1
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
2
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Chen F, Köhler M, Cucun G, Takamiya M, Kizil C, Cosacak MI, Rastegar S. sox1a:eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons. iScience 2023; 26:107342. [PMID: 37529101 PMCID: PMC10387610 DOI: 10.1016/j.isci.2023.107342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Sox transcription factors are crucial for vertebrate nervous system development. In zebrafish embryo, sox1 genes are expressed in neural progenitor cells and neurons of ventral spinal cord. Our recent study revealed that the loss of sox1a and sox1b function results in a significant decline of V2 subtype neurons (V2s). Using single-cell RNA sequencing, we analyzed the transcriptome of sox1a lineage progenitors and neurons in the zebrafish spinal cord at four time points during embryonic development, employing the Tg(sox1a:eGFP) line. In addition to previously characterized sox1a-expressing neurons, we discovered the expression of sox1a in late-developing intraspinal serotonergic neurons (ISNs). Developmental trajectory analysis suggests that ISNs arise from lateral floor plate (LFP) progenitor cells. Pharmacological inhibition of the Notch signaling pathway revealed its role in negatively regulating LFP progenitor cell differentiation into ISNs. Our findings highlight the zebrafish LFP as a progenitor domain for ISNs, alongside known Kolmer-Agduhr (KA) and V3 interneurons.
Collapse
Affiliation(s)
- Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gokhan Cucun
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Bravo K, González-Ortiz M, Beltrán-Castillo S, Cáceres D, Eugenín J. Development of the Placenta and Brain Are Affected by Selective Serotonin Reuptake Inhibitor Exposure During Critical Periods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:179-198. [PMID: 37466774 DOI: 10.1007/978-3-031-32554-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are usually prescribed to treat major depression and anxiety disorders. Fetal brain development exhibits dependency on serotonin (5-hydroxytryptamine, 5-HT) from maternal, placental, and fetal brain sources. At very early fetal stages, fetal serotonin is provided by maternal and placental sources. However, in later fetal stages, brain sources are indispensable for the appropriate development of neural circuitry and the rise of emergent functions implied in behavior acquisition. Thus, susceptible serotonin-related critical periods are recognized, involving the early maternal and placental 5-HT synthesis and the later endogenous 5-HT synthesis in the fetal brain. Acute and chronic exposure to SSRIs during these critical periods may result in short- and long-term placental and brain dysfunctions affecting intrauterine and postnatal life. Maternal and fetal cells express serotonin receptors which make them susceptible to changes in serotonin levels influenced by SSRIs. SSRIs block the serotonin transporter (SERT), which is required for 5-HT reuptake from the synaptic cleft into the presynaptic neuron. Chronic SSRI administration leads to pre- and postsynaptic 5-HT receptor rearrangement. In this review, we focus on the effects of SSRIs administered during critical periods upon placentation and brain development to be considered in evaluating the risk-safety balance in the clinical use of SSRIs.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile.
- Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Sebastian Beltrán-Castillo
- Centro integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| |
Collapse
|
5
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
6
|
Tumor Suppressor Role and Clinical Significance of the FEV Gene in Prostate Cancer. DISEASE MARKERS 2022; 2022:8724035. [PMID: 35548776 PMCID: PMC9085333 DOI: 10.1155/2022/8724035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Background In our previous research, we developed a 32-gene risk index model that may be utilized as a robust prognostic method for predicting prostate cancer (PCa) recurrence after surgery. Among the 32 genes, the Fifth Ewing Variant (FEV) gene was one of the top downregulated genes in relapsed PCa. However, current understanding of the FEV gene and its involvement in PCa is limited. Methods FEV mRNA expression was analyzed and correlated to clinical outcomes in PCa patients who underwent prostatectomy at the Massachusetts General Hospital. Specimens from tissue microarray (TMA) including 102 prostate cancer patients were analysis for the expression of FEV. Meanwhile, FEV expression profiles were also assessed in PCa cell lines and in BPH-1 prostate epithelial cells using western blotting and quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we transfected LNCaP and PC-3 cells with either an empty vector or full-length FEV gene and performed in vitro cell functional assays. The part FEV plays in tumor xenograft growth was also assessed in vivo. Results Of the 191 patients included in this study base on the DASL dataset, 77 (40.3%) and 24 (13.6%), respectively, developed prostate-specific antigen (PSA) relapse and metastasis postradical prostatectomy. Significant FEV downregulation was observed in PCa patients showing PSA failure and metastasis. The protein expression of FEV was significantly negatively correlated with the Gleason score and pathological stage in prostate cancer tissues. Similarly, FEV expression significantly decreased in all PCa cell lines relative to BPH-1 (all P < 0.05). Functional assays revealed that FEV expression markedly inhibited PCa cell growth, migration, and invasion, which in turn significantly repressed the growth of tumor xenografts in vivo. Conclusion The results of this study suggest an association between downregulated FEV expression and PSA relapse in PCa patients. In addition, FEV may act as a tumor suppressor in PCa.
Collapse
|
7
|
Valiulahi P, Vidyawan V, Puspita L, Oh Y, Juwono VB, Sittipo P, Friedlander G, Yahalomi D, Sohn JW, Lee YK, Yoon JK, Shim JW. Generation of caudal-type serotonin neurons and hindbrain-fate organoids from hPSCs. Stem Cell Reports 2021; 16:1938-1952. [PMID: 34242615 PMCID: PMC8365029 DOI: 10.1016/j.stemcr.2021.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-HT) neurons, the major components of the raphe nuclei, arise from ventral hindbrain progenitors. Based on anatomical location and axonal projection, 5-HT neurons are coarsely divided into rostral and caudal groups. Here, we propose a novel strategy to generate hindbrain 5-HT neurons from human pluripotent stem cells (hPSCs), which involves the formation of ventral-type neural progenitor cells and stimulation of the hindbrain 5-HT neural development. A caudalizing agent, retinoid acid, was used to direct the cells into the hindbrain cell fate. Approximately 30%–40% of hPSCs successfully developed into 5-HT-expressing neurons using our protocol, with the majority acquiring a caudal rhombomere identity (r5–8). We further modified our monolayer differentiation system to generate 5-HT neuron-enriched hindbrain-like organoids. We also suggest downstream applications of our 5-HT monolayer and organoid cultures to study neuronal response to gut microbiota. Our methodology could become a powerful tool for future studies related to 5-HT neurotransmission. Activation of SHH and RA signaling induces 5-HT neuronal fate from hPSCs The generated 5-HT neurons have caudal hindbrain characteristics Hindbrain-like organoids may form from hPSCs by activation of SHH and RA signaling 5-HT neurons in monolayer and organoid culture can be used as a screening platform
Collapse
Affiliation(s)
- Parvin Valiulahi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Vincencius Vidyawan
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Panida Sittipo
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Gilgi Friedlander
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dayana Yahalomi
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25, Bongjeong-ro, Dongnam-gu, Cheonan-si 31151, Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea.
