1
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Ishii C, Nakano H, Higashiseto R, Ooki Y, Umemura M, Takahashi S, Takahashi Y. Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice. Cell Tissue Res 2024; 396:85-94. [PMID: 38388750 DOI: 10.1007/s00441-024-03871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Activating transcription factor 5 (ATF5) is a transcription factor that belongs to the cAMP-response element-binding protein/ATF family and is essential for the differentiation and survival of sensory neurons in mouse olfactory organs. However, transcriptional target genes for ATF5 have yet to be identified. In the present study, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments were performed to verify ATF5 target genes in the main olfactory epithelium and vomeronasal organ in the postnatal pups. ChIP-qPCR was conducted using hemagglutinin (HA)-tagged ATF5 knock-in olfactory organs. The results obtained demonstrated that ATF5-HA fusion proteins bound to the CCAAT/enhancer-binding protein-ATF response element (CARE) site in the enhancer region of nescient helix-loop-helix 1 (Nhlh1), a transcription factor expressed in differentiating olfactory and vomeronasal sensory neurons. Nhlh1 mRNA expression was downregulated in ATF5-deficient (ATF5-/-) olfactory organs. The LIM/homeobox protein transcription factor Lhx2 co-localized with ATF5 in the nuclei of olfactory and vomeronasal sensory neurons and bound to the homeodomain site proximal to the CARE site in the Nhlh1 gene. The CARE region of the Nhlh1 gene was enriched by the active enhancer marker, acetyl-histone H3 (Lys27). The present study identified Nhlh1 as a novel target gene for ATF5 in murine olfactory organs. ATF5 may upregulate Nhlh1 expression in concert with Lhx2, thereby promoting the differentiation of olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Chiharu Ishii
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruo Nakano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Riko Higashiseto
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yusaku Ooki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Dynamic enhancer landscapes in human craniofacial development. Nat Commun 2024; 15:2030. [PMID: 38448444 PMCID: PMC10917818 DOI: 10.1038/s41467-024-46396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, 3010, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Matthew J Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Octant Inc., Emeryville, CA, 94608, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
4
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Cell Type- and Tissue-specific Enhancers in Craniofacial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546603. [PMID: 37425964 PMCID: PMC10327103 DOI: 10.1101/2023.06.26.546603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Laura E. Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Cailyn H. Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304
| | - Matthew J. Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA 94110
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Octant Inc., Emeryville, CA 94608, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
5
|
Razmara P, Pyle GG. Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:18-31. [PMID: 36525054 DOI: 10.1007/s00244-022-00969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Olfactory mucosa is well known for its lifelong ability for regeneration. Regeneration of neurons and regrowth of severed axons are the most common neural repair mechanisms in olfactory mucosa. Nonetheless, exposure to neurotoxic contaminants, such as copper nanoparticles (CuNPs) and copper ions (Cu2+), may alter the reparative capacity of olfactory mucosa. Here, using RNA-sequencing, we investigated the molecular basis of neural repair mechanisms that were affected by CuNPs and Cu2+ in rainbow trout olfactory mucosa. The transcript profile of olfactory mucosa suggested that regeneration of neurons was inhibited by CuNPs. Exposure to CuNPs reduced the transcript abundances of pro-inflammatory proteins which are required to initiate neuroregeneration. Moreover, the transcript of genes encoding regeneration promoters, including canonical Wnt/β-catenin signaling proteins and developmental transcription factors, were downregulated in the CuNP-treated fish. The mRNA levels of genes regulating axonal regrowth, including the growth-promoting signals secreted from olfactory ensheathing cells, were mainly increased in the CuNP treatment. However, the reduced transcript abundances of a few cell adhesion molecules and neural polarity genes may restrict axonogenesis in the CuNP-exposed olfactory mucosa. In the Cu2+-treated olfactory mucosa, both neural repair strategies were initiated at the transcript level. The stimulation of repair mechanisms can lead to the recovery of Cu2+-induced olfactory dysfunction. These results indicated CuNPs and Cu2+ differentially affected the neural repair mechanism in olfactory mucosa. Exposure to CuNP had greater effects on the expression of genes involved in olfactory repair mechanisms relative to Cu2+ and dysregulated the transcripts associated with stem cell proliferation and neural reconstitution.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
7
|
Peng ZL, Wu W, Tang CY, Ren JL, Jiang D, Li JT. Transcriptome Analysis Reveals Olfactory System Expression Characteristics of Aquatic Snakes. Front Genet 2022; 13:825974. [PMID: 35154285 PMCID: PMC8829814 DOI: 10.3389/fgene.2022.825974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.
