1
|
Lue JC, Radisky DC. From Embryogenesis to Senescence: The Role of Mammary Gland Physiology in Breast Cancer Risk. Cancers (Basel) 2025; 17:787. [PMID: 40075637 PMCID: PMC11898936 DOI: 10.3390/cancers17050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The mammary gland undergoes significant changes throughout a woman's life; from embryonic development to transformations after breastfeeding and during aging. These processes, while essential for normal breast physiology, can increase breast cancer risk when disrupted. This review explores three critical stages: embryonic development; postlactational involution; and age-related lobular involution (ARLI). We highlight key signaling pathways-Wnt, FGF, SHH, Notch, EGFR, and BMP-that guide embryonic development and discuss how their dysregulation can contribute to abnormal growth. For postlactational involution, we examine the two-phase process of cell death and tissue remodeling, showing how disruptions during this period, particularly postpartum, may foster a tumor-promoting environment. We also delve into ARLI and the role of cellular senescence in the aging mammary gland, focusing on the senescence-associated secretory phenotype (SASP) and its impact on inflammation and tissue remodeling. Understanding these processes provides new opportunities for breast cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Jaida C. Lue
- Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Li X, Niu P, Wang X, Huang F, Wang J, Qu H, Han C, Gao Q. Genetic Comparison and Selection of Reproductive and Growth-Related Traits in Qinchuan Cattle and Two Belgian Cattle Breeds. Animals (Basel) 2025; 15:608. [PMID: 40003088 PMCID: PMC11851807 DOI: 10.3390/ani15040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the genetic structure of Belgian Red (BR), Belgian Red and White (BWR), and Qinchuan (QinC) cattle, with a focus on identifying genes associated with reproductive functions, growth, and development. A total of 270 Belgian cattle (91 BR and 179 BWR) and 286 Qinchuan cattle were genotyped using the Illumina Bovine SNP 50K microarray. Data analysis was conducted using PLINK and Beagle 5.1 to estimate linkage disequilibrium (LD) and effective population size (Ne). Candidate SNP loci were identified by selecting the top 5% based on the weighted fixation index (Fst) and nucleotide diversity (θπ ratio), followed by gene annotation. The analysis revealed 160 candidate genes under selection between Qinchuan and Belgian Red cattle, and 98 candidate genes between Qinchuan and Belgian Red and White cattle. Key genes associated with reproductive functions, including NFKBIA, PTHLH, UGT2B10, TRPC4, and ALOX5AP, were identified. Additionally, genes involved in growth and muscle development were highlighted, particularly those influencing protein synthesis, fatty acid metabolism, and collagen synthesis. These findings provide valuable molecular markers for enhancing reproductive efficiency, growth, and meat production through genetic selection and selective breeding strategies.
Collapse
Affiliation(s)
- Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Peng Niu
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Xueyan Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Fei Huang
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Huimin Qu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Chunmei Han
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
- Key Laboratory of Livestock and Grass Resources Utilization around Tarim, Ministry of Agriculture and Rural Areas (Co-Construction by Ministries and Provinces) & Construction Corps, Alar 843300, China
| | - Qinghua Gao
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Grass Resources Utilization around Tarim, Ministry of Agriculture and Rural Areas (Co-Construction by Ministries and Provinces) & Construction Corps, Alar 843300, China
| |
Collapse
|
3
|
Mabasa L, Kotze A, Sangweni NF, Willmer T, Gabuza KB, Patel O, Omoruyi SI, Burns A, Johnson R. Fetal Mammary Gland Development and Offspring's Breast Cancer Risk in Adulthood. BIOLOGY 2025; 14:106. [PMID: 40001874 PMCID: PMC11851419 DOI: 10.3390/biology14020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
While advancements in early detection and improved access to care have significantly enhanced breast cancer survival rates, the disease remains a significant global malignancy, constituting approximately 12.5% of all new cancer cases and claiming nearly 700,000 lives in 2020. As a result, there is widespread consensus that the most sustainable solution lies in prevention. Indeed, preventive strategies, including lifestyle modifications and research into risk-reducing interventions, offer the potential to address the root causes of noncommunicable diseases such as breast cancer. While conventional wisdom has long attributed established risk factors for breast cancer to age, lifestyle, familial history, and reproductive factors, evidence highlights the maternal environment as a pivotal stage for fetal programming of disease risk, as elucidated in the developmental origins of health and disease (DOHaD) framework. Consequently, a growing body of research has been focused on elucidating epigenomic signatures that influence fetal development while shaping health outcomes and susceptibility to diseases later in life. This review aims to identify fetal mammary developmental genes that have been implicated in breast cancer etiology and the potential interplay of maternal environment in epigenetic programming of breast cancer risk in adulthood.
Collapse
Affiliation(s)
- Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
| | - Anri Kotze
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
| | - Nonhlakanipho F. Sangweni
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Kwazikwakhe B. Gabuza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
| | - Sylvester Ifeanyi Omoruyi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Anathi Burns
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa (A.B.)
- Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town 7507, South Africa
| |
Collapse
|
4
|
Myllymäki SM, Lan Q, Mikkola ML. Embryonic Mammary Gland Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:9-27. [PMID: 39821018 DOI: 10.1007/978-3-031-70875-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma. Placode and bud stages are morphologically similar with other ectodermal appendages like the hair follicle, reflecting the mammary gland's assumed evolutionary origin from an ancestral hair follicle-associated glandular unit. The shared features extend to signalling cascades such as the Wnt/β-catenin, fibroblast growth factor (Fgf), and ectodysplasin (Eda) pathways, while pathways unique to mammary gland include parathyroid hormone-like hormone (Pthlh) signalling and Hedgehog activity suppression. Mammary gland branching is highly non-stereotypic, achieved by the dynamic use of two distinct modes of branching: tip bifurcation and side branching and stochastic branch point formation. The cellular mechanisms driving the initial morphogenetic steps are slowly beginning to be unravelled. During placode and bud stages, mammary primordium predominantly grows through cell influx, while sprouting correlates with heightened proliferation. Branch elongation is driven by directional cell migration combined with differential cell motility and proliferation supplying the reservoir of migratory cells, whereas a bifurcating tip is associated with localized repression of the cell cycle and cell motility. Numerous similarities exist between embryonic programs and breast tumorigenesis, spanning cellular plasticity, epithelial-stromal interactions, and molecular regulators. Understanding embryonic mammogenesis may provide insights into how normal developmental processes can go awry, leading to malignancy, or how they can be reversed to prevent cancer progression.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Stadtmauer DJ, Wagner GP. The mammary hair of Monodelphis domestica and homology of the mammary pilosebacous unit. J Morphol 2024; 285:e21769. [PMID: 39188032 DOI: 10.1002/jmor.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The unitary mammary gland is a synapomorphy of therian mammals and is thought to have evolved from the pilosebaceous organ in the mammalian stem lineage from which the lactogenic patch of monotremes is also derived. One of the key lines of evidence for the homology of the nipple and the lactogenic patch is that marsupials have retained a transient hair associated with developing mammary glands. However, these structures have not been documented since the early 20th-century drawings of Ernst Bresslau. In this study, we examine the developing mammary organs of Monodelphis domestica and document the presence of mammary hairs in 12-week-old females, as well as their absence after 18 weeks of age. Histochemical staining for cystine confirms the structures as keratinized hairs. Milk ducts of both juvenile and adult nipples show a division between KRT18+ luminal epithelium and KRT14+ ACTA2+ myoepithelium. These patterns match those in eutherians and suggest a conserved ductal morphology and mechanism of milk expulsion. Finally, PTHLH, a peptide hormone which promotes homeotic transformation of hairy skin into hairless nipples in the mouse, was detected in the Monodelphis milk duct during the mammary hair stage, suggesting that the mutual exclusivity of "hairless nipple" and "hair" organ identity is derived in eutherian mammals. These results reveal shared characteristics of the M. domestica nipple with both the eutherian nipple and the pilosebaceous organ, consistent with the evolutionary derivation of the mammary gland from an ancestral hair organ via developmental individualization of pilosebaceous and mammary identities.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Günter P Wagner
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Wang Y, Jiang Y, Ni G, Li S, Balderson B, Zou Q, Liu H, Jiang Y, Sun J, Ding X. Integrating Single-Cell and Spatial Transcriptomics Reveals Heterogeneity of Early Pig Skin Development and a Subpopulation with Hair Placode Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306703. [PMID: 38561967 PMCID: PMC11132071 DOI: 10.1002/advs.202306703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yao Jiang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Guiyan Ni
- Division of Genetics and GenomicsInstitute for Molecular BioscienceThe University of QueenslandBrisbane4072Australia
| | - Shujuan Li
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Brad Balderson
- School of Chemistry & Molecular BiosciencesThe University of QueenslandBrisbane4067Australia
| | - Quan Zou
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Huatao Liu
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yifan Jiang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jingchun Sun
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceLaboratory of Animal Fat Deposition & Muscle DevelopmentCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Xiangdong Ding
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
7
|
Lan Q, Trela E, Lindström R, Satta JP, Kaczyńska B, Christensen MM, Holzenberger M, Jernvall J, Mikkola ML. Mesenchyme instructs growth while epithelium directs branching in the mouse mammary gland. eLife 2024; 13:e93326. [PMID: 38441552 PMCID: PMC10959526 DOI: 10.7554/elife.93326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.