| |
Collapse
|
8
|
Kojima Y, Yamashiro C, Murase Y, Yabuta Y, Okamoto I, Iwatani C, Tsuchiya H, Nakaya M, Tsukiyama T, Nakamura T, Yamamoto T, Saitou M. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program. Life Sci Alliance 2021; 4:4/5/e202000974. [PMID: 33608411 PMCID: PMC7918644 DOI: 10.26508/lsa.202000974] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
This work shows that GATA transcription factors transduce the BMP signaling and, with SOX17 and TFAP2C, induce the human germ-cell fate, delineating the mechanism for human germ-cell specification. The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan
| | - Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Masataka Nakaya
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan
| |
Collapse
|
9
|
Li C, Meng F, Garza JC, Liu J, Lei Y, Kirov SA, Guo M, Lu XY. Modulation of depression-related behaviors by adiponectin AdipoR1 receptors in 5-HT neurons. Mol Psychiatry 2021; 26:4205-4220. [PMID: 31980728 PMCID: PMC7377958 DOI: 10.1038/s41380-020-0649-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 01/17/2023]
Abstract
The adipocyte-derived hormone adiponectin has a broad spectrum of functions beyond metabolic control. We previously reported that adiponectin acts in the brain to regulate depression-related behaviors. However, its underlying neural substrates have not been identified. Here we show that adiponectin receptor 1 (AdipoR1) is expressed in the dorsal raphe nucleus (DRN) and colocalized with tryptophan hydroxylase 2 (TPH2), a marker of serotonin (5-HT) neurons. Selective deletion of AdipoR1 in 5-HT neurons induced anhedonia in male mice, as indicated by reduced female urine sniffing time and saccharin preference, and behavioral despair in female mice and enhanced stress-induced decrease in sucrose preference in both sexes. The expression levels of TPH2 were downregulated with a concurrent reduction of 5-HT-immunoreactivity in the DRN and its two major projection regions, the hippocampus and medial prefrontal cortex (mPFC), in male but not female mice lacking AdipoR1 in 5-HT neurons. In addition, serotonin transporter (SERT) expression was upregulated in both DRN projection fields of male mice but only in the mPFC of female mice. These changes presumably lead to decreased 5-HT synthesis and/or increased 5-HT reuptake, thereby reducing 5-HT transmission. The augmented behavioral responses to the selective serotonin reuptake inhibitor fluoxetine but not desipramine, a selective norepinephrine reuptake inhibitor, observed in conditional knockout male mice supports deficient 5-HT transmission underlying depression-related phenotypes. Our results indicate that adiponectin acts on 5-HT neurons through AdipoR1 receptors to regulate depression-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China. .,Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Fantao Meng
- grid.452240.5Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Jacob C. Garza
- grid.410427.40000 0001 2284 9329Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA ,grid.38142.3c000000041936754XPresent Address: Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jing Liu
- grid.452240.5Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Yun Lei
- grid.410427.40000 0001 2284 9329Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA
| | - Sergei A. Kirov
- grid.410427.40000 0001 2284 9329Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA
| | - Ming Guo
- grid.452240.5Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong China ,grid.410427.40000 0001 2284 9329Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal Development of Dorsal Raphe Serotonergic Neuron Subtypes and Increased Anxiety-Like Behavior. J Neurosci 2020; 40:8669-8682. [PMID: 33046550 DOI: 10.1523/jneurosci.2252-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonergic neurons in the dorsal raphe (DR) nucleus are associated with several psychiatric disorders including depression and anxiety disorders, which often have a neurodevelopmental component. During embryonic development, GATA transcription factors GATA2 and GATA3 operate as serotonergic neuron fate selectors and regulate the differentiation of serotonergic neuron subtypes of DR. Here, we analyzed the requirement of GATA cofactor ZFPM1 in the development of serotonergic neurons using Zfpm1 conditional mouse mutants. Our results demonstrated that, unlike the GATA factors, ZFPM1 is not essential for the early differentiation of serotonergic precursors in the embryonic rhombomere 1. In contrast, in perinatal and adult male and female Zfpm1 mutants, a lateral subpopulation of DR neurons (ventrolateral part of the DR) was lost, whereas the number of serotonergic neurons in a medial subpopulation (dorsal region of the medial DR) had increased. Additionally, adult male and female Zfpm1 mutants had reduced serotonin concentration in rostral brain areas and displayed increased anxiety-like behavior. Interestingly, female Zfpm1 mutant mice showed elevated contextual fear memory that was abolished with chronic fluoxetine treatment. Altogether, these results demonstrate the importance of ZFPM1 for the development of DR serotonergic neuron subtypes involved in mood regulation. It also suggests that the neuronal fate selector function of GATAs is modulated by their cofactors to refine the differentiation of neuronal subtypes.SIGNIFICANCE STATEMENT Predisposition to anxiety disorders has both a neurodevelopmental and a genetic basis. One of the brainstem nuclei involved in the regulation of anxiety is the dorsal raphe, which contains different subtypes of serotonergic neurons. We show that inactivation of a transcriptional cofactor ZFPM1 in mice results in a developmental failure of laterally located dorsal raphe serotonergic neurons and changes in serotonergic innervation of rostral brain regions. This leads to elevated anxiety-like behavior and contextual fear memory, alleviated by chronic fluoxetine treatment. Our work contributes to understanding the neurodevelopmental mechanisms that may be disturbed in the anxiety disorder.
