1
|
Xiang KZ, Yan L, Yang DQ. INS2 lineage cell tracking and insulin expression in the related organs of mice. Sci Rep 2025; 15:9164. [PMID: 40097501 PMCID: PMC11914036 DOI: 10.1038/s41598-025-92993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
We tracked lineage map of the Ins2 cells in mice and insulin expression in migration sites of cells. We studied effect of the Wnt/β-catenin signaling pathway on the migration. We studied insulin secretion status in submandibular gland of mice under hyperglycemia stress. Cre/loxp system was used to observe migration sites and timing of the Ins2-cre lineage cells. Immunohistochemistry and immunofluorescence was used to detecte presence of insulin in the Ins2-cre lineage cells. Knockout mice from E9.5 to adulthood was studied to explore role of the Wnt/β-catenin on the migration. Immunofluorescence and the QRT-PCR (Quantitative Real-time Polymerase Chain Reaction) was used to study insulin secretion in submandibular gland under hyperglycemic conditions. Expression sites of the Ins2-cre gene in adult mice decreased compared with postnatal mice, including the pancreas, tongue, submandibular, and brain. In the migration tissues of ins-cre cells, positive insulin expression was detected in the submandibular acinus, vessel element and pancreatic islets. In comparison to wild-type mice, Wnt/β-catenin signaling knockout mice displayed a slight rise of INS2 expression during the neonatal stage, with a notable increase in adulthood, particularly in areas near the oral cavity. Expression of insulin in submandibular gland of mice increased after 6 h of hyperglycemic stimulation (P < 0.05). Ins2 lineage cells can migrate to multiple organs in mice, where insulin may expressed. Inhibition or knockout of the Wnt/β-catenin signaling pathway may indirectly enhance the migratory capacity of INS2 cells. Submandibular glands may secrete insulin under stress of maintaining organismal homeostasis. Wnt/β-catenin may be the therapeutic target of diabetes. Submandibular glands may be a new target organ of gene therapy for diabetic patients.
Collapse
Affiliation(s)
- Ke-Zhen Xiang
- College of Stomatology, Chongqing Medical University, Chongqing, 401120, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401120, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401120, China
| | - Luan Yan
- College of Stomatology, Guangzhou Medical University, Guangzhou, 510000, China
| | - De-Qin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401120, China.
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China.
| |
Collapse
|
2
|
Chen J, Lu J, Wang SN, Miao CY. Application and challenge of pancreatic organoids in therapeutic research. Front Pharmacol 2024; 15:1366417. [PMID: 38855754 PMCID: PMC11157021 DOI: 10.3389/fphar.2024.1366417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.
Collapse
Affiliation(s)
- Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Jin Lu
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Tao Z, Yang D, Ni R. Tmed10 deficiency results in impaired exocrine pancreatic differentiation in zebrafish larvae. Dev Biol 2023; 503:43-52. [PMID: 37597605 DOI: 10.1016/j.ydbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Transmembrane p24 trafficking protein 10 (TMED10) is a conserved vesicle trafficking protein. It is dysregulated in Alzheimer disease and plays a pivotal role in the pathogenesis of Alzheimer disease. In addition to the brain, TMED10 is highly expressed in the exocrine pancreas; however, its biological functions and underlying mechanisms remain largely unknown. We studied reduced Tmed10 in zebrafish embryos by morpholino oligonucleotide knockdown and CRISPR-Cas9 mutagenesis. Tmed10-deficient embryos showed extensive loss of acinar mass and impaired acinar differentiation. TMED10 has been reported to have an inhibitory effect on γ-secretase. As one of the substrates of γ-secretase, membrane-bound β-catenin was significantly reduced in Tmed10-deficient embryos. Increased γ-secretase activity in wild-type embryos resulted in a phenotype similar to that of tmed10 mutants. And the mutant phenotype could be rescued by treatment with the γ-secretase inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester (DAPT). In addition, the reduced membrane-bound β-catenin was accompanied with up-regulated β-catenin target genes in Tmed10-deficient embryos. Overexpression of β-catenin signaling inhibitor Dickkopf-1 (DKK-1) could rescue the exocrine pancreas defects. Taken together, our study reveals that Tmed10 regulates exocrine pancreatic differentiation through γ-secretase. Reduced membrane-bound β-catenin, accompanied with hyperactivation of β-catenin signaling, is an important cause of exocrine pancreas defects in Tmed10-deficient embryos. Our study reaffirms the importance of appropriate β-catenin signaling in exocrine pancreas development. These findings may provide a theoretical basis for the development of treatment strategies for TMED10-related diseases.
Collapse
Affiliation(s)
- Zewen Tao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China
| | - Di Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China.
| |
Collapse
|
4
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
5
|
Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, Charles B, Collombat P. Wnt Pathway in Pancreatic Development and Pathophysiology. Cells 2023; 12:cells12040565. [PMID: 36831232 PMCID: PMC9954665 DOI: 10.3390/cells12040565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/β-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting β-cells. This review summarizes recent work on the role of Wnt/β-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.