Collapse
Affiliation(s)
- Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Ewelina Trela
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Riitta Lindström
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Beata Kaczyńska
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Mona M Christensen
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | | | - Jukka Jernvall
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
- Department of Geosciences and Geography, University of HelsinkiHelsinkiFinland
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| |
Collapse
|
8
|
Sahu S, Sahoo S, Sullivan T, O'Sullivan TN, Turan S, Albaugh ME, Burkett S, Tran B, Salomon DS, Kozlov SV, Koehler KR, Jolly MK, Sharan SK. Spatiotemporal modulation of growth factors directs the generation of multilineage mouse embryonic stem cell-derived mammary organoids. Dev Cell 2024; 59:175-186.e8. [PMID: 38159568 PMCID: PMC10872289 DOI: 10.1016/j.devcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Teresa Sullivan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - T Norene O'Sullivan
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bao Tran
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S Salomon
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Serguei V Kozlov
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology, Department of Plastic & Oral Surgery, and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shyam K Sharan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Thang NX, Han DW, Park C, Lee H, La H, Yoo S, Lee H, Uhm SJ, Song H, Do JT, Park KS, Choi Y, Hong K. INO80 function is required for mouse mammary gland development, but mutation alone may be insufficient for breast cancer. Front Cell Dev Biol 2023; 11:1253274. [PMID: 38020889 PMCID: PMC10646318 DOI: 10.3389/fcell.2023.1253274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.
Collapse
Affiliation(s)
- Nguyen Xuan Thang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
11
|
Tang S, Cope DI, Vasquez YM, Monsivais D. BMP/SMAD1/5 Signaling in the Endometrial Epithelium Is Essential for Receptivity and Early Pregnancy. Endocrinology 2022; 163:6564025. [PMID: 35383354 PMCID: PMC9049119 DOI: 10.1210/endocr/bqac043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/19/2022]
Abstract
The biological processes that control endometrial receptivity and embryo implantation are critical for the successful outcome of pregnancy. The endometrium is the complex inner lining of the uterine wall that is under the cyclical control of estrogen and progesterone and is a site of intimate contact between mother and blastocyst. The bone morphogenetic signaling (BMP) pathway is a highly conserved signaling pathway that controls key cellular processes throughout pregnancy and exerts intracellular effects via the SMAD1/5 transcription factors. To delineate the endometrial compartment-specific roles of BMP signaling, we generated mice with epithelial-specific conditional deletion of SMAD1/5 using Lactoferrin-icre (Smad1flox/flox;Smad5flox/flox;Lactoferrin-cre, "Smad1/5 cKO"). Histological analysis of the reproductive tracts showed that Smad1/5 cKO mice were developmentally normal and displayed no defects in glandular morphology. In fertility analyses, single SMAD1 or SMAD5 deletion had no effect on fertility; however, double-conditional deletion of SMAD1 and SMAD5 resulted in severe subfertility. Timed mating analyses revealed endometrial receptivity defects in the Smad1/5 cKO mice beginning at 3.5 days post coitum (dpc) that perturbed embryo implantation at 4.5 dpc, as demonstrated by the detection of unattached blastocysts in the uterus, decreased COX2 expression, and FOXO1 cytoplasmic mislocalization. We also found that defects that arose during peri-implantation adversely affected embryonic and decidual development at 5.5 and 6.5 dpc. Thus, uterine epithelial BMP/SMAD1/5 signaling is essential during early pregnancy and SMAD1/5 epithelial-specific deletion has detrimental effects on stromal cell decidualization and pregnancy development.
Collapse
Affiliation(s)
- Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yasmin M Vasquez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Diana Monsivais, PhD, Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Smith S217, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Chen H, Fan S, Stone J, Thompson DJ, Douglas J, Li S, Scott C, Bolla MK, Wang Q, Dennis J, Michailidou K, Li C, Peters U, Hopper JL, Southey MC, Nguyen-Dumont T, Nguyen TL, Fasching PA, Behrens A, Cadby G, Murphy RA, Aronson K, Howell A, Astley S, Couch F, Olson J, Milne RL, Giles GG, Haiman CA, Maskarinec G, Winham S, John EM, Kurian A, Eliassen H, Andrulis I, Evans DG, Newman WG, Hall P, Czene K, Swerdlow A, Jones M, Pollan M, Fernandez-Navarro P, McConnell DS, Kristensen VN, Rothstein JH, Wang P, Habel LA, Sieh W, Dunning AM, Pharoah PDP, Easton DF, Gierach GL, Tamimi RM, Vachon CM, Lindström S. Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Res 2022; 24:27. [PMID: 35414113 PMCID: PMC9006574 DOI: 10.1186/s13058-022-01524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mammographic density (MD) phenotypes, including percent density (PMD), area of dense tissue (DA), and area of non-dense tissue (NDA), are associated with breast cancer risk. Twin studies suggest that MD phenotypes are highly heritable. However, only a small proportion of their variance is explained by identified genetic variants. METHODS We conducted a genome-wide association study, as well as a transcriptome-wide association study (TWAS), of age- and BMI-adjusted DA, NDA, and PMD in up to 27,900 European-ancestry women from the MODE/BCAC consortia. RESULTS We identified 28 genome-wide significant loci for MD phenotypes, including nine novel signals (5q11.2, 5q14.1, 5q31.1, 5q33.3, 5q35.1, 7p11.2, 8q24.13, 12p11.2, 16q12.2). Further, 45% of all known breast cancer SNPs were associated with at least one MD phenotype at p < 0.05. TWAS further identified two novel genes (SHOX2 and CRISPLD2) whose genetically predicted expression was significantly associated with MD phenotypes. CONCLUSIONS Our findings provided novel insight into the genetic background of MD phenotypes, and further demonstrated their shared genetic basis with breast cancer.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Box 351619, Seattle, WA, 98195, USA
| | - Shaoqi Fan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer Stone
- School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julie Douglas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, NY, USA
| | - Shuai Li
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christopher Li
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Box 351619, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ulrike Peters
