1
|
Zhao Z, Sun Y, Guo R, Liang J, Dai W, Jiang Y, Yu Y, Yu Y, He L, Li D. Extracellular vesicles: Roles in oocytes and emerging therapeutic opportunities. Chin Med J (Engl) 2025; 138:1050-1060. [PMID: 40190013 DOI: 10.1097/cm9.0000000000003578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 05/13/2025] Open
Abstract
ABSTRACT The production of high-quality oocytes requires precisely orchestrated intercellular communication. Extracellular vesicles (EVs) are cell-derived nanoparticles that play a vital role in the transfer of bioactive molecules, which has gained much attention in the field of diagnosis and treatment. Over the past ten years, the participation of EVs in the reproductive processes of oocytes has been broadly studied and has shown great potential for elucidating the intricacies of female reproductive health. This review provides an extensive discussion of the influence of EVs on oocytes, emphasizing their involvement in normal physiology and altered cargo under pathological conditions. In addition, the positive impact of therapeutic EVs on oocyte quality and their role in alleviating ovarian pathological conditions are summarized.
Collapse
Affiliation(s)
- Zhongyu Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Yinrui Sun
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Yafan Yu
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110003, China
| | - Lixia He
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, Liaoning 110022, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, Liaoning 110022, China
| |
Collapse
|
2
|
Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of Extracellular Vesicles: Recent Updates, Challenges and Limitations. Proteomes 2025; 13:12. [PMID: 40137841 PMCID: PMC11944546 DOI: 10.3390/proteomes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles secreted by cells, including exosomes, microvesicles, and apoptotic bodies. Proteomic analyses of EVs, particularly in relation to cancer, reveal specific biomarkers crucial for diagnosis and therapy. However, isolation techniques such as ultracentrifugation, size-exclusion chromatography, and ultrafiltration face challenges regarding purity, contamination, and yield. Contamination from other proteins complicates downstream processing, leading to difficulties in identifying biomarkers and interpreting results. Future research will focus on refining EV characterization for diagnostic and therapeutic applications, improving proteomics tools for greater accuracy, and exploring the use of EVs in drug delivery and regenerative medicine. In this review, we provide a bird's eye view of various challenges, starting with EV isolation methods, yield, purity, and limitations in the proteome analysis of EVs for identifying protein targets.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Prashant Kumar Tiwari
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Vivek Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Wang J, Yin B, Lian J, Wang X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024; 16:1029. [PMID: 39204374 PMCID: PMC11359799 DOI: 10.3390/pharmaceutics16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
In recent decades, the pursuit of drug delivery systems has led to the development of numerous synthetic options aimed at enhancing drug efficacy while minimizing side effects. However, the practical application of these systems is often hindered by challenges such as inefficiency, cytotoxicity, and immunogenicity. Extracellular vesicles, natural carriers for drugs, emerge as promising alternatives with distinct advantages over synthetic carriers. Notably, EVs exhibit biocompatibility, low immunogenicity, and inherent tissue-targeting capabilities, thus opening new avenues for drug delivery strategies. This review provides an overview of EVs, including their biogenesis and absorption mechanisms. Additionally, we explore the current research efforts focusing on harnessing their potential as drug carriers, encompassing aspects such as purification techniques, drug loading, and bioengineering for targeted delivery. Finally, we discuss the existing challenges and future prospects of EVs as therapeutic agents in clinical settings. This comprehensive analysis aims to shed light on the potential of EVs as versatile and effective tools for drug delivery, particularly in the realm of cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Bohang Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Jiabing Lian
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Xia Wang
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
4
|
Carvalho Filho I, Arikawa LM, Mota LFM, Campos GS, Fonseca LFS, Fernandes Júnior GA, Schenkel FS, Lourenco D, Silva DA, Teixeira CS, Silva TL, Albuquerque LG, Carvalheiro R. Genome-wide association study considering genotype-by-environment interaction for productive and reproductive traits using whole-genome sequencing in Nellore cattle. BMC Genomics 2024; 25:623. [PMID: 38902640 PMCID: PMC11188527 DOI: 10.1186/s12864-024-10520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.
Collapse
Affiliation(s)
- Ivan Carvalho Filho
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| | - Gabriel S Campos
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Larissa F S Fonseca
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Gerardo A Fernandes Júnior
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Delvan A Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Caio S Teixeira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Thales L Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
5
|
Elofsson A, Han L, Bianchi E, Wright GJ, Jovine L. Deep learning insights into the architecture of the mammalian egg-sperm fusion synapse. eLife 2024; 13:RP93131. [PMID: 38666763 PMCID: PMC11052572 DOI: 10.7554/elife.93131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.
Collapse
Affiliation(s)
- Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm UniversitySolnaSweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska InstitutetHuddingeSweden
| | - Enrica Bianchi
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska InstitutetHuddingeSweden
| |
Collapse
|
6
|
Ghosh M, McGurk F, Norris R, Dong A, Nair S, Jellison E, Murphy P, Verma R, Shapiro LH. The Implant-Induced Foreign Body Response Is Limited by CD13-Dependent Regulation of Ubiquitination of Fusogenic Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:663-676. [PMID: 38149920 PMCID: PMC10828181 DOI: 10.4049/jimmunol.2300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-β expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.