Collapse
Affiliation(s)
- Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, Myanmar
- *Correspondence: Jia-Tang Li,
| |
Collapse
|
8
|
Jafari S, Henriksson J, Yan H, Alenius M. Stress and odorant receptor feedback during a critical period after hatching regulates olfactory sensory neuron differentiation in Drosophila. PLoS Biol 2021; 19:e3001101. [PMID: 33793547 PMCID: PMC8043390 DOI: 10.1371/journal.pbio.3001101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/13/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we reveal that the regulation of Drosophila odorant receptor (OR) expression during the pupal stage is permissive and imprecise. We found that directly after hatching an OR feedback mechanism both directs and refines OR expression. We demonstrate that, as in mice, dLsd1 and Su(var)3-9 balance heterochromatin formation to direct OR expression. We show that the expressed OR induces dLsd1 and Su(var)3-9 expression, linking OR level and possibly function to OR expression. OR expression refinement shows a restricted duration, suggesting that a gene regulatory critical period brings olfactory sensory neuron differentiation to an end. Consistent with a change in differentiation, stress during the critical period represses dLsd1 and Su(var)3-9 expression and makes the early permissive OR expression permanent. This induced permissive gene regulatory state makes OR expression resilient to stress later in life. Hence, during a critical period OR feedback, similar to in mouse OR selection, defines adult OR expression in Drosophila.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Mattias Alenius
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
10
|
Urun FR, Moore AW. Visualizing Cell Cycle Phase Organization and Control During Neural Lineage Elaboration. Cells 2020; 9:E2112. [PMID: 32957483 PMCID: PMC7565168 DOI: 10.3390/cells9092112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
In neural precursors, cell cycle regulators simultaneously control both progression through the cell cycle and the probability of a cell fate switch. Precursors act in lineages, where they transition through a series of cell types, each of which has a unique molecular identity and cellular behavior. Thus, investigating links between cell cycle and cell fate control requires simultaneous identification of precursor type and cell cycle phase, as well as an ability to read out additional regulatory factor expression or activity. We use a combined FUCCI-EdU labelling protocol to do this, and then applied it to the embryonic olfactory neural lineage, in which the spatial position of a cell correlates with its precursor identity. Using this integrated model, we find the CDKi p27KIP1 has different regulation relative to cell cycle phase in neural stem cells versus intermediate precursors. In addition, Hes1, which is the principle transcriptional driver of neural stem cell self-renewal, surprisingly does not regulate p27KIP1 in this cell type. Rather, Hes1 indirectly represses p27KIP1 levels in the intermediate precursor cells downstream in the lineage. Overall, the experimental model described here enables investigation of cell cycle and cell fate control linkage from a single precursor through to a lineage systems level.
Collapse
Affiliation(s)
- Fatma Rabia Urun
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| |
Collapse
|
11
|
Wang YZ, Fan H, Ji Y, Reynolds K, Gu R, Gan Q, Yamagami T, Zhao T, Hamad S, Bizen N, Takebayashi H, Chen Y, Wu S, Pleasure D, Lam K, Zhou CJ. Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cell Mol Life Sci 2019; 77:3597-3609. [PMID: 31758234 DOI: 10.1007/s00018-019-03385-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/20/2023]
Abstract
The bHLH transcription factor Olig2 is required for sequential cell fate determination of both motor neurons and oligodendrocytes and for progenitor proliferation in the central nervous system. However, the role of Olig2 in peripheral sensory neurogenesis remains unknown. We report that Olig2 is transiently expressed in the newly differentiated olfactory sensory neurons (OSNs) and is down-regulated in the mature OSNs in mice from early gestation to adulthood. Genetic fate mapping demonstrates that Olig2-expressing cells solely give rise to OSNs in the peripheral olfactory system. Olig2 depletion does not affect the proliferation of peripheral olfactory progenitors and the fate determination of OSNs, sustentacular cells, and the olfactory ensheathing cells. However, the terminal differentiation and maturation of OSNs are compromised in either Olig2 single or Olig1/Olig2 double knockout mice, associated with significantly diminished expression of multiple OSN maturation and odorant signaling genes, including Omp, Gnal, Adcy3, and Olfr15. We further demonstrate that Olig2 binds to the E-box in the Omp promoter region to regulate its expression. Taken together, our results reveal a distinctly novel function of Olig2 in the periphery nervous system to regulate the terminal differentiation and maturation of olfactory sensory neurons.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Hong Fan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yu Ji
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Kurt Reynolds
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Ran Gu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Qini Gan
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Takashi Yamagami
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Tianyu Zhao
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Salaheddin Hamad
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA. .,Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, 2425 Stockton Blvd., Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Casadei E, Tacchi L, Lickwar CR, Espenschied ST, Davison JM, Muñoz P, Rawls JF, Salinas I. Commensal Bacteria Regulate Gene Expression and Differentiation in Vertebrate Olfactory Systems Through Transcription Factor REST. Chem Senses 2019; 44:615-630. [PMID: 31403159 PMCID: PMC6796929 DOI: 10.1093/chemse/bjz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.
Collapse
Affiliation(s)
- Elisa Casadei
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Pilar Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
13
|
Palaniappan TK, Slekiene L, Gunhaga L, Patthey C. Extensive apoptosis during the formation of the terminal nerve ganglion by olfactory placode-derived cells with distinct molecular markers. Differentiation 2019; 110:8-16. [PMID: 31539705 DOI: 10.1016/j.diff.2019.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The terminal nerve ganglion (TNG) is a well-known structure of the peripheral nervous system in cartilaginous and teleost fishes. It derives from the olfactory placode during embryonic development. While the differentiation and migration of gonadotropin releasing hormone (GnRH)-expressing neurons from the olfactory placode has been well documented, the TNG has been neglected in birds and mammals, and its development is less well described. Here we describe the formation of a ganglion-like structure from migratory olfactory placodal cells in chicken. The TNG is surrounded by neural crest cells, but in contrast to other cranial sensory ganglia, we observed no neural crest corridor, and olfactory unsheathing cells appear only after the onset of neuronal migration. We identified Isl1 and Lhx2 as two transcription factors that label neuronal subpopulations in the forming TNG, distinct from GnRH1+ cells, thereby revealing a diversity of cell types during the formation of the TNG. We also provide evidence for extensive apoptosis in the terminal nerve ganglion shortly after its formation, but not in other cranial sensory ganglia. Moreover, at later stages placode-derived neurons expressing GnRH1, Isl1 and/or Lhx2 become incorporated in the telencephalon. The integration of TNG neurons into the telencephalon together with the earlier widespread apoptosis in the TNG might be an explanation why the TNG in mammals and birds is much smaller compared to other vertebrates.