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Box 351619, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Tuong L Nguyen
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Behrens
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gemma Cadby
- School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Rachel A Murphy
- Cancer Control Research, BC Cancer and School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Kristan Aronson
- Public Health Sciences, Queen's University, Kingston, Canada
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Susan Astley
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - Fergus Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Janet Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Stacey Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Irene Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - D Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - William G Newman
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marina Pollan
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Pablo Fernandez-Navarro
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Daniel S McConnell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Weiva Sieh
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rulla M Tamimi
- Division of Epidemiology, Population Health Science, Weill Cornell Medicine, New York, NY, USA
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sara Lindström
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Box 351619, Seattle, WA, 98195, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
13
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
14
|
Carabaña C, Lloyd-Lewis B. Multidimensional Fluorescence Imaging of Embryonic and Postnatal Mammary Gland Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2471:19-48. [PMID: 35175590 DOI: 10.1007/978-1-0716-2193-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multidimensional fluorescence imaging represents a powerful approach for studying the dynamic cellular processes underpinning the development, function, and maintenance of the mammary gland. Here, we describe key multidimensional imaging strategies that enable visualization of mammary branching morphogenesis and epithelial cell fate dynamics during postnatal and embryonic mammary gland development. These include 4-dimensional intravital microscopy and ex vivo imaging of embryonic mammary cultures, in addition to methods that facilitate 3-dimensional imaging of the ductal epithelium at single-cell resolution within its native stroma. Collectively, these approaches provide a window into mammary developmental dynamics, and the perturbations underlying tissue dysfunction and disease.
Collapse
Affiliation(s)
- Claudia Carabaña
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
15
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Kuang X, McAndrew MJ, Mustachio LM, Chen YJC, Atanassov BS, Lin K, Lu Y, Shen J, Salinger A, Macatee T, Dent SYR, Koutelou E. Usp22 Overexpression Leads to Aberrant Signal Transduction of Cancer-Related Pathways but Is Not Sufficient to Drive Tumor Formation in Mice. Cancers (Basel) 2021; 13:4276. [PMID: 34503086 PMCID: PMC8428332 DOI: 10.3390/cancers13174276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFβ signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFβ signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. McAndrew
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Luminex Corporation, 12212 Technology Blvd. Suite 130, Austin, TX 78721, USA
| | - Lisa Maria Mustachio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyko S. Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy Macatee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Trela E, Lan Q, Myllymäki SM, Villeneuve C, Lindström R, Kumar V, Wickström SA, Mikkola ML. Cell influx and contractile actomyosin force drive mammary bud growth and invagination. J Cell Biol 2021; 220:e202008062. [PMID: 34042944 PMCID: PMC8164091 DOI: 10.1083/jcb.202008062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.
Collapse
MESH Headings
- Actomyosin/metabolism
- Animals
- Cell Movement
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Gestational Age
- Hypertrophy
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/ultrastructure
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Morphogenesis
- Mice
Collapse
Affiliation(s)
- Ewelina Trela
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Lindström
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vinod Kumar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara A. Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marja L. Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Lines KE, Gluck AK, Thongjuea S, Bountra C, Thakker RV, Gorvin CM. The bromodomain inhibitor JQ1+ reduces calcium-sensing receptor activity in pituitary cell lines. J Mol Endocrinol 2021; 67:83-94. [PMID: 34223822 PMCID: PMC8345903 DOI: 10.1530/jme-21-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/05/2022]
Abstract
Corticotrophinomas represent 10% of all surgically removed pituitary adenomas, however, current treatment options are often not effective, and there is a need for improved pharmacological treatments. Recently, JQ1+, a bromodomain inhibitor that promotes gene transcription by binding acetylated histone residues and recruiting transcriptional machinery, has been shown to reduce proliferation in a murine corticotroph cell line, AtT20. RNA-Seq analysis of AtT20 cells following treatment with JQ1+ identified the calcium-sensing receptor (CaSR) gene as significantly downregulated, which was subsequently confirmed using real-time PCR and Western blot analysis. CaSR is a G protein-coupled receptor that plays a central role in calcium homeostasis but can elicit non-calcitropic effects in multiple tissues, including the anterior pituitary where it helps regulate hormone secretion. However, in AtT20 cells, CaSR activates a tumour-specific cAMP pathway that promotes ACTH and PTHrP hypersecretion. We hypothesised that the Casr promoter may harbour binding sites for BET proteins, and using chromatin immunoprecipitation (ChIP)-sequencing demonstrated that the BET protein Brd3 binds to the promoter of the Casr gene. Assessment of CaSR signalling showed that JQ1+ significantly reduced Ca2+e-mediated increases in intracellular calcium (Ca2+i) mobilisation and cAMP signalling. However, the CaSR-negative allosteric modulator, NPS-2143, was unable to reduce AtT20 cell proliferation, indicating that reducing CaSR expression rather than activity is likely required to reduce pituitary cell proliferation. Thus, these studies demonstrate that reducing CaSR expression may be a viable option in the treatment of pituitary tumours. Moreover, current strategies to reduce CaSR activity, rather than protein expression for cancer treatments, may be ineffective.