Collapse
Affiliation(s)
- Mallika Ghosh
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Fraser McGurk
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Medical School, Farmington, CT
| | - Andy Dong
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Sreenidhi Nair
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Evan Jellison
- Department of Immunology, University of Connecticut Medical School, Farmington, CT
| | - Patrick Murphy
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rajkumar Verma
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT
| | - Linda H. Shapiro
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| |
Collapse
|
7
|
Lange-Consiglio A, Gaspari G, Funghi F, Capra E, Cretich M, Frigerio R, Bosi G, Cremonesi F. Amniotic Mesenchymal-Derived Extracellular Vesicles and Their Role in the Prevention of Persistent Post-Breeding Induced Endometritis. Int J Mol Sci 2023; 24:ijms24065166. [PMID: 36982240 PMCID: PMC10049450 DOI: 10.3390/ijms24065166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Persistent post-breeding induced endometritis (PPBIE) is considered a major cause of subfertility in mares. It consists of persistent or delayed uterine inflammation in susceptible mares. There are many options for the treatment of PPBIE, but in this study, a novel approach aimed at preventing the onset of PPBIE was investigated. Stallion semen was supplemented with extracellular vesicles derived from amniotic mesenchymal stromal cells (AMSC-EVs) at the time of insemination to prevent or limit the development of PPBIE. Before use in mares, a dose–response curve was produced to evaluate the effect of AMSC-EVs on spermatozoa, and an optimal concentration of 400 × 106 EVs with 10 × 106 spermatozoa/mL was identified. At this concentration, sperm mobility parameters were not negatively affected. Sixteen susceptible mares were enrolled and inseminated with semen (n = 8; control group) or with semen supplemented with EVs (n = 8; EV group). The supplementation of AMSC-EVs to semen resulted in a reduction in polymorphonuclear neutrophil (PMN) infiltration as well as intrauterine fluid accumulation (IUF; p < 0.05). There was a significant reduction in intrauterine cytokine levels (p < 0.05) for TNF-α and IL-6 and an increase in anti-inflammatory IL-10 in mares in the EV group, suggesting successful modulation of the post-insemination inflammatory response. This procedure may be useful for mares susceptible to PPBIE.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-025-033-4150
| | - Giulia Gaspari
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | | | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), 26900 Lodi, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | - Fausto Cremonesi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| |
Collapse
|
8
|
Gonzalez Fernandez J, Moncayo Arlandi J, Ochando A, Simon C, Vilella F. The role of extracellular vesicles in intercellular communication in human reproduction. Clin Sci (Lond) 2023; 137:281-301. [PMID: 36762584 DOI: 10.1042/cs20220793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Embryo-maternal cross-talk has emerged as a vitally important process for embryo development and implantation, which is driven by secreted factors and extracellular vesicles (EVs). The EV cargo of bioactive molecules significantly influences target cells and primes them for critical stages of reproductive biology, including embryo development, adhesion, and implantation. Recent research has suggested that EVs and their cargo represent a powerful non-invasive tool that can be leveraged to assess embryo and maternal tissue quality during assisted reproduction treatments. Here, we review the current scientific literature regarding the intercellular cross-talk between embryos and maternal tissues from fertilization to implantation, focusing on human biology and signaling mechanisms identified in animal models.
Collapse
Affiliation(s)
- Javier Gonzalez Fernandez
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Javier Moncayo Arlandi
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
9
|
Jangid P, Rai U, Bakshi A, Singh R. Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization. Curr Protein Pept Sci 2023; 24:240-246. [PMID: 36718968 DOI: 10.2174/1389203724666230131110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023]
Abstract
Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.
Collapse
Affiliation(s)
- Pooja Jangid
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
- Department of Environmental Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
10
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Fang Z, Ding Y, Xue Z, Li P, Li J, Li F. Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discov Oncol 2022; 13:74. [PMID: 35962862 PMCID: PMC9375799 DOI: 10.1007/s12672-022-00539-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhigang Xue
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Peijuan Li
- Dalian Medical University, Dalian, Liaoning, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
12
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
13
|
Kekäläinen J. Genetic incompatibility of the reproductive partners: an evolutionary perspective on infertility. Hum Reprod 2021; 36:3028-3035. [PMID: 34580729 PMCID: PMC8600657 DOI: 10.1093/humrep/deab221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Indexed: 12/18/2022] Open
Abstract
In natural fertilisation, the female reproductive tract allows only a strictly selected sperm subpopulation to proceed in the vicinity of an unfertilised oocyte. Female-mediated sperm selection (also known as cryptic female choice (CFC)) is far from a random process, which frequently biases paternity towards particular males over others. Earlier studies have shown that CFC is a ubiquitous phenomenon in the animal kingdom and often promotes assortative fertilisation between genetically compatible mates. Here, I demonstrate that CFC for genetic compatibility likely also occurs in humans and is mediated by a complex network of interacting male and female genes. I also show that the relative contribution of genetic compatibility (i.e. the male-female interaction effect) to reproductive success is generally high and frequently outweighs the effects of individual males and females. Together, these facts indicate that, along with male- and female-dependent pathological factors, reproductive failure can also result from gamete-level incompatibility of the reproductive partners. Therefore, I argue that a deeper understanding of these evolutionary mechanisms of sperm selection can pave the way towards a more inclusive view of infertility and open novel possibilities for the development of more personalised infertility diagnostics and treatments.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
14
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
15
|
Jiménez-Movilla M, Hamze JG, Romar R. Oolemma Receptors in Mammalian Molecular Fertilization: Function and New Methods of Study. Front Cell Dev Biol 2021; 9:662032. [PMID: 34095128 PMCID: PMC8170029 DOI: 10.3389/fcell.2021.662032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Fertilization is a key process in biology to the extent that a new individual will be born from the fusion of two cells, one of which leaves the organism in which it was produced to exert its function within a different organism. The structure and function of gametes, and main aspects of fertilization are well known. However, we have limited knowledge about the specific molecules participating in each of the steps of the fertilization process due to the transient nature of gamete interaction. Moreover, if we specifically focus in the fusion of both gametes’ membrane, we might say our molecular knowledge is practically null, despite that molecular mechanisms of cell-to-cell adhesion are well studied in somatic cells. Moreover, between both gametes, the molecular knowledge in the egg is even scarcer than in the spermatozoon for different reasons addressed in this review. Sperm-specific protein IZUMO1 and its oocyte partner, JUNO, are the first cell surface receptor pair essential for sperm–egg plasma membrane binding. Recently, thanks to gene editing tools and the development and validation of in vitro models, new oocyte molecules are being suggested in gamete fusion such as phosphatidylserine recognition receptors. Undoubtedly, we are in a new era for widening our comprehension on molecular fertilization. In this work, we comprehensively address the proposed molecules involved in gamete binding and fusion, from the oocyte perspective, and the new methods that are providing a better understanding of these crucial molecules.
Collapse
Affiliation(s)
- María Jiménez-Movilla
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Raquel Romar
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
16
|
Palor M, Stejskal L, Mandal P, Lenman A, Alberione MP, Kirui J, Moeller R, Ebner S, Meissner F, Gerold G, Shepherd AJ, Grove J. Cholesterol sensing by CD81 is important for hepatitis C virus entry. J Biol Chem 2020; 295:16931-16948. [PMID: 32900848 PMCID: PMC7863897 DOI: 10.1074/jbc.ra120.014761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Indexed: 01/12/2023] Open
Abstract
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease.