Collapse
Affiliation(s)
| | | | - Chaïma Ayachi
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | | | - Hugo Fofo
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
- Correspondence:
| |
Collapse
|
6
|
Wong A, Pritchard S, Moore M, Akhaphong B, Avula N, Beetch M, Fujitani Y, Alejandro EU. Overexpression of Pdx1, reduction of p53, or deletion of CHOP attenuates pancreas hypoplasia in mice with pancreas-specific O-GlcNAc transferase deletion. J Biol Chem 2023; 299:102878. [PMID: 36623733 PMCID: PMC9932656 DOI: 10.1016/j.jbc.2023.102878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in β-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of β-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and β-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samantha Pritchard
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nandini Avula
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Megan Beetch
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
7
|
Kuo TL, Cheng KH, Chen LT, Hung WC. ARID1A loss in pancreas leads to islet developmental defect and metabolic disturbance. iScience 2023; 26:105881. [PMID: 36654862 PMCID: PMC9840936 DOI: 10.1016/j.isci.2022.105881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
ARID1A is a tumor suppressor gene mutated in 7-10% of pancreatic cancer patients. However, its function in pancreas development and endocrine regulation is unclear. We generated mice that lack Arid1a expression in the pancreas. Our results showed that deletion of the Arid1a gene in mice caused a reduction in islet numbers and insulin production, both of which are associated with diabetes mellitus (DM) phenotype. RNA sequencing of isolated islets confirmed DM gene signature and decrease of developmental lineage genes. We identified neurogenin3, a transcription factor that controls endocrine fate specification, is a direct target of Aird1a. Gene set enrichment analysis indicated the enhancement of histone deacetylase (HDAC) pathway after Arid1a depletion and a clinically approved HDAC inhibitor showed therapeutic benefit by suppressing disease onset. Our data suggest that Arid1a is required for the development of pancreatic islets by regulating Ngn3+-mediated transcriptional program and is important in maintaining endocrine function.
Collapse
Affiliation(s)
- Tzu-Lei Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Division of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nat Commun 2022; 13:633. [PMID: 35110543 PMCID: PMC8810795 DOI: 10.1038/s41467-021-27602-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The choroid plexus secretes cerebrospinal fluid and is critical for the development and function of the brain. In the telencephalon, the choroid plexus epithelium arises from the Wnt- expressing cortical hem. Canonical Wnt signaling pathway molecules such as nuclear β-CATENIN are expressed in the mouse and human embryonic choroid plexus epithelium indicating that this pathway is active. Point mutations in human β-CATENIN are known to result in the constitutive activation of canonical Wnt signaling. In a mouse model that recapitulates this perturbation, we report a loss of choroid plexus epithelial identity and an apparent transformation of this tissue to a neuronal identity. Aspects of this phenomenon are recapitulated in human embryonic stem cell derived organoids. The choroid plexus is also disrupted when β-Catenin is conditionally inactivated. Together, our results indicate that canonical Wnt signaling is required in a precise and regulated manner for normal choroid plexus development in the mammalian brain.
Collapse
|
10
|
Iida R, Ueki M, Yasuda T. Deficiency of M-LP/Mpv17L leads to development of β-cell hyperplasia and improved glucose tolerance via activation of the Wnt and TGF-β pathways. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166318. [PMID: 34883249 DOI: 10.1016/j.bbadis.2021.166318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
M-LP/Mpv17L is a protein that was initially identified during screening of age-dependently expressed genes in mice. We have recently demonstrated that M-LP/Mpv17L-knockout (M-LP/Mpv17L-KO) in human hepatoma cells leads to a reduction of cellular cyclic nucleotide phosphodiesterase (PDE) activity, and that in vitro-synthesized M-LP/Mpv17L possesses PDE activity. These findings suggest that M-LP/Mpv17L functions as an atypical PDE, even though it has none of the well-conserved catalytic region or other structural motifs characteristic of the PDE family. In this study, we found that M-LP/Mpv17L-KO mice developed β-cell hyperplasia and improved glucose tolerance. Deficiency of M-LP/Mpv17L in islets from KO mice at early postnatal stages or siRNA-mediated suppression of M-LP/Mpv17L in rat insulinoma cells led to marked upregulation of lymphoid enhancer binding factor 1 (Lef1) and transcription factor 7 (Tcf7), key nuclear effectors in the Wnt signaling pathway, and some of the factors essential for the development and maintenance of β-cells. Moreover, at the protein level, increases in the levels of phosphorylated β-catenin and glycogen synthase kinase-3β (GSK-3β) were observed, indicating activation of the Wnt and TGF-β signaling pathways. Taken together, these findings suggest that protein kinase A (PKA)-dependent phosphorylations of β-catenin and GSK-3β, the key mediators of the Wnt and/or TGF-β signaling pathways, are the most upstream events triggering β-cell hyperplasia and improved glucose tolerance caused by M-LP/Mpv17L deficiency.
Collapse
Affiliation(s)
- Reiko Iida
- Life Science Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
11
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
12
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
13
|
A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat Commun 2021; 12:3144. [PMID: 34035279 PMCID: PMC8149728 DOI: 10.1038/s41467-021-23295-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Human organogenesis remains relatively unexplored for ethical and practical reasons. Here, we report the establishment of a single-cell transcriptome atlas of the human fetal pancreas between 7 and 10 post-conceptional weeks of development. To interrogate cell–cell interactions, we describe InterCom, an R-Package we developed for identifying receptor–ligand pairs and their downstream effects. We further report the establishment of a human pancreas culture system starting from fetal tissue or human pluripotent stem cells, enabling the long-term maintenance of pancreas progenitors in a minimal, defined medium in three-dimensions. Benchmarking the cells produced in 2-dimensions and those expanded in 3-dimensions to fetal tissue identifies that progenitors expanded in 3-dimensions are transcriptionally closer to the fetal pancreas. We further demonstrate the potential of this system as a screening platform and identify the importance of the EGF and FGF pathways controlling human pancreas progenitor expansion. From single-cell transcriptome analyses to defining culture media for spheroids, the authors provide a census of information to understand the development of human pancreatic progenitors. This approach identifies signalling pathways (EGF and FGF) regulating progenitor proliferation.
