1
|
Hamann C, Kjar A, Kim H, Simmons AJ, Brien HJ, Quartey CI, Walton BL, Lau KS, Lippmann ES, Brunger JM. Induced Neural Progenitor Specification from Human Pluripotent Stem Cells by a Refined Synthetic Notch Platform. ACS Synth Biol 2025; 14:1482-1495. [PMID: 40327355 PMCID: PMC12090341 DOI: 10.1021/acssynbio.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Historically, studying the development of brain and central nervous system (CNS) tissues has been challenging. Human pluripotent stem cell (hPSC) technology has allowed for the in vitro reconstitution of relevant, early cell trajectories by using small molecules and recombinant proteins to guide differentiation of cells toward relevant brain and CNS phenotypes. However, many of these protocols fail to recapitulate the cell-guided differentiation programs intrinsic to embryonic development, particularly the signaling centers that emerge within the neural tube during brain formation. Located on the ventral end of the neural tube, the floor plate acts as one such signaling center to pattern the dorsal/ventral axis by secreting the morphogen Sonic Hedgehog (SHH). Here, we present a method for cell-guided differentiation using the synthetic Notch (synNotch) receptor platform to regulate SHH production and subsequent cell fate specification. We show that the widely used configuration of the orthogonal synNotch ligand green fluorescent protein (GFP) mounted on a platelet-derived growth factor receptor-β transmembrane chassis does not allow for robust artificial signaling in synNotch-hPSCs ("receivers") cocultured with ligand-presenting hPSCs ("senders"). We discovered that refined designs of membrane-bound GFP-ligand allow for efficient receptor activation in hPSC receivers. A variant of this enhanced synNotch system drives the production of SHH in hPSC sender:hPSC receiver cocultures and gives rise to floor plate-like cell types seen during neural tube development. This revised synNotch platform has the potential to pattern hPSC differentiation programs in synthetic morphogenesis studies designed to uncover key paradigms of human CNS development.
Collapse
Affiliation(s)
- Catherine
A. Hamann
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrew Kjar
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hyosung Kim
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alan J. Simmons
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Hannah J. Brien
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cheryl I. Quartey
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bonnie L. Walton
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ken S. Lau
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for
Computational Systems Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Ethan S. Lippmann
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M. Brunger
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for
Computational Systems Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
Lusk S, LaPotin S, Presnell JS, Kwan KM. Increased Netrin downstream of overactive Hedgehog signaling disrupts optic fissure formation. Dev Dyn 2025; 254:158-173. [PMID: 39166841 PMCID: PMC11809129 DOI: 10.1002/dvdy.733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously. Here, we examine the Netrin family of secreted ligands as candidate Hh target genes. RESULTS We find multiple Netrin ligands upregulated in the zebrafish ptch2 mutant during optic fissure development. Using a gain-of-function approach to overexpress Netrin in a spatiotemporally specific manner, we find that netrin1a or netrin1b overexpression is sufficient to cause coloboma and disrupt wild-type optic fissure formation. We used loss-of-function alleles, CRISPR/Cas9 mutagenesis, and morpholino knockdown to test if loss of Netrin can rescue coloboma in the ptch2 mutant: loss of netrin genes does not rescue the ptch2 mutant phenotype. CONCLUSION These results suggest that Netrin is sufficient but not required to disrupt optic fissure formation downstream of overactive Hh signaling in the ptch2 mutant.
Collapse
Affiliation(s)
- Sarah Lusk
- Department of Human GeneticsUniversity of UtahSalt Lake CityUtahUSA
- Present address:
Papé Family Pediatric Research Institute, Department of PediatricsOregon Health & Science UniversityPortlandOregonUSA
| | - Sarah LaPotin
- Department of Human GeneticsUniversity of UtahSalt Lake CityUtahUSA
| | | | - Kristen M. Kwan
- Department of Human GeneticsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Lusk S, LaPotin S, Presnell JS, Kwan KM. Increased Netrin downstream of overactive Hedgehog signaling disrupts optic fissure formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599642. [PMID: 38948711 PMCID: PMC11212950 DOI: 10.1101/2024.06.18.599642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously. Here, we examine the Netrin family of secreted ligands as candidate Hh target genes. Results We find multiple Netrin ligands upregulated in the zebrafish ptch2 mutant during optic fissure development. Using a gain-of-function approach to overexpress Netrin in a spatiotemporally specific manner, we find that netrin1a or netrin1b overexpression is sufficient to cause coloboma and disrupt wild-type optic fissure formation. We used loss-of-function alleles, CRISPR/Cas9 mutagenesis, and morpholino knockdown to test if loss of Netrin can rescue coloboma in the ptch2 mutant: loss of netrin genes does not rescue the ptch2 mutant phenotype. Conclusion These results suggest that Netrin is sufficient but not required to disrupt optic fissure formation downstream of overactive Hh signaling in the ptch2 mutant.
Collapse
Affiliation(s)
- Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Sarah LaPotin
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Jason S Presnell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
4
|
Ozgun A, Lomboni DJ, Aylsworth A, Macdonald A, Staines WA, Martina M, Schlossmacher MG, Tauskela JS, Woulfe J, Variola F. Unraveling the assembloid: Real-time monitoring of dopaminergic neurites in an inter-organoid pathway connecting midbrain and striatal regions. Mater Today Bio 2024; 25:100992. [PMID: 38371467 PMCID: PMC10873721 DOI: 10.1016/j.mtbio.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - David J. Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Allison Macdonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - William A. Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marzia Martina
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Michael G. Schlossmacher
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Joseph S. Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Pathology, The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
5
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
7
|
Warren I, Moeller MM, Guiggey D, Chiang A, Maloy M, Ogoke O, Groth T, Mon T, Meamardoost S, Liu X, Thompson S, Szeglowski A, Thompson R, Chen P, Paulmurugan R, Yarmush ML, Kidambi S, Parashurama N. FOXA1/2 depletion drives global reprogramming of differentiation state and metabolism in a human liver cell line and inhibits differentiation of human stem cell-derived hepatic progenitor cells. FASEB J 2023; 37:e22652. [PMID: 36515690 DOI: 10.1096/fj.202101506rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022]
Abstract
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Collapse
Affiliation(s)
- Iyan Warren
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Michael M Moeller
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Alexander Chiang
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Xiaojun Liu
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Sarah Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Antoni Szeglowski
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ryan Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Peter Chen
- Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, California, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
8
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
9
|
Li W, Yuan M, Wu Y, Liu X. Bixafen exposure induces developmental toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2020; 189:109923. [PMID: 32980012 DOI: 10.1016/j.envres.2020.109923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Bixafen (BIX), a new generation succinate dehydrogenase inhibitor (SDHI) fungicide commonly used in agriculture, is regarded as a potential aquatic pollutant because of its lethal and teratogenic effects on Xenopus tropicalis embryos. To evaluate the threat of BIX to aquatic environments, information concerning BIX's embryonic toxicity to aquatic organisms (especially fish) is important, yet such information remains scarce. The present study aimed to fill this knowledge gap by employing zebrafish embryos as model animals in exposure to 0.1, 0.3 and 0.9 μM BIX. Our results showed that BIX caused severe developmental abnormalities (hypopigmentation, tail deformity, spinal curvature and yolk sac absorption anomaly) and hatching delay in zebrafish embryos. The expression levels of early embryogenesis-related genes (gh, crx, sox2 and neuroD) were downregulated after BIX exposure, except for nkx2.4b, which was upregulated. Furthermore, transcriptome sequencing analysis showed that all the downregulated differentially expressed genes were enriched in cell cycle processes. Taken together, these results demonstrated that BIX has strong developmental toxicity to zebrafish that may be due to the downregulated expression of genes involved in embryonic development. These findings provide valuable reference for evaluating BIX's potential adverse effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| | - Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Xuan Liu
- Amoy Diagnostics Co., Ltd, Xiamen, 361027, PR China.