Collapse
Affiliation(s)
- Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
- Correspondence should be addressed to K E Lines or C M Gorvin: or
| | - Anna K Gluck
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
| | - Supat Thongjuea
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chas Bountra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Correspondence should be addressed to K E Lines or C M Gorvin: or
| |
Collapse
|
19
|
Shao C, Lou P, Liu R, Bi X, Li G, Yang X, Sheng X, Xu J, Lv C, Yu Z. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol 2021; 9:691050. [PMID: 34336839 PMCID: PMC8320003 DOI: 10.3389/fcell.2021.691050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myoepithelial and luminal cells synergistically expand in the mammary gland during pregnancy, and this process is precisely governed by hormone-related signaling pathways. The bone morphogenetic protein (BMP) signaling pathway is now known to play crucial roles in all organ systems. However, the functions of BMP signaling in the mammary gland remain unclear. Here, we found that BMPR1a is upregulated by hormone-induced Sp1 at pregnancy. Using a doxycycline (Dox)-inducible BMPR1a conditional knockout mouse model, we demonstrated that loss of BMPR1a in myoepithelium results in compromised myoepithelial integrity, reduced mammary stem cells and precocious alveolar differentiation during pregnancy. Mechanistically, BMPR1a regulates the expression of p63 and Slug, two key regulators of myoepithelial maintenance, through pSmad1/5-Smad4 complexes, and consequently activate P-cadherin during pregnancy. Furthermore, we observed that loss of BMPR1a in myoepithelium results in the upregulation of a secreted protein Spp1 that could account for the precocious alveolar differentiation in luminal layer, suggesting a defective basal-to-luminal paracrine signaling mechanism. Collectively, these findings identify a novel role of BMP signaling in maintaining the identity of myoepithelial cells and suppressing precocious alveolar formation.
Collapse
Affiliation(s)
- Chunlei Shao
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xu Yang
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Spina E, Cowin P. Embryonic mammary gland development. Semin Cell Dev Biol 2021; 114:83-92. [DOI: 10.1016/j.semcdb.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
|
21
|
Estell EG, Rosen CJ. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 2021; 17:31-46. [PMID: 33149262 DOI: 10.1038/s41574-020-00426-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.
Collapse
Affiliation(s)
- Eben G Estell
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
22
|
Sumbal J, Belisova D, Koledova Z. Fibroblasts: The grey eminence of mammary gland development. Semin Cell Dev Biol 2020; 114:134-142. [PMID: 33158729 DOI: 10.1016/j.semcdb.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 02/03/2023]
Abstract
The essential role of mammary gland stroma in the regulation of mammary epithelial development, function, and cancer has long been recognized. Only recently, though, the functions of individual stromal cell populations have begun to become more clarified. Mammary fibroblasts have emerged as master regulators and modulators of epithelial cell behavior through paracrine signaling, extracellular matrix production and remodeling, and through regulation of other stromal cell types. In this review article, we summarize the crucial studies that helped to untangle the roles of fibroblasts in mammary gland development. Furthermore, we discuss the origin, heterogeneity, and plasticity of mammary fibroblasts during mammary development and cancer progression.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Denisa Belisova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Jiang M, Liu R, Liu L, Kot A, Liu X, Xiao W, Jia J, Li Y, Lam KS, Yao W. Identification of osteogenic progenitor cell-targeted peptides that augment bone formation. Nat Commun 2020; 11:4278. [PMID: 32855388 PMCID: PMC7453024 DOI: 10.1038/s41467-020-17417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Activation and migration of endogenous mesenchymal stromal cells (MSCs) are critical for bone regeneration. Here, we report a combinational peptide screening strategy for rapid discovery of ligands that not only bind strongly to osteogenic progenitor cells (OPCs) but also stimulate osteogenic cell Akt signaling in those OPCs. Two lead compounds are discovered, YLL3 and YLL8, both of which increase osteoprogenitor osteogenic differentiation in vitro. When given to normal or osteopenic mice, the compounds increase mineral apposition rate, bone formation, bone mass, and bone strength, as well as expedite fracture repair through stimulated endogenous osteogenesis. When covalently conjugated to alendronate, YLLs acquire an additional function resulting in a “tri-functional” compound that: (i) binds to OPCs, (ii) targets bone, and (iii) induces “pro-survival” signal. These bone-targeted, osteogenic peptides are well suited for current tissue-specific therapeutic paradigms to augment the endogenous osteogenic cells for bone regeneration and the treatment of bone loss. Activation of osteogenic cells is essential for bone regeneration. Here, the authors screen a peptide library and identify 2 compounds that promote osteogenic progenitor cell differentiation in vitro, and show that they increase bone formation and fracture repair in mice.