Collapse
|
14
|
Yang H, Qin D, Xu S, He C, Sun J, Hua J, Peng S. Folic acid promotes proliferation and differentiation of porcine pancreatic stem cells into insulin-secreting cells through canonical Wnt and ERK signaling pathway. J Steroid Biochem Mol Biol 2021; 205:105772. [PMID: 33091596 DOI: 10.1016/j.jsbmb.2020.105772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Porcine pancreatic stem cells (pPSCs) can be induced to differentiate into insulin-producing cells in vitro and thus serve as a major cells source for β-cell regeneration. However, this application is limited by the weak cell proliferation ability and low insulin induction efficiency. In this study, we explored the role of folic acid in the proliferation of pPSCs and the formation of insulin-secreting cells. We found that FA-treated pPSCs cells had a high EDU positive rate, and the proliferation marker molecules PCNA, CyclinD1 and c-Myc were up-regulated, while the expression of folate receptor α (FOLRα) was up-regulated. In further research, interference FOLRα or adding canonical Wnt signaling pathway or ERK signaling pathway inhibitors could significantly inhibit the effect of FA on pPSCs proliferation. Meanwhile, during the differentiation of pPSCs into insulin-secreting cells, we found that the maturation marker genes Insulin, NKX6.1, MafA, and NeuroD1 was upregulated in insulin-secreting cell masses differentiationed from pPSCs after FA treatment, and the functional molecules Insulin and C-peptide were increased, the ability to secrete insulin in response to high glucose was also increased. With the addition of Wnt and ERK signaling pathway inhibitors, the pro-differentiation effect of FA was weakened. In conclusion, FA promotes the proliferation of pPSCs by binding to folate receptor α (FOLRα) and increase the efficiency of directed differentiation of pPSCs into insulin-producing cells by regulating canonical Wnt and ERK signaling pathway. This study lays theoretical foundation for solving the bottleneck in the treatment of diabetes with stem cell transplantation in future.
Collapse
Affiliation(s)
- Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chen He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
15
|
Abstract
The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Collapse
Affiliation(s)
- Lydie Flasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Coline Schewin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark.
| |
Collapse
|
16
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
18
|
Taherkhani F, Hosseini KM, Zebardast S, Chegini KG, Gheibi N. Anti proliferative and apoptotic effects on pancreatic cancer cell lines indicate new roles for ANGPTL8 (Betatrophin). Genet Mol Biol 2020; 43:e20190196. [PMID: 32745158 PMCID: PMC7416753 DOI: 10.1590/1678-4685-gmb-2019-0196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 05/31/2020] [Indexed: 11/25/2022] Open
Abstract
Despite considerable advances, the treatment of pancreatic cancer (PC) still
requires much effort. Unusual regulation of the Wnt and apoptotic signaling
pathways is widespread in cancer incidence. For instance, the
WIF1 (Wnt inhibitory factor 1) gene is down-regulated in
many cancers. The purpose of this study was to determine the effects of
recombinant Betatrophin, a recently discovered hormone, on MiaPaca-II and
Panc-1 pancreatic cell lines. Various concentrations of
Betatrophin were added to MiaPaca-II and Panc-1 pancreatic cell
lines during periods of 24 , 48, and 72 h. The MTT assay was applied to
investigate cell proliferation after treatment. The rate of apoptotic cells was
assessed using double-staining flow cytometry, and the expression levels of the
WIF1 gene and Bcl2 protein was observed by real-time PCR
and western blotting, respectively. The findings of this study suggest that
Betatrophin has an anti-proliferative effect on both MiaPaca-II and Panc-1 cell
lines, in line with the up-regulation of WIF1 as a tumor
suppressor gene. Moreover, the induction of apoptosis by ANGPTL8 occurred by the
down-regulation of Bcl2. Thus, Betatrophin can be proposed as a potential
therapeutic drug for treating pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Sanaz Zebardast
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Koorosh Goodarzvand Chegini
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
19
|
Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA. Wnt Signaling Separates the Progenitor and Endocrine Compartments during Pancreas Development. Cell Rep 2020; 27:2281-2291.e5. [PMID: 31116975 DOI: 10.1016/j.celrep.2019.04.083] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/23/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Abstract
In vitro differentiation of pluripotent cells into β cells is a promising alternative to cadaveric-islet transplantation as a cure for type 1 diabetes (T1D). During the directed differentiation of human embryonic stem cells (hESCS) by exogenous factors, numerous genes that affect the differentiation process are turned on and off autonomously. Manipulating these reactions could increase the efficiency of differentiation and provide a more complete control over the final composition of cell populations. To uncover in vitro autonomous responses, we performed single-cell RNA sequencing on hESCs as they differentiate in spherical clusters. We observed that endocrine cells and their progenitors exist beside one another in separate compartments that activate distinct genetic pathways. WNT pathway inhibition in the endocrine domain of the differentiating clusters reveals a necessary role for the WNT inhibitor APC during islet formation in vivo. Accordingly, WNT inhibition in vitro causes an increase in the proportion of differentiated endocrine cells.