Collapse
Affiliation(s)
| | - Lina Slekiene
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
14
|
LIM homeobox 2 promotes interaction between human iPS-derived hepatic progenitors and iPS-derived hepatic stellate-like cells. Sci Rep 2019; 9:2072. [PMID: 30765795 PMCID: PMC6376133 DOI: 10.1038/s41598-018-37430-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 02/01/2023] Open
Abstract
Human induced pluripotent stem (iPS) cells can differentiate into hepatocyte lineages, although the phenotype of the differentiated cells is immature compared to adult hepatocytes. Improvement of cell-cell interactions between epithelium and mesenchyme is a potential approach to address this phenotype issue. In this study, we developed a model system for improving interactions between human iPS-derived hepatic progenitor cells (iPS-HPCs) and human iPS-derived hepatic stellate cell-like cells (iPS-HSCs). The phenotype of iPS-HSCs, including gene and protein expression profiles and vitamin A storage, resembled that of hepatic stellate cells. Direct co-culture of iPS-HSCs with iPS-HPCs significantly improved hepatocytic maturation in iPS-HPCs, such as their capacity for albumin production. Next, we generated iPS cell lines overexpressing LIM homeobox 2 (LHX2), which suppresses myofibroblastic changes in HSCs in mice. Hepatocytic maturation in iPS-HPCs was significantly increased in direct co-culture with iPS-HSCs overexpressing LHX2, but not in co-culture with a human hepatic stellate cell line (LX-2) overexpressing LHX2. LHX2 regulated the expression of extracellular matrices, such as laminin and collagen, in iPS-HSCs. In conclusion, this study provides an evidence that LHX2 upregulation in iPS-HSCs promotes hepatocytic maturation of iPS-HPCs, and indicates that genetically modified iPS-HSCs will be of value for research into cell-cell interactions.
Collapse
|
15
|
Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 2019; 56:97-105. [PMID: 30665084 DOI: 10.1016/j.conb.2018.12.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/21/2022]
Abstract
How do post-mitotic neurons acquire and maintain their terminal identity? Genetic mutant analysis in the nematode Caenorhabditis elegans has revealed common molecular programs that control neuronal identity. Neuron type-specific combinations of transcription factors, called terminal selectors, act as master regulatory factors to initiate and maintain terminal identity programs through direct regulation of neuron type-specific effector genes. We will provide here an update on recent studies that solidify the terminal selector concept in worms, flies and chordates. We will also describe how the terminal selector concept has been expanded by recent work in C. elegans to explain neuronal subtype diversification and plasticity of neuronal identity.
Collapse
|
16
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
17
|
Abstract
A hundred years after Lhx2 ortholog apterous was identified as a critical regulator of wing development in Drosophila, LIM-HD gene family members have proved to be versatile and powerful components of the molecular machinery that executes the blueprint of embryogenesis across vertebrate and invertebrate species. Here, we focus on the spatio-temporally varied functions of LIM-homeodomain transcription factor LHX2 in the developing mouse forebrain. Right from its earliest known role in telencephalic and eye field patterning, to the control of the neuron-glia cell fate switch, and the regulation of axon pathfinding and dendritic arborization in late embryonic stages, LHX2 has been identified as a fundamental, temporally dynamic, always necessary, and often sufficient factor in a range of critical developmental phenomena. While Lhx2 mutant phenotypes have been characterized in detail in multiple brain structures, only recently have we advanced in our understanding of the molecular mechanisms by which this factor acts. Common themes emerge from how this multifunctional molecule controls a range of developmental steps in distinct forebrain structures. Examining these shared features, and noting unique aspects of LHX2 function is likely to inform our understanding of how a single factor can bring about a diversity of effects and play central and critical roles across systems and stages. The parallels in LHX2 and APTEROUS functions, and the protein complexes they participate in, offer insights into evolutionary strategies that conserve tool kits and deploy them to play new, yet familiar roles in species separated by hundreds of millions of years.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
18
|
Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A, Wagner A, Cole MB, Flores Q, Choi YG, Yosef N, Purdom E, Dudoit S, Risso D, Ngai J. Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution. Cell Stem Cell 2017; 20:817-830.e8. [PMID: 28506465 PMCID: PMC5484588 DOI: 10.1016/j.stem.2017.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
Abstract
A detailed understanding of the paths that stem cells traverse to generate mature progeny is vital for elucidating the mechanisms governing cell fate decisions and tissue homeostasis. Adult stem cells maintain and regenerate multiple mature cell lineages in the olfactory epithelium. Here we integrate single-cell RNA sequencing and robust statistical analyses with in vivo lineage tracing to define a detailed map of the postnatal olfactory epithelium, revealing cell fate potentials and branchpoints in olfactory stem cell lineage trajectories. Olfactory stem cells produce support cells via direct fate conversion in the absence of cell division, and their multipotency at the population level reflects collective unipotent cell fate decisions by single stem cells. We further demonstrate that Wnt signaling regulates stem cell fate by promoting neuronal fate choices. This integrated approach reveals the mechanisms guiding olfactory lineage trajectories and provides a model for deconstructing similar hierarchies in other stem cell niches.
Collapse
Affiliation(s)
- Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Levi Gadye
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kelly N Street
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Ariane Baudhuin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Quetzal Flores
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yoon Gi Choi
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Sandrine Dudoit
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Davide Risso
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
20
|
Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons. eNeuro 2016; 3:eN-NWR-0230-16. [PMID: 27822500 PMCID: PMC5086798 DOI: 10.1523/eneuro.0230-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression.