| |
Collapse
|
10
|
Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. Brainstem Organoids From Human Pluripotent Stem Cells. Front Neurosci 2020; 14:538. [PMID: 32670003 PMCID: PMC7332712 DOI: 10.3389/fnins.2020.00538] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The brainstem is a posterior region of the brain, composed of three parts, midbrain, pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure, and respiration, all of which are life-sustaining functions, and therefore, damages to or disorders of the brainstem can be lethal. Brain organoids derived from human pluripotent stem cells (hPSCs) recapitulate the course of human brain development and are expected to be useful for medical research on central nervous system disorders. However, existing organoid models are limited in the extent hPSCs recapitulate human brain development and hence are not able to fully elucidate the diseases affecting various components of the brain such as brainstem. Here, we developed a method to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with evidence from proteomics and electrophysiology, revealed that the cellular population in these organoids was similar to that of the human brainstem, which raises the possibility of making use of hBSOs in investigating central nervous system disorders affecting brainstem and in efficient drug screenings.
Collapse
Affiliation(s)
- Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takeshi K. Matsui
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Joachim Luginbühl
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Yan Jun Lan
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Pornparn Kongpracha
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Pattama Wiriyasermkul
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | | | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Naritaka Morikawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Miyong Jong
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Maiko Takeda
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jay W. Shin
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
11
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Reuter I, Jäckels J, Kneitz S, Kuper J, Lesch KP, Lillesaar C. Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish. Biol Open 2019; 8:bio.040683. [PMID: 31036752 PMCID: PMC6602327 DOI: 10.1242/bio.040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. Summary: This study highlights Fgf3 in a novel context where it is part of a signalling pathway of critical importance for development of hypothalamic monoaminergic cells in zebrafish.
Collapse
Affiliation(s)
- Isabel Reuter
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jana Jäckels
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jochen Kuper
- Structural Biology, Rudolf Virchow Center for Biomedical Research, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany .,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
13
|
Sedykh I, Keller AN, Yoon B, Roberson L, Moskvin OV, Grinblat Y. Zebrafish Rfx4 controls dorsal and ventral midline formation in the neural tube. Dev Dyn 2018; 247:650-659. [PMID: 29243319 DOI: 10.1002/dvdy.24613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/13/2017] [Accepted: 12/06/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Rfx winged-helix transcription factors, best known as key regulators of core ciliogenesis, also play ciliogenesis-independent roles during neural development. Mammalian Rfx4 controls neural tube morphogenesis via both mechanisms. RESULTS We set out to identify conserved aspects of rfx4 gene function during vertebrate development and to establish a new genetic model in which to analyze these mechanisms further. To this end, we have generated frame-shift alleles in the zebrafish rfx4 locus using CRISPR/Cas9 mutagenesis. Using RNAseq-based transcriptome analysis, in situ hybridization and immunostaining we identified a requirement for zebrafish rfx4 in the forming midlines of the caudal neural tube. These functions are mediated, least in part, through transcriptional regulation of several zic genes in the dorsal hindbrain and of foxa2 in the ventral hindbrain and spinal cord (floor plate). CONCLUSIONS The midline patterning functions of rfx4 are conserved, because rfx4 regulates transcription of foxa2 and zic2 in zebrafish and in mouse. In contrast, zebrafish rfx4 function is dispensable for forebrain morphogenesis, while mouse rfx4 is required for normal formation of forebrain ventricles in a ciliogenesis-dependent manner. Collectively, this report identifies conserved aspects of rfx4 function and establishes a robust new genetic model for in-depth dissection of these mechanisms. Developmental Dynamics 247:650-659, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,Zoology Ph.D. Program, University of Wisconsin, Madison, Wisconsin
| | - Abigail N Keller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Oleg V Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
14
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
15
|
Zhang Y, Hoxha E, Zhao T, Zhou X, Alvarez-Bolado G. Foxb1 Regulates Negatively the Proliferation of Oligodendrocyte Progenitors. Front Neuroanat 2017; 11:53. [PMID: 28725186 PMCID: PMC5496944 DOI: 10.3389/fnana.2017.00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Oligodendrocyte precursor cells (OPC), neurons and astrocytes share a neural progenitor cell (NPC) in the early ventricular zone (VZ) of the embryonic neuroepithelium. Both switch to produce either of the three cell types and the generation of the right number of them undergo complex genetic regulation. The components of these regulatory cascades vary between brain regions giving rise to the unique morphological and functional heterogeneity of this organ. Forkhead b1 (Foxb1) is a transcription factor gene expressed by NPCs in specific regions of the embryonic neuroepithelium. We used the mutant mouse line Foxb1-Cre to analyze the cell types derived from Fobx1-expressing NPCs (the Foxb1 cell lineage) from two restricted regions, the medulla oblongata (MO; hindbrain) and the thalamus (forebrain), of normal and Foxb1-deficient mice. Foxb1 cell lineage derivatives appear as clusters in restricted regions, including the MO (hindbrain) and the thalamus (forebrain). Foxb1-expressing NPCs produce mostly oligodendrocytes (OL), some neurons and few astrocytes. Foxb1-deficient NPCs generate mostly OPC and immature OL to the detriment of neurons, astrocytes and mature OL. The axonal G-ratio however is not changed. We reveal Foxb1 as a novel modulator of neuronal and OL generation in certain restricted CNS regions. Foxb1 biases NPCs towards neuronal generation and inhibits OPC proliferation while promoting their differentiation.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany.,Department of Urology, The 2nd Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Elti Hoxha
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany
| | - Tianyu Zhao
- Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital, Chongqing Medical UniversityChongqing, China
| | - Xunlei Zhou
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany
| | | |
Collapse
|
16
|