Collapse
Affiliation(s)
- Nadav Sharon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jordan Vanderhooft
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Jonas Mueller
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Raghav Chawla
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Quan Zhou
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Elise N Engquist
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular & Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Zhang X, Xu J, Yan R, Zhang Y, Hu Z, Fu H, You Q, Cai Q, Yang D. FAM84B, amplified in pancreatic ductal adenocarcinoma, promotes tumorigenesis through the Wnt/β-catenin pathway. Aging (Albany NY) 2020; 12:6808-6822. [PMID: 32291380 PMCID: PMC7202512 DOI: 10.18632/aging.103044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 01/05/2023]
Abstract
Altered expression of family with sequence similarity 84, member B (FAM84B) has been found in various human cancers. However, the expression and function of FAM84B in pancreatic ductal adenocarcinoma (PDAC) has not been studied. Here, by analyzing The Cancer Genome Atlas cohort, we found that FAM84B amplification was observed in 11% of 141 PDAC patients, and FAM84B amplification was correlated with higher mRNA expression of FAM84B. FAM84B amplification and overexpression was significantly correlated with poor overall survival. Moreover, knockdown of FAM84B in PDAC cell lines suppressed cell proliferation and induced apoptosis. FAM84B knockdown also suppressed mitochondrial function and glycolysis of PDAC cells. Interestingly, knockdown of FAM84B decreased the nuclear accumulation of β-catenin, and the expression of c-Myc and lactate dehydrogenase A, but enhanced the expression of Survivin. On the contrary, FAM84B overexpression displayed reversed effects in cell proliferation, apoptosis, mitochondrial function, and glycolysis, which was blocked by the Wnt/β-catenin pathway inhibitor (XAV939). In addition, PDAC cells with lower expression of FAM84B were more sensitive to gemcitabine-induced cell proliferation inhibition both in vitro and in vivo. In conclusion, FAM84B plays an important role in aerobic glycolysis and tumorigenesis in PDAC and Wnt/β-catenin may be involved in this process.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastrointestinal surgery, Changhai Hospital, Second Military Medical University, Yangpu 200433, Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| |
Collapse
|
21
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
23
|
Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 2019; 10:4647. [PMID: 31604927 PMCID: PMC6789033 DOI: 10.1038/s41467-019-12624-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Collapse
|
24
|
Guerriero I, De Angelis MT, D'Angelo F, Leveque R, Savignano E, Roberto L, Lucci V, Mazzone P, Laurino S, Storto G, Nardelli A, Sgambato A, Ceccarelli M, De Felice M, Amendola E, Falco G. Exploring the Molecular Crosstalk between Pancreatic Bud and Mesenchyme in Embryogenesis: Novel Signals Involved. Int J Mol Sci 2019; 20:ijms20194900. [PMID: 31623299 PMCID: PMC6811752 DOI: 10.3390/ijms20194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023] Open
Abstract
Pancreatic organogenesis is a multistep process that requires the cooperation of several signaling pathways. In this context, the role of pancreatic mesenchyme is important to define the epithelium development; nevertheless, the precise space–temporal signaling activation still needs to be clarified. This study reports a dissection of the pancreatic embryogenesis, highlighting the molecular network surrounding the epithelium–mesenchyme interaction. To investigate this crosstalk, pancreatic epithelium and surrounding mesenchyme, at embryonic day 10.5, were collected through laser capture microdissection (LCM) and characterized based on their global gene expression. We performed a bioinformatic analysis to hypothesize crosstalk interactions, validating the most promising genes and verifying the precise localization of their expression in the compartments, by RNA in situ hybridization (ISH). Our analyses pointed out also the c-Met gene, a very well-known factor involved in stimulating motility, morphogenesis, and organ regeneration. We also highlighted the potential crosstalk between Versican (Vcan) and Syndecan4 (Sdc4) since these genes are involved in pancreatic tissue repair, strengthening the concept that the same signaling pathways required during pancreatic embryogenesis are also involved in tissue repair. This finding leads to novel strategies for obtaining functional pancreatic stem cells for cell replacement therapies.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Maria Teresa De Angelis
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Fulvio D'Angelo
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Rita Leveque
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Eleonora Savignano
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Luca Roberto
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Valeria Lucci
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Pellegrino Mazzone
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Simona Laurino
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Giovanni Storto
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via De Amicis No. 95, 80145 Napoli, Italy.
| | - Alessandro Sgambato
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Mario De Felice
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Elena Amendola
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Geppino Falco
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| |
Collapse
|
25
|
The Use of Genetically Engineered Mouse Models for Studying the Function of Mutated Driver Genes in Pancreatic Cancer. J Clin Med 2019; 8:jcm8091369. [PMID: 31480737 PMCID: PMC6780401 DOI: 10.3390/jcm8091369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.
Collapse
|
26
|
Aguilar-Medina M, Avendaño-Félix M, Lizárraga-Verdugo E, Bermúdez M, Romero-Quintana JG, Ramos-Payan R, Ruíz-García E, López-Camarillo C. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:6754040. [PMID: 31057614 PMCID: PMC6463569 DOI: 10.1155/2019/6754040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Transcriptional and epigenetic embryonic programs can be reactivated in cancer cells. As result, a specific subset of undifferentiated cells with stem-cells properties emerges and drives tumorigenesis. Recent findings have shown that ectoderm- and endoderm-derived tissues continue expressing stem-cells related transcription factors of the SOX-family of proteins such as SOX2 and SOX9 which have been implicated in the presence of cancer stem-like cells (CSCs) in tumors. Currently, there is enough evidence suggesting an oncogenic role for SOX9 in different types of human cancers. This review provides a summary of the current knowledge about the involvement of SOX9 in development and progression of cancer. Understanding the functional roles of SOX9 and clinical relevance is crucial for developing novel treatments targeting CSCs in cancer.
Collapse
Affiliation(s)
- Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | | | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastro-Intestinales, Instituto Nacional de Cancerología. CDMX, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| |
Collapse
|
27
|
Regulation of the Pancreatic Exocrine Differentiation Program and Morphogenesis by Onecut 1/Hnf6. Cell Mol Gastroenterol Hepatol 2019; 7:841-856. [PMID: 30831323 PMCID: PMC6476890 DOI: 10.1016/j.jcmgh.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The Onecut 1 transcription factor (Oc1, a.k.a. HNF6) promotes differentiation of endocrine and duct cells of the pancreas; however, it has no known role in acinar cell differentiation. We sought to better understand the role of Oc1 in exocrine pancreas development and to identify its direct transcriptional targets. METHODS Pancreata from Oc1Δpanc (Oc1fl/fl;Pdx1-Cre) mouse embryos and neonates were analyzed morphologically. High-throughput RNA-sequencing was performed on control and Oc1-deficient pancreas; chromatin immunoprecipitation sequencing was performed on wild-type embryonic mouse pancreata to identify direct Oc1 transcriptional targets. Immunofluorescence labeling was used to confirm the RNA-sequencing /chromatin immunoprecipitation sequencing results and to further investigate the effects of Oc1 loss on acinar cells. RESULTS Loss of Oc1 from the developing pancreatic epithelium resulted in disrupted duct and acinar cell development. RNA-sequencing revealed decreased expression of acinar cell regulatory factors (Nr5a2, Ptf1a, Gata4, Mist1) and functional genes (Amylase, Cpa1, Prss1, Spink1) at embryonic day (e) 18.5 in Oc1Δpanc samples. Approximately 1000 of the altered genes were also identified as direct Oc1 targets by chromatin immunoprecipitation sequencing, including most of the previously noted genes. By immunolabeling, we confirmed that Amylase, Mist1, and GATA4 protein levels are significantly decreased by P2, and Spink1 protein levels were significantly reduced and mislocalized. The pancreatic duct regulatory factors Hnf1β and FoxA2 were also identified as direct Oc1 targets. CONCLUSIONS These findings confirm that Oc1 is an important regulator of both duct and acinar cell development in the embryonic pancreas. Novel transcriptional targets of Oc1 have now been identified and provide clarity into the mechanisms of Oc1 transcriptional regulation in the developing exocrine pancreas. Oc1 can now be included in the gene-regulatory network of acinar cell regulatory genes. Oc1 regulates other acinar cell regulatory factors and acinar cell functional genes directly, and it can also regulate some acinar cell regulatory factors (eg, Mist1) indirectly. Oc1 therefore plays an important role in acinar cell development.