Collapse
Affiliation(s)
- Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom
| | - Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Piya Mandal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom
| | - Annasara Lenman
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - María Pía Alberione
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jared Kirui
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Stefan Ebner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany; Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gisa Gerold
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom.
| |
Collapse
|
17
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
18
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
19
|
Sangsri T, Saiprom N, Tubsuwan A, Monk P, Partridge LJ, Chantratita N. Tetraspanins are involved in Burkholderia pseudomallei-induced cell-to-cell fusion of phagocytic and non-phagocytic cells. Sci Rep 2020; 10:17972. [PMID: 33087788 PMCID: PMC7577983 DOI: 10.1038/s41598-020-74737-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis.
Collapse
Affiliation(s)
- Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Peter Monk
- Department of Infection, Immunity and Cardiovascular Disease, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
20
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
21
|
Carlisle JA, Swanson WJ. Molecular mechanisms and evolution of fertilization proteins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:652-665. [PMID: 33015976 DOI: 10.1002/jez.b.23004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Sexual reproduction involves a cascade of molecular interactions between the sperm and the egg culminating in cell-cell fusion. Vital steps mediating fertilization include chemoattraction of the sperm to the egg, induction of the sperm acrosome reaction, dissolution of the egg coat, and sperm-egg plasma membrane binding and fusion. Despite decades of research, only a handful of interacting gamete recognition proteins (GRPs) have been identified across taxa mediating each of these steps, most notably in abalone, sea urchins, and mammals. This review outlines and compares notable GRP pairs mediating sperm-egg recognition in these three significant model systems and discusses the molecular basis of species-specific fertilization driven by GRP function. In addition, we explore the evolutionary theory behind the rapid diversification of GRPs between species. In particular, we focus on how the coevolution between interacting sperm and egg proteins may contribute to the formation of boundaries to hybridization. Finally, we discuss how pairing structural information with evolutionary insights can improve our understanding of mechanisms of fertilization and their origins.
Collapse
Affiliation(s)
- Jolie A Carlisle
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| |
Collapse
|
22
|
Jankovičová J, Neuerová Z, Sečová P, Bartóková M, Bubeníčková F, Komrsková K, Postlerová P, Antalíková J. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Med Microbiol Immunol 2020; 209:407-425. [PMID: 32424440 DOI: 10.1007/s00430-020-00676-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
It is known that tetraspanin proteins are involved in many physiological somatic cell mechanisms. Additionally, research has indicated they also have a role in various infectious diseases and cancers. This review focuses on the molecular interactions underlying the tetraspanin web formation in gametes. Primarily, tetraspanins act in the reproductive tract as organizers of membrane complexes, which include the proteins involved in the contact and association of sperm and oocyte membranes. In addition, recent data shows that tetraspanins are likely to be involved in these processes in a complex way. In mammalian fertilization, an important role is attributed to CD molecules belonging to the tetraspanin superfamily, particularly CD9, CD81, CD151, and also CD63; mostly as part of extracellular vesicles, the significance of which and their potential in reproduction is being intensively investigated. In this article, we reviewed the existing knowledge regarding the expression of tetraspanins CD9, CD81, CD151, and CD63 in mammalian spermatozoa, oocytes, and embryos and their involvement in reproductive processes, including pathological events.
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdeňka Neuerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Bartóková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Komrsková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
23
|
Okaji H, Tetsuka K, Watanabe R, Kishigami S. New cellular imaging of oocytes and preimplantation embryos using Lumitein™: Evaluation of oocyte quality and new information on protein dynamics within the perivitelline space during the one-cell oocyte stage in mice. J Reprod Dev 2020; 66:155-161. [PMID: 31983710 PMCID: PMC7175381 DOI: 10.1262/jrd.2019-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The extracellular matrix between the oocyte and zona pellucida (ZP) plays an important role in mammalian fertilization and preserves the specific environment of the perivitelline space (PVS) during the development of a preimplantation embryo after fertilization. In this study, we applied a highly sensitive luminescent protein dye, Lumitein™, to observe the hydrophobic status of proteins in oocytes and preimplantation embryos. Lumitein™ is widely used for detecting denatured proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lumitein™ fluorescence was detected primarily in the PVS and degenerated first polar body of fresh normal metaphase II (MII) oocytes but much less within the ZP and ooplasm, which suggested a hydrophobic PVS environment in the MII oocytes. Unexpectedly, abnormally-shaped fresh or aged oocytes showed stronger fluorescence in the PVS, which reflected oocyte quality. Interestingly, 10 h after fertilization, the fluorescent signal in the PVS temporarily increased in a patched pattern that appeared and then disappeared by the two-cell stage. After the two-cell stage, the decreased fluorescent signal was maintained throughout the development of the preimplantation embryo. These results suggest new protein dynamics in the PVS during the one-cell stage of the oocyte. Thus, cellular imaging of oocytes and preimplantation embryos using Lumitein™ provides new information on protein dynamics.
Collapse
Affiliation(s)
- Hiroka Okaji
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kenta Tetsuka
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Ren Watanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
24
|
Jankovicova J, Frolikova M, Palenikova V, Valaskova E, Cerny J, Secova P, Bartokova M, Horovska L, Manaskova-Postlerova P, Antalikova J, Komrskova K. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci Rep 2020; 10:4374. [PMID: 32152440 PMCID: PMC7062741 DOI: 10.1038/s41598-020-61334-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological importance of CD151 tetraspanin is known from somatic cells and its outside-in signalling through integrins was described. In male germ cells, two tetraspanins, CD9 and CD81, are involved in sperm-egg membrane fusion, and similarly to integrins, they occupy characteristic regions. We report here on a newly discovered presence of CD151 in sperm, and present its expression and distribution during spermatogenesis and sperm transition during the acrosome reaction. We traced CD151 gene and protein expression in testicular cell subpopulations, with strong enrichment in spermatogonia and spermatids. The testicular and epididymal localization pattern is designated to the sperm head primary fusion site called the equatorial segment and when compared to the acrosome vesicle status, CD151 was located into the inner acrosomal membrane overlying the nucleus. Moreover, we show CD151 interaction with α6 integrin subunit, which forms a dimer with β4 as a part of cis-protein interactions within sperm prior to gamete fusion. We used mammalian species with distinct sperm morphology and sperm maturation such as mouse and bull and compared the results with human. In conclusion, the delivered findings characterise CD151 as a novel sperm tetraspanin network member and provide knowledge on its physiology in male germ cells.