Collapse
|
21
|
Expression patterns of homeobox genes in the mouse vomeronasal organ at postnatal stages. Gene Expr Patterns 2016; 21:69-80. [PMID: 27521061 DOI: 10.1016/j.gep.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
Abstract
Homeodomain proteins are encoded by homeobox genes and regulate development and differentiation in many neuronal systems. The mouse vomeronasal organ (VNO) generates in situ mature chemosensory neurons from stem cells. The roles of homeodomain proteins in neuronal differentiation in the VNO are poorly understood. Here we have characterized the expression patterns of 28 homeobox genes in the VNO of C57BL/6 mice at postnatal stages using multicolor fluorescent in situ hybridization. We identified 11 homeobox genes (Dlx3, Dlx4, Emx2, Lhx2, Meis1, Pbx3, Pknox2, Pou6f1, Tshz2, Zhx1, Zhx3) that were expressed exclusively in neurons; 4 homeobox genes (Pax6, Six1, Tgif1, Zfhx3) that were expressed in all non-neuronal cell populations, with Pax6, Six1 and Tgif1 also expressed in some neuronal progenitors and precursors; 12 homeobox genes (Adnp, Cux1, Dlx5, Dlx6, Meis2, Pbx2, Pknox1, Pou2f1, Satb1, Tshz1, Tshz3, Zhx2) with expression in both neuronal and non-neuronal cell populations; and one homeobox gene (Hopx) that was exclusively expressed in the non-sensory epithelium. We studied further in detail the expression of Emx2, Lhx2, Meis1, and Meis2. We found that expression of Emx2 and Lhx2 initiated between neuronal progenitor and neuronal precursor stages. As far as the sensory neurons of the VNO are concerned, Meis1 and Meis2 were only expressed in the apical layer, together with Gnai2, but not in the basal layer.
Collapse
|
22
|
Im S, Moon C. Transcriptional regulatory network during development in the olfactory epithelium. BMB Rep 2016; 48:599-608. [PMID: 26303973 PMCID: PMC4911201 DOI: 10.5483/bmbrep.2015.48.11.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- SeungYeong Im
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
23
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Kim S, Zhao Y, Lee JM, Kim WR, Gorivodsky M, Westphal H, Geum D. Ldb1 Is Essential for the Development of Isthmic Organizer and Midbrain Dopaminergic Neurons. Stem Cells Dev 2016; 25:986-94. [PMID: 27171818 DOI: 10.1089/scd.2015.0307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LIM domain-binding protein 1 (Ldb1) is a nuclear cofactor that interacts with LIM homeodomain proteins to form multiprotein complexes that are important for transcription regulation. Ldb1 has been shown to play essential roles in various processes during mouse embryogenesis. To determine the role of Ldb1 in mid- and hindbrain development, we have generated a conditional mutant with a specific deletion of the Ldb1 in the Engrailed-1-expressing region of the developing mid- and hindbrain. Our study showed that the deletion impaired the expression of signaling molecules, such as fibroblast growth factor 8 (FGF8) and Wnt1, in the isthmic organizer and the expression of Shh in the ventral midbrain. The midbrain and the cerebellum were severely reduced in size, and the midbrain dopaminergic (mDA) neurons were missing in the mutant. These defects are identical to the phenotype that has been observed previously in mice with a deletion of the LIM homeodomain gene Lmx1b. Our results thus provide genetic evidence supporting that Ldb1 and Lmx1b function cooperatively to regulate mid- and hindbrain development. In addition, we found that mouse embryonic stem cells lacking Ldb1 failed to generate several types of differentiated neurons, including the mDA neurons, serotonergic neurons, cholinergic neurons, and olfactory bulb neurons, indicating an essential cell-autonomous role for Ldb1 in the development of these neurons.
Collapse
Affiliation(s)
- Soojin Kim
- 1 Department of Biomedical Sciences, Korea University Medical School , Seoul, South Korea
| | - Yangu Zhao
- 2 Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Ja-Myong Lee
- 1 Department of Biomedical Sciences, Korea University Medical School , Seoul, South Korea
| | - Woon Ryoung Kim
- 1 Department of Biomedical Sciences, Korea University Medical School , Seoul, South Korea
| | - Marat Gorivodsky
- 2 Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Heiner Westphal
- 2 Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Dongho Geum
- 1 Department of Biomedical Sciences, Korea University Medical School , Seoul, South Korea
| |
Collapse
|
25
|
Liu Y, Giannopoulou EG, Wen D, Falciatori I, Elemento O, Allis CD, Rafii S, Seandel M. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells. Nat Commun 2016; 7:11275. [PMID: 27117588 PMCID: PMC4853422 DOI: 10.1038/ncomms11275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022] Open
Abstract
Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. Spermatogonial stem cells (SSCs) spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here, the authors reveal the dynamics of bivalent histone H3-lysine4 and -lysine27 methylation signatures at somatic gene promoters in SSCs and ESC-like promoter chromatin states in MASCs.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA.,Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA
| | - Eugenia G Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York 11201, USA.,Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ilaria Falciatori
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | - C David Allis
- Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA
| | - Shahin Rafii
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
26
|
Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A, Horvath A, Maynard TM, Moody SA, LaMantia AS. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev Biol 2016; 415:228-241. [PMID: 26988119 DOI: 10.1016/j.ydbio.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023]
Abstract
We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.
Collapse
Affiliation(s)
- Beverly A Karpinski
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Corey A Bryan
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Elizabeth M Paronett
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Jennifer L Baker
- Center for the Advanced Study of Human Paleobiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Alejandra Fernandez
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anthony-S LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
27
|
Calfún C, Domínguez C, Pérez-Acle T, Whitlock KE. Changes in Olfactory Receptor Expression Are Correlated With Odor Exposure During Early Development in the zebrafish (Danio rerio). Chem Senses 2016; 41:301-12. [PMID: 26892307 DOI: 10.1093/chemse/bjw002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to βPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in βPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or βPEA.