Collapse
|
11
|
Kinney HC, Haynes RL. The Serotonin Brainstem Hypothesis for the Sudden Infant Death Syndrome. J Neuropathol Exp Neurol 2020; 78:765-779. [PMID: 31397480 DOI: 10.1093/jnen/nlz062] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The sudden infant death syndrome (SIDS) is the leading cause of postneonatal infant mortality in the United States today, with an overall rate of 0.39/1000 live births. It is defined as the sudden and unexpected death of an infant <12 months of age that remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. The serotonin brainstem hypothesis has been a leading hypothesis for SIDS over the last 2 decades. Our laboratory has studied this hypothesis over time with a variety of tissue techniques, including tissue receptor autoradiography, high performance liquid chromatography, Western blot analysis, immunocytochemistry, and proteomics. The purpose of this article is to review the progress in our laboratory toward supporting this hypothesis. We conclude that an important subset of SIDS infants has serotonergic abnormalities resulting from a "core lesion" in the medullary reticular formation comprised of nuclei that contain serotonin neurons. This lesion could lead to a failure of protective brainstem responses to homeostatic challenges during sleep in a critical developmental period which cause sleep-related sudden death.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
13
|
Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol Blood Marrow Transplant 2020; 26:1124-1130. [PMID: 32088370 DOI: 10.1016/j.bbmt.2020.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 01/05/2023]
Abstract
Germline mutations in GATA2 are associated with an inherited predisposition to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation (HSCT) remains the only curative therapy. However, patients may be at an increased risk for transplant-related toxicity (TRT) and transplant-related mortality (TRM) due to their underlying disease biology. We performed a retrospective case-control study of pediatric patients with BMF/MDS/AML with germline GATA2 mutations, comparing HSCT outcomes to randomly selected patients without germline GATA2 mutations and BMF/MDS (control A) and acute leukemia (control B). The 5-year overall and disease-free survival rates in the GATA2 cohort (65%, 51%) were similar to control A (58%, 49%) and B (45%, 43%) cohorts. In contrast, the 5-year event-free survival rate was significantly lower in the GATA2 cohort (7% ± 6%, 28% ± 10%, and 33% ± 8% for GATA2, A, and B, respectively), due to an increased number of unique TRTs. Specifically, neurologic toxicities occurred significantly more frequently in GATA2 patients than in the control groups, and post-HSCT thrombotic events occurred only in the GATA2 cohort. There was no difference in TRM, infections, or graft-versus-host disease across groups. The higher incidence of thrombotic and neurologic events specific to GATA2 patients warrants further investigation and has potential treatment ramifications.
Collapse
|
14
|
Näslund J, Studer E, Nilsson S, Eriksson E. Expression of 22 serotonin-related genes in rat brain after sub-acute serotonin depletion or reuptake inhibition. Acta Neuropsychiatr 2020; 32:1-7. [PMID: 32063244 PMCID: PMC7282867 DOI: 10.1017/neu.2020.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although the assessment of expression of serotonin-related genes in experimental animals has become a common strategy to shed light on variations in brain serotonergic function, it remains largely unknown to what extent the manipulation of serotonin levels causes detectable changes in gene expression. We therefore chose to investigate how sub-acute depletion or elevation of brain serotonin influences the expression of a number of serotonin-related genes in six brain areas. METHODS Male Wistar rats were administered a serotonin synthesis inhibitor, para-chlorophenylalanine (p-CPA), or a serotonin reuptake inhibitor, paroxetine, for 3 days and then sacrificed. The expression of a number of serotonin-related genes in the raphe nuclei, hypothalamus, amygdala, striatum, hippocampus and prefrontal cortex was investigated using real-time quantitative PCR (rt-qPCR). RESULTS While most of the studied genes were uninfluenced by paroxetine treatment, we could observe a robust downregulation of tryptophan hydroxylase-2 in the brain region where the serotonergic cell bodies reside, that is, the raphe nuclei. p-CPA induced a significant increase in the expression of Htr1b and Htr2a in amygdala and of Htr2c in the striatum and a marked reduction in the expression of Htr6 in prefrontal cortex; it also enhanced the expression of the brain-derived neurotrophic factor (Bdnf) in raphe and hippocampus. CONCLUSION With some notable exceptions, the expression of most of the studied genes is left unchanged by short-term modulation of extracellular levels of serotonin.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Mahamud MR, Geng X, Ho YC, Cha B, Kim Y, Ma J, Chen L, Myers G, Camper S, Mustacich D, Witte M, Choi D, Hong YK, Chen H, Varshney G, Engel JD, Wang S, Kim TH, Lim KC, Srinivasan RS. GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR-126. Development 2019; 146:dev184218. [PMID: 31582413 PMCID: PMC6857586 DOI: 10.1242/dev.184218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.
Collapse
Affiliation(s)
- Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yuenhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sally Camper
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Debbie Mustacich
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Marlys Witte
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Dongwon Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gaurav Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Tae-Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
16
|
Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. eLife 2019; 8:e47837. [PMID: 31355747 PMCID: PMC6701946 DOI: 10.7554/elife.47837] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.
Collapse
Affiliation(s)
- Rebecca A Callahan
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Richard Roberts
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Mohini Sengupta
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | | | | | - Martha W Bagnall
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| |
Collapse
|
17
|
Hoshino T, Terunuma T, Takai J, Uemura S, Nakamura Y, Hamada M, Takahashi S, Yamamoto M, Engel JD, Moriguchi T. Spiral ganglion cell degeneration-induced deafness as a consequence of reduced GATA factor activity. Genes Cells 2019; 24:534-545. [PMID: 31141264 DOI: 10.1111/gtc.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Zinc-finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co-expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea-specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2- or GATA3-related genetic disorders.
