1
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Chu CH, Su CH, Hsiao YH, Yu CC, Liao YC, Mao PC, Chen JS, Sun HS. Overexpression of TIAM2S, a Critical Regulator for the Hippocampal-Medial Prefrontal Cortex Network, Progresses Age-Related Spatial Memory Impairment. J Gerontol A Biol Sci Med Sci 2024; 79:glae191. [PMID: 39093820 DOI: 10.1093/gerona/glae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/04/2024] Open
Abstract
TIAM Rac1-associated GEF 2 short-form protein (TIAM2S) is abundant in specific brain tissues, especially in the hippocampus, a brain region critical for processing and consolidation of spatial memory. However, how TIAM2S plasticizes the microstructure and circuits of the hippocampus to shape spatial memory as a neuroplastic regulator during aging remains to be determined. In this study, transgenic mice overexpressing human TIAM2S protein (TIAM2S-TG mice) were included, and interdisciplinary approaches, such as spatial memory tests and multiparametric magnetic resonance imaging sequences, were conducted to determine the role and the mechanism of TIAM2S in age-related spatial memory deficits. Despite no changes in their neural and glial markers and neuropathological hallmark expression of the hippocampus, behavioral tests showed that the TIAM2S-TG mice, and not wild-type (WT) mice, developed spatial memory impairment at 18 months old. The T2-weighted and diffusion tensor image analyses were performed to further study the possible role of TIAM2S overexpression in altering the hippocampal structure or neuronal circlets of the mice, increasing their vulnerability to developing spatial memory deficits during aging. The results revealed that the 12-month-old TIAM2S-TG mice had hippocampal dysplasticity, with larger volume, increased fiber numbers, and changed mean fractional anisotropy compared to those in the age-matched WT mice. The fiber tractography analysis exhibited significantly attenuated structural connectivity between the hippocampus and medial prefrontal cortex in the TIAM2S-TG mice. In conclusion, overexpression of TIAM2S, a detrimental factor affecting hippocampus plasticity, causes attenuation of the connectivity within hippocampus-mPFC circuits, leading to age-related spatial memory impairment.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Liao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pin-Cheng Mao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Mishra SK, Mishra V. Saroglitazar Enhances Memory Functions and Adult Neurogenesis via Up-Regulation of Wnt/β Catenin Signaling in the Rat Model of Dementia. ACS Chem Neurosci 2024; 15:3449-3458. [PMID: 39265183 DOI: 10.1021/acschemneuro.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have emerged as a promising target for the treatment of various neurodegenerative disorders. Studies have shown that both PPAR α & γ individually modulate various pathophysiological events like neuroinflammation and insulin resistance, which are known to variedly affect neurogenesis. Our study aimed to evaluate the effect of saroglitazar (SGZR), a dual PPAR agonist, on adult neurogenesis and spatial learning and memory, in intracerebroventricular streptozotocin (ICV STZ)-induced dementia in rats. We have found that SGZR at the dose of 4 mg/kg per oral showed significant improvement in learning and memory compared to ICV STZ-treated rats. A substantial increase in neurogenesis was observed in the subventricular zone (SVZ) and the dentate gyrus (DG), as indicated by an increase in the number of 5-bromo-2'-deoxyuridine (BrdU)+ cells, BrdU+ nestin+ cells, and doublecortin (DCX)+cells. Treatment with SGZR also decreased the active form of glycogen synthase kinase 3β (GSK3β) and hence enhanced the nuclear translocation of the β-catenin. Enhanced expression of Wnt transcription factors and target genes indicates that the up-regulation of Wnt signaling might be involved in the observed increase in neurogenesis. Hence, it can be concluded that the SGZR enhances memory functions and adult neurogenesis via the upregulation of Wnt β-catenin signaling in ICV STZ-treated rats.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Faculty of Pharmacy, Kalinga University, Raipur, Chhattisgarh 492101, India
| | - Vaibhav Mishra
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
4
|
Tran MH, Nguyen TVA, Do HG, Kieu TK, Nguyen TKT, Le HD, Guerrero-Limon G, Massoz L, Nivelle R, Zappia J, Pham HT, Nguyen LT, Muller M. Testing biological actions of medicinal plants from northern Vietnam on zebrafish embryos and larvae: Developmental, behavioral, and putative therapeutical effects. PLoS One 2023; 18:e0294048. [PMID: 37934745 PMCID: PMC10629648 DOI: 10.1371/journal.pone.0294048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Evaluating the risks and benefits of using traditional medicinal plants is of utmost importance for a huge fraction of the human population, in particular in Northern Vietnam. Zebrafish are increasingly used as a simple vertebrate model for testing toxic and physiological effects of compounds, especially on development. Here, we tested 12 ethanolic extracts from popular medicinal plants collected in northern Vietnam for their effects on zebrafish survival and development during the first 4 days after fertilization. We characterized more in detail their effects on epiboly, hatching, growth, necrosis, body curvature, angiogenesis, skeletal development and mostly increased movement behavior. Finally, we confirm the effect on epiboly caused by the Mahonia bealei extract by staining the actin filaments and performing whole genome gene expression analysis. Further, we show that this extract also inhibits cell migration of mouse embryo fibroblasts. Finally, we analyzed the chemical composition of the Mahonia bealei extract and test the effects of its major components. In conclusion, we show that traditional medicinal plant extracts are able to affect zebrafish early life stage development to various degrees. In addition, we show that an extract causing delay in epiboly also inhibits mammalian cell migration, suggesting that this effect may serve as a preliminary test for identifying extracts that inhibit cancer metastasis.