Collapse
Affiliation(s)
- Cristian Calfún
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2360102, Chile
| | - Calixto Domínguez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago 7750000, Chile and
| | - Tomás Pérez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Computational Biology Lab, Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago 7750000, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2360102, Chile,
| |
Collapse
|
28
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
29
|
Abstract
The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| |
Collapse
|
30
|
Jafari S, Alenius M. Cis-regulatory mechanisms for robust olfactory sensory neuron class-restricted odorant receptor gene expression in Drosophila. PLoS Genet 2015; 11:e1005051. [PMID: 25760344 PMCID: PMC4356613 DOI: 10.1371/journal.pgen.1005051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022] Open
Abstract
Odor perception requires that each olfactory sensory neuron (OSN) class continuously express a single odorant receptor (OR) regardless of changes in the environment. However, little is known about the control of the robust, class-specific OR expression involved. Here, we investigate the cis-regulatory mechanisms and components that generate robust and OSN class-specific OR expression in Drosophila. Our results demonstrate that the spatial restriction of expression to a single OSN class is directed by clusters of transcription-factor DNA binding motifs. Our dissection of motif clusters of differing complexity demonstrates that structural components such as motif overlap and motif order integrate transcription factor combinations and chromatin status to form a spatially restricted pattern. We further demonstrate that changes in metabolism or temperature perturb the function of complex clusters. We show that the cooperative regulation between motifs around and within the cluster generates robust, class-specific OR expression. Our neurons can become over a hundred years old. Even if neurons are restructured and remodeled by their constant work of receiving, storing and sending information, they stay devoted to one single task and retain their identity for their whole life. How a neuron keeps its identity is not well understood. In the olfactory system, the identity of the olfactory sensory neuron (OSN) is a result of the expression of a single odorant receptor (OR) from a large receptor gene repertoire in the genome. Neurons that share an expressed receptor make a functional class. Here, we identify clusters of transcription factor binding motifs to be the smallest unit that drive expression in a single olfactory sensory neuron class. We further demonstrate that it is the structure of the cluster that determines the class specific expression. However, environmental stress, such as temperature changes or starvation, destabilizes the expression produced by the cluster. Our results demonstrate that stable expression is generated from redundant motifs outside the cluster and suggest that cooperative regulation generates robust expression of the genes that determine neuronal identity and function.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
31
|
Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 2015; 5:e527. [PMID: 25781226 PMCID: PMC4354342 DOI: 10.1038/tp.2014.141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/22/2014] [Accepted: 11/17/2014] [Indexed: 01/02/2023] Open
Abstract
The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic reprogramming.
Collapse
|
32
|
Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium. Int J Dev Neurosci 2014; 37:76-86. [PMID: 25003986 DOI: 10.1016/j.ijdevneu.2014.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023] Open
Abstract
Mechanisms that regulate cellular differentiation in developing embryos are maintained across multiple physiological systems, including the nervous system where neurons and glia are generated. The olfactory epithelium, which arises from the olfactory pit, is a stratified tissue in which the stepwise generation of neurons and support cells can easily be assessed and followed during embryogenesis and throughout adulthood. During olfactory epithelium morphogenesis, progenitor cells respond to factors that control their proliferation, survival, and differentiation in order to generate olfactory receptor neurons that detect odorants in the environment and glia-like sustentacular cells. The tight temporal regulation of expression of proneural genes in dividing progenitor cells, including Mash-1, Neurogenin-1, and NeuroD1, plays a central role in the production of olfactory receptor neurons. Multiple factors that either positively or negatively affect the generation of olfactory receptor neurons have been identified and shown to impinge on the transcriptional regulatory network in dividing progenitor cells. Several growth factors, such as FGF-8, act to promote neurogenesis by ensuring survival of progenitor cells that will give rise to olfactory receptor neurons. In contrast, other molecules, including members of the large TGF-β family of proteins, have negative impacts on neurogenesis by restricting progenitor cell proliferation and stalling their differentiation. Since recent reviews have focused on neurogenesis in the regenerating adult olfactory epithelium, this review describes neurogenesis at embryonic stages of olfactory epithelium development and summarizes our current understanding of how both cell intrinsic and extrinsic factors control this process.
Collapse
|
33
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
34
|
Wittmann W, Schimmang T, Gunhaga L. Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium. Dev Neurobiol 2014; 74:643-56. [PMID: 24376126 PMCID: PMC4237195 DOI: 10.1002/dneu.22162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/27/2013] [Accepted: 12/18/2013] [Indexed: 12/03/2022]
Abstract
N-myc belongs to the myc proto-oncogene family, which is
involved in numerous cellular processes such as proliferation, growth, apoptosis, and
differentiation. Conditional deletion of N-myc in the mouse nervous system
disrupted brain development, indicating that N-myc plays an essential role during
neural development. How the development of the olfactory epithelium and neurogenesis within are
affected by the loss of N-myc has, however, not been determined. To address these
issues, we examined an N-mycFoxg1Cre conditional mouse line, in which
N-myc is depleted in the olfactory epithelium. First changes in
N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis
in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a
complete lack of Hes5-positive progenitor cells, decreased proliferation, and
neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons
in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed
diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced
in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced
in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination
with smaller neurons might explain the morphological defects in the N-myc depleted
olfactory structures. Moreover, our results suggest an important role for N-myc in
regulating ongoing neurogenesis, in part by maintaining the Hes5-positive
progenitor pool. In summary, our results provide evidence that N-myc deficiency in
the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative
consequences at structural and cellular levels. © 2013 The Authors. Developmental
Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 643–656, 2014
Collapse
Affiliation(s)
- Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
35
|
Zhang F, Bhattacharya A, Nelson JC, Abe N, Gordon P, Lloret-Fernandez C, Maicas M, Flames N, Mann RS, Colón-Ramos DA, Hobert O. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types. Development 2013; 141:422-35. [PMID: 24353061 DOI: 10.1242/dev.099721] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.