Collapse
Affiliation(s)
- Tomofumi Hoshino
- Department of Otolaryngology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsumoru Terunuma
- Department of Otolaryngology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| |
Collapse
|
18
|
Weiss AC, Bohnenpoll T, Kurz J, Blank P, Airik R, Lüdtke TH, Kleppa MJ, Deuper L, Kaiser M, Mamo TM, Costa R, von Hahn T, Trowe MO, Kispert A. Delayed onset of smooth muscle cell differentiation leads to hydroureter formation in mice with conditional loss of the zinc finger transcription factor gene Gata2 in the ureteric mesenchyme. J Pathol 2019; 248:452-463. [PMID: 30916783 DOI: 10.1002/path.5270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
The establishment of the peristaltic machinery of the ureter is precisely controlled to cope with the onset of urine production in the fetal kidney. Retinoic acid (RA) has been identified as a signal that maintains the mesenchymal progenitors of the contractile smooth muscle cells (SMCs), while WNTs, SHH, and BMP4 induce their differentiation. How the activity of the underlying signalling pathways is controlled in time, space, and quantity to activate coordinately the SMC programme is poorly understood. Here, we provide evidence that the Zn-finger transcription factor GATA2 is involved in this crosstalk. In mice, Gata2 is expressed in the undifferentiated ureteric mesenchyme under control of RA signalling. Conditional deletion of Gata2 by a Tbx18cre driver results in hydroureter formation at birth, associated with a loss of differentiated SMCs. Analysis at earlier stages and in explant cultures revealed that SMC differentiation is not abrogated but delayed and that dilated ureters can partially regain peristaltic activity when relieved of urine pressure. Molecular analysis identified increased RA signalling as one factor contributing to the delay in SMC differentiation, possibly caused by reduced direct transcriptional activation of Cyp26a1, which encodes an RA-degrading enzyme. Our study identified GATA2 as a feedback inhibitor of RA signalling important for precise onset of ureteric SMC differentiation, and suggests that in a subset of cases of human congenital ureter dilatations, temporary relief of urine pressure may ameliorate the differentiation status of the SMC coat. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Patrick Blank
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rannar Airik
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lena Deuper
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marina Kaiser
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tamrat M Mamo
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rui Costa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.,Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas von Hahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.,Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
19
|
Wu X, Xu FL, Ding M, Zhang JJ, Yao J, Wang BJ. Characterization and functional analyses of the human HTR1A gene: 5' regulatory region modulates gene expression in vitro. BMC Genet 2018; 19:115. [PMID: 30594152 PMCID: PMC6311061 DOI: 10.1186/s12863-018-0708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The serotonin neurotransmitter (5-HT) and its receptors have important roles in neuropsychiatric disorders such as schizophrenia. The aim of this study was to investigate the functional sequences of the 5' regulation region of the human HTR1A gene to explore the effects on the expression of the 5-HT1A receptor. METHODS Fourteen recombinant pGL3-basic vectors containing deletion fragments of the HTR1A gene regulatory region were transfected with HEK-293 and SK-N-SH cells. The relative chemiluminescence intensities of different length fragments were analyzed. The JASPAR software was used for the prediction of transcription factors. RESULTS In the HEK-293 cells, the relative chemiluminescence intensity of the - 1649 bp to - 1550 bp (ATG + 1) fragment was significantly different. Two inhibitory activity regions were found in the - 1409 bp to - 1381 bp and - 1196 bp to - 1124 bp fragments, which might be bound to the GATA or SOX10 transcription factors as predicted by the JASPAR software. In addition, the fragments located from - 1124 bp to - 1064 bp and from - 908 bp to - 722 bp up-regulated protein expression. Only the sequence from - 1550 bp to - 1409 bp demonstrated a difference in luciferase expression in the both cell lines. According to the results of the 5'-UTR truncated vectors, there was a repression region at the distal end of the 5'-UTR, an enhancer region might be present at the proximal end of the transcription start site. CONCLUSIONS Although the functional sequences of the HTR1A gene regulatory region were confirmed, the regulatory factors and functional components require further investigation.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jing-Jing Zhang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
20
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
21
|
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018; 12:170. [PMID: 29651232 PMCID: PMC5884927 DOI: 10.3389/fnins.2018.00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vertebrate locomotor circuitry contains distinct classes of ventral spinal cord neurons which each have particular functional properties. While we know some of the genes expressed by each of these cell types, we do not yet know how several of these neurons are specified. Here, we investigate the functions of Tal1, Gata2a, and Gata3 transcription factors in the development of two of these populations of neurons with important roles in locomotor circuitry: V2b neurons and cerebrospinal fluid-contacting Kolmer-Agduhr (KA) neurons (also called CSF-cNs). Our data provide the first demonstration, in any vertebrate, that Tal1 and Gata3 are required for correct development of KA and V2b neurons, respectively. We also uncover differences in the genetic regulation of V2b cell development in zebrafish compared to mouse. In addition, we demonstrate that Sox1a and Sox1b are expressed by KA and V2b neurons in zebrafish, which differs from mouse, where Sox1 is expressed by V2c neurons. KA neurons can be divided into ventral KA″ neurons and more dorsal KA′ neurons. Consistent with previous morpholino experiments, our mutant data suggest that Tal1 and Gata3 are required in KA′ but not KA″ cells, whereas Gata2a is required in KA″ but not KA′ cells, even though both of these cell types co-express all three of these transcription factors. In gata2a mutants, cells in the KA″ region of the spinal cord lose expression of most KA″ genes and there is an increase in the number of cells expressing V3 genes, suggesting that Gata2a is required to specify KA″ and repress V3 fates in cells that normally develop into KA″ neurons. On the other hand, our data suggest that Gata3 and Tal1 are both required for KA′ neurons to differentiate from progenitor cells. In the KA′ region of these mutants, cells no longer express KA′ markers and there is an increase in the number of mitotically-active cells. Finally, our data demonstrate that all three of these transcription factors are required for later stages of V2b neuron differentiation and that Gata2a and Tal1 have different functions in V2b development in zebrafish than in mouse.
Collapse
Affiliation(s)
| | - Santanu Banerjee
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | | | - Christiane Voufo
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Kadiah Kamara
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Katharine E Lewis
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
22
|
Fabbiani G, Rehermann MI, Aldecosea C, Trujillo-Cenóz O, Russo RE. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles. Front Neural Circuits 2018; 12:20. [PMID: 29593503 PMCID: PMC5859367 DOI: 10.3389/fncir.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.