Collapse
Affiliation(s)
- Min Jiang
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Lixian Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Xueping Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Zabala M, Lobo NA, Antony J, Heitink LS, Gulati GS, Lam J, Parashurama N, Sanchez K, Adorno M, Sikandar SS, Kuo AH, Qian D, Kalisky T, Sim S, Li L, Dirbas FM, Somlo G, Newman A, Quake SR, Clarke MF. LEFTY1 Is a Dual-SMAD Inhibitor that Promotes Mammary Progenitor Growth and Tumorigenesis. Cell Stem Cell 2020; 27:284-299.e8. [DOI: 10.1016/j.stem.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
|
26
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
28
|
Jung N, Maguer-Satta V, Guyot B. Early Steps of Mammary Stem Cell Transformation by Exogenous Signals; Effects of Bisphenol Endocrine Disrupting Chemicals and Bone Morphogenetic Proteins. Cancers (Basel) 2019; 11:cancers11091351. [PMID: 31547326 PMCID: PMC6770465 DOI: 10.3390/cancers11091351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.
Collapse
Affiliation(s)
- Nora Jung
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Veronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| |
Collapse
|
29
|
Zhang R, Li J, Assaker G, Camirand A, Sabri S, Karaplis AC, Kremer R. Parathyroid Hormone-Related Protein (PTHrP): An Emerging Target in Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:161-178. [DOI: 10.1007/978-3-030-22254-3_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Sox9 regulates cell state and activity of embryonic mouse mammary progenitor cells. Commun Biol 2018; 1:228. [PMID: 30564749 PMCID: PMC6292906 DOI: 10.1038/s42003-018-0215-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
Embryonic mammary cells are a unique population comprised of undifferentiated, highly plastic progenitor cells that create normal mammary tissues. The mammary gland continues to develop after birth from descendants of embryonic mammary cells. Here, we establish cell lines from mouse mammary organs, immediately after they formed during prenatal development, to facilitate studies of primitive mammary cells, which are difficult to isolate in sufficient quantities for use in functional experiments. We show that some lines can be induced to secrete milk, a distinguishing feature of mammary epithelial cells. Targeted deletion of Sox9, from one clone, decreases the ability to respond to lactogenic stimuli, consistent with a previously identified role for Sox9 in regulating luminal progenitor function. Sox9 ablation also leads to alterations in 3D morphology and downregulation of Zeb1, a key epithelial–mesenchymal transition regulator. Prenatal mammary cell lines are an invaluable resource to study regulation of mammary progenitor cell biology and development. Naoko Kogata et al. generated murine mammary progenitor cell lines that form spheres and secrete milk upon hormonal stimulation. Deletion of Sox9 increased the ability of these cells to forms spheres but decreased milk production induced by lactogenic stimuli, consistent with the role of this transcription factor on maintaining the stem cell state.
Collapse
|
31
|
Zhao B, Chen Y, Hao Y, Yang N, Wang M, Mei M, Wang J, Qiu X, Wu X. Transcriptomic analysis reveals differentially expressed genes associated with wool length in rabbit. Anim Genet 2018; 49:428-437. [DOI: 10.1111/age.12701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- B. Zhao
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Chen
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Hao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - N. Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Mei
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - J. Wang
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Qiu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Wu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| |
Collapse
|
32
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
33
|
Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Sci Rep 2017; 7:5049. [PMID: 28698625 PMCID: PMC5505952 DOI: 10.1038/s41598-017-04637-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Mammary gland development begins with the appearance of epithelial placodes that invaginate, sprout, and branch to form small arborized trees by birth. The second phase of ductal growth and branching is driven by the highly invasive structures called terminal end buds (TEBs) that form at ductal tips at the onset of puberty. Ectodysplasin (Eda), a tumor necrosis factor-like ligand, is essential for the development of skin appendages including the breast. In mice, Eda regulates mammary placode formation and branching morphogenesis, but the underlying molecular mechanisms are poorly understood. Fibroblast growth factor (Fgf) receptors have a recognized role in mammary ductal development and stem cell maintenance, but the ligands involved are ill-defined. Here we report that Fgf20 is expressed in embryonic mammary glands and is regulated by the Eda pathway. Fgf20 deficiency does not impede mammary gland induction, but compromises mammary bud growth, as well as TEB formation, ductal outgrowth and branching during puberty. We further show that loss of Fgf20 delays formation of Eda-induced supernumerary mammary buds and normalizes the embryonic and postnatal hyperbranching phenotype of Eda overexpressing mice. These findings identify a hitherto unknown function for Fgf20 in mammary budding and branching morphogenesis.