Haugas M, Tikker L, Achim K, Salminen M, Partanen J. Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development 2016; 143:4495-4508. [PMID: 27789623 DOI: 10.1242/dev.136614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Serotonergic and glutamatergic neurons of the dorsal raphe regulate many brain functions and are important for mental health. Their functional diversity is based on molecularly distinct subtypes; however, the development of this heterogeneity is poorly understood. We show that the ventral neuroepithelium of mouse anterior hindbrain is divided into specific subdomains giving rise to serotonergic neurons as well as other types of neurons and glia. The newly born serotonergic precursors are segregated into distinct subpopulations expressing vesicular glutamate transporter 3 (Vglut3) or serotonin transporter (Sert). These populations differ in their requirements for transcription factors Gata2 and Gata3, which are activated in the post-mitotic precursors. Gata2 operates upstream of Gata3 as a cell fate selector in both populations, whereas Gata3 is important for the differentiation of the Sert+ precursors and for the serotonergic identity of the Vglut3+ precursors. Similar to the serotonergic neurons, the Vglut3-expressing glutamatergic neurons, located in the central dorsal raphe, are derived from neural progenitors in the ventral hindbrain and express Pet1 Furthermore, both Gata2 and Gata3 are redundantly required for their differentiation. Our study demonstrates lineage relationships of the dorsal raphe neurons and suggests that functionally significant heterogeneity of these neurons is established early during their differentiation.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Kaia Achim
- EMBL Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, P.O. Box 66, Agnes Sjobergin katu 2, FIN00014-University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
18
|
Cudré-Cung HP, Zavadakova P, do Vale-Pereira S, Remacle N, Henry H, Ivanisevic J, Tavel D, Braissant O, Ballhausen D. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab 2016; 119:57-67. [PMID: 27599447 DOI: 10.1016/j.ymgme.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023]
Abstract
Using 3D organotypic rat brain cell cultures in aggregates we recently identified 2-methylcitrate (2-MCA) as the main toxic metabolite for developing brain cells in methylmalonic aciduria. Exposure to 2-MCA triggered morphological changes and apoptosis of brain cells. This was accompanied by increased ammonium and decreased glutamine levels. However, the sequence and causal relationship between these phenomena remained unclear. To understand the sequence and time course of pathogenic events, we exposed 3D rat brain cell aggregates to different concentrations of 2-MCA (0.1, 0.33 and 1.0mM) from day in vitro (DIV) 11 to 14. Aggregates were harvested at different time points from DIV 12 to 19. We compared the effects of a single dose of 1mM 2-MCA administered on DIV 11 to the effects of repeated doses of 1mM 2-MCA. Pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh were used to block apoptosis. Ammonium accumulation in the culture medium started within few hours after the first 2-MCA exposure. Morphological changes of the developing brain cells were already visible after 17h. The highest rate of cleaved caspase-3 was observed after 72h. A dose-response relationship was observed for all effects. Surprisingly, a single dose of 1mM 2-MCA was sufficient to induce all of the biochemical and morphological changes in this model. 2-MCA-induced ammonium accumulation and morphological changes were not prevented by concomitant treatment of the cultures with pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh: ammonium increased rapidly after a single 1mM 2-MCA administration even after apoptosis blockade. We conclude that following exposure to 2-MCA, ammonium production in brain cell cultures is an early phenomenon, preceding cell degeneration and apoptosis, and may actually be the cause of the other changes observed. The fact that a single dose of 1mM 2-MCA is sufficient to induce deleterious effects over several days highlights the potential damaging effects of even short-lasting metabolic decompensations in children affected by methylmalonic aciduria.
Collapse
Affiliation(s)
| | - Petra Zavadakova
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | | | - Noémie Remacle
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | - Hugues Henry
- Biomedicine, Innovation & Development, Lausanne University Hospital, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Research Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Denise Tavel
- Department of Physiology, Lausanne University, Switzerland
| | | | - Diana Ballhausen
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland.
| |
Collapse
|
19
|
Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 2016; 7:11628. [PMID: 27188978 PMCID: PMC4873968 DOI: 10.1038/ncomms11628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2016] [Indexed: 01/28/2023] Open
Abstract
The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. Postnatal growth of the pons is not well characterized. Here the authors show that growth of the murine pons is fastest during postnatal day 0–4, a period preceding myelination, and is primarily driven by an expansion of the oligodendrocyte population that derive from Sox2+Olig2+ progenitors.
Collapse
|
20
|
Rastegar S, Strähle U. The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. GENETICS, GENOMICS AND FISH PHENOMICS 2016; 95:195-216. [DOI: 10.1016/bs.adgen.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Montgomery JE, Wiggin TD, Rivera-Perez LM, Lillesaar C, Masino MA. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish. Dev Neurobiol 2015; 76:673-87. [PMID: 26437856 DOI: 10.1002/dneu.22352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/26/2015] [Accepted: 09/29/2015] [Indexed: 11/06/2022]
Abstract
Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs.
Collapse
Affiliation(s)
- Jacob E Montgomery
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Timothy D Wiggin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Luis M Rivera-Perez
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
22
|
Zhu P, Xu X, Lin X. Both ciliary and non-ciliary functions of Foxj1a confer Wnt/β-catenin signaling in zebrafish left-right patterning. Biol Open 2015; 4:1376-86. [PMID: 26432885 PMCID: PMC4728341 DOI: 10.1242/bio.012088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/β-catenin pathway is implicated in left-right (LR) axis determination; however, the underlying mechanism remains elusive. Prompted by our recent discovery that Wnt signaling regulates ciliogenesis in the zebrafish Kupffer's vesicle (KV) via Foxj1a, a ciliogenic transcription factor, we decided to elucidate functions of Foxj1a in Wnt-regulated LR pattern formation. We showed that targeted injection of wnt8a mRNA into a single cell at the 128-cell stage is sufficient to induce ectopic foxj1a expression and ectopic cilia. By interrogating the transcription circuit of foxj1a regulation, we found that both Lef1 and Tcf7 bind to a consensus element in the foxj1a promoter region. Depletion of Lef1 and Tcf7 inhibits foxj1a transcription in the dorsal forerunner cells, downregulates cilia length and number in KV, and randomizes LR asymmetry. Targeted overexpression of a constitutively active form of Lef1 also induced an ectopic protrusion that contains ectopic transcripts for sox17, foxj1a, and charon, and ectopic monocilia. Further genetic studies using this ectopic expression platform revealed two distinct functions of Foxj1a; mediating Wnt-governed monocilia length elongation as well as charon transcription. The novel Foxj1a-charon regulation is conserved in KV, and importantly, it is independent of the canonical role of Foxj1a in the biosynthesis of motile cilia. Together with the known function of motile cilia movement in generating asymmetric expression of charon, our data put forward a hypothesis that Foxj1a confers both ciliary and non-ciliary functions of Wnt signaling, which converge on charon to regulate LR pattern formation. Summary: Using a targeted overexpression platform, we showed that Wnt activation induces ectopic foxj1a expression and ectopic cilia formation, and revealed two distinct roles of Foxj1a in conferring Wnt-governed left-right patterning.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Hum Genet 2015; 134:1163-82. [PMID: 26337422 DOI: 10.1007/s00439-015-1594-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
Abstract
Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.