Collapse
Affiliation(s)
- J Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - V Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40, Prague 2, Czech Republic
| | - E Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - P Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - L Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - P Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - J Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - K Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. .,Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
25
|
Rival CM, Xu W, Shankman LS, Morioka S, Arandjelovic S, Lee CS, Wheeler KM, Smith RP, Haney LB, Isakson BE, Purcell S, Lysiak JJ, Ravichandran KS. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun 2019; 10:4456. [PMID: 31575859 PMCID: PMC6773685 DOI: 10.1038/s41467-019-12406-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm:egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAI1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAI1/BAI3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAI1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm:egg fusion.
Collapse
Affiliation(s)
- Claudia M Rival
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Laura S Shankman
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sho Morioka
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sanja Arandjelovic
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Chang Sup Lee
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Karen M Wheeler
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Ryan P Smith
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Lisa B Haney
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Scott Purcell
- Reproductive Medicine and Surgery Center of Virginia, 595 Martha Jefferson Dr., Charlottesville, VA, 22911, USA
| | - Jeffrey J Lysiak
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
| | - Kodi S Ravichandran
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Biomedical Molecular Biology, Ghent University, and the UGent-VIB Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
26
|
Bhakta HH, Refai FH, Avella MA. The molecular mechanisms mediating mammalian fertilization. Development 2019; 146:146/15/dev176966. [PMID: 31375552 DOI: 10.1242/dev.176966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fertilization is a key biological process in which the egg and sperm must recognize one another and fuse to form a zygote. Although the process is a continuum, mammalian fertilization has been studied as a sequence of steps: sperm bind and penetrate through the zona pellucida of the egg, adhere to the egg plasma membrane and finally fuse with the egg. Following fusion, effective blocks to polyspermy ensure monospermic fertilization. Here, we review how recent advances obtained using genetically modified mouse lines bring new insights into the molecular mechanisms regulating mammalian fertilization. We discuss models for these processes and we include studies showing that these mechanisms may be conserved across different mammalian species.
Collapse
Affiliation(s)
- Hanisha H Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Fares H Refai
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo A Avella
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
27
|
Pan Y, Wang M, Baloch AR, Zhang Q, Wang J, Ma R, Xu G, Kashif J, Wang L, Fan J, Cui Y, Yu S. FGF10 enhances yak oocyte fertilization competence and subsequent blastocyst quality and regulates the levels of CD9, CD81, DNMT1, and DNMT3B. J Cell Physiol 2019; 234:17677-17689. [PMID: 30807658 DOI: 10.1002/jcp.28394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm-oocyte interactions and DNA methylation during fertilization.
Collapse
Affiliation(s)
- Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Abdul Rasheed Baloch
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Qiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rui Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jam Kashif
- Department of Veterinary Medicine, Sindh Agriculture University, Tandojam, Pakistan
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid. PLoS One 2019; 14:e0217760. [PMID: 31188849 PMCID: PMC6561635 DOI: 10.1371/journal.pone.0217760] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles such as exosomes contain several types of transcripts, including mRNAs and micro RNAs (miRNAs), and have emerged as important mediators of cell-to-cell communication. Exosome-like vesicles were identified in the ovarian follicles of several mammalian species. Although the miRNA contents have been extensively characterized, the detailed investigation of their mRNA profiles is lacking. Here, we characterize the mRNA profiles of exosome-like vesicles in ovarian follicles in a pig model. The mRNA contents of the exosome-like vesicles isolated from porcine follicular fluid were analyzed and compared with those from mural granulosa cells (MGCs) using the Illumina HiSeq platform. Bioinformatics studies suggested that the exosomal mRNAs are enriched in those encoding proteins involved in metabolic, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) -protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. While the mRNA profile of the exosome-like vesicles resembled that of MGCs, the vesicles contained mRNAs barely detectable in MGCs. Thus, while the majority of the vesicles are likely to be secreted from MGCs, some may originate from other cell types, including theca cells and oocytes, as well as the cells of non-ovarian organs/tissues. Therefore, the mRNA profiles unveiled several novel characteristics of the exosome-like vesicles in ovarian follicles.
Collapse
|
29
|
Fei F, Li C, Wang X, Du J, Liu K, Li B, Yao P, Li Y, Zhang S. Syncytin 1, CD9, and CD47 regulating cell fusion to form PGCCs associated with cAMP/PKA and JNK signaling pathway. Cancer Med 2019; 8:3047-3058. [PMID: 31025548 PMCID: PMC6558479 DOI: 10.1002/cam4.2173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/28/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We have previously reported the formation of polyploid giant cancer cells (PGCCs) through endoreduplication or cell fusion after cobalt chloride (CoCl2 ) induction. Cell fusion plays an important role in development and disease. However, the underlying molecular mechanism concerning cell fusion in PGCCs formation and clinicopathological significances remains unclear. METHODS We treat HCT116 and LoVo cell with CoCl2 and observed the cell fusion via fluorescent markers of different colors. Western blot and immunocytochemical staining were used to compare the expression and subcellular location of the fusion-related proteins syncytin 1, CD9, and CD47 along with PKA RIα, JNK1, and c-Jun between PGCCs and control cells from the HCT116 and LoVo cell lines. Moreover, 173 cases of colorectal tumor tissue samples were analyzed, including 47 cases of well-differentiated primary colorectal cancer (group I) and 5 cases of corresponding metastatic tumors (group II), 38 cases of moderately differentiated primary colorectal cancer (group III) and 14 cases of corresponding metastatic tumors (group IV), and 42 cases of poorly differentiated primary colorectal cancer (group V) and 27 cases of corresponding metastatic tumors (group VI). RESULTS The expression of syncytin 1, CD9, and CD47 is higher in PGCCs than in control cells and they are located in the cytoplasm. The expression of PKA RIα and JNK1 decreased, and that of c-Jun increased in PGCCs. The syncytin 1 expression was significantly different between groups I and II (P = 0.000), groups III and IV (P = 0.000), groups V and VI (P = 0.029), groups I and III (P = 0.001), groups III and V (P = 0.000), and groups I, III, and V (P = 0.000). CONCLUSIONS These data indicate that the cell fusion-related proteins syncytin 1, CD9, and CD47 may be involved in PGCC formation, and that cAMP/PKA and JNK signaling is likely to promote PGCC formation via the regulation of cell fusion processes.
