review was to highlight these multifactorial links. We will discuss the impact of direct links between insulin and IGF-1 signalling and the Alzheimer's disease-associated pathological events as well as the impact of other processes such as inflammation, oxidative stress and mitochondrial dysfunction either common to both conditions or perhaps responsible for a mechanistic link between metabolic and neurodegenerative disease. An understanding of such associations might be of importance not only in the understanding of disease mechanisms but also in the search for novel therapeutic options.
Collapse
Affiliation(s)
- E M Ribe
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - S Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
49
|
Deardorff WJ, Grossberg GT. Targeting neuroinflammation in Alzheimer’s disease: evidence for NSAIDs and novel therapeutics. Expert Rev Neurother 2016; 17:17-32. [DOI: 10.1080/14737175.2016.1200972] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - George T Grossberg
- Department of Psychiatry, St. Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
50
|
Traylor M, Adib‐Samii P, Harold D, the Alzheimer's Disease Neuroimaging Initiative, The International Stroke Genetics Consortium (ISGC), UK Young Lacunar Stroke DNA resource, Dichgans M, Williams J, Lewis CM, Markus HS, and the METASTROKE and International Genomics of Alzheimer's Project (IGAP) investigators. Shared genetic contribution to Ischaemic Stroke and Alzheimer's Disease. Ann Neurol 2016; 79:739-747. [PMID: 26913989 PMCID: PMC4864940 DOI: 10.1002/ana.24621] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Increasing evidence suggests epidemiological and pathological links between Alzheimer's disease (AD) and Ischaemic Stroke (IS). We investigated the evidence that shared genetic factors underpin the two diseases. METHODS Using genome wide association study (GWAS) data from METASTROKE+ (15,916 IS cases and 68,826 controls) and IGAP (17,008 AD cases and 37,154 controls), we evaluated known associations with AD and IS. On the subset of data for which we could obtain compatible genotype-level data (4,610 IS cases, 1,281 AD cases and 14,320 controls), we estimated the genome-wide genetic correlation (rG) between AD and IS, and the three subtypes (cardioembolic, small vessel, large vessel), using genome-wide SNP data. We then performed a meta-analysis and pathway analysis in the combined AD and small vessel stroke datasets to identify the SNPs and molecular pathways through which disease risk may be conferred. RESULTS We found evidence of a shared genetic contribution between AD and small vessel stroke (rG(SE)=0.37(0.17); p=0.011). Conversely, there was no evidence to support shared genetic factors in AD and IS overall, or with the other stroke subtypes. Of the known GWAS associations with IS or AD, none reached significance for association with the other trait (or stroke subtypes). A meta-analysis of AD IGAP and METASTROKE+ small vessel stroke GWAS data highlighted a region (ATP5H/KCTD2/ICT1), associated with both diseases (p=1.8x10-8 ). A pathway analysis identified four associated pathways, involving cholesterol transport and immune response. INTERPRETATION Our findings indicate shared genetic susceptibility to AD and small vessel stroke and highlight potential causal pathways and loci. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew Traylor
- Stroke Research Group, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
- Department of Medical & Molecular GeneticsKing's College LondonLondonUnited Kingdom
| | - Poneh Adib‐Samii
- Stroke and Dementia Research CenterSt George's University of LondonLondonUnited Kingdom
| | - Denise Harold
- School of BiotechnologyDublin City UniversityDublinIreland
| | | | - Martin Dichgans
- Institute for Stroke and Dementia ResearchKlinikum der Universität München, Ludwig‐Maximilians‐UniversitätMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Julie Williams
- Medical Research Council (MRC) Center for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of MedicineCardiff UniversityCardiffUnited Kingdom
| | - Cathryn M. Lewis
- Department of Medical & Molecular GeneticsKing's College LondonLondonUnited Kingdom
- Social, Genetic and Developmental Psychiatry Center, Institute of PsychiatryKing's College LondonLondonUnited Kingdom
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|