Collapse
|
24
|
Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 2015; 55:1-16. [PMID: 25109898 DOI: 10.1111/cga.12079] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Japan; Mie University Medical Zebrafish Research Center, Tsu, Japan; Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function.
Collapse
Affiliation(s)
- David A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
26
|
Bang SY, Kwon SH, Yi SH, Yi SA, Park EK, Lee JC, Jang CG, You JS, Lee SH, Han JW. Epigenetic activation of the Foxa2 gene is required for maintaining the potential of neural precursor cells to differentiate into dopaminergic neurons after expansion. Stem Cells Dev 2014; 24:520-33. [PMID: 25233056 DOI: 10.1089/scd.2014.0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of forkhead box protein A2 (Foxa2) expression in fetal ventral mesencephalon (VM)-derived neural precursor cells (NPCs) appears to be associated with the loss of their potential to differentiate into dopaminergic (DA) neurons after mitogenic expansion in vitro, hindering their efficient use as a transplantable cell source. Here, we report that epigenetic activation of Foxa2 in VM-derived NPCs by inducing histone hyperacetylation rescues the mitogenic-expansion-dependent decrease of differentiation potential to DA neurons. The silencing of Foxa2 gene expression after expansion is accompanied by repressive histone modifications, including hypoacetylation of histone H3 and H4 and trimethylation of H3K27 on the Foxa2 promoter, as well as on the global level. In addition, histone deacetylase 7 (HDAC7) is highly expressed during differentiation and recruited to the Foxa2 promoter. Induction of histone acetylation in VM-derived NPCs by either knockdown of HDAC7 or treatment with the HDAC inhibitor apicidin upregulates Foxa2 expression via hyperacetylation of H3 and a decrease in H3K27 trimethylation on the promoter regions, leading to the expression of DA neuron developmental genes and enhanced differentiation of DA neurons. These effects are antagonized by the expression of shRNAs specific for Foxa2 but enhanced by shRNA for HDAC7. Collectively, these findings indicate that loss of differentiation potential of expanded VM-derived NPCs is attributed to a decrease in Foxa2 expression and suggest that activation of the endogenous Foxa2 gene by epigenetic regulation might be an approach to enhance the generation of DA neurons.
Collapse
Affiliation(s)
- So-Young Bang
- 1 Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University , Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 2014; 9:e110559. [PMID: 25343614 PMCID: PMC4208771 DOI: 10.1371/journal.pone.0110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Collapse
|
28
|
Yin J, Morrissey ME, Shine L, Kennedy C, Higgins DG, Kennedy BN. Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics 2014; 15:825. [PMID: 25266257 PMCID: PMC4190348 DOI: 10.1186/1471-2164-15-825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The genetic cascades underpinning vertebrate early eye morphogenesis are poorly understood. One gene family essential for eye morphogenesis encodes the retinal homeobox (Rx) transcription factors. Mutations in the human retinal homeobox gene (RAX) can lead to gross morphological phenotypes ranging from microphthalmia to anophthalmia. Zebrafish rx3 null mutants produce a similar striking eyeless phenotype with an associated expanded forebrain. Thus, we used zebrafish rx3-/- mutants as a model to uncover an Rx3-regulated gene network during early eye morphogenesis. RESULTS Rx3-regulated genes were identified using whole transcriptomic sequencing (RNA-seq) of rx3-/- mutants and morphologically wild-type siblings during optic vesicle morphogenesis. A gene co-expression network was then constructed for the Rx3-regulated genes, identifying gene cross-talk during early eye development. Genes highly connected in the network are hub genes, which tend to exhibit higher expression changes between rx3-/- mutants and normal phenotype siblings. Hub genes down-regulated in rx3-/- mutants encompass homeodomain transcription factors and mediators of retinoid-signaling, both associated with eye development and known human eye disorders. In contrast, genes up-regulated in rx3-/- mutants are centered on Wnt signaling pathways, associated with brain development and disorders. The temporal expression pattern of Rx3-regulated genes was further profiled during early development from maternal stage until visual function is fully mature. Rx3-regulated genes exhibited synchronized expression patterns, and a transition of gene expression during the early segmentation stage when Rx3 was highly expressed. Furthermore, most of these deregulated genes are enriched with multiple RAX-binding motif sequences on the gene promoter. CONCLUSIONS Here, we assembled a comprehensive model of Rx3-regulated genes during early eye morphogenesis. Rx3 promotes optic vesicle morphogenesis and represses brain development through a highly correlated and modulated network, exhibiting repression of genes mediating Wnt signaling and concomitant enhanced expression of homeodomain transcription factors and retinoid-signaling genes.
Collapse
Affiliation(s)
- Jun Yin
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
- />Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Maria E Morrissey
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Lisa Shine
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Ciarán Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Desmond G Higgins
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Breandán N Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
29
|
Aguila JC, Blak A, van Arensbergen J, Sousa A, Vázquez N, Aduriz A, Gayosso M, Lopez Mato MP, Lopez de Maturana R, Hedlund E, Sonntag KC, Sanchez-Pernaute R. Selection Based on FOXA2 Expression Is Not Sufficient to Enrich for Dopamine Neurons From Human Pluripotent Stem Cells. Stem Cells Transl Med 2014; 3:1032-1042. [PMID: 25024431 PMCID: PMC4149300 DOI: 10.5966/sctm.2014-0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/21/2014] [Indexed: 11/16/2022] Open
Abstract
Human embryonic and induced pluripotent stem cells are potential cell sources for regenerative approaches in Parkinson disease. Inductive differentiation protocols can generate midbrain dopamine neurons but result in heterogeneous cell mixtures. Therefore, selection strategies are necessary to obtain uniform dopamine cell populations. Here, we developed a selection approach using lentivirus vectors to express green fluorescent protein under the promoter region of FOXA2, a transcription factor that is expressed in the floor plate domain that gives rise to dopamine neurons during embryogenesis. We first validated the specificity of the vectors in human cell lines against a promoterless construct. We then selected FOXA2-positive neural progenitors from several human pluripotent stem cell lines, which demonstrated a gene expression profile typical for the ventral domain of the midbrain and floor plate, but failed to enrich for dopamine neurons. To investigate whether this was due to the selection approach, we overexpressed FOXA2 in neural progenitors derived from human pluripotent stem cell lines. FOXA2 forced expression resulted in an increased expression of floor plate but not mature neuronal markers. Furthermore, selection of the FOXA2 overexpressing fraction also failed to enrich for dopamine neurons. Collectively, our results suggest that FOXA2 is not sufficient to induce a dopaminergic fate in this system. On the other hand, our study demonstrates that a combined approach of promoter activation and lentivirus vector technology can be used as a versatile tool for the selection of a defined cell population from a variety of human pluripotent stem cell lines.