Collapse
|
28
|
Taneera J, Mohammed AK, Dhaiban S, Hamad M, Prasad RB, Sulaiman N, Salehi A. RORB and RORC associate with human islet dysfunction and inhibit insulin secretion in INS-1 cells. Islets 2019; 11:10-20. [PMID: 30762474 PMCID: PMC6389281 DOI: 10.1080/19382014.2019.1566684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Little is known about the expression and function of Retinoic acid-related orphan receptors (RORA, B, and C) in pancreatic β cells. Here in, we utilized cDNA microarray and RNA sequencing approaches to investigate the expression pattern of ROR receptors in normal and diabetic human pancreatic islets. Possible correlations between RORs expression and HbA1c levels as well as insulin secretory capacity in isolated human islets were evaluated. The impact of RORB and RORC expression on insulin secretion in INS-1 (832/13) cells was validated as well. While RORA was the highest expressed gene among the three RORs in human islet cells, RORC was the highest expressed in INS-1 cells (832/13) and while RORB was the lowest expressed gene in human islet cells, RORA was the highest expressed in INS-1 cells (832/13). The expression of RORB and RORC was significantly lower in diabetic/hyperglycemic donors as compared with non-diabetic counterparts. Furthermore, while the expression of RORB correlated positively with insulin secretion and negatively with HbA1c, that of RORC correlated negatively with HbA1c. The expression pattern of RORA did not correlate with either of the two parameters. siRNA silencing of RORB or RORC in INS-1 (832/13) cells resulted in a significant downregulation of insulin mRNA expression and insulin secretion. These findings suggest that RORB and RORC are part of the molecular cascade that regulates insulin secretion in pancreatic β cells; and insight that provides for further work on the potential therapeutic utility of RORB and RORC genes in β cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
- CONTACT Jalal Taneera Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | | | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Rashmi B. Prasad
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Albert Salehi
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Abstract
Acute and chronic pancreatitises are gastrointestinal inflammatory diseases, the incidence of which is increasing worldwide. Most (~ 80%) acute pancreatitis (AP) patients have mild disease, and about 20% have severe disease, which causes multiple organ failure and has a high mortality rate. Chronic pancreatitis (CP) is characterized by chronic inflammation and destruction of normal pancreatic parenchyma, which leads to loss of exocrine and endocrine tissues. Patients with CP also have a higher incidence of pancreatic ductal adenocarcinoma. Although a number of factors are associated with the development and progression of AP and CP, the underlying mechanism is unclear. Adhesion molecules play important roles in cell migration, proliferation, and signal transduction, as well as in development and tissue repair. Loosening of cell-cell adhesion between pancreatic acinar cells and/or endothelial cells increases solute permeability, resulting in interstitial edema, which promotes inflammatory cell migration and disrupts tissue structure. Oxidative stress, which is one of the important pathogenesis of pancreatitis, leads to upregulation of adhesion molecules. Soluble adhesion molecules are reportedly involved in AP. In this review, we focus on the roles of tight junctions (occludin, tricellulin, claudin, junctional adhesion molecule, and zonula occludin), adherens junctions (E-cadherin and p120-, α-, and β-catenin), and other adhesion molecules (selectin and intercellular adhesion molecules) in the progression of AP and CP. Maintaining the normal function of adhesion molecules and preventing their abnormal activation maintain the structure of the pancreas and prevent the development of pancreatitis.