Collapse
Affiliation(s)
- Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María I Rehermann
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Carina Aldecosea
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Raúl E Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
23
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
24
|
Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.301. [PMID: 29072810 PMCID: PMC5746461 DOI: 10.1002/wdev.301] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Evan Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, Campus Jussieu, Paris, France
| |
Collapse
|
25
|
Yuan R, Zhang S, Yu J, Huang Y, Lu D, Cheng R, Huang S, Ao P, Zheng S, Hood L, Zhu X. Beyond cancer genes: colorectal cancer as robust intrinsic states formed by molecular interactions. Open Biol 2017; 7:rsob.170169. [PMID: 29118272 PMCID: PMC5717345 DOI: 10.1098/rsob.170169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning prevailing in current biomedicine studies. In pursuing a mechanistic understanding behind such complexity, we constructed a core molecular–cellular interaction network underlying CRC and investigated its nonlinear dynamical properties. The hypothesis and modelling method has been developed previously and tested in various cancer studies. The network dynamics reveal a landscape of several attractive basins corresponding to both normal intestinal phenotype and robust tumour subtypes, identified by their different molecular signatures. Comparison between the modelling results and gene expression profiles from patients collected at the second affiliated hospital of Zhejiang University is presented as validation. The numerical ‘driving’ experiment suggests that CRC pathogenesis may depend on pathways involved in gastrointestinal track development and molecules associated with mesenchymal lineage differentiation, such as Stat5, BMP, retinoic acid signalling pathways, Runx and Hox transcription families. We show that the multi-faceted response to immune stimulation and therapies, as well as different carcinogenesis and metastasis routes, can be straightforwardly understood and analysed under such a framework.
Collapse
Affiliation(s)
- Ruoshi Yuan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Suzhan Zhang
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jiekai Yu
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Yanqin Huang
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Demin Lu
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Runtan Cheng
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Sui Huang
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109-5234, USA
| | - Ping Ao
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China .,Shanghai Center of Quantitative Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Shu Zheng
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Leroy Hood
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109-5234, USA
| | - Xiaomei Zhu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China .,Shanghai Center of Quantitative Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
26
|
Vadodaria KC, Stern S, Marchetto MC, Gage FH. Serotonin in psychiatry: in vitro disease modeling using patient-derived neurons. Cell Tissue Res 2017; 371:161-170. [PMID: 28812143 DOI: 10.1007/s00441-017-2670-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/01/2017] [Indexed: 01/18/2023]
Abstract
Several lines of evidence implicate serotonin in the etiology of multiple psychiatric disorders, especially mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BD). Much of our current understanding of biological mechanisms underlying serotonergic alterations in mood disorders comes from animal studies. Innovation in induced pluripotent stem cell and transdifferentiation technologies for deriving neurons from adult humans has enabled the study of disease-relevant cellular phenotypes in vitro. In this context, human serotonergic neurons can now be generated using three recently published methodologies. In this mini-review, we broadly discuss evidence linking altered serotonergic neurotransmission in MDD and BD and focus on recently published methods for generating human serotonergic neurons in vitro.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
27
|
Beltrán-Castillo S, Morgado-Valle C, Eugenín J. The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:163-192. [PMID: 29080027 DOI: 10.1007/978-3-319-62817-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms responsible for the onset of respiratory activity during fetal life are unknown. The onset of respiratory rhythm may be a consequence of the genetic program of each of the constituents of the respiratory network, so they start to interact and generate respiratory cycles when reaching a certain degree of maturation. Alternatively, generation of cycles might require the contribution of recently formed sensory inputs that will trigger oscillatory activity in the nascent respiratory neural network. If this hypothesis is true, then sensory input to the respiratory generator must be already formed and become functional before the onset of fetal respiration. In this review, we evaluate the timing of the onset of the respiratory rhythm in comparison to the appearance of receptors, neurotransmitter machinery, and afferent projections provided by two central chemoreceptive nuclei, the raphe and locus coeruleus nuclei.
Collapse
Affiliation(s)
- Sebastián Beltrán-Castillo
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Campus Xalapa, Berlin 7, Fracc., Monte Magno Animas, C.P. 91190, Xalapa, Veracruz, Mexico.
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile.
| |
Collapse
|
28
|
Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol 2017; 14:38-48. [PMID: 27872477 PMCID: PMC5489122 DOI: 10.1038/nrurol.2016.225] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Carceles-Cordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yujin Hoshida
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew D Galsky
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
29
|
Haugas M, Tikker L, Achim K, Salminen M, Partanen J. Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development 2016; 143:4495-4508. [PMID: 27789623 DOI: 10.1242/dev.136614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Serotonergic and glutamatergic neurons of the dorsal raphe regulate many brain functions and are important for mental health. Their functional diversity is based on molecularly distinct subtypes; however, the development of this heterogeneity is poorly understood. We show that the ventral neuroepithelium of mouse anterior hindbrain is divided into specific subdomains giving rise to serotonergic neurons as well as other types of neurons and glia. The newly born serotonergic precursors are segregated into distinct subpopulations expressing vesicular glutamate transporter 3 (Vglut3) or serotonin transporter (Sert). These populations differ in their requirements for transcription factors Gata2 and Gata3, which are activated in the post-mitotic precursors. Gata2 operates upstream of Gata3 as a cell fate selector in both populations, whereas Gata3 is important for the differentiation of the Sert+ precursors and for the serotonergic identity of the Vglut3+ precursors. Similar to the serotonergic neurons, the Vglut3-expressing glutamatergic neurons, located in the central dorsal raphe, are derived from neural progenitors in the ventral hindbrain and express Pet1 Furthermore, both Gata2 and Gata3 are redundantly required for their differentiation. Our study demonstrates lineage relationships of the dorsal raphe neurons and suggests that functionally significant heterogeneity of these neurons is established early during their differentiation.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Kaia Achim