Collapse
Affiliation(s)
- Julio Cesar Aguila
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Alexandra Blak
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Joris van Arensbergen
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Amaia Sousa
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Nerea Vázquez
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Ariane Aduriz
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Mayela Gayosso
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Maria Paz Lopez Mato
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Rakel Lopez de Maturana
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Eva Hedlund
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kai-Christian Sonntag
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Rosario Sanchez-Pernaute
- Laboratory of Stem Cells and Neural Repair and Cytometry and Advanced Optical Microscopy Facility, Inbiomed, San Sebastian, Spain; STEMCELL Technologies, Inc., Vancouver, British Columbia, Canada; Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
30
|
Al Oustah A, Danesin C, Khouri-Farah N, Farreny MA, Escalas N, Cochard P, Glise B, Soula C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 2014; 141:1392-403. [PMID: 24595292 DOI: 10.1242/dev.101717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.
Collapse
Affiliation(s)
- Amir Al Oustah
- University of Toulouse, Center for Developmental Biology, UMR 5547 CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nawaz S, Schweitzer J, Jahn O, Werner HB. Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 2013; 61:1364-77. [DOI: 10.1002/glia.22520] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Schanila Nawaz
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Jörn Schweitzer
- Developmental Biology; Institute of Biology 1; University of Freiburg; Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| |
Collapse
|
32
|
Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS One 2013; 8:e64058. [PMID: 23700457 PMCID: PMC3659048 DOI: 10.1371/journal.pone.0064058] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis is a powerful tool to obtain large amount genome-scale gene expression profiles. Despite its extensive usage to diverse biological problems in the last decade, transcriptomic researches approaching the zebrafish embryonic development have been very limited. Several recent studies have made great progress in this direction, yet the large gap still exists, especially regarding to the transcriptome dynamics of embryonic stages from early gastrulation onwards. Here, we present a comprehensive analysis about the transcriptomes of 9 different stages covering 7 major periods (cleavage, blastula, gastrula, segmentation, pharyngula, hatching and early larval stage) in zebrafish development, by recruiting the RNA-sequencing technology. We detected the expression for at least 24,065 genes in at least one of the 9 stages. We identified 16,130 genes that were significantly differentially expressed between stages and were subsequently classified into six clusters. Each revealed gene cluster had distinct expression patterns and characteristic functional pathways, providing a framework for the understanding of the developmental transcriptome dynamics. Over 4000 genes were identified as preferentially expressed in one of the stages, which could be of high relevance to stage-specific developmental and molecular events. Among the 68 transcription factor families active during development, most had enhanced average expression levels and thus might be crucial for embryogenesis, whereas the inactivation of the other families was likely required by the activation of the zygotic genome. We discussed our RNA-seq data together with previous findings about the Wnt signaling pathway and some other genes with known functions, to show how our data could be used to advance our understanding about these developmental functional elements. Our study provides ample information for further study about the molecular and cellular mechanisms underlying vertebrate development.
Collapse
|
33
|
Bosco A, Bureau C, Affaticati P, Gaspar P, Bally-Cuif L, Lillesaar C. Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS-domain transcription factor Etv5b. Development 2013; 140:372-84. [PMID: 23250211 DOI: 10.1242/dev.089094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serotonin is a monoamine neurotransmitter that is involved in numerous physiological functions and its dysregulation is implicated in various psychiatric diseases. In all non-placental vertebrates, serotoninergic (5-HT) neurons are present in several regions of the brain, including the hypothalamus. In placental mammals, however, 5-HT neurons are located in the raphe nuclei only. In all species, though, 5-HT neurons constitute a functionally and molecularly heterogeneous population. How the non-raphe 5-HT populations are developmentally encoded is unknown. Using the zebrafish model we show that, in contrast to the raphe populations, hypothalamic 5-HT neurons are generated independently of the ETS-domain transcription factor Pet1 (Fev). By applying a combination of pharmacological tools and gene knockdown and/or overexpression experiments, we demonstrate that Fgf signalling acts via another ETS-domain transcription factor, Etv5b (Erm), to induce hypothalamic 5-HT neurons. We provide evidence that Etv5b exerts its effects by regulating cell cycle parameters in 5-HT progenitors. Our results highlight a novel role for Etv5b in neuronal development and provide support for the existence of a developmental heterogeneity among 5-HT neurons in their requirement for ETS-domain transcription factors.
Collapse
Affiliation(s)
- Adriana Bosco
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR3294, Institute of Neurobiology Albert Fessard, 1 Avenue de Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
34
|
Gaspar P, Lillesaar C. Probing the diversity of serotonin neurons. Philos Trans R Soc Lond B Biol Sci 2012; 367:2382-94. [PMID: 22826339 DOI: 10.1098/rstb.2011.0378] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The serotonin (5-HT) system is generally considered as a single modulatory system, with broad and diffuse projections. However, accumulating evidence points to the existence of distinct cell groups in the raphe. Here, we review prior evidence for raphe cell heterogeneity, considering different properties of 5-HT neurons, from metabolism to anatomy, and neurochemistry to physiology. We then summarize more recent data in mice and zebrafish that support a genetic diversity of 5-HT neurons, based on differential transcription factor requirements for the acquisition of the 5-HT identity. In both species, PET1 plays a major role in the acquisition and maintenance of 5-HT identity in the hindbrain, although some 5-HT neurons do not require PET1 for their differentiation, indicating the existence of several transcriptional routes to become serotoninergic. In mice, both PET1-dependent and -independent 5-HT neurons are located in the raphe, but have distinct anatomical features, such as the morphology of axon terminals and projection patterns. In zebrafish, all raphe neurons express pet1, but Pet1-independent 5-HT cell groups are present in the forebrain. Overall, these observations support the view that there are a number of distinct 5-HT subsystems, including within the raphe nuclei, with unique genetic programming and functions.