Collapse
Affiliation(s)
- Feifan Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 2013; 23:2481-90. [PMID: 24268416 DOI: 10.1016/j.cub.2013.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yiping Wang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qian Wang
- The Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Institute for Brain Sciences, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM. Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J Neurosci 2013; 33:12197-207. [PMID: 23884928 PMCID: PMC3721834 DOI: 10.1523/jneurosci.1494-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
The LIM-Homeodomain transcription factor Lhx2 is an essential organizer of early eye development and is subsequently expressed in retinal progenitor cells (RPCs). To determine its requirement in RPCs, we performed a temporal series of conditional inactivations in mice with the early RPC driver Pax6 α-Cre and the tamoxifen-inducible Hes1(CreERT2) driver. Deletion of Lhx2 caused a significant reduction of the progenitor population and a corresponding increase in neurogenesis. Precursor fate choice correlated with the time of inactivation; early and late inactivation led to the overproduction of retinal ganglion cells (RGCs) and rod photoreceptors, respectively. In each case, however, the overproduction was selective, occurring at the expense of other cell types and indicating a role for Lhx2 in generating cell type diversity. RPCs that persisted in the absence of Lhx2 continued to generate RGC precursors beyond their normal production window, suggesting that Lhx2 facilitates a transition in competence state. These results identify Lhx2 as a key regulator of RPC properties that contribute to the ordered production of multiple cell types during retinal tissue formation.
Collapse
Affiliation(s)
- Patrick J. Gordon
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Interdepartmental Program in Neuroscience, and
| | - Sanghee Yun
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Anna M. Clark
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Edwin S. Monuki
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84132, and
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Department of Neurobiology and Anatomy
| |
Collapse
|
38
|
Nickell MD, Breheny P, Stromberg AJ, McClintock TS. Genomics of mature and immature olfactory sensory neurons. J Comp Neurol 2013; 520:2608-29. [PMID: 22252456 DOI: 10.1002/cne.23052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes.
Collapse
Affiliation(s)
- Melissa D Nickell
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
39
|
Santoro SW, Dulac C. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife 2012; 1:e00070. [PMID: 23240083 PMCID: PMC3510456 DOI: 10.7554/elife.00070] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022] Open
Abstract
We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. DOI:http://dx.doi.org/10.7554/eLife.00070.001 A hallmark of the nervous systems of all mammals is their capacity to undergo changes in function that are shaped by experience. This phenomenon underlies the ability of our brains to develop properly and to learn, and also enables various sensory systems—including the visual, auditory and olfactory systems—to perform optimally in diverse environments. In most mammals, a high-functioning olfactory system is essential for carrying out tasks that are crucial for survival, such as finding food, avoiding predators and mating. In general, sensory systems have to decipher only a limited collection of stimuli, but the olfactory system must be able to process information from thousands of distinct odors that are found in a given environment and which may vary dramatically from one environment to the next. Each odor-sensing neuron in the nose of a mammal contains just one kind of odorant receptor protein, although mammalian genomes typically encode 1000 or so different kinds of receptor proteins. This suggests that it might be possible to ‘tune’ the olfactory system to a particular environment by changing the relative numbers of the different types of neurons. Indeed, it is known that the relative abundance of each type of odor-sensing neuron changes with age and experience, and that these changes might be caused by variations in the lifespans of the neurons. Although our understanding of how these experience-dependent changes are orchestrated at the molecular level is far from complete, it is clear that adjustments in the levels of specific gene products is necessary. But how do experiences alter the levels of gene products to give rise to lasting changes in the brain? One hypothesis is that changes to a structure called chromatin are key to this process: chromatin is an assembly of DNA molecules, which are quite long, and organizing proteins, mostly proteins known as histones, that together form a compact structure that can fit inside the nucleus of a cell. Santoro and Dulac have now discovered a previously uncharacterized protein called H2BE that is found only in the odor-sensing neurons of mice. H2BE is a variant of a protein called H2B, which is a well-known histone. They found that in odor-sensing neurons, H2BE replaces H2B to an extent that depends on the amount of activity experienced by the neuron: H2BE is nearly undetectable in highly active neurons, but almost completely replaces H2B in neurons that are inactive. Moreover, genetic manipulation showed that the deletion of H2BE significantly extended the lifespan of neurons, whereas elevated levels of H2BE shortened their lifespan. These findings reveal an extraordinary process that involves inactive odor-sensing neurons being depleted relative to active ones over time. How does H2BE, which differs from H2B by just five amino acids, cause such dramatic changes in neuronal composition? One hint comes from evidence that these amino acids disrupt interactions between chromatin and ‘effector’ proteins, which modulate gene activity. Consistent with this, Santoro and Dulac have found that the replacement of H2B by H2BE strongly alters gene activity, although the precise mechanism by which these alterations regulate neuronal lifespans remains to be determined. Understanding this process in detail, and exploring if similar phenomena are involved in experience-dependent changes elsewhere in the nervous system, are fascinating areas of future research. DOI:http://dx.doi.org/10.7554/eLife.00070.002
Collapse
Affiliation(s)
- Stephen W Santoro
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology , Harvard University , Cambridge , United States
| | | |
Collapse
|
40
|