Collapse
Affiliation(s)
- Fei Fei
- School of MedicineNankai UniversityTianjinP.R. China
- Department of PathologyTianjin Union Medical CenterTianjinP.R. China
| | - Chunyuan Li
- School of MedicineNankai UniversityTianjinP.R. China
- Department of PathologyTianjin Union Medical CenterTianjinP.R. China
| | - Xinlu Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Jiaxing Du
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Kai Liu
- Tianjin Medical UniversityTianjinP.R. China
| | - Bo Li
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Peiyu Yao
- Department of PathologyTianjin Union Medical CenterTianjinP.R. China
| | - Yuwei Li
- Department of colorectal surgeryTianjin Union Medical CenterTianjinP.R. China
| | - Shiwu Zhang
- School of MedicineNankai UniversityTianjinP.R. China
- Department of PathologyTianjin Union Medical CenterTianjinP.R. China
| |
Collapse
|
30
|
Miyado M, Kang W, Kawano N, Miyado K. Microexosomes versus exosomes: Shared components but distinct structures. Regen Ther 2019; 11:31-33. [PMID: 31193153 PMCID: PMC6517843 DOI: 10.1016/j.reth.2019.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 10/27/2022] Open
Affiliation(s)
- Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8353, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8353, Japan
| |
Collapse
|
31
|
Iwai M, Hamatani T, Nakamura A, Kawano N, Kanai S, Kang W, Yoshii N, Odawara Y, Yamada M, Miyamoto Y, Saito T, Saito H, Miyado M, Umezawa A, Miyado K, Tanaka M. Membrane protein CD9 is repositioned and released to enhance uterine function. J Transl Med 2019; 99:200-209. [PMID: 30401958 DOI: 10.1038/s41374-018-0145-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD9 is essential for sperm-egg fusion and also contributes to uterine repair through microexosome formation. Microexosomes share CD9 with exosomes and are released from eggs and uterine epithelial cells. However, the mechanism for the formation of microexosomes remains unknown. To address this issue, we examined membrane localization and extracellular release of CD9 proteins using uterine epithelial cells and secretions in mice and humans. In mice, CD9 localized predominantly on the basal region of the plasma membrane and relocated to the apical region upon embryo implantation. Furthermore, extracellular CD9 proteins were detected in uterine secretions of mice and women undergoing infertility treatment, but were below detectable levels in supernatants of pluripotent stem cells. Ultrastructural analysis demonstrated that membrane projections were shortened and the number of mitochondria was reduced in uterine epithelial cells lacking Cd9 genes. Our results suggest that CD9 repositioning and release affect both membrane structures and mitochondrial state in the uterus, and contribute to female fertility.
Collapse
Affiliation(s)
- Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | - Akihiro Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa, 214-8571, Japan
| | - Seiya Kanai
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa, 214-8571, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Noriko Yoshii
- Tokyo Adventist Hospital Megumi Clinic, 3-5-2 Amanuma, Suginami, Tokyo, 167-0032, Japan
| | - Yasushi Odawara
- Fertility Clinic Tokyo, 3-13-11 Higashi, Shibuya, Tokyo, 150-0011, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Takakazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hidekazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
32
|
Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front Immunol 2018; 9:2890. [PMID: 30619262 PMCID: PMC6300489 DOI: 10.3389/fimmu.2018.02890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Pregnancy represents a unique immunological situation. Though paternal antigens expressed by the conceptus are recognized by the immune system of the mother, the immune response does not harm the fetus. Progesterone and a progesterone induced protein; PIBF are important players in re-adjusting the functioning of the maternal immune system during pregnancy. PIBF expressed by peripheral pregnancy lymphocytes, and other cell types, participates in the feto-maternal communication, partly, by mediating the immunological actions of progesterone. Several splice variants of PIBF were identified with different physiological activity. The full length 90 kD PIBF protein plays a role in cell cycle regulation, while shorter splice variants are secreted and act as cytokines. Aberrant production of PIBF isoforms lead to the loss of immune-regulatory functions, resulting in and pregnancy failure. By up regulating Th2 type cytokine production and by down-regulating NK activity, PIBF contributes to the altered attitude of the maternal immune system. Normal pregnancy is characterized by a Th2-dominant cytokine balance, which is partly due to the action of the smaller PIBF isoforms. These bind to a novel form of the IL-4 receptor, and induce increased production of IL-3, IL-4, and IL-10. The communication between the conceptus and the mother is established via extracellular vesicles (EVs). Pre-implantation embryos produce EVs both in vitro, and in vivo. PIBF transported by the EVs from the embryo to maternal lymphocytes induces increased IL-10 production by the latter, this way contributing to the Th2 dominant immune responses described during pregnancy.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary.,János Szentágothai Research Centre, Pécs University, Pécs, Hungary.,Endocrine Studies, Centre of Excellence, Pécs University, Pécs, Hungary.,MTA-PTE Human Reproduction Research Group, Pécs, Hungary
| | - Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
33
|
Jankovicova J, Secova P, Manaskova-Postlerova P, Simonik O, Frolikova M, Chmelikova E, Horovska L, Michalkova K, Dvorakova-Hortova K, Antalikova J. Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos. Int J Biol Macromol 2018; 123:931-938. [PMID: 30452988 DOI: 10.1016/j.ijbiomac.2018.11.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Tetraspanins are multifunctional molecules located in specific microdomains on the plasma membrane. Thanks to their ability to form networks with other proteins they can participate in many cellular functions. Tetraspanins are part of the interactive network in gametes; however, their precise role in fertilization is not yet clear. The aim of this study was to compare the localization of CD9 and CD81 tetraspanins during oocyte maturation and early development of the embryos in bovine and porcine model. CD9 was detected on the oocyte plasma membrane and vesicles in the perivitelline space of bovine oocytes and embryos. We suggest that CD9 could be a component involved in transzonal projections. Based on the results of in vitro fertilization assay, CD9 and CD81 seem to be part of a more complex fusion network on the plasma membrane of bovine oocytes. On the other hand, both tetraspanins showed a clustered expression pattern on the plasma membrane and inner margin of zona pellucida (ZP) in porcine oocytes and embryos. We found a new species-specific pattern of CD9 and CD81 distribution in ZP which could reflect their specialized role in processes associated with cell adhesion and intercellular communication upon fertilization.