Collapse
Affiliation(s)
- My Hanh Tran
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Van Anh Nguyen
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trung Kien Kieu
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Kim Thanh Nguyen
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hong Diep Le
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Gustavo Guerrero-Limon
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Model laboratory, GIGA Stem cells, Université de Liège, Liège, Belgium
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Jérémie Zappia
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Hai The Pham
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Lai Thanh Nguyen
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| |
Collapse
|
5
|
Brown-Panton CA, Sabour S, Zoidl GSO, Zoidl C, Tabatabaei N, Zoidl GR. Gap junction Delta-2b ( gjd2b/Cx35.1) depletion causes hyperopia and visual-motor deficiencies in the zebrafish. Front Cell Dev Biol 2023; 11:1150273. [PMID: 36936688 PMCID: PMC10017553 DOI: 10.3389/fcell.2023.1150273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The zebrafish is a powerful model to investigate the developmental roles of electrical synapses because many signaling pathways that regulate the development of the nervous system are highly conserved from fish to humans. Here, we provide evidence linking the mammalian connexin-36 (Cx36) ortholog gjd2b/Cx35.1, a major component of electrical synapses in the zebrafish, with a refractive error in the context of morphological, molecular, and behavioral changes of zebrafish larvae. Two abnormalities were identified. The optical coherence tomography analysis of the adult retina confirmed changes to the refractive properties caused by eye axial length reduction, leading to hyperopic shifts. The gjd2b/Cx35.1 depletion was also correlated with morphological changes to the head and body ratios in larvae. The differential expression of Wnt/ß-catenin signaling genes, connexins, and dopamine receptors suggested a contribution to the observed phenotypic differences. The alteration of visual-motor behavioral responses to abrupt light transitions was aggravated in larvae, providing evidence that cone photoreceptor cell activity was enhanced when gjd2b/Cx35.1 was depleted. The visual disturbances were reversed under low light conditions in gjd2b -/- /Cx35.1-/- larvae. Since qRT-PCR data demonstrated that two rhodopsin genes were downregulated, we speculated that rod photoreceptor cells in gjd2b/Cx35.1-/- larvae were less sensitive to bright light transitions, thus providing additional evidence that a cone-mediated process caused the VMR light-ON hyperactivity after losing Cx35.1 expression. Together, this study provides evidence for the role of gjd2b/Cx35.1 in the development of the visual system and visually guided behaviors.