Collapse
Affiliation(s)
- Patricia Gaspar
- UMR-S 839, INSERM, , 17, rue du Fer à Moulin, 75005 Paris, France.
| | | |
Collapse
|
35
|
Bayly RD, Brown CY, Agarwala S. A novel role for FOXA2 and SHH in organizing midbrain signaling centers. Dev Biol 2012; 369:32-42. [PMID: 22750257 DOI: 10.1016/j.ydbio.2012.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 02/04/2023]
Abstract
The floor plate (FP) is a midline signaling center, known to direct ventral cell fates and axon guidance in the neural tube. The recent identification of midbrain FP as a source of dopaminergic neurons has renewed interest in its specification and organization, which remain poorly understood. In this study, we have examined the chick midbrain and spinal FP and show that both can be partitioned into medial (MFP) and lateral (LFP) subdivisions. Although Hedgehog (HH) signaling is necessary and sufficient for LFP specification, it is not sufficient for MFP induction. By contrast, the transcription factor FOXA2 can execute the full midbrain and spinal cord FP program via HH-independent and dependent mechanisms. Interestingly, although HH-independent FOXA2 activity is necessary and sufficient for inducing MFP-specific gene expression (e.g., LMX1B, BMP7), it cannot confer ventral identity to midline cells without also turning on Sonic hedgehog (SHH). We also note that the signaling centers of the midbrain, the FP, roof plate (RP) and the midbrain-hindbrain boundary (MHB) are physically contiguous, with each expressing LMX1B and BMP7. Possibly as a result, SHH or FOXA2 misexpression can transform the MHB into FP and also suppress RP induction. Conversely, HH or FOXA2 knockdown expands the endogenous RP and transforms the MFP into a RP and/or MHB fate. Finally, combined HH blockade and FOXA2 misexpression in ventral midbrain induces LMX1B expression, which triggers the specification of the RP, rather than the MFP. Thus we identify HH-independent and dependent roles for FOXA2 in specifying the FP. In addition, we elucidate for the first time, a novel role for SHH in determining whether a midbrain signaling center will become the FP, MHB or RP.
Collapse
Affiliation(s)
- Roy D Bayly
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | |
Collapse
|
36
|
Metzakopian E, Lin W, Salmon-Divon M, Dvinge H, Andersson E, Ericson J, Perlmann T, Whitsett JA, Bertone P, Ang SL. Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. Development 2012; 139:2625-34. [PMID: 22696295 DOI: 10.1242/dev.081034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factors Foxa1 and Foxa2 promote the specification of midbrain dopaminergic (mDA) neurons and the floor plate. Whether their role is direct has remained unclear as they also regulate the expression of Shh, which has similar roles. We characterized the Foxa2 cis-regulatory network by chromatin immunoprecipitation followed by high-throughput sequencing of mDA progenitors. This identified 9160 high-quality Foxa2 binding sites associated with 5409 genes, providing mechanistic insights into Foxa2-mediated positive and negative regulatory events. Foxa2 regulates directly and positively key determinants of mDA neurons, including Lmx1a, Lmx1b, Msx1 and Ferd3l, while negatively inhibiting transcription factors expressed in ventrolateral midbrain such as Helt, Tle4, Otx1, Sox1 and Tal2. Furthermore, Foxa2 negatively regulates extrinsic and intrinsic components of the Shh signaling pathway, possibly by binding to the same enhancer regions of co-regulated genes as Gli1. Foxa2 also regulates the expression of floor plate factors that control axon trajectories around the midline of the embryo, thereby contributing to the axon guidance function of the floor plate. Finally, this study identified multiple Foxa2-regulated enhancers that are active in the floor plate of the midbrain or along the length of the embryo in mouse and chick. This work represents the first comprehensive characterization of Foxa2 targets in mDA progenitors and provides a framework for elaborating gene regulatory networks in a functionally important progenitor population.
Collapse
|
37
|
Chatterjee S, Bourque G, Lufkin T. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC DEVELOPMENTAL BIOLOGY 2011; 11:63. [PMID: 22011226 PMCID: PMC3210094 DOI: 10.1186/1471-213x-11-63] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/20/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Identifying DNA sequences (enhancers) that direct the precise spatial and temporal expression of developmental control genes remains a significant challenge in the annotation of vertebrate genomes. Locating these sequences, which in many cases lie at a great distance from the transcription start site, has been a major obstacle in deciphering gene regulation. Coupling of comparative genomics with functional validation to locate such regulatory elements has been a successful method in locating many such regulatory elements. But most of these studies looked either at a single gene only or the whole genome without focusing on any particular process. The pressing need is to integrate the tools of comparative genomics with knowledge of developmental biology to validate enhancers for developmental transcription factors in greater detail RESULTS Our results show that near four different genes (nkx3.2, pax9, otx1b and foxa2) in zebrafish, only 20-30% of highly conserved DNA sequences can act as developmental enhancers irrespective of the tissue the gene expresses in. We find that some genes also have multiple conserved enhancers expressing in the same tissue at the same or different time points in development. We also located non-conserved enhancers for two of the genes (pax9 and otx1b). Our modified Bacterial artificial chromosome (BACs) studies for these 4 genes revealed that many of these enhancers work in a synergistic fashion, which cannot be captured by individual DNA constructs and are not conserved at the sequence level. Our detailed biochemical and transgenic analysis revealed Foxa1 binds to the otx1b non-conserved enhancer to direct its activity in forebrain and otic vesicle of zebrafish at 24 hpf. CONCLUSION Our results clearly indicate that high level of functional conservation of genes is not necessarily associated with sequence conservation of its regulatory elements. Moreover certain non conserved DNA elements might have role in gene regulation. The need is to bring together multiple approaches to bear upon individual genes to decipher all its regulatory elements.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | | | | |
Collapse
|
38
|
Muto A, Calof AL, Lander AD, Schilling TF. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome. PLoS Biol 2011; 9:e1001181. [PMID: 22039349 PMCID: PMC3201921 DOI: 10.1371/journal.pbio.1001181] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/13/2011] [Indexed: 12/31/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is the founding member of a class of multi-organ system birth defect syndromes termed cohesinopathies, named for the chromatin-associated protein complex cohesin, which mediates sister chromatid cohesion. Most cases of CdLS are caused by haploinsufficiency for Nipped-B-like (Nipbl), a highly conserved protein that facilitates cohesin loading. Consistent with recent evidence implicating cohesin and Nipbl in transcriptional regulation, both CdLS cell lines and tissues of Nipbl-deficient mice show changes in the expression of hundreds of genes. Nearly all such changes are modest, however--usually less than 1.5-fold--raising the intriguing possibility that, in CdLS, severe developmental defects result from the collective action of many otherwise innocuous perturbations. As a step toward testing this hypothesis, we developed a model of nipbl-deficiency in zebrafish, an organism in which we can quantitatively investigate the combinatorial effects of gene expression changes. After characterizing the structure and embryonic expression of the two zebrafish nipbl genes, we showed that morpholino knockdown of these genes produces a spectrum of specific heart and gut/visceral organ defects with similarities to those in CdLS. Analysis of nipbl morphants further revealed that, as early as gastrulation, expression of genes involved in endodermal differentiation (sox32, sox17, foxa2, and gata5) and left-right patterning (spaw, lefty2, and dnah9) is altered. Experimental manipulation of the levels of several such genes--using RNA injection or morpholino knockdown--implicated both additive and synergistic interactions in causing observed developmental defects. These findings support the view that birth defects in CdLS arise from collective effects of quantitative changes in gene expression. Interestingly, both the phenotypes and gene expression changes in nipbl morphants differed from those in mutants or morphants for genes encoding cohesin subunits, suggesting that the transcriptional functions of Nipbl cannot be ascribed simply to its role in cohesin loading.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Anne L. Calof
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
- Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| |
Collapse
|
39
|
Dal-Pra S, Thisse C, Thisse B. FoxA transcription factors are essential for the development of dorsal axial structures. Dev Biol 2011; 350:484-95. [DOI: 10.1016/j.ydbio.2010.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/04/2023]
|
40
|
Cruz C, Ribes V, Kutejova E, Cayuso J, Lawson V, Norris D, Stevens J, Davey M, Blight K, Bangs F, Mynett A, Hirst E, Chung R, Balaskas N, Brody SL, Marti E, Briscoe J. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development 2010; 137:4271-82. [PMID: 21098568 PMCID: PMC2990214 DOI: 10.1242/dev.051714] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2010] [Indexed: 01/24/2023]
Abstract
Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium.