Collapse
Affiliation(s)
- Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavla Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Vestec, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Vestec, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Michalkova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Vestec, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
34
|
Jin Y, Takeda Y, Kondo Y, Tripathi LP, Kang S, Takeshita H, Kuhara H, Maeda Y, Higashiguchi M, Miyake K, Morimura O, Koba T, Hayama Y, Koyama S, Nakanishi K, Iwasaki T, Tetsumoto S, Tsujino K, Kuroyama M, Iwahori K, Hirata H, Takimoto T, Suzuki M, Nagatomo I, Sugimoto K, Fujii Y, Kida H, Mizuguchi K, Ito M, Kijima T, Rakugi H, Mekada E, Tachibana I, Kumanogoh A. Double deletion of tetraspanins CD9 and CD81 in mice leads to a syndrome resembling accelerated aging. Sci Rep 2018; 8:5145. [PMID: 29572511 PMCID: PMC5865149 DOI: 10.1038/s41598-018-23338-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/09/2018] [Indexed: 01/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been recently characterized as a disease of accelerated lung aging, but the mechanism remains unclear. Tetraspanins have emerged as key players in malignancy and inflammatory diseases. Here, we found that CD9/CD81 double knockout (DKO) mice with a COPD-like phenotype progressively developed a syndrome resembling human aging, including cataracts, hair loss, and atrophy of various organs, including thymus, muscle, and testis, resulting in shorter survival than wild-type (WT) mice. Consistent with this, DNA microarray analysis of DKO mouse lungs revealed differential expression of genes involved in cell death, inflammation, and the sirtuin-1 (SIRT1) pathway. Accordingly, expression of SIRT1 was reduced in DKO mouse lungs. Importantly, siRNA knockdown of CD9 and CD81 in lung epithelial cells additively decreased SIRT1 and Foxo3a expression, but reciprocally upregulated the expression of p21 and p53, leading to reduced cell proliferation and elevated apoptosis. Furthermore, deletion of these tetraspanins increased the expression of pro-inflammatory genes and IL-8. Hence, CD9 and CD81 might coordinately prevent senescence and inflammation, partly by maintaining SIRT1 expression. Altogether, CD9/CD81 DKO mice represent a novel model for both COPD and accelerated senescence.
Collapse
Affiliation(s)
- Yingji Jin
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | - Lokesh P Tripathi
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Sujin Kang
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hanako Kuhara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayoshi Higashiguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeo Iwasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Tetsumoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Muneyoshi Kuroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mayumi Suzuki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuta Fujii
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Ito
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eisuke Mekada
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Isao Tachibana
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
35
|
Expression of CD9 and CD81 in bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Cryobiology 2018; 81:206-209. [PMID: 29476719 DOI: 10.1016/j.cryobiol.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.
Collapse
|
36
|
Miyado M, Yoshida K, Miyado K, Katsumi M, Saito K, Nakamura S, Ogata T, Fukami M. Knockout of Murine Mamld1 Impairs Testicular Growth and Daily Sperm Production but Permits Normal Postnatal Androgen Production and Fertility. Int J Mol Sci 2017. [PMID: 28629181 PMCID: PMC5486121 DOI: 10.3390/ijms18061300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MAMLD1 has been implicated in testicular function in both human and mouse fetuses. Although three patients with MAMLD1 mutations were reported to have hypergonadotropic hypogonadism in their teens, the functional significance of MAMLD1 in the postnatal testis remains unclear. Here, we analyzed the phenotype of Mamld1 knockout (KO) male mice at reproductive ages. The reproductive organs of KO male mice were morphologically unremarkable, except for relatively small testes. Seminiferous tubule size and number of proliferating spermatogonia/spermatocytes were reduced in the KO testis. Daily sperm production of KO mice was mildly attenuated, whereas total sperm counts in epididymal semen remained normal. Sperm motility and morphology, as well as androgen levels in serum and testicular tissues and the number of pups born from cross-mated wildtype (WT) female mice, were comparable between WT and KO male mice. These results indicate that MAMLD1 contributes to the maintenance of postnatal testicular growth and daily sperm production but is dispensable for androgen biosynthesis and fertility. MAMLD1 likely plays supporting roles in multiple and continuous steps of male reproduction.
Collapse
Affiliation(s)
- Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan.
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Momori Katsumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of NCCHD Child Health and Development, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Kazuki Saito
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Shigeru Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi 329-0498, Japan.
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
37
|
Miyado K, Kang W, Yamatoya K, Hanai M, Nakamura A, Mori T, Miyado M, Kawano N. Exosomes versus microexosomes: Shared components but distinct functions. JOURNAL OF PLANT RESEARCH 2017; 130:479-483. [PMID: 28160150 DOI: 10.1007/s10265-017-0907-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
In multicellular organisms, cellular components are constantly translocated within cells and are also transported exclusively between limited cells, regardless of their physical distance. Exosomes function as one of the key mediators of intercellular transportation. External vesicles were identified 50 years ago in plants and now reconsidered to be exosome-like vesicles. Meanwhile, a well-known exosomal component, tetraspanin CD9, regulates sperm-egg fusion in mammals. A number of Arabidopsis tetraspanins are also expressed in reproductive tissues at fertilization, and are localized at the plasma membrane of protoplasts. Moreover, CD9-containing structures (or 'microexosomes') are released from mouse eggs during their maturation and promote the sperm-egg fusion. This phenomenon implies that two types of shared-component intercellular carriers might be released from multiple types of plant and animal cells, which widely regulate biological phenomena. We herein highlight their discrete structures, formation processes, and functions.