- EMBL Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, P.O. Box 66, Agnes Sjobergin katu 2, FIN00014-University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Vadodaria KC, Marchetto MC, Mertens J, Gage FH. Generating human serotonergic neurons in vitro: Methodological advances. Bioessays 2016; 38:1123-1129. [PMID: 27716980 DOI: 10.1002/bies.201600127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Technologies for deriving human neurons in vitro have transformed our ability to study cellular and molecular components of human neurotransmission. Three groups, including our own, have recently published methods for efficiently generating human serotonergic neurons in vitro. Remarkably, serotonergic neurons derived from each method robustly produce serotonin, express raphe genes, are electrically active, and respond to selective serotonin reuptake inhibitors in vitro. Two of the methods utilize transdifferentiation technology by overexpressing key serotonergic transcription factors. The third and most recent method involves differentiating induced pluripotent stem cells (iPSCs) to serotonergic neurons using developmental patterning cues. In this mini-review, we briefly describe the developmental programs governing serotonergic specification in vivo and how they have been harnessed to achieve serotonergic differentiation in vitro. We discuss the distinct and overlapping features of the recently published methodologies and their value in the context of in vitro disease modeling. Also see the video abstract here.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
31
|
Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci 2016; 51:50-72. [PMID: 27165448 PMCID: PMC4930157 DOI: 10.1016/j.ijdevneu.2016.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been a mainstay pharmacological treatment for women experiencing depression during pregnancy and postpartum for the past 25 years. SSRIs act via blockade of the presynaptic serotonin transporter and result in a transient increase in synaptic serotonin. Long-lasting changes in cellular function such as serotonergic transmission, neurogenesis, and epigenetics, are thought to underlie the therapeutic benefits of SSRIs. In recent years, though, growing evidence in clinical and preclinical settings indicate that offspring exposed to SSRIs in utero or as neonates exhibit long-lasting behavioral adaptions. Clinically, children exposed to SSRIs in early life exhibit increased internalizing behavior reduced social behavior, and increased risk for depression in adolescence. Similarly, rodents exposed to SSRIs perinatally exhibit increased traits of anxiety- or depression-like behavior. Furthermore, certain individuals appear to be more susceptible to early life SSRI exposure than others, suggesting that perinatal SSRI exposure may pose greater risks for negative outcome within certain populations. Although SSRIs trigger a number of intracellular processes that likely contribute to their therapeutic effects, early life antidepressant exposure during critical neurodevelopmental periods may elicit lasting negative effects in offspring. In this review, we cover the basic development and structure of the serotonin system, how the system is affected by early life SSRI exposure, and the behavioral outcomes of perinatal SSRI exposure in both clinical and preclinical settings. We review recent evidence indicating that perinatal SSRI exposure perturbs the developing limbic system, including altered serotonergic transmission, neurogenesis, and epigenetic processes in the hippocampus, which may contribute to behavioral domains (e.g., sociability, cognition, anxiety, and behavioral despair) that are affected by perinatal SSRI treatment. Identifying the molecular mechanisms that underlie the deleterious behavioral effects of perinatal SSRI exposure may highlight biological mechanisms in the etiology of mood disorders. Moreover, because recent studies suggest that certain individuals may be more susceptible to the negative consequences of early life SSRI exposure than others, understanding mechanisms that drive such susceptibility could lead to individualized treatment strategies for depressed women who are or plan to become pregnant.
Collapse
Affiliation(s)
| | - Sarah M Clinton
- Department of Psychiatry, University of Alabama-Birmingham, USA.
| |
Collapse
|
32
|
Arendt D, Tosches MA, Marlow H. From nerve net to nerve ring, nerve cord and brain--evolution of the nervous system. Nat Rev Neurosci 2016; 17:61-72. [PMID: 26675821 DOI: 10.1038/nrn.2015.15] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 699117 Heidelberg, Germany
| | - Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Heather Marlow
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
33
|
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) which are
involved in a variety of physiological and pathological processes. GATA1/2/3 are required
for differentiation of mesoderm and ectoderm-derived tissues, including the haematopoietic
and central nervous system. GATA4/5/6 are implicated in development and differentiation of
endoderm- and mesoderm-derived tissues such as induction of differentiation of embryonic
stem cells, cardiovascular embryogenesis and guidance of epithelial cell differentiation
in the adult.
Collapse
|
34
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
35
|
Generation of functional human serotonergic neurons from fibroblasts. Mol Psychiatry 2016; 21:49-61. [PMID: 26503761 DOI: 10.1038/mp.2015.161] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
The brain's serotonergic system centrally regulates several physiological processes and its dysfunction has been implicated in the pathophysiology of several neuropsychiatric disorders. While in the past our understanding of serotonergic neurotransmission has come mainly from mouse models, the development of pluripotent stem cell and induced fibroblast-to-neuron (iN) transdifferentiation technologies has revolutionized our ability to generate human neurons in vitro. Utilizing these techniques and a novel lentiviral reporter for serotonergic neurons, we identified and overexpressed key transcription factors to successfully generate human serotonergic neurons. We found that overexpressing the transcription factors NKX2.2, FEV, GATA2 and LMX1B in combination with ASCL1 and NGN2 directly and efficiently generated serotonergic neurons from human fibroblasts. Induced serotonergic neurons (iSNs) showed increased expression of specific serotonergic genes that are known to be expressed in raphe nuclei. iSNs displayed spontaneous action potentials, released serotonin in vitro and functionally responded to selective serotonin reuptake inhibitors (SSRIs). Here, we demonstrate the efficient generation of functional human serotonergic neurons from human fibroblasts as a novel tool for studying human serotonergic neurotransmission in health and disease.
Collapse
|
36
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
37
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
38
|
Johnson KD, Kong G, Gao X, Chang YI, Hewitt KJ, Sanalkumar R, Prathibha R, Ranheim EA, Dewey CN, Zhang J, Bresnick EH. Cis-regulatory mechanisms governing stem and progenitor cell transitions. SCIENCE ADVANCES 2015; 1:e1500503. [PMID: 26601269 PMCID: PMC4643771 DOI: 10.1126/sciadv.1500503] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/20/2015] [Indexed: 05/25/2023]
Abstract
Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (-77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples -77 function from proto-oncogene deregulation. The -77(-/-) mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The -77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5(-/-) embryos, hematopoietic stem cell genesis was unaffected in -77(-/-) embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes.