Shaker T, Dennis D, Kurrasch DM, Schuurmans C. Neurog1 and Neurog2 coordinately regulate development of the olfactory system. Neural Dev 2012; 7:28. [PMID: 22906231 PMCID: PMC3444899 DOI: 10.1186/1749-8104-7-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023] Open
Abstract
Background Proneural genes encode basic helix–loop–helix transcription factors that specify distinct neuronal identities in different regions of the nervous system. In the embryonic telencephalon, the proneural genes Neurog1 and Neurog2 specify a dorsal regional identity and glutamatergic projection neuron phenotype in the presumptive neocortex, but their roles in cell fate specification in the olfactory bulb, which is also partly derived from dorsal telencephalic progenitors, have yet to be assessed. Given that olfactory bulb development is guided by interactions with the olfactory epithelium in the periphery, where proneural genes are also expressed, we investigated the roles of Neurog1 and Neurog2 in the coordinated development of these two olfactory structures. Results Neurog1/2 are co-expressed in olfactory bulb progenitors, while only Neurog1 is widely expressed in progenitors for olfactory sensory neurons in the olfactory epithelium. Strikingly, only a remnant of an olfactory bulb forms in Neurog1−/−;Neurog2−/− double mutants, while this structure is smaller but distinguishable in Neurog1−/− single mutants and morphologically normal in Neurog2−/− single mutants. At the cellular level, fewer glutamatergic mitral and juxtaglomerular cells differentiate in Neurog1−/−;Neurog2−/− double-mutant olfactory bulbs. Instead, ectopic olfactory bulb interneurons are derived from dorsal telencephalic lineages in Neurog1−/−;Neurog2−/− double mutants and to a lesser extent in Neurog2−/− single mutants. Conversely, cell fate specification is normal in Neurog1−/− olfactory bulbs, but aberrant patterns of cell proliferation and neuronal migration are observed in Neurog1−/− single and Neurog1−/−;Neurog2−/− double mutants, probably contributing to their altered morphologies. Finally, in Neurog1−/− and Neurog1−/−;Neurog2−/− embryos, olfactory sensory neurons in the epithelium, which normally project to the olfactory bulb to guide its morphogenesis, fail to innervate the olfactory bulb. Conclusions We have identified a cell autonomous role for Neurog1/2 in specifying the glutamatergic identity of olfactory bulb neurons. Furthermore, Neurog1 (and not Neurog2) is required to guide olfactory sensory neuron innervation of the olfactory bulb, the loss of which results in defects in olfactory bulb proliferation and tissue morphogenesis. We thus conclude that Neurog1/2 together coordinate development of the olfactory system, which depends on tissue interactions between the olfactory bulb and epithelium.
Collapse
Affiliation(s)
- Tarek Shaker
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
41
|
Berghard A, Hägglund AC, Bohm S, Carlsson L. Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. FASEB J 2012; 26:3464-72. [PMID: 22581782 DOI: 10.1096/fj.12-206193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inactivation of the LIM-homeodomain 2 gene (Lhx2) results in a severe defect in specification of olfactory sensory neurons (OSNs). However, the ramifications of lack of Lhx2-dependent OSN specification for formation of the primary olfactory pathway have not been addressed, since mutant mice die in utero. We have analyzed prenatal and postnatal consequences of conditionally inactivating Lhx2 selectively in OSNs. A cell-autonomous effect is that OSN axons cannot innervate their target, the olfactory bulb. Moreover, the lack of Lhx2 in OSNs causes unpredicted, non-cell-autonomous phenotypes. First, the olfactory bulb shows pronounced hypoplasia in adults, and the data suggest that innervation by correctly specified OSNs is necessary for adult bulb size and organization. Second, absence of an olfactory nerve in the conditional mutant reveals that the vomeronasal nerve is dependent on olfactory nerve formation. Third, the lack of a proper vomeronasal nerve prevents migration of gonadotropin-releasing hormone (GnRH) cells the whole distance to their final positions in the hypothalamus during embryo development. As adults, the conditional mutants do not pass puberty, and these findings support the view of an exclusive nasal origin of GnRH neurons in the mouse. Thus, Lhx2 in OSNs is required for functional development of three separate systems.
Collapse
Affiliation(s)
- Anna Berghard
- Department of Molecular Biology, Byggn 6L, Umea University, SE90187 Umeå, Sweden.
| | | | | | | |
Collapse
|
42
|
Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol 2012; 10:e1001280. [PMID: 22427741 PMCID: PMC3302810 DOI: 10.1371/journal.pbio.1001280] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/26/2012] [Indexed: 01/22/2023] Open
Abstract
The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR) from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Liza Alkhori
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Anna Brochtrup
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
43
|
Michaloski JS, Galante PAF, Nagai MH, Armelin-Correa L, Chien MS, Matsunami H, Malnic B. Common promoter elements in odorant and vomeronasal receptor genes. PLoS One 2011; 6:e29065. [PMID: 22216168 PMCID: PMC3247230 DOI: 10.1371/journal.pone.0029065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023] Open
Abstract
In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions. We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation.
Collapse
Affiliation(s)
- Jussara S. Michaloski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro A. F. Galante
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil
| | - Maíra H. Nagai
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lucia Armelin-Correa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bettina Malnic
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
44
|
Plessy C, Pascarella G, Bertin N, Akalin A, Carrieri C, Vassalli A, Lazarevic D, Severin J, Vlachouli C, Simone R, Faulkner GJ, Kawai J, Daub CO, Zucchelli S, Hayashizaki Y, Mombaerts P, Lenhard B, Gustincich S, Carninci P. Promoter architecture of mouse olfactory receptor genes. Genome Res 2011; 22:486-97. [PMID: 22194471 DOI: 10.1101/gr.126201.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.
Collapse
Affiliation(s)
- Charles Plessy
- RIKEN Yokohama Institute, Omics Science Center, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Peukert D, Weber S, Lumsden A, Scholpp S. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol 2011; 9:e1001218. [PMID: 22180728 PMCID: PMC3236734 DOI: 10.1371/journal.pbio.1001218] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.