Collapse
Affiliation(s)
- Takeshi Sato
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Wataru Shibata
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan ,0000 0001 1033 6139grid.268441.dDivision of Translational Research, Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Shin Maeda
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
31
|
Kimura Y, Fukuda A, Ogawa S, Maruno T, Takada Y, Tsuda M, Hiramatsu Y, Araki O, Nagao M, Yoshikawa T, Ikuta K, Yoshioka T, Wang Z, Akiyama H, Wright CV, Takaori K, Uemoto S, Chiba T, Seno H. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2018; 155:194-209.e2. [PMID: 29604291 DOI: 10.1053/j.gastro.2018.03.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS The ARID1A gene encodes a protein that is part of the large adenosine triphosphate (ATP)-dependent chromatin remodeling complex SWI/SNF and is frequently mutated in human pancreatic ductal adenocarcinomas (PDACs). We investigated the functions of ARID1A during formation of PDACs in mice. METHODS We performed studies with Ptf1a-Cre;KrasG12D mice, which express activated Kras in the pancreas and develop pancreatic intraepithelial neoplasias (PanINs), as well as those with disruption of Aird1a (Ptf1a-Cre;KrasG12D;Arid1af/f mice) or disruption of Brg1 (encodes a catalytic ATPase of the SWI/SNF complex) (Ptf1a-Cre;KrasG12D; Brg1f/fmice). Pancreatic ductal cells (PDCs) were isolated from Arid1af/f mice and from Arid1af/f;SOX9OE mice, which overexpress human SOX9 upon infection with an adenovirus-expressing Cre recombinase. Pancreatic tissues were collected from all mice and analyzed by histology and immunohistochemistry; cells were isolated and grown in 2-dimensional and 3-dimensional cultures. We performed microarray analyses to compare gene expression patterns in intraductal papillary mucinous neoplasms (IPMNs) from the different strains of mice. We obtained 58 samples of IPMNs and 44 samples of PDACs from patients who underwent pancreatectomy in Japan and analyzed them by immunohistochemistry. RESULTS Ptf1a-Cre;KrasG12D mice developed PanINs, whereas Ptf1a-Cre;KrasG12D;Arid1af/f mice developed IPMNs and PDACs; IPMNs originated from PDCs. ARID1A-deficient IPMNs did not express SOX9. ARID1A-deficient PDCs had reduced expression of SOX9 and dedifferentiated in culture. Overexpression of SOX9 in these cells allowed them to differentiate and prevented dilation of ducts. Among mice with pancreatic expression of activated Kras, those with disruption of Arid1a developed fewer PDACs from IPMNs than mice with disruption of Brg1. ARID1A-deficient IPMNs had reduced activity of the mTOR pathway. Human IPMN and PDAC specimens had reduced levels of ARID1A, SOX9, and phosphorylated S6 (a marker of mTOR pathway activation). Levels of ARID1A correlated with levels of SOX9 and phosphorylated S6. CONCLUSIONS ARID1A regulates expression of SOX9, activation of the mTOR pathway, and differentiation of PDCs. ARID1A inhibits formation of PDACs from IPMNs in mice with pancreatic expression of activated KRAS and is down-regulated in IPMN and PDAC tissues from patients.
Collapse
Affiliation(s)
- Yoshito Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Zong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher V Wright
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kyoichi Takaori
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Shinji Uemoto
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Ding D, Li C, Zhao T, Li D, Yang L, Zhang B. LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling. Mol Cells 2018; 41:423-435. [PMID: 29754471 PMCID: PMC5974619 DOI: 10.14348/molcells.2018.2258] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/30/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Lucif-erase reporter plasmids were prepared to evaluate the transduction activity of Wnt/β-catenin signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, over-expressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl (Wnt/β-catenin pathway activator) or XAV93920 (Wnt/β-catenin pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of β-catenin/Tcf reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.
Collapse
Affiliation(s)
- Dayong Ding
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| | - Tiancheng Zhao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| | - Dandan Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| | - Lei Yang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033,
P.R. China
| |
Collapse
|
33
|
Jimenez-Caliani AJ, Pillich R, Yang W, Diaferia GR, Meda P, Crisa L, Cirulli V. αE-Catenin Is a Positive Regulator of Pancreatic Islet Cell Lineage Differentiation. Cell Rep 2018; 20:1295-1306. [PMID: 28793255 PMCID: PMC5611824 DOI: 10.1016/j.celrep.2017.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
The development and function of epithelia depend on the establishment and maintenance of cell-cell adhesion and intercellular junctions, which operate as mechanosensor hubs for the transduction of biochemical signals regulating cell proliferation, differentiation, survival, and regeneration. Here, we show that αE-catenin, a key component of adherens junctions, functions as a positive regulator of pancreatic islet cell lineage differentiation by repressing the sonic hedgehog pathway (SHH). Thus, deletion of αE-catenin in multipotent pancreatic progenitors resulted in (1) loss of adherens junctions, (2) constitutive activation of SHH, (3) decrease in islet cell lineage differentiation, and (4) accumulation of immature Sox9+ progenitors. Pharmacological blockade of SHH signaling in pancreatic organ cultures and in vivo rescued this defect, allowing αE-catenin-null Sox9+ pancreatic progenitors to differentiate into endocrine cells. The results uncover crucial functions of αE-catenin in pancreatic islet development and harbor significant implications for the design of β cell replacement and regeneration therapies in diabetes.
Collapse
Affiliation(s)
- Antonio J Jimenez-Caliani
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Dermatology, Rheumatology, Diabetology, University of Bremen, Bremen, Germany
| | - Rudolf Pillich
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wendy Yang
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Barlow JP, Solomon TP. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am J Physiol Endocrinol Metab 2018; 314:E297-E307. [PMID: 29208613 DOI: 10.1152/ajpendo.00353.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is an endocrine organ that secretes a variety of compounds including proteins (myokines), metabolites, microRNAs (miRNAs), and exosomes, many of which are regulated by exercise and play important roles in endocrine signaling. Interorgan communication via muscle-secreted factors therefore provides a novel area for investigation and implicates the importance of skeletal muscle in the pathophysiology of metabolic diseases such as type 2 diabetes (T2D). Given that underlying molecular mechanisms of T2D are subject of ongoing research, in light of new evidence it is probable that interorgan cross-talk between skeletal muscle and pancreatic β-cells plays an important part. To date, the number of studies published in this field provide the basis of this review. Specifically, we discuss current experimental evidence in support for a role of skeletal muscle to β-cell cross-talk, paying particular attention to muscle-secreted factors including myokines, metabolites, miRNAs, and factors contained within exosomes that influence the function and/or the survival of β-cells in health and disease. In reviewing this evidence, we provide an update on the list of known muscle-secreted factors that have potential to influence the function and/or survival of β-cells under normal and diabetic conditions. We also report limitations of current cross-talk methods and discuss future directions in this growing field.