Collapse
Affiliation(s)
- Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenji Yamatoya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Maito Hanai
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Akihiro Nakamura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
38
|
Matsuno Y, Onuma A, Fujioka YA, Yasuhara K, Fujii W, Naito K, Sugiura K. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro. J Reprod Dev 2017; 63:51-58. [PMID: 28163264 PMCID: PMC5320430 DOI: 10.1262/jrd.2016-124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Jankovicova J, Frolikova M, Sebkova N, Simon M, Cupperova P, Lipcseyova D, Michalkova K, Horovska L, Sedlacek R, Stopka P, Antalikova J, Dvorakova-Hortova K. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction 2016; 152:785-793. [DOI: 10.1530/rep-16-0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022]
Abstract
Sperm–egg interaction and fusion represent a key moment of fertilization. In mammals, it is not possible without the interaction of the tetraspanin superfamily proteins including CD81. A detailed immunohistochemical localization of CD81 was monitored in bovine oocytes during different maturation stages, as well as during early embryogenesis. In addition, characterization of CD81 was carried out in bovine and mouse sperm. In bovine eggs, CD81 was detected on the plasma membrane of the germinal vesicle, metaphase I and metaphase II oocytes. During fertilization, accumulation of CD81 molecules in the perivitelline space of fertilized oocytes, which appeared as vesicles associated with plasma membrane, was observed. In majority of bull-ejaculated sperm and caput, corpus and cauda epididymal sperm, as well as mouse cauda epididymal sperm, CD81 was found on the plasma membrane covering the apical acrosome. Although the process of capacitation did not influence the localization of CD81, it was lost from the surface of the acrosome-reacted spermatozoa in bull, in contrast to mouse sperm where there was a relocalization of the CD81 protein during acrosome reaction across the equatorial segment and later over the whole sperm head. The presented results highlight conservative unifying aspects of CD81 expression between cattle and mouse, together with mouse-specific traits in sperm CD81 behaviour, which emphasizes certain species-specific mechanisms of fertilization to be considered.
Collapse
|
40
|
Abstract
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| |
Collapse
|
41
|
Franz C, Böing AN, Montag M, Strowitzki T, Markert UR, Mastenbroek S, Nieuwland R, Toth B. Extracellular vesicles in human follicular fluid do not promote coagulation. Reprod Biomed Online 2016; 33:652-655. [DOI: 10.1016/j.rbmo.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
|
42
|
Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Sci Rep 2016; 6:25486. [PMID: 27158133 PMCID: PMC4860563 DOI: 10.1038/srep25486] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Exosomes and microvesicles (i.e., extracellular vesicles: EVs) have been identified within ovarian follicular fluid and recent evidence suggests that EVs are able to elicit profound effects on ovarian cell function. While existence of miRNA within EVs has been reported, whether EV size and concentration as well as their cargos (i.e., proteins and RNA) change during antral follicle growth remains unknown. Extracellular vesicles isolated from follicular fluid of small, medium and large bovine follicles were similar in size, while concentration of EVs decreased progressively as follicle size increased. Electron microscopy indicated a highly purified population of the lipid bilayer enclosed vesicles that were enriched in exosome biomarkers including CD81 and Alix. Small RNA sequencing identified a large number of known and novel miRNAs that changed in the EVs of different size follicles. Ingenuity Pathway Analysis (IPA) indicated that miRNA abundant in small follicle EV preparations were associated with cell proliferation pathways, while those miRNA abundant in large follicle preparations were related to inflammatory response pathways. These studies are the first to demonstrate that EVs change in their levels and makeup during antral follicle development and point to the potential for a unique vesicle-mediated cell-to-cell communication network within the ovarian follicle.
Collapse
Affiliation(s)
- Raphatphorn Navakanitworakul
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA.,Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.,Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, 90112 Thailand
| | - Wei-Ting Hung
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Sumedha Gunewardena
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| |
Collapse
|
43
|
Krauchunas AR, Marcello MR, Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol Reprod Dev 2016; 83:376-86. [PMID: 26970099 DOI: 10.1002/mrd.22634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
The details of sperm-egg interactions remain a relative mystery despite many decades of research. As new molecular complexities are being discovered, we need to revise the framework in which we think about fertilization. As such, we propose that fertilization involves the formation of a synapse between the sperm and egg. A cellular synapse is a structure that mediates cell adhesion, signaling, and secretion through specialized zones of interaction and polarity. In this review, we draw parallels between the immune synapse and fertilization, and argue that we should consider sperm-egg recognition, binding, and fusion in the context of a "fertilization synapse." Mol. Reprod. Dev. 83: 376-386, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | - Andrew Singson
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
44
|
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 2015; 22:182-93. [PMID: 26663221 DOI: 10.1093/humupd/dmv055] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-bound vesicles, found in biofluids, that carry and transfer regulatory molecules, such as microRNAs (miRNAs) and proteins, and may mediate intercellular communication between cells and tissues. EVs have been isolated from a wide variety of biofluids, including plasma, urine, and, relevant to this review, seminal, follicular and uterine luminal fluid. We conducted a systematic search of the literature to review and present the currently available evidence on the possible roles of EVs in follicular growth, resumption of oocyte development and maturation (meiosis), sperm maturation, fertilization and embryo implantation. METHODS MEDLINE, Embase and Web of Science databases were searched using keywords pertaining to EVs, including 'extracellular vesicles', 'microvesicles', 'microparticles' and 'exosomes', combined with a range of terms associated with the period of development between fertilization and implantation, including 'oocyte', 'sperm', 'semen', 'fertilization', 'implantation', 'embryo', 'follicular fluid', 'epididymal fluid' and 'seminal fluid'. Relevant research articles published in English (both animal and human studies) were reviewed with no restrictions on publication date (i.e. from earliest database dates to July 2015). References from these articles were used to obtain additional articles. RESULTS A total of 1556 records were retrieved from the three databases. After removing duplicates and irrelevant titles, we reviewed the abstracts of 201 articles, which included 92 relevant articles. Both animal and human studies unequivocally identified various types of EVs in seminal, follicular and ULFs. Several studies provided evidence for the roles of EVs in these biofluids. In men, EVs in seminal fluid were linked with post-testicular sperm maturation, including sperm motility acquisition and reduction of oxidative stress. In women, EVs in follicular fluid were shown to contain miRNAs with potential roles in follicular growth, resumption of oocyte meiosis, steroidogenesis and prevention of polyspermy after fertilization. EVs were also detected in the media of cultured embryos, suggesting that EVs released from embryos and the uterus may mediate embryo-endometrium cross-talk during implantation. It is important to note that many of the biologically plausible functions of EVs in reproduction discussed in the current literature have not yet been substantiated by conclusive experimental evidence. CONCLUSIONS A detailed understanding of the contributions of EVs in the series of events from gametogenesis to fertilization and then on to implantation, in both normal and pathological cases, may enable the development of valuable tools to advance reproductive health. Because of the early stage of the field, it is unsurprising that the current literature includes not only growing experimental evidence, but also as-yet unproven hypotheses pertaining to the roles of EVs in key reproductive processes. In this review, we present a comprehensive survey of the rapidly expanding literature on this subject, highlighting both relevant findings and gaps in knowledge.