Collapse
Affiliation(s)
- Cherie A. Brown-Panton
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| | - Shiva Sabour
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg S. O. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Nima Tabatabaei
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| |
Collapse
|
6
|
Steuernagel L, Lam BYH, Klemm P, Dowsett GKC, Bauder CA, Tadross JA, Hitschfeld TS, Del Rio Martin A, Chen W, de Solis AJ, Fenselau H, Davidsen P, Cimino I, Kohnke SN, Rimmington D, Coll AP, Beyer A, Yeo GSH, Brüning JC. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat Metab 2022; 4:1402-1419. [PMID: 36266547 PMCID: PMC9584816 DOI: 10.1038/s42255-022-00657-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/07/2022] [Indexed: 01/20/2023]
Abstract
The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Georgina K C Dowsett
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - John A Tadross
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tamara Sotelo Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Almudena Del Rio Martin
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Weiyi Chen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Alain J de Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | | | - Irene Cimino
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Sara N Kohnke
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Debra Rimmington
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anthony P Coll
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
7
|
Westphal M, Panza P, Kastenhuber E, Wehrle J, Driever W. Wnt/β-catenin signaling promotes neurogenesis in the diencephalospinal dopaminergic system of embryonic zebrafish. Sci Rep 2022; 12:1030. [PMID: 35046434 PMCID: PMC8770493 DOI: 10.1038/s41598-022-04833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin signaling contributes to patterning, proliferation, and differentiation throughout vertebrate neural development. Wnt/β-catenin signaling is important for mammalian midbrain dopaminergic neurogenesis, while little is known about its role in ventral forebrain dopaminergic development. Here, we focus on the A11-like, Otp-dependent diencephalospinal dopaminergic system in zebrafish. We show that Wnt ligands, receptors and extracellular antagonist genes are expressed in the vicinity of developing Otp-dependent dopaminergic neurons. Using transgenic Wnt/β-catenin-reporters, we found that Wnt/β-catenin signaling activity is absent from these dopaminergic neurons, but detected Wnt/β-catenin activity in cells adjacent to the caudal DC5/6 clusters of Otp-dependent dopaminergic neurons. Pharmacological manipulations of Wnt/β-catenin signaling activity, as well as heat-shock driven overexpression of Wnt agonists and antagonists, interfere with the development of DC5/6 dopaminergic neurons, such that Wnt/β-catenin activity positively correlates with their number. Wnt/β-catenin activity promoted dopaminergic development specifically at stages when DC5/6 dopaminergic progenitors are in a proliferative state. Our data suggest that Wnt/β-catenin signaling acts in a spatially and temporally restricted manner on proliferative dopaminergic progenitors in the hypothalamus to positively regulate the size of the dopaminergic neuron groups DC5 and DC6.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Paolo Panza
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Department of Developmental Genetics, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Edda Kastenhuber
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Johanna Wehrle
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany. .,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
Kim DW, Place E, Chinnaiya K, Manning E, Sun C, Dai W, Groves I, Ohyama K, Burbridge S, Placzek M, Blackshaw S. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep 2022; 38:110251. [PMID: 35045288 PMCID: PMC8918062 DOI: 10.1016/j.celrep.2021.110251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsie Place
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kavitha Chinnaiya
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weina Dai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Groves
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Kyoji Ohyama
- School of Biosciences, University of Sheffield, Sheffield, UK; Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Sarah Burbridge
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
10
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
11
|
Yoo S, Kim J, Lyu P, Hoang TV, Ma A, Trinh V, Dai W, Jiang L, Leavey P, Duncan L, Won JK, Park SH, Qian J, Brown SP, Blackshaw S. Control of neurogenic competence in mammalian hypothalamic tanycytes. SCIENCE ADVANCES 2021; 7:eabg3777. [PMID: 34049878 PMCID: PMC8163082 DOI: 10.1126/sciadv.abg3777] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 05/07/2023]
Abstract
Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pin Lyu
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alex Ma
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vickie Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Weina Dai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Leighton Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. Virology 2021; 559:131-144. [PMID: 33866234 DOI: 10.1016/j.virol.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The involvement of the nucleus during flavivirus infection has been observed in only a small number of cases and can be limited to primarily two viral proteins; the structural protein C and the RNA polymerase NS5. Previously we observed that by blocking nuclear transport, WNV strain Kunjin (WNVKUN) replication is severely affected and through mutation of the identified NLS in WNVKUN NS5 protein. In this study, we interrogated the potential nuclear functions of WNVKUN NS5 has on the host transcriptome, by means of RNA sequencing (RNAseq). In a direct comparison between wild type and mutant NS5, it can also be determined that the nuclear translocation of NS5 results in a significant down-regulation of host genes involved in the innate immune response. When compared to published RNAseq data from WNV infection, many of these genes were overlapping indicting the role of NS5 induced transcription during infection.