Collapse
Affiliation(s)
- Kirby D. Johnson
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Guangyao Kong
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Xin Gao
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Yuan-I Chang
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Kyle J. Hewitt
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Rajalekshmi Prathibha
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jing Zhang
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Emery H. Bresnick
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
39
|
Wyler SC, Donovan LJ, Yeager M, Deneris E. Pet-1 Controls Tetrahydrobiopterin Pathway and Slc22a3 Transporter Genes in Serotonin Neurons. ACS Chem Neurosci 2015; 6:1198-205. [PMID: 25642596 PMCID: PMC4504805 DOI: 10.1021/cn500331z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coordinated serotonin (5-HT) synthesis and reuptake depends on coexpression of Tph2, Aadc (Ddc), and Sert (Slc6a4) in brain 5-HT neurons. However, other gene products play critical roles in brain 5-HT synthesis and transport. For example, 5-HT synthesis depends on coexpression of genes encoding the enzymatic machinery necessary for the production and regeneration of tetrahydrobiopterin (BH4). In addition, the organic cation transporter 3 (Oct3, Slc22a3) functions as a low affinity, high capacity 5-HT reuptake protein in 5-HT neurons. The regulatory strategies controlling BH4 and Oct3 gene expression in 5-HT neurons have not been investigated. Our previous studies showed that Pet-1 is a critical transcription factor in a regulatory program that controls coexpression of Tph2, Aadc, and Sert in 5-HT neurons. Here, we investigate whether a common regulatory program determines global 5-HT synthesis and reuptake through coordinate transcriptional control. We show with comparative microarray profiling of flow sorted YFP(+) Pet-1(-/-) and wild type 5-HT neurons that Pet-1 regulates BH4 pathway genes, Gch1, Gchfr, and Qdpr. Thus, Pet-1 coordinates expression of all rate-limiting enzymatic (Tph2, Gch1) and post-translational regulatory (Gchfr) steps that determine the level of mammalian brain 5-HT synthesis. Moreover, Pet-1 globally controls acquisition of 5-HT reuptake in dorsal raphe 5-HT neurons by coordinating expression of Slc6a4 and Slc22a3. In situ hybridizations revealed that virtually all 5-HT neurons in the dorsal raphe depend on Pet-1 for Slc22a3 expression; similar results were obtained for Htr1a. Therefore, few if any 5-HT neurons in the dorsal raphe are resistant to loss of Pet-1 for their full neuron-type identity.
Collapse
Affiliation(s)
| | | | - Mia Yeager
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| | - Evan Deneris
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| |
Collapse
|
40
|
Abstract
The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types.
Collapse
|
41
|
Ohkawara T, Katsuyama T, Ida-Eto M, Narita N, Narita M. Maternal viral infection during pregnancy impairs development of fetal serotonergic neurons. Brain Dev 2015; 37:88-93. [PMID: 24780604 DOI: 10.1016/j.braindev.2014.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maternal viral infection during pregnancy induces morphological abnormalities in the fetus and may cause emotional and psychological problems in offspring through unknown mechanisms. We have previously shown that prenatal exposure of rats to chemicals such as thalidomide causes an autistic-like phenotype in offspring, indicating that prenatal events affecting serotonergic development may cause developmental disorder. METHODS We investigated whether prenatal viral infection altered the expression of neurotransmitters involved in the emotional or psychological status of offspring. We here took advantage of the polyriboinosinic:polyribocytidylic acid (poly I:C) system, the synthetic double-stranded RNA, which is often used in animal models of viral infection. RESULTS Ten mg/kg of poly I:C was intraperitoneally injected on gestational day (GD) 9 and counted the numbers of serotonin-immunopositive cells on GD15 using flat whole-mount preparation method, resulting 11.1% of increase in the number of serotonergic neurons in poly I:C group. Furthermore, there was a significant decrease in hippocampal serotonin content in offspring by postnatal day 50 following poly I:C administration by high-performance liquid chromatography. DISCUSSION AND CONCLUSION Since serotonin is known to link with behavior and emotion after birth, these results suggest that maternal viral infection might cause, in addition to morphological abnormalities, serotonin-related pathogenesis such as neurodevelopmental disorders including autism spectrum disorders.
Collapse
Affiliation(s)
- Takeshi Ohkawara
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of Medicine, Mie, Japan.
| | - Takashi Katsuyama
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of Medicine, Mie, Japan
| | - Michiru Ida-Eto
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of Medicine, Mie, Japan
| | - Naoko Narita
- Department of Education, Bunkyo University, Saitama, Japan
| | - Masaaki Narita
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of Medicine, Mie, Japan
| |
Collapse
|
42
|
Lahti L, Haugas M, Tikker L, Airavaara M, Voutilainen MH, Anttila J, Kumar S, Inkinen C, Salminen M, Partanen J. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development 2015; 143:516-29. [DOI: 10.1242/dev.129957] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared to the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where postmitotic selector genes Tal1, Gata2, and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Merja H. Voutilainen
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Jenni Anttila
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Suman Kumar
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Caisa Inkinen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Marjo Salminen
- Department of Veterinary Biosciences, Agnes Sjöbergin katu 2, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Francius C, Ravassard P, Hidalgo-Figueroa M, Mallet J, Clotman F, Nardelli J. Genetic dissection of Gata2 selective functions during specification of V2 interneurons in the developing spinal cord. Dev Neurobiol 2014; 75:721-37. [PMID: 25369423 DOI: 10.1002/dneu.22244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022]
Abstract
Motor activities are controlled by neural networks in the ventral spinal cord and consist in motor neurons and a set of distinct cardinal classes of spinal interneurons. These interneurons arise from distinct progenitor domains (p0-p3) delineated according to a transcriptional code. Neural progenitors of each domain express a unique combination of transcription factors (TFs) that largely contribute to determine the fate of four classes of interneurons (V0-V3) and motor neurons. In p2 domain, at least four subtypes of interneurons namely V2a, V2b, V2c, and Pax6(+) V2 are generated. Although genetic and molecular mechanisms that specify V2a and V2b are dependent on complex interplay between several TFs including Nkx6.1, Irx3, Gata2, Foxn4, and Ascl1, and signaling pathways such as Notch and TGF-β, the sequence order of the activation of these regulators and their respective contribution are not completely elucidated yet. Here, we provide evidence by loss- or gain-of-function experiments that Gata2 is necessary for the normal development of both V2a and V2b neurons. We demonstrate that Nkx6.1 and Dll4 positively regulate the activation of Gata2 and Foxn4 in p2 progenitors. Gata2 also participates in the maintenance of p2 domain by repressing motor neuron differentiation and exerting a feedback control on patterning genes. Finally, Gata2 promotes the selective activation of V2b program at the expense of V2a fate. Thus our results provide new insights on the hierarchy and complex interactions between regulators of V2 genetic program.