Collapse
Affiliation(s)
- Daniela Peukert
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Andrew Lumsden
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
46
|
Young JM, Luche RM, Trask BJ. Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs. BMC Genomics 2011; 12:561. [PMID: 22085861 PMCID: PMC3247239 DOI: 10.1186/1471-2164-12-561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/15/2011] [Indexed: 12/02/2022] Open
Abstract
Background Mammalian olfactory receptors (ORs) are subject to a remarkable but poorly understood regime of transcriptional regulation, whereby individual olfactory neurons each express only one allele of a single member of the large OR gene family. Results We performed a rigorous search for enriched sequence motifs in the largest dataset of OR promoter regions analyzed to date. We combined measures of cross-species conservation with databases of known transcription factor binding sites and ab initio motif-finding algorithms. We found strong enrichment of binding sites for the O/E family of transcription factors and for homeodomain factors, both already known to be involved in the transcriptional control of ORs, but did not identify any novel enriched sequences. We also found that TATA-boxes are present in at least a subset of OR promoters. Conclusions Our rigorous approach provides a template for the analysis of the regulation of large gene families and demonstrates some of the difficulties and pitfalls of such analyses. Although currently available bioinformatics methods cannot detect all transcriptional regulatory elements, our thorough analysis of OR promoters shows that in the case of this gene family, experimental approaches have probably already identified all the binding factors common to large fractions of OR promoters.
Collapse
Affiliation(s)
- Janet M Young
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
47
|
Miller AM, Treloar HB, Greer CA. Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol 2011; 518:4825-41. [PMID: 21031554 DOI: 10.1002/cne.22497] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The embryonic development of the olfactory nerve includes the differentiation of cells within the olfactory placode, migration of cells into the mesenchyme from the placode, and extension of axons by the olfactory sensory neurons (OSNs). The coalition of both placode-derived migratory cells and OSN axons within the mesenchyme is collectively termed the "migratory mass." Here we address the sequence and coordination of the events that give rise to the migratory mass. Using neuronal and developmental markers, we show subpopulations of neurons emerging from the placode by embryonic day (E)10, a time at which the migratory mass is largely cellular and only a few isolated OSN axons are seen, prior to the first appearance of OSN axon fascicles at E11. These neurons also precede the emergence of the gonadotropin-releasing hormone neurons and ensheathing glia which are also resident in the mesenchyme as part of the migratory mass beginning at about E11. The data reported here begin to establish a spatiotemporal framework for the migration of molecularly heterogeneous placode-derived cells in the mesenchyme. The precocious emigration of the early arriving neurons in the mesenchyme suggests they may serve as "guidepost cells" that contribute to the establishment of a scaffold for the extension and coalescence of the OSN axons.
Collapse
Affiliation(s)
- Alexandra M Miller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
48
|
Eckler MJ, McKenna WL, Taghvaei S, McConnell SK, Chen B. Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol 2011; 519:1829-46. [PMID: 21452247 DOI: 10.1002/cne.22596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The murine olfactory system consists of main and accessory systems that perform distinct and overlapping functions. The main olfactory epithelium (MOE) is primarily involved in the detection of volatile odorants, while neurons in the vomeronasal organ (VNO), part of the accessory olfactory system, are important for pheromone detection. During development, the MOE and VNO both originate from the olfactory pit; however, the mechanisms regulating development of these anatomically distinct organs from a common olfactory primordium are unknown. Here we report that two closely related zinc-finger transcription factors, FEZF1 and FEZF2, regulate the identity of MOE sensory neurons and are essential for the survival of VNO neurons respectively. Fezf1 is predominantly expressed in the MOE while Fezf2 expression is restricted to the VNO. In Fezf1-deficient mice, olfactory neurons fail to mature and also express markers of functional VNO neurons. In Fezf2-deficient mice, VNO neurons degenerate prior to birth. These results identify Fezf1 and Fezf2 as important regulators of olfactory system development and sensory neuron identity.
Collapse
Affiliation(s)
- Matthew J Eckler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
49
|
Lee AP, Brenner S, Venkatesh B. Mouse transgenesis identifies conserved functional enhancers and cis-regulatory motif in the vertebrate LIM homeobox gene Lhx2 locus. PLoS One 2011; 6:e20088. [PMID: 21629789 PMCID: PMC3100342 DOI: 10.1371/journal.pone.0020088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/17/2011] [Indexed: 12/03/2022] Open
Abstract
The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs) in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG), recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs) associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers.
Collapse
Affiliation(s)
- Alison P. Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| | - Sydney Brenner
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| |
Collapse
|
50
|
In vitro generation of HSC-like cells from murine ESCs/iPSCs by enforced expression of LIM-homeobox transcription factor Lhx2. Blood 2011; 117:3748-58. [PMID: 21343610 DOI: 10.1182/blood-2010-07-298596] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Identification of genes involved in in vitro differentiation induction of embryonic stem cells (ESCs) into hematopoietic stem cells (HSCs) has been challenged during last decade. To date, a homeobox transcription factor Hoxb4 has been only demonstrated to possess such an effect in mice. Here, we show that HSC-like cells were efficiently induced from mouse ESCs by enforced expression of Lhx2, a LIM-homeobox transcription factor. Transduction of Lhx2 into ESC-derived mesodermal cells resulted in robust differentiation of c-Kit(+)/Sca-1(+)/Lineage(-) (KSL) cells in vitro. The KSL cell induction frequency was superior to the case of Hoxb4. Furthermore, transplantation of Lhx2-transduced hematopoietic cells into lethally irradiated mice resulted in multilineage repopulation of hematopoietic cells over 4 months. Transduction of Lhx2 into induced pluripotent stem cells (iPSCs) was also effective in generating KSL cells in vitro, as well as HSC-like activities in vivo. These results demonstrate that ectopic expression of Lhx2 confers an in vivo engrafting capacity to ESC/iPSC-derived hematopoietic cells and in vivo behavior of iPSC-derived hematopoietic cells is almost identical to that of ESC-derived cells.
Collapse
|