Collapse
|
13
|
Chu CH, Chen JS, Chuang PC, Su CH, Chan YL, Yang YJ, Chiang YT, Su YY, Gean PW, Sun HS. TIAM2S as a novel regulator for serotonin level enhances brain plasticity and locomotion behavior. FASEB J 2020; 34:3267-3288. [PMID: 31908036 DOI: 10.1096/fj.201901323r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022]
Abstract
TIAM2S, the short form of human T-cell lymphoma invasion and metastasis 2, can have oncogenic effects when aberrantly expressed in the liver or lungs. However, it is also abundant in healthy, non-neoplastic brain tissue, in which its primary function is still unknown. Here, we examined the neurobiological and behavioral significance of human TIAM2S using the human brain protein panels, a human NT2/D1-derived neuronal cell line model (NT2/N), and transgenic mice that overexpress human TIAM2S (TIAM2S-TG). Our data reveal that TIAM2S exists primarily in neurons of the restricted brain areas around the limbic system and in well-differentiated NT2/N cells. Functional studies revealed that TIAM2S has no guanine nucleotide exchange factor (GEF) activity and is mainly located in the nucleus. Furthermore, whole-transcriptome and enrichment analysis with total RNA sequencing revealed that TIAM2S-knockdown (TIAM2S-KD) was strongly associated with the cellular processes of the brain structural development and differentiation, serotonin-related signaling, and the diseases markers representing neurobehavioral developmental disorders. Moreover, TIAM2S-KD cells display decreased neurite outgrowth and reduced serotonin levels. Moreover, TIAM2S overexpressing TG mice show increased number and length of serotonergic fibers at early postnatal stage, results in higher serotonin levels at both the serum and brain regions, and higher neuroplasticity and hyperlocomotion in latter adulthood. Taken together, our results illustrate the non-oncogenic functions of human TIAM2S and demonstrate that TIAM2S is a novel regulator of serotonin level, brain neuroplasticity, and locomotion behavior.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Chan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Ju Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ya Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Reuter I, Jäckels J, Kneitz S, Kuper J, Lesch KP, Lillesaar C. Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish. Biol Open 2019; 8:bio.040683. [PMID: 31036752 PMCID: PMC6602327 DOI: 10.1242/bio.040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. Summary: This study highlights Fgf3 in a novel context where it is part of a signalling pathway of critical importance for development of hypothalamic monoaminergic cells in zebrafish.
Collapse
Affiliation(s)
- Isabel Reuter
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jana Jäckels
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jochen Kuper
- Structural Biology, Rudolf Virchow Center for Biomedical Research, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany .,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
15
|
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, Xu X, Shi L, Zhang B, Cheng J, Zhou S, Liu L, Zhang X. WNT/NOTCH Pathway Is Essential for the Maintenance and Expansion of Human MGE Progenitors. Stem Cell Reports 2019; 12:934-949. [PMID: 31056478 PMCID: PMC6524734 DOI: 10.1016/j.stemcr.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Medial ganglionic eminence (MGE)-like cells yielded from human pluripotent stem cells (hPSCs) hold great potentials for cell therapies of related neurological disorders. However, cues that orchestrate the maintenance versus differentiation of human MGE progenitors, and ways for large-scale expansion of these cells have not been investigated. Here, we report that WNT/CTNNB1 signaling plays an essential role in maintaining MGE-like cells derived from hPSCs. Ablation of CTNNB1 in MGE cells led to precocious cell-cycle exit and advanced neuronal differentiation. Activation of WNT signaling through genetic or chemical approach was sufficient to maintain MGE cells in an expandable manner with authentic neuronal differentiation potencies through activation of endogenous NOTCH signaling. Our findings reveal that WNT/NOTCH signaling cascade is a key player in governing the maintenance versus terminal differentiation of MGE progenitors in humans. Large-scale expansion of functional MGE progenitors for cell therapies can therefore be achieved by modifying WNT/NOTCH pathway. WNT/CTNNB1 signaling is robustly activated in specified human MGE progenitors Ablation of CTNNB1 in human MGE cells leads to advanced neuronal differentiation Activation of WNT signaling maintains MGE progenitors in a proliferative state WNT/CTNNB1 signaling maintains MGE progenitors via activation of NOTCH signaling
Collapse
Affiliation(s)
- Lin Ma
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yiran Wang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yi Hui
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yanhua Du
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Zhenyu Chen
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Hexi Feng
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Shuwei Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Nan Li
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Jianren Song
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China
| | - Yujiang Fang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Xiangjie Xu
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Lei Shi
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Bowen Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Jiayi Cheng
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Shanshan Zhou
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Ling Liu
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Xiaoqing Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
16
|
Newman EA, Wu D, Taketo MM, Zhang J, Blackshaw S. Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev Biol 2018; 442:236-248. [PMID: 30063881 DOI: 10.1016/j.ydbio.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
The hypothalamus is a small, but anatomically and functionally complex region of the brain whose development is poorly understood. In this study, we have explored its development by studying the canonical Wnt signaling pathway, generating gain and loss of function mutations of beta-catenin (Ctnnb1) in both hypothalamic and prethalamic neuroepithelium. Deletion of Ctnnb1 resulted in an anteriorized and hypoplastic hypothalamus. Posterior structures were lost or reduced, and anterior structures were expanded. In contrast, overexpression of a constitutively active mutant form of Ctnnb1 resulted in severe hyperplasia of prethalamus and hypothalamus, and expanded expression of a subset of posterior and premamillary hypothalamic markers. Moderate defects in differentiation of Arx-positive GABAergic neural precursors were observed in both prethalamus and hypothalamus of Ctnnb1 loss of function mutants, while in gain of function mutants, their differentiation was completely suppressed, although markers of prethalamic progenitors were preserved. Multiple other region-specific markers, including several specific posterior hypothalamic structures, were also suppressed in Ctnnb1 gain of function mutations. Severe, region-specific defects in hypothalamic nucleogenesis were also observed in both gain and loss of function mutations of Ctnnb1. Finally, both gain and loss of function of Ctnnb1 also produced severe, non-cell autonomous disruptions of pituitary development. These findings demonstrate a central and multifaceted role for canonical Wnt signaling in regulating growth, patterning, differentiation and nucleogenesis in multiple diencephalic regions.