Collapse
Affiliation(s)
- Cédric Francius
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Philippe Ravassard
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jacques Mallet
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - Frédéric Clotman
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jeannette Nardelli
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Inserm U676, Hôpital Robert Debré, 48 bd Serurier, F-75019, Paris, France
| |
Collapse
|
44
|
Peng H, Ke XX, Hu R, Yang L, Cui H, Wei Y. Essential role of GATA3 in regulation of differentiation and cell proliferation in SK-N-SH neuroblastoma cells. Mol Med Rep 2014; 11:881-6. [PMID: 25351211 PMCID: PMC4262502 DOI: 10.3892/mmr.2014.2809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is a common solid malignant tumor of the sympathetic nervous system, which contributes to 15% of cancer‑related mortality in children. The differentiation status of neuroblastoma is correlated with clinical outcome, and the induction of differentiation thus constitutes a therapeutic approach in this disease. However, the molecular mechanisms that control the differentiation of neuroblastoma remain poorly understood. The present study aimed to define whether GATA3 is involved in the differentiation of neuroblastoma cells. The results demonstrated that GATA3 is a prognostic marker for survival in patients with neuroblastoma, and that high‑level GATA3 expression is associated with increased self‑renewal and proliferation of neuroblastoma cells. Retinoic acid treatment led to GATA3 downregulation together with neuronal differentiation, suppression of cell proliferation and inhibition of tumorigenecity in neuroblastoma cells. These findings suggest that GATA3 is a key regulator of neuroblastoma differentiation, and provide a novel potential therapeutic strategy for the induction of neuroblastoma differentiation.
Collapse
Affiliation(s)
- Hongwei Peng
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Yuquan Wei
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
45
|
Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats. PLoS One 2014; 9:e109253. [PMID: 25340772 PMCID: PMC4207676 DOI: 10.1371/journal.pone.0109253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2) are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2) in the dentate gyrus (DG) of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.
Collapse
|
46
|
Liu J, Wang X, Li J, Wang H, Wei G, Yan J. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain. PLoS Comput Biol 2014; 10:e1003884. [PMID: 25299227 PMCID: PMC4191885 DOI: 10.1371/journal.pcbi.1003884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1− and Shh−Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh−Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1− domain and down-regulates the genes characteristic of the Shh−Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain. Recent large-scale projects of high-throughput in situ hybridization (ISH) have generated a wealth of spatiotemporal information on gene expression patterns in the early mouse brain. We have developed a computational approach that combines publicly available high-throughput ISH data with our own experimental data to investigate gene regulation, involving signal molecules and transcription factors (TFs), during early brain development. The analysis indicates that two key TFs, Foxa2 and Gata3, play antagonizing roles in the formation of two mutually exclusive domains established by the Sonic hedgehog signaling pathway in the developing mouse brain. Further ChIP-seq and RNA-seq experiments support this hypothesis and have identified novel target genes of Gata3, including the axon guidance regulators Slit2 and Slit3 as well as three neurotransmitter-associated genes, Slc18a1, Th and Qdpr. The findings have allowed us to reconstruct the gene regulatory network brought into play by the Sonic hedgehog pathway that mediates early mouse brain development.
Collapse
Affiliation(s)
- Jinhua Liu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelong Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
47
|
Yue F, Zhou Z, Wang L, Wang M, Song L. A conserved zinc finger transcription factor GATA involving in the hemocyte production of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2014; 39:125-135. [PMID: 24835782 DOI: 10.1016/j.fsi.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
GATA are a family of transcription factors characterized by their ability to bind to the DNA sequence "GATA", and involved in a myriad of cellular processes. GATA1/2/3 factors are known as the hematopoietic GATA factors, which play dominated roles in regulating hematopoiesis. In the present study, a gene encoding GATA transcription factor (designed as CfGATA) was cloned and characterized from the scallop Chlamys farreri. The full-length cDNA of CfGATA is of 2058 bp encoding a predicted polypeptide of 457 amino acids with two conserved zinc finger domains, which shared high similarity with other reported GATA1/2/3 proteins. The mRNA transcripts of CfGATA showed higher expression in gills, hepatopancreas, hemocytes and heart, and the CfGATA protein expressed in HEK293 cells was found to be localized specifically in the nuclei. The recombinant CfGATA protein (rCfGATA) exhibited strong ability to bind specific WGATAR DNA sequence by electrophoretic mobility shift assay in vitro. After CfGATA gene was silenced by RNA interference, the hemocyte renewal rate and circulating total hemocyte count (THC) decreased significantly, which was 7.85-fold and 19.46-fold lower than that of PBS control, respectively (P < 0.05). After LPS stimulation, the expression level of CfGATA mRNA decreased significantly in the hemocytes of PBS or EGFP dsRNA treated scallops, which was accompanied by the increase of hemocyte renewal rate and the reduced circulating THC at 24 h. In contrast, the hemocyte renewal rate and circulating THC did not change significantly in CfGATA gene interfered scallops after LPS stimulation. These results suggested that CfGATA, as a conserved GATA1/2/3 transcription factor, plays essential roles in regulating hemocyte production of scallop.
Collapse
Affiliation(s)
- Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China.
| |
Collapse
|
48
|
Kim JY, Kim A, Zhao ZQ, Liu XY, Chen ZF. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem. Mol Brain 2014; 7:48. [PMID: 24972638 PMCID: PMC4086287 DOI: 10.1186/1756-6606-7-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023] Open
Abstract
Background Despite the importance of 5-HT1A as a major target for the action of several anxiolytics/antidepressant drugs, little is known about its regulation in central serotonin (5-hydroxytryptamine, 5-HT) neurons. Results We report that expression of 5-HT1A and the transcription factor Pet1 was impaired in the rostral raphe nuclei of mice lacking tryptophan hydroxylase 2 (Tph2) after birth. The downregulation of Pet1 was recapitulated in 5-Ht1a-/- mice. Using an explant culture system, we show that reduction of Pet1 and 5-HT1A was rescued in Tph2-/- brainstem by exogenous 5-HT. In contrast, 5-HT failed to rescue reduced expression of Pet1 in 5-Ht1a-/- brainstem explant culture. Conclusions These results suggest a causal relationship between 5-HT1A and Pet1, and reveal a potential mechanism by which 5-HT1A-Pet1 autoregulatory loop is maintained by 5-HT in a spatiotemporal-specific manner during postnatal development. Our results are relevant to understanding the pathophysiology of certain psychiatric and developmental disorders.
Collapse
Affiliation(s)
| | | | | | | | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St, Louis 63110, USA.
| |
Collapse
|
49
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
50
|
Wurst W, Prakash N. Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. J Mol Cell Biol 2013; 6:34-41. [DOI: 10.1093/jmcb/mjt046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|