Collapse
Affiliation(s)
- Ronit Machtinger
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Sheba Medical Center and Tel-Aviv University, Tel Hashomer 52561, Israel
| | - Louise C Laurent
- Department of Reproductive Medicine, Division of Maternal Fetal Medicine, University of California, San Diego, CA, USA
| | - Andrea A Baccarelli
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
45
|
Dai X, Zhang M, Lu Y, Miao Y, Zhou C, Sun S, Xiong B. Melamine Impairs Female Fertility via Suppressing Protein Level of Juno in Mouse Eggs. PLoS One 2015; 10:e0144248. [PMID: 26633308 PMCID: PMC4669189 DOI: 10.1371/journal.pone.0144248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
Melamine is an organic nitrogenous compound widely used as an industrial chemical, and it has been recently reported by us that melamine has a toxic effect on the female reproductive system in mice, and renders females subfertile; the molecular basis, however, has not been adequately assessed. In the present study, we explore the underlying mechanism regarding how melamine compromises fertility in the mouse. The data showed that melamine exposure significantly impaired the fertilization capability of the egg during in vitro fertilization. To further figure out the cause, we analyzed ovastacin localization and protein level, the sperm binding ability of zona pellucida, and ZP2 cleavage status in unfertilized eggs from melamine fed mice, and no obvious differences were found between control and treatment groups. However, the protein level of Juno on the egg plasma membrane in the high-dose feeding group indeed significantly decreased compared to the control group. Thus, these data suggest that melamine compromises female fertility via suppressing Juno protein level on the egg membrane.
Collapse
Affiliation(s)
- Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
- * E-mail:
| |
Collapse
|
46
|
Bernabò N, Ordinelli A, Di Agostino R, Mattioli M, Barboni B. Network analyses of sperm-egg recognition and binding: ready to rethink fertility mechanisms? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:740-53. [PMID: 25454512 DOI: 10.1089/omi.2014.0128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The rapid growth of published literature makes biomedical text mining increasingly invaluable for unpacking implicit knowledge hidden in unstructured text. We employed biomedical text mining and biological networks analyses to research the process of sperm egg recognition and binding (SERB). We selected from the literature the molecules expressed either on spermatozoa or on oocytes thought to be involved in SERB and, using an automated literature search software (Agilent Literature Search), we realized a network, SERBN, characterized by a hierarchical scale free and a small world topology. We used an integrated approach, either based on selection of hubs or by a cluster analysis, to discern the key molecules of SERB. We found that in most cases some of them are not directly situated on spermatozoa and oocyte, but are dispersed in oviductal fluid or embedded in exosomes present in the perivitelline space. To confirm and validate our results, we performed further analyses using STRING and Reactome FI software. Our findings underscore that the fertility is not a property of gametes in isolation, but rather depends on the functional integrity of the entire reproductive system. These observations collectively underscore the importance of integrative biology in exploring biological systems and in rethinking of fertility mechanisms in the light of this innovative approach.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Veterinary Medicine, University of Teramo , Teramo, Italy
| | | | | | | | | |
Collapse
|
47
|
Tannetta D, Dragovic R, Alyahyaei Z, Southcombe J. Extracellular vesicles and reproduction-promotion of successful pregnancy. Cell Mol Immunol 2014; 11:548-63. [PMID: 24954226 PMCID: PMC4220835 DOI: 10.1038/cmi.2014.42] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound complexes secreted from cells under both physiological and pathological conditions. They contain proteins, nucleic acids and lipids and act as messengers for cell–cell communication and signalling, particularly between immune cells. EV research is a rapidly evolving and expanding field, and it appears that all biological fluids contain very large numbers of EVs; they are produced from all cells that have been studied to date, and are known to have roles in several reproductive processes. This review analyses the evidence for the role of EVs throughout human reproduction, starting with the paternal and maternal gametes, followed by the establishment and continuation of successful pregnancies, with specific focus, where possible, on the interaction of EVs with the maternal immune system. Importantly, variations within the EV populations are identified in various reproductive disorders, such as pre-term labour and pre-eclampsia.
Collapse
|
48
|
Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci 2014; 15:10652-68. [PMID: 24933635 PMCID: PMC4100174 DOI: 10.3390/ijms150610652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fusion machinery has recently emerged. The Juno and IZUMO1, up to present, is the only known extracellular receptor pair in the process of fertilization, thus, facilitating the essential binding of gametes. However, neither IZUMO1 nor Juno appears to be the fusogenic protein. At the same time, the tetraspanin is expected to play a role in organizing the egg membrane order and to interact laterally with other factors. This review summarizes, to present, the known molecules involved in the process of sperm-egg fusion. The complexity and expected redundancy of the involved factors makes the process an intricate and still poorly understood mechanism, which is difficult to comprehend in its full distinction.
Collapse
Affiliation(s)
- Karolina Klinovska
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Natasa Sebkova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Katerina Dvorakova-Hortova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| |
Collapse
|
49
|
Critical role of exosomes in sperm-egg fusion and virus-induced cell-cell fusion. Reprod Med Biol 2013; 12:117-126. [PMID: 29699139 DOI: 10.1007/s12522-013-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022] Open
Abstract
In mammals, two integral membrane proteins, sperm IZUMO1 and egg CD9, regulate sperm-egg fusion, and their roles are critical, but yet unclear. Recent studies, however, indicate interesting connections between the sperm-egg fusion and virus-induced cell-cell fusion. First, CD9-containing exosome-like vesicles, which are released from wild-type eggs, can induce the fusion between sperm and CD9-deficient egg, even though CD9-deficient eggs are highly refractory to the fusion with sperm. This finding provides strong evidence for the involvement of CD9-containing, fusion-facilitating vesicles in the sperm-egg fusion. Secondly, there are similarities between the generation of retroviruses in the host cells and the formation of small cellular vesicles, termed exosomes, in mammalian cells. The exosomes are involved in intercellular communication through transfer of proteins and ribonucleic acids (RNAs) including mRNAs and microRNAs. These collective studies provide an insight into the molecular mechanism of membrane fusion events.
Collapse
|
50
|
McGinnis LK, Luo J, Kinsey WH. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption. Mol Reprod Dev 2013; 80:260-72. [PMID: 23401167 DOI: 10.1002/mrd.22160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|