Collapse
Affiliation(s)
- Elizabeth A Newman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiangyang Zhang
- Department of Radiology, NYU Langone School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 2018; 375:23-39. [PMID: 29869716 DOI: 10.1007/s00441-018-2859-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.
Collapse
|
18
|
Abstract
Transcriptional control of oxytocinergic cell development influences social, sexual, and appetite related behaviors and is implicated in disorders such as autism and Prader-Willi syndrome. Mediator 12 (Med12) is a transcriptional coactivator required for multiple facets of brain development including subsets of serotonergic and dopaminergic neurons. We surveyed hormone gene expression within the hypothalamo-pituitary axis of med12 mutant zebrafish embryos with a focus on oxytocin (oxt) expression. Some transcripts, such as oxt, vasopressin (avp) and corticotrophin releasing hormone (crh) are undetectable in the med12 mutant, while others are upregulated or downregulated to varying degrees. In med12 mutants, the expression patterns of upstream transcriptional regulators of oxytocinergic cell development remain largely intact in the pre-optic area, suggesting a more direct influence of Med12 on oxt expression. We show that Med12 is required for Wnt signaling in zebrafish. However, oxt expression is unaffected in Wnt-inhibited embryos indicating independence of Wnt signaling. In fact, overactive Wnt signaling inhibits oxt expression, and we identify a Wnt-sensitive period starting at 24 h post fertilization (hpf). Thus, Med12 and repression of Wnt signaling display critical but unrelated roles in regulating oxt expression. Summary: Mediator 12, a transcriptional coactivator, greatly enhances Wnt signaling in the developing embryo. Separate from its role in Wnt signaling, Mediator 12 is required for oxytocin expression.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Oncology, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA
| |
Collapse
|
19
|
Wang Y, Huang A, Gan L, Bao Y, Zhu W, Hu Y, Ma L, Wei S, Lan Y. Screening of Potential Genes and Transcription Factors of Postoperative Cognitive Dysfunction via Bioinformatics Methods. Med Sci Monit 2018; 24:503-510. [PMID: 29374768 PMCID: PMC5791419 DOI: 10.12659/msm.907445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to explore the potential genes and transcription factors involved in postoperative cognitive dysfunction (POCD) via bioinformatics analysis. Material/Methods GSE95070 miRNA expression profiles were downloaded from Gene Expression Omnibus database, which included five hippocampal tissues from POCD mice and controls. Moreover, the differentially expressed miRNAs (DEMs) between the two groups were identified. In addition, the target genes of DEMs were predicted using Targetscan 7.1, followed by protein-protein interaction (PPI) network construction, functional enrichment analysis, pathway analysis, and prediction of transcription factors (TFs) targeting the potential targets. Results A total of eight DEMs were obtained, and 823 target genes were predicted, including 170 POCD-associated genes. Furthermore, potential key genes in the network were remarkably enriched in focal adhesion, protein digestion and absorption, ECM-receptor interaction, and Wnt and MAPK signaling pathways. Conclusions Most potential target genes were involved in the regulation of TFs, including LEF1, SP1, and AP4, which may exert strong impact on the development of POCD.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Ailan Huang
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Lixia Gan
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Yanli Bao
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Weilin Zhu
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Yanyan Hu
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Li Ma
- Department of Anesthesiology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Shiyang Wei
- Department of Gynecology, People’s Hospital of Guangxi Zhuang Autonomous
Region, Nanning, Guangxi, P.R. China
| | - Yuyan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, P.R. China
| |
Collapse
|
20
|
Kunkel GR, Tracy JA, Jalufka FL, Lekven AC. CHD8short, a naturally-occurring truncated form of a chromatin remodeler lacking the helicase domain, is a potent transcriptional coregulator. Gene 2018; 641:303-309. [DOI: 10.1016/j.gene.2017.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
|
21
|
Eachus H, Bright C, Cunliffe VT, Placzek M, Wood JD, Watt PJ. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function. Hum Mol Genet 2017; 26:1992-2005. [PMID: 28334933 PMCID: PMC5437527 DOI: 10.1093/hmg/ddx076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/23/2017] [Indexed: 02/01/2023] Open
Abstract
Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis.