Collapse
Affiliation(s)
- Jonathan P Barlow
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham, West Midlands , United Kingdom
| | - Thomas P Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham, West Midlands , United Kingdom
| |
Collapse
|
35
|
Boggs K, Wang T, Orabi AI, Mukherjee A, Eisses JF, Sun T, Wen L, Javed TA, Esni F, Chen W, Husain SZ. Pancreatic gene expression during recovery after pancreatitis reveals unique transcriptome profiles. Sci Rep 2018; 8:1406. [PMID: 29362419 PMCID: PMC5780441 DOI: 10.1038/s41598-018-19392-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
It is well known that pancreatic recovery after a single episode of injury such as an isolated bout of pancreatitis occurs rapidly. It is unclear, however, what changes are inflicted in such conditions to the molecular landscape of the pancreas. In the caerulein hyperstimulation model of pancreatitis, the murine pancreas has the ability to recover within one week based on histological appearance. In this study, we sought to characterize by RNA-sequencing (RNA-seq) the transcriptional profile of the recovering pancreas up to two weeks post-injury. We found that one week after injury there were 319 differentially expressed genes (DEGs) compared with baseline and that after two weeks there were 53 DEGs. Forty (12.5%) of the DEGs persisted from week one to week two, and another 13 DEGs newly emerged in the second week. Amongst the top up-regulated DEGs were several trypsinogen genes (trypsinogen 4, 5, 12, 15, and 16). To our knowledge, this is the first characterization of the transcriptome during pancreatic recovery by deep sequencing, and it reveals on a molecular basis that there is an ongoing recovery of the pancreas even after apparent histological resolution. The findings also raise the possibility of an emerging novel transcriptome upon pancreatic recovery.
Collapse
Affiliation(s)
- Kristy Boggs
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Ting Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Abrahim I Orabi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Amitava Mukherjee
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - John F Eisses
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tao Sun
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Li Wen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tanveer A Javed
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Farzad Esni
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Wei Chen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Sohail Z Husain
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
36
|
Facchinello N, Tarifeño-Saldivia E, Grisan E, Schiavone M, Peron M, Mongera A, Ek O, Schmitner N, Meyer D, Peers B, Tiso N, Argenton F. Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Sci Rep 2017; 7:9605. [PMID: 28851992 PMCID: PMC5575064 DOI: 10.1038/s41598-017-09867-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from β-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on β-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations.
Collapse
Affiliation(s)
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, I-35131, Padova, Italy
| | - Marco Schiavone
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Margherita Peron
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | | | - Olivier Ek
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Nicole Schmitner
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy.
| | | |
Collapse
|
37
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|
38
|
Sano M, Driscoll DR, DeJesus-Monge WE, Quattrochi B, Appleman VA, Ou J, Zhu LJ, Yoshida N, Yamazaki S, Takayama T, Sugitani M, Nemoto N, Klimstra DS, Lewis BC. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia 2016; 18:785-794. [PMID: 27889647 PMCID: PMC5126137 DOI: 10.1016/j.neo.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based RCAS-TVA pancreatic cancer model with the established LSL-KrasG12D, Ptf1a-cre model. Delivery of RCAS viruses encoding β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to RCAS-GFP-injected controls (P < .05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61 expression were predominantly detected in moderately to poorly differentiated murine and human PDAC. Indeed, nuclear β-catenin- and CYR61-positive PDAC patients demonstrated poor prognosis (P < .01). Knockdown of CYR61 in a β-catenin-activated pancreatic cancer cell line reduced soft agar, migration and invasion activity. Together, these data suggest that the WNT/β-catenin signaling pathway enhances pancreatic cancer development and malignancy in part via up-regulation of CYR61.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan.
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Wilfredo E DeJesus-Monge
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Victoria A Appleman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Nao Yoshida
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shintaro Yamazaki
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masahiko Sugitani
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - Norimichi Nemoto
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605; Cancer Center, University of Massachusetts Medical School, Worcester, MA, 01605.
| |
Collapse
|
39
|
Muñoz-Bravo JL, Flores-Martínez A, Herrero-Martin G, Puri S, Taketo MM, Rojas A, Hebrok M, Cano DA. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity. PLoS One 2016; 11:e0164714. [PMID: 27736991 PMCID: PMC5063371 DOI: 10.1371/journal.pone.0164714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Bravo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Griselda Herrero-Martin
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Makoto Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - David A. Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
40
|
Adipose- and muscle-derived Wnts trigger pancreatic β-cell adaptation to systemic insulin resistance. Sci Rep 2016; 6:31553. [PMID: 27527335 PMCID: PMC4985739 DOI: 10.1038/srep31553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Wnt signaling molecules are associated with obesity, hyperlipidemia, and type 2 diabetes (T2D). Here, we show that two Wnt proteins, WNT3a and WNT4, are specifically secreted by skeletal muscle and adipose tissue during the development of insulin resistance and play an important role in cross-talk between insulin-resistant tissues and pancreatic beta cells. The activation of Frizzled receptor and Wnt signaling in pancreatic islets via circulating WNT3a in blood resulted in higher insulin secretion and an increase in beta cell proliferation, thus leading to islet adaptation in a pre-diabetic state. Interestingly, in fully developed T2D, the expression profiles of Wnt3a and Wnt4 in adipose tissue and muscle cells and blood plasma levels of these proteins were opposite to the pre-diabetic state, thus favoring the downregulation of Wnt signaling in beta cells and resulting in dysfunctional pancreatic islets. These results demonstrate that alterations in the secretion profile of a canonical Wnt activator (WNT3a) and inhibitor (WNT4) from insulin-resistant tissues during the development of T2D are responsible for triggering progression from a pre-diabetic to a diabetic state. We also show here that WNT3a and WNT4 are potent myokines, and their expression and secretion are regulated in response to nutritional and metabolic changes.