Collapse
Affiliation(s)
- Catarina Cruz
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
- Programa Doutoral em Biologia Experimental e Biomedicina, Department of Zoology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Vanessa Ribes
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Eva Kutejova
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jordi Cayuso
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Josep Samitier 1-5, Barcelona, 08028, Spain
| | - Victoria Lawson
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | - Megan Davey
- Division of Genetics and Genomics, Roslin Institute, Roslin, EH25 9PS, UK
| | - Ken Blight
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Fiona Bangs
- Biology and Biochemistry Department, University of Bath, Bath BA2 7AY, UK
| | - Anita Mynett
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Elizabeth Hirst
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Rachel Chung
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nikolaos Balaskas
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Elisa Marti
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Josep Samitier 1-5, Barcelona, 08028, Spain
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
41
|
Ribes V, Balaskas N, Sasai N, Cruz C, Dessaud E, Cayuso J, Tozer S, Yang LL, Novitch B, Marti E, Briscoe J. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev 2010; 24:1186-200. [PMID: 20516201 PMCID: PMC2878655 DOI: 10.1101/gad.559910] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/07/2010] [Indexed: 12/14/2022]
Abstract
The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.
Collapse
Affiliation(s)
- Vanessa Ribes
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nikolaos Balaskas
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Noriaki Sasai
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Catarina Cruz
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Eric Dessaud
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Jordi Cayuso
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Samuel Tozer
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Lin Lin Yang
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ben Novitch
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Elisa Marti
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - James Briscoe
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
42
|
Chao CH, Wang HD, Yuh CH. Complexity of cis-regulatory organization of six3a during forebrain and eye development in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2010; 10:35. [PMID: 20346166 PMCID: PMC2858731 DOI: 10.1186/1471-213x-10-35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/26/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Six3a belongs to the SIX family of homeodomain proteins and is expressed in the most anterior neural plate at the beginning of neurogenesis in various species. Though the function of Six3a as a crucial regulator of eye and forebrain development has been thoroughly investigated, the transcriptional regulation of six3a is not well understood. RESULTS To elucidate the transcriptional regulation of six3a, we performed an in vivo reporter assay. Alignment of the 21-kb region surrounding the zebrafish six3a gene with the analogous region from different species identified several conserved non-coding modules. Transgenesis in zebrafish identified two enhancer elements and one suppressor. The D module drives the GFP reporter in the forebrain and eyes at an early stage, while the A module is responsible for the later expression. The A module also works as a repressor suppressing ectopic expression from the D module. Mutational analysis further minimized the A module to four highly conserved elements and the D module to three elements. Using electrophoresis mobility shift assays, we also provided evidence for the presence of DNA-binding proteins in embryonic nuclear extracts. The transcription factors that may occupy those highly conserved elements were also predicted. CONCLUSION This study provides a comprehensive view of six3a transcription regulation during brain and eye development and offers an opportunity to establish the gene regulatory networks underlying neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Chung-Hao Chao
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- College of Life Science and Institute of Biotechnology, National Tsing-Hua University, HsinChu, Taiwan
| | - Horng-Dar Wang
- College of Life Science and Institute of Biotechnology, National Tsing-Hua University, HsinChu, Taiwan
| | - Chiou-Hwa Yuh
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- College of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, HsinChu, Taiwan
- Department of Biological Science & Technology, National Chiao Tung University, HsinChu, Taiwan
| |
Collapse
|
43
|
Jaeger SA, Chan ET, Berger MF, Stottmann R, Hughes TR, Bulyk ML. Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites. Genomics 2010; 95:185-95. [PMID: 20079828 DOI: 10.1016/j.ygeno.2010.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 12/29/2022]
Abstract
Sequence-specific binding by transcription factors (TFs) interprets regulatory information encoded in the genome. Using recently published universal protein binding microarray (PBM) data on the in vitro DNA binding preferences of these proteins for all possible 8-base-pair sequences, we examined the evolutionary conservation and enrichment within putative regulatory regions of the binding sequences of a diverse library of 104 nonredundant mouse TFs spanning 22 different DNA-binding domain structural classes. We found that not only high affinity binding sites, but also numerous moderate and low affinity binding sites, are under negative selection in the mouse genome. These 8-mers occur preferentially in putative regulatory regions of the mouse genome, including CpG islands and non-exonic ultraconserved elements (UCEs). Of TFs whose PBM "bound" 8-mers are enriched within sets of tissue-specific UCEs, many are expressed in the same tissue(s) as the UCE-driven gene expression. Phylogenetically conserved motif occurrences of various TFs were also enriched in the noncoding sequence surrounding numerous gene sets corresponding to Gene Ontology categories and tissue-specific gene expression clusters, suggesting involvement in transcriptional regulation of those genes. Altogether, our results indicate that many of the sequences bound by these proteins in vitro, including lower affinity DNA sequences, are likely to be functionally important in vivo. This study not only provides an initial analysis of the potential regulatory associations of 104 mouse TFs, but also presents an approach for the functional analysis of TFs from any other metazoan genome as their DNA binding preferences are determined by PBMs or other technologies.
Collapse
Affiliation(s)
- Savina A Jaeger
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ang SL. Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:58-65. [PMID: 19731550 DOI: 10.1007/978-1-4419-0322-8_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Midbrain dopaminergic neurons (mDA), comprising the substanti nigra pars compacta (A8), the ventral tegmental area (A9) and the retrorubal field (A10) subgroups, are generated from floor plate progenitors, rostral to the isthmic boundary. Floor plate progenitors are specified to become mDA progenitors between embryonic days 8.0 and 10.5. Subsequently these progenitors undergo neuronal differentiation in two phases, termed early and late differentiation to generate immature and mature neurons respectively. Genes that regulate specification, early and late phases of differentiation ofmDA cells have recently been identified. Among them, the forkhead winged helix transcription factors Foxal and Foxa2 (Foxa1/2), have been shown to have essential and dose dependent roles at multiple phases of development. In this chapter, I will summarize recent studies demonstrating a role for Foxa1/2 in regulating the neuronal specification and differentiation ofmDA progenitors and conclude with projections on future directions of this area of research.