Collapse
Affiliation(s)
- Helen Eachus
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Charlotte Bright
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Vincent T Cunliffe
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Wood
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Penelope J Watt
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
22
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Smith R, Huang YT, Tian T, Vojtasova D, Mesalles-Naranjo O, Pollard SM, Pratt T, Price DJ, Fotaki V. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci 2017; 37:7975-7993. [PMID: 28729440 PMCID: PMC5559767 DOI: 10.1523/jneurosci.0286-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in the nasal optic stalk. Foxg1-/- mutant mice have microphthalmic eyes with a large ventral coloboma. We found Wnt8b expression upregulated in the Foxg1-/- optic stalk and hypothesized that, similar to what is observed in telencephalic development, Foxg1 directs development of the optic neuroepithelium through transcriptional suppression of Wnt8b To test this, we generated Foxg1-/-;Wnt8b-/- double mutants of either sex and found that the morphology of the optic cup and stalk and the closure of the optic fissure were substantially rescued in these embryos. This rescue correlates with restored Pax2 expression in the anterior tip of the optic fissure. In addition, although we do not find evidence implicating altered proliferation in the rescue, we observe a significant increase in apoptotic cell density in Foxg1-/-;Wnt8b-/- double mutants compared with the Foxg1-/- single mutant. Upregulation of Wnt/β-catenin target molecules in the optic cup and stalk may underlie the molecular and morphological defects in the Foxg1-/- mutant. Our results show that proper optic fissure closure relies on Wnt8b suppression by Foxg1 in the nasal optic stalk to maintain balanced apoptosis and Pax2 expression in the nasal and temporal edges of the fissure.SIGNIFICANCE STATEMENT Coloboma is an ocular disorder that may result in a loss of visual acuity and accounts for ∼10% of childhood blindness. It results from errors in the sealing of the optic fissure (OF), a transient structure at the bottom of the eye. Here, we investigate the colobomatous phenotype of the Foxg1-/- mutant mouse. We identify upregulated expression of Wnt8b in the optic stalk of Foxg1-/- mutants before OF closure initiates. Foxg1-/-;Wnt8b-/- double mutants show a substantial rescue of the Foxg1-/- coloboma phenotype, which correlates with a rescue in molecular and cellular defects of Foxg1-/- mutants. Our results unravel a new role of Foxg1 in promoting OF closure providing additional knowledge about the molecules and cellular mechanisms underlying coloboma formation.
Collapse
Affiliation(s)
- Rowena Smith
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Tian Tian
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Dominika Vojtasova
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Oscar Mesalles-Naranjo
- Information Service Division, NHS National Services Scotland, Edinburgh, EH12 9EB, United Kingdom
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine, Edinburgh, EH16 4UU, United Kingdom, and
- Edinburgh Cancer Research UK Cancer Centre, Edinburgh, EH16 4UU, United Kingdom
| | - Thomas Pratt
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Vassiliki Fotaki
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom,
| |
Collapse
|
24
|
Xie Y, Kaufmann D, Moulton MJ, Panahi S, Gaynes JA, Watters HN, Zhou D, Xue HH, Fung CM, Levine EM, Letsou A, Brennan KC, Dorsky RI. Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biol 2017; 15:e2002257. [PMID: 28837622 PMCID: PMC5570277 DOI: 10.1371/journal.pbio.2002257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/21/2017] [Indexed: 11/19/2022] Open
Abstract
While innate behaviors are conserved throughout the animal kingdom, it is unknown whether common signaling pathways regulate the development of neuronal populations mediating these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and mice, although the identity of Lef1-dependent genes and neurons differ between these 2 species. We further show that zebrafish and Drosophila have common Lef1-dependent gene expression in their respective neuroendocrine organs, consistent with a conserved pathway that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebrafish and mouse show highly correlated hypothalamic expression in marmosets and humans, suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demonstrate that during evolution, a transcription factor can act through multiple mechanisms to generate a common behavioral output, and that Lef1 regulates circuit development that is fundamentally important for mediating anxiety in a wide variety of animal species.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Dan Kaufmann
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew J. Moulton
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Samin Panahi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - John A. Gaynes
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Harrison N. Watters
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Dingxi Zhou
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- School of Life Sciences, Peking University, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - K. C. Brennan
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Richard I. Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
25
|
Anand SK, Mondal AC. Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 2017; 77:1188-1205. [PMID: 28589616 DOI: 10.1002/dneu.22508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter-species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188-1205, 2017.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| |
Collapse
|
26
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
27
|
Gao Y, Sun T. Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 2016; 53:4275-85. [PMID: 26223804 PMCID: PMC4733441 DOI: 10.1007/s12035-015-9367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies.