Collapse
|
34
|
Wu HJ, Oh JW, Spandau DF, Tholpady S, Diaz J, Schroeder LJ, Offutt CD, Glick AB, Plikus MV, Koyama S, Foley J. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 2017; 144:1498-1509. [PMID: 28289136 DOI: 10.1242/dev.141630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.
Collapse
Affiliation(s)
- Hsing-Jung Wu
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Korea
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesus Diaz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Laura J Schroeder
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Carlos D Offutt
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sachiko Koyama
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Qu Y, Han B, Gao B, Bose S, Gong Y, Wawrowsky K, Giuliano AE, Sareen D, Cui X. Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids. Stem Cell Reports 2017; 8:205-215. [PMID: 28132888 PMCID: PMC5312254 DOI: 10.1016/j.stemcr.2016.12.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development.
Collapse
Affiliation(s)
- Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Shikha Bose
- Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiping Gong
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan 430079, China
| | - Kolja Wawrowsky
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Dhruv Sareen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA.
| |
Collapse
|
36
|
Veltmaat JM. Prenatal Mammary Gland Development in the Mouse: Research Models and Techniques for Its Study from Past to Present. Methods Mol Biol 2017; 1501:21-76. [PMID: 27796947 DOI: 10.1007/978-1-4939-6475-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mammary gland development starts during prenatal life, when at designated positions along the ventrolateral boundary of the embryonic or fetal trunk, surface ectodermal cells coalesce to form primordia for mammary glands, instead of differentiating into epidermis. With the wealth of genetically engineered mice available as research models, our understanding of the prenatal phase of mammary development has recently greatly advanced. This understanding includes the recognition of molecular and mechanistic parallels between prenatal and postnatal mammary morphogenesis and even tumorigenesis, much of which can moreover be extrapolated to human. This makes the murine embryonic mammary gland a useful model for a myriad of questions pertaining to normal and pathological breast development. Hence, unless indicated otherwise, this review describes embryonic mammary gland development in mouse only, and lists mouse models that have been examined for defects in embryonic mammary development. Techniques that originated in the field of developmental biology, such as explant culture and tissue recombination, were adapted specifically to research on the embryonic mammary gland. Detailed protocols for these techniques have recently been published elsewhere. This review describes how the development and adaptation of these techniques moved the field forward from insights on (comparative) morphogenesis of the embryonic mammary gland to the understanding of tissue and molecular interactions and their regulation of morphogenesis and functional development of the embryonic mammary gland. It is here furthermore illustrated how generic molecular biology and biochemistry techniques can be combined with these older, developmental biology techniques, to address relevant research questions. As such, this review should provide a solid starting point for those wishing to familiarize themselves with this fascinating and important subdomain of mammary gland biology, and guide them in designing a relevant research strategy.
Collapse
Affiliation(s)
- Jacqueline M Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
37
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
38
|
Kayserili H, Altunoglu U, Yesil G, Rosti RÖ. Microcephaly, dysmorphic features, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds, and small cerebellum in four patients. Am J Med Genet A 2016; 170:1391-9. [PMID: 27075597 DOI: 10.1002/ajmg.a.37652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 11/08/2022]
Abstract
Pontocerebellar hypoplasia (PCH) can occur as an isolated entity or part of a syndrome. PCH has been reported with facial dysmorphism, ocular anomalies, and genital anomalies, but the co-occurrence of all four has not been previously described. We report on four patients, born to two consanguineous families that are not related to one another, with distinctive facial features (short forehead, laterally extended, medially flared eyebrows), corneal dystrophy, underdevelopment of labioscrotal folds, and nonprogressive PCH. In addition, the patients show hair extruding from the lactiferous ducts, which to our knowledge has not been described before. The parental consanguinity, affected siblings of both genders, and absent manifestations in parents, indicate an autosomal recessive pattern of inheritance as most likely. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey.,Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gozde Yesil
- Department of Genetics, Bezmialem Vakıf University, School of Medicine, Istanbul, Turkey
| | - Rasim Özgür Rosti
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Department of Neurosciences, Laboratory for Pediatric Brain Diseases, University of California San Diego, La Jolla, California
| |
Collapse
|
39
|
Gatza CE, Elderbroom JL, Oh SY, Starr MD, Nixon AB, Blobe GC. The balance of cell surface and soluble type III TGF-β receptor regulates BMP signaling in normal and cancerous mammary epithelial cells. Neoplasia 2015; 16:489-500. [PMID: 25077702 PMCID: PMC4198744 DOI: 10.1016/j.neo.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII) mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.