Collapse
|
45
|
Genetic dissection of myelinated axons in zebrafish. Curr Opin Neurobiol 2009; 19:486-90. [PMID: 19740648 DOI: 10.1016/j.conb.2009.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/19/2009] [Indexed: 01/29/2023]
Abstract
In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in zebrafish, including the discovery of the role of kif1b in mRNA localization in myelinating oligodendrocytes.
Collapse
|
46
|
Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H. Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics 2008; 9:511. [PMID: 18973680 PMCID: PMC2605479 DOI: 10.1186/1471-2164-9-511] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/30/2008] [Indexed: 01/05/2023] Open
Abstract
Background The Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined. Results To identify genes specific to the Spemann/Mangold organizer, we performed a microarray-based screen that compared wild-type and Foxa2 mutant embryos at late gastrulation stage (E7.5). We could detect genes that were consistently down-regulated in replicate pools of mutant embryos versus wild-type, and these included a number of known node and DE markers. We selected 314 genes without previously published data at E7.5 and screened for expression by whole mount in situ hybridization. We identified 10 novel expression patterns in the node and 5 in the definitive endoderm. We also found significant reduction of markers expressed in secondary tissues that require interaction with the organizer and its derivatives, such as cardiac mesoderm, vasculature, primitive streak, and anterior neuroectoderm. Conclusion The genes identified in this screen represent novel Spemann/Mangold organizer genes as well as potential Foxa2 targets. Further investigation will be needed to define these genes as novel developmental regulatory factors involved in organizer formation and function. We have placed these genes in a Foxa2-dependent genetic regulatory network and we hypothesize how Foxa2 may regulate a molecular program of Spemann/Mangold organizer development. We have also shown how early loss of the organizer and its inductive properties in an otherwise normal embryo, impacts on the molecular profile of surrounding tissues.
Collapse
Affiliation(s)
- Owen J Tamplin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Abstract
Understanding the development and maintenance of dopamine neurons is essential to establish novel stem cell therapies and animal models of Parkinson's disease. A recent PLoS Biology report (Kittappa et al., 2007) reveals that Foxa2 regulates dopamine neuron generation and differentiation, and that aging foxa2(+/-) mice spontaneously develop Parkinsonism.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, MBB, Center of Excellence in Developmental Biology, Karolinska Institute, Scheeles vägen 1, plan 2, Retzius building A1, 17 177 Stockholm, Sweden.
| |
Collapse
|
49
|
Miguel-Aliaga I, Thor S, Gould AP. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol 2008; 6:e58. [PMID: 18336071 PMCID: PMC2265769 DOI: 10.1371/journal.pbio.0060058] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/23/2008] [Indexed: 11/25/2022] Open
Abstract
Insulin and related peptides play important and conserved functions in growth and metabolism. Although Drosophila has proved useful for the genetic analysis of insulin functions, little is known about the transcription factors and cell lineages involved in insulin production. Within the embryonic central nervous system, the MP2 neuroblast divides once to generate a dMP2 neuron that initially functions as a pioneer, guiding the axons of other later-born embryonic neurons. Later during development, dMP2 neurons in anterior segments undergo apoptosis but their posterior counterparts persist. We show here that surviving posterior dMP2 neurons no longer function in axonal scaffolding but differentiate into neuroendocrine cells that express insulin-like peptide 7 (Ilp7) and innervate the hindgut. We find that the postmitotic transition from pioneer to insulin-producing neuron is a multistep process requiring retrograde bone morphogenetic protein (BMP) signalling and four transcription factors: Abdominal-B, Hb9, Fork Head, and Dimmed. These five inputs contribute in a partially overlapping manner to combinatorial codes for dMP2 apoptosis, survival, and insulinergic differentiation. Ectopic reconstitution of this code is sufficient to activate Ilp7 expression in other postmitotic neurons. These studies reveal striking similarities between the transcription factors regulating insulin expression in insect neurons and mammalian pancreatic β-cells. Genetic studies using invertebrate model organisms such as Drosophila have provided many new insights into the functions of insulin and related peptides. It has, however, been more difficult to use Drosophila to study the regulation of insulin, at least in part because the relevant insulinergic cell lineages were not well characterised. Here, we have identified a cell lineage that generates a single Drosophila insulin-producing neuron. This neuron first functions as a pioneer, guiding the axons of other neurons within the central nervous system of the embryo. It then develops long axons that exit the central nervous system to innervate the gut and also begins to express an insulin-like peptide. Genetic analysis identifies four transcription factors and one extrinsic signal that instruct the pioneer neuron to become an insulin-producing neuron. The analysis also reveals similarities between the genetic programmes specifying insulin production by Drosophila neurons and mammalian pancreatic ß-cells. This suggests that Drosophila may, in the future, prove a useful model system for identifying new regulators of human insulin production. A genetic analysis in the fruit fly reveals similarities between the transcriptional programmes regulating insulin production in mammalian pancreatic β-cells and insect neurons.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * To whom correspondence should be addressed. E-mail: (IMA); (APG)
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University Medical School, Linkoping, Sweden
| | - Alex P Gould
- Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * To whom correspondence should be addressed. E-mail: (IMA); (APG)
| |
Collapse
|
50
|
The words of the regulatory code are arranged in a variable manner in highly conserved enhancers. Dev Biol 2008; 318:366-77. [PMID: 18455719 DOI: 10.1016/j.ydbio.2008.03.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/17/2008] [Accepted: 03/20/2008] [Indexed: 01/29/2023]
Abstract
The cis-regulatory regions of many developmental regulators and transcription factors are believed to be highly conserved in the genomes of vertebrate species, suggesting specific regulatory mechanisms for these gene classes. We functionally characterized five notochord enhancers, whose sequence is highly conserved, and systematically mutated two of them. Two subregions were identified to be essential for expression in the notochord of the zebrafish embryo. Synthetic enhancers containing the two essential regions in front of a TATA-box drive expression in the notochord while concatemerization of the subregions alone is not sufficient, indicating that the combination of the two sequence elements is required for notochord expression. Both regions are present in the five functionally characterized notochord enhancers. However, the position, the distance and relative orientation of the two sequence motifs can vary substantially within the enhancer sequences. This suggests that the regulatory grammar itself does not dictate the high evolutionary conservation between these orthologous cis-regulatory sequences. Rather, it represents a less well-conserved layer of sequence organization within these sequences.
Collapse
|