Collapse
Affiliation(s)
- Yanxia Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tao Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Pećina-Šlaus N, Kafka A, Lechpammer M. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling. Cancers (Basel) 2016; 8:E67. [PMID: 27429002 PMCID: PMC4963809 DOI: 10.3390/cancers8070067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
Research over the last decade recognized the importance of novel molecular pathways in pathogenesis of intracranial meningiomas. In this review, we focus on human brain tumours meningiomas and the involvement of Wnt signalling pathway genes and proteins in this common brain tumour, describing their known functional effects. Meningiomas originate from the meningeal layers of the brain and the spinal cord. Most meningiomas have benign clinical behaviour and are classified as grade I by World Health Organization (WHO). However, up to 20% histologically classified as atypical (grade II) or anaplastic (grade III) are associated with higher recurrent rate and have overall less favourable clinical outcome. Recently, there is emerging evidence that multiple signalling pathways including Wnt pathway contribute to the formation and growth of meningiomas. In the review we present the synopsis on meningioma histopathology and genetics and discuss our research regarding Wnt in meningioma. Epithelial-to-mesenchymal transition, a process in which Wnt signalling plays an important role, is shortly discussed.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Mirna Lechpammer
- Department of Pathology & Laboratory Medicine, University of California, Davis, Medical Center 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
29
|
Schneider R, Koop B, Schröter F, Cline J, Ingwersen J, Berndt C, Hartung HP, Aktas O, Prozorovski T. Activation of Wnt signaling promotes hippocampal neurogenesis in experimental autoimmune encephalomyelitis. Mol Neurodegener 2016; 11:53. [PMID: 27480121 PMCID: PMC4969720 DOI: 10.1186/s13024-016-0117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/02/2016] [Indexed: 01/25/2023] Open
Abstract
Background Disease progression in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), as one of its animal models, is characterized by demyelination and neuronal damage in white and gray matter structures, including the hippocampus. It is thought that dysfunction of the hippocampus, a primary locus of learning and memory consolidation, may contribute to cognitive impairment in MS patients. Previously, we reported an increased generation of hippocampal neuronal progenitors in the acute stage of EAE, whereas the microenvironmental signals triggering this process remained uninvestigated. Results In the present study, we used the Wnt signaling reporter mouse Axin2LacZ, to elucidate the molecular mechanisms underlying the activation of the hippocampal neurogenic niche upon autoimmune neuroinflammation. Histological and enzymatic examinations of β-gal during the disease course of EAE, allowed us to survey hippocampal Wnt/β-catenin activity, one of the key signaling pathways of adult neurogenesis. We found that Wnt signaling is transiently upregulated in the acute stage of disease, consistent with a timely induction of canonical Wnt ligands. The enhancement of signaling coincided with hippocampal neuronal damage and local expression of immune cytokines such as TNFα and IFNγ, implicating the role of the inflammatory milieu in activation of the Wnt/β-catenin pathway. Supporting this finding, we show that transient exposure to pro-inflammatory cytokine TNFα triggers Wnt signaling in hippocampal organotypic slice cultures. Importantly, inflammation-mediated activation of the Wnt/β-catenin pathway was associated with enhanced neurogenesis in vitro and in vivo, indicating its potential role in hippocampal tissue regeneration and repair. Conclusions This study raises the possibility that enhancement of Wnt signaling may support neurogenic processes to cope with neuronal deficits upon immune-mediated neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Barbara Koop
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Friederike Schröter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.,Present address: Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jason Cline
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
30
|
Muthu V, Eachus H, Ellis P, Brown S, Placzek M. Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus. Development 2016; 143:2651-63. [PMID: 27317806 PMCID: PMC4958342 DOI: 10.1242/dev.138305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
Abstract
In the developing brain, growth and differentiation are intimately linked. Here, we show that in the zebrafish embryo, the homeodomain transcription factor Rx3 coordinates these processes to build the tuberal/anterior hypothalamus. Analysis of rx3 chk mutant/rx3 morphant fish and EdU pulse-chase studies reveal that rx3 is required to select tuberal/anterior hypothalamic progenitors and to orchestrate their anisotropic growth. In the absence of Rx3 function, progenitors accumulate in the third ventricular wall, die or are inappropriately specified, the shh(+) anterior recess does not form, and its resident pomc(+), ff1b(+) and otpb(+) Th1(+) cells fail to differentiate. Manipulation of Shh signalling shows that Shh coordinates progenitor cell selection and behaviour by acting as an on-off switch for rx3 Together, our studies show that Shh and Rx3 govern formation of a distinct progenitor domain that elaborates patterning through its anisotropic growth and differentiation.