Collapse
|
41
|
Saukkonen K, Hagström J, Mustonen H, Juuti A, Nordling S, Kallio P, Alitalo K, Seppänen H, Haglund C. PROX1 and β-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC Cancer 2016; 16:472. [PMID: 27411302 PMCID: PMC4944261 DOI: 10.1186/s12885-016-2497-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 12/27/2022] Open
Abstract
Background The Wnt/β-catenin pathway has a key role in regulating cellular processes and its aberrant signaling can lead to cancer development. The role of β-catenin expression in pancreatic ductal adenocarcinoma is somewhat controversial. Transcription factor PROX1 is a target of Wnt/β-catenin signaling and it is involved in carcinogenesis through alterations in its expression. The actions can be either oncogenic or tumor suppressive depending on the tissue. The aim of this study was to investigate PROX1 and β-catenin expression in pancreatic ductal adenocarcinoma (PDAC). Methods Expression of PROX1 and β-catenin were evaluated in 156 patients by immunohistochemistry of tissue microarrays. Associations between tumor marker expression and clinicopathological parameters were assessed by the Fischer’s exact-test or the linear-by-linear association test. The Kaplan-Meier method and log-rank test were used for survival analysis. Uni- and multivariate survival analyses were carried out by the Cox regression proportional hazard model. Results High PROX1 expression was seen in 74 (48 %) tumors, and high β-catenin expression in 100 (65 %). High β-catenin expression was associated with lower tumor grade (p = 0.025). High PROX1 and β-catenin expression associated significantly with lower risk of death from PDAC in multivariate analysis (HR = 0.63; 95 % CI 0.42–0.95, p = 0.026; and HR = 0.54; 95 % CI 0.35–0.82, p = 0.004; respectively). The combined high expression of PROX1 and β-catenin also predicted lower risk of death from PDAC (HR = 0.46; 95 % CI 0.28–0.76, p = 0.002). Conclusion In conclusion, high PROX1 and β-catenin expression were independent factors for better prognosis in pancreatic ductal adenocarcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2497-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kapo Saukkonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland. .,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland.
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland.,Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, FIN-00014, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Anne Juuti
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Stig Nordling
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, FIN-00014, Finland
| | - Pauliina Kallio
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| | - Kari Alitalo
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| |
Collapse
|
42
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
43
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Kuo TL, Weng CC, Kuo KK, Chen CY, Wu DC, Hung WC, Cheng KH. APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene 2016; 35:2223-34. [PMID: 26411367 DOI: 10.1038/onc.2015.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/03/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
Abstract
Adenomatous polyposis coli (APC), a tumor-suppressor gene critically involved in familial adenomatous polyposis, is integral in Wnt/β-catenin signaling and is implicated in the development of sporadic tumors of the distal gastrointestinal tract including pancreatic cancer (PC). Here we report for the first time that functional APC is required for the growth and maintenance of pancreatic islets and maturation. Subsequently, a non-Kras mutation-induced premalignancy mouse model was developed; in this model, APC haploinsufficiency coupled with p53 deletion resulted in the development of a distinct type of pancreatic premalignant precursors, mucinous cystic neoplasms (MCNs), exhibiting pathomechanisms identical to those observed in human MCNs, including accumulation of cystic fluid secreted by neoplastic and ovarian-like stromal cells, with 100% penetrance and the presence of hepatic and gastric metastases in >30% of the mice. The major clinical implications of this study suggest targeting the Wnt signaling pathway as a novel strategy for managing MCN.
Collapse
Affiliation(s)
- T-L Kuo
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C-C Weng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - K-K Kuo
- Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - C-Y Chen
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - D-C Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - W-C Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - K-H Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas. Sci Rep 2016; 6:19223. [PMID: 26771085 PMCID: PMC4725895 DOI: 10.1038/srep19223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.
Collapse
|
47
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
48
|
Nakashima R, Morooka M, Shiraki N, Sakano D, Ogaki S, Kume K, Kume S. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells. Genes Cells 2015; 20:1028-45. [PMID: 26514269 PMCID: PMC4738370 DOI: 10.1111/gtc.12308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.
Collapse
Affiliation(s)
- Ryutaro Nakashima
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mayu Morooka
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Daisuke Sakano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Soichiro Ogaki
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Street, Mizuho, Nagoya, 467-8603, Japan
| | - Shoen Kume
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO), Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| |
Collapse
|
49
|
Larsen BM, Hrycaj SM, Newman M, Li Y, Wellik DM. Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development 2015; 142:3859-68. [PMID: 26450967 DOI: 10.1242/dev.126888] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
Despite significant advances in our understanding of pancreatic endocrine cell development, the function of the pancreatic mesodermal niche in this process is poorly understood. Here we report a novel role for mouse Hox6 genes in pancreatic organogenesis. Hox6 genes are expressed exclusively in the mesoderm of the developing pancreas. Genetic loss of all three Hox6 paralogs (Hoxa6, Hoxb6 and Hoxc6) leads to a dramatic loss of endoderm-derived endocrine cells, including insulin-secreting β-cells, and to mild delays and disruptions in pancreatic branching and exocrine differentiation. Ngn3-expressing pan-endocrine progenitor cells are specified normally in Hox6 mutant pancreata, but fail to mature into hormone-producing cells. Reduced expression of Wnt5a is observed in mutant pancreatic mesenchyme, leading to subsequent loss of expression of the crucial Wnt inhibitors Sfrp3 and Dkk1 in endocrine progenitor cells. These results reveal a key role for Hox6 genes in establishing Wnt mesenchymal-epithelial crosstalk in pancreatic development.
Collapse
Affiliation(s)
- Brian M Larsen
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Steven M Hrycaj
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Micaleah Newman
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
50
|
Greggio C, De Franceschi F, Grapin-Botton A. Concise reviews: In vitro-produced pancreas organogenesis models in three dimensions: self-organization from few stem cells or progenitors. Stem Cells 2015; 33:8-14. [PMID: 25185771 DOI: 10.1002/stem.1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023]
Abstract
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Collapse
Affiliation(s)
- Chiara Greggio
- Ecole Polytechnique Fédérale de Lausanne, Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland; Département de Physiologie, Université de Lausanne, Rue du Bugnon 7, Lausanne, Switzerland
| | | | | |
Collapse
|