Collapse
Affiliation(s)
| | - Jennifer L Elderbroom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Sun Young Oh
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Mark D Starr
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC.
| |
Collapse
|
40
|
A guide for building biological pathways along with two case studies: hair and breast development. Methods 2014; 74:16-35. [PMID: 25449898 DOI: 10.1016/j.ymeth.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway.
Collapse
|
41
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
42
|
|
43
|
Urosevic J, Garcia-Albéniz X, Planet E, Real S, Céspedes MV, Guiu M, Fernandez E, Bellmunt A, Gawrzak S, Pavlovic M, Mangues R, Dolado I, Barriga FM, Nadal C, Kemeny N, Batlle E, Nebreda AR, Gomis RR. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat Cell Biol 2014; 16:685-94. [DOI: 10.1038/ncb2977] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/28/2014] [Indexed: 01/13/2023]
|
44
|
Ramot Y, Paus R. Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases? Bioessays 2014; 36:672-86. [DOI: 10.1002/bies.201400006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Laboratory for Hair Research and Regenerative Medicine, Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
45
|
Boras-Granic K, Dann P, VanHouten J, Karaplis A, Wysolmerski J. Deletion of the nuclear localization sequences and C-terminus of PTHrP impairs embryonic mammary development but also inhibits PTHrP production. PLoS One 2014; 9:e90418. [PMID: 24785493 PMCID: PMC4006745 DOI: 10.1371/journal.pone.0090418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/29/2014] [Indexed: 12/18/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) can be secreted from cells and interact with its receptor, the Type 1 PTH/PTHrP Receptor (PTHR1) in an autocrine, paracrine or endocrine fashion. PTHrP can also remain inside cells and be transported into the nucleus, where its functions are unclear, although recent experiments suggest that it may broadly regulate cell survival and senescence. Disruption of either the PTHrP or PTHR1 gene results in many abnormalities including a failure of embryonic mammary gland development in mice and in humans. In order to examine the potential functions of nuclear PTHrP in the breast, we examined mammary gland development in PTHrP (1-84) knock-in mice, which express a mutant form of PTHrP that lacks the C-terminus and nuclear localization signals and which can be secreted but cannot enter the nucleus. Interestingly, we found that PTHrP (1-84) knock-in mice had defects in mammary mesenchyme differentiation and mammary duct outgrowth that were nearly identical to those previously described in PTHrP-/- and PTHR1-/- mice. However, the mammary buds in PTHrP (1-84) knock-in mice had severe reductions in mutant PTHrP mRNA levels, suggesting that the developmental defects were due to insufficient production of PTHrP by mammary epithelial cells and not loss of PTHrP nuclear function. Examination of the effects of nuclear PTHrP in the mammary gland in vivo will require the development of alternative animal models.
Collapse
Affiliation(s)
- Kata Boras-Granic
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Karaplis
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
46
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
47
|
Macias H, Hinck L. Mammary gland development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:533-57. [PMID: 22844349 DOI: 10.1002/wdev.35] [Citation(s) in RCA: 520] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
48
|
Chandramouli A, Simundza J, Pinderhughes A, Hiremath M, Droguett G, Frendewey D, Cowin P. Ltbp1L is focally induced in embryonic mammary mesenchyme, demarcates the ductal luminal lineage and is upregulated during involution. Breast Cancer Res 2013; 15:R111. [PMID: 24262428 PMCID: PMC3978911 DOI: 10.1186/bcr3578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Latent TGFβ binding proteins (LTBPs) govern TGFβ presentation and activation and are important for elastogenesis. Although TGFβ is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland. Methods To address this we have examined Ltbp1 promoter activity throughout mammary development using an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR, immunofluorescence and flow cytometry. Results Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches. Conclusions These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose significant spatial restriction on TGFβ bioavailability during mammary development. We hypothesize that Ltbp1 functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect ductal distension, trigger irreversible involution, and facilitate nipple sphincter function.
Collapse
|
49
|
Chandramouli A, Hatsell SJ, Pinderhughes A, Koetz L, Cowin P. Gli activity is critical at multiple stages of embryonic mammary and nipple development. PLoS One 2013; 8:e79845. [PMID: 24260306 PMCID: PMC3832531 DOI: 10.1371/journal.pone.0079845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3R) or activator (Gli3A) depending upon cellular context. Previously, we have shown that Gli3R is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3xt/xt mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3R is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3R is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah J. Hatsell
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Alicia Pinderhughes
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lisa Koetz
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Denis Menshykau
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| |
Collapse
|