Collapse
Affiliation(s)
- Victor Muthu
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Helen Eachus
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Pam Ellis
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah Brown
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Marysia Placzek
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
31
|
Zhou R, Yuan Z, Liu J, Liu J. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep 2016; 13:4689-96. [PMID: 27082317 PMCID: PMC4878536 DOI: 10.3892/mmr.2016.5117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ri Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jierong Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
32
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Helfer G, Tups A. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation. J Neuroendocrinol 2016; 28:12368. [PMID: 26802435 PMCID: PMC4797366 DOI: 10.1111/jne.12368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.
Collapse
Affiliation(s)
- G. Helfer
- Rowett Institute of Nutrition and HealthUniversity of AberdeenBucksburnAberdeenUK
| | - A. Tups
- Centre for Neuroendocrinology and Brain Health Research CentreDepartment of PhysiologySchool of Medical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
34
|
Gore AV, Athans B, Iben JR, Johnson K, Russanova V, Castranova D, Pham VN, Butler MG, Williams-Simons L, Nichols JT, Bresciani E, Feldman B, Kimmel CB, Liu PP, Weinstein BM. Epigenetic regulation of hematopoiesis by DNA methylation. eLife 2016; 5:e11813. [PMID: 26814702 PMCID: PMC4744183 DOI: 10.7554/elife.11813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/06/2015] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, cell type-specific transcription factors promote cell identities, while epigenetic modifications are thought to contribute to maintain these cell fates. Our understanding of how genetic and epigenetic modes of regulation work together to establish and maintain cellular identity is still limited, however. Here, we show that DNA methyltransferase 3bb.1 (dnmt3bb.1) is essential for maintenance of hematopoietic stem and progenitor cell (HSPC) fate as part of an early Notch-runx1-cmyb HSPC specification pathway in the zebrafish. Dnmt3bb.1 is expressed in HSPC downstream from Notch1 and runx1, and loss of Dnmt3bb.1 activity leads to reduced cmyb locus methylation, reduced cmyb expression, and gradual reduction in HSPCs. Ectopic overexpression of dnmt3bb.1 in non-hematopoietic cells is sufficient to methylate the cmyb locus, promote cmyb expression, and promote hematopoietic development. Our results reveal an epigenetic mechanism supporting the maintenance of hematopoietic cell fate via DNA methylation-mediated perdurance of a key transcription factor in HSPCs. DOI:http://dx.doi.org/10.7554/eLife.11813.001 The cells in our blood are constantly being replaced with new cells that are produced by stem cells called hematopoietic stem and progenitor cells (or HSPCs for short). The HSPCs form early on in the development of the embryo and continue in the same role throughout the life of the animal. A gene called runx1 is required for HSPCs to form, but is not required for these cells to maintain their role (cell identity) in the long term. In mice, this gene is only expressed for a brief period of time as the HSPCs form, and is switched off in the mature stem cells. Another gene called cmyb – which is switched on by runx1 – is also required for HSPCs to form. However, unlike runx1, cmyb continues to be expressed in mature HSPCs and is required to maintain HSPC identity. It is not known how the temporary activation of runx1 causes the long-term expression of cmyb. One possible explanation is that the cmyb gene may be subject to a process called DNA methylation. This process is carried out by enzymes called DNA methyltransferases and can have long-term effects on the expression of genes by modifying the structure of the DNA that encodes them. Here, Gore et al. investigate the role of a particular DNA methyltransferase in the formation of HSPCs in zebrafish embryos. The experiments show that this enzyme is activated in developing HSPCs in response to an increase in runx1 expression. The loss of this enzyme’s activity reduces both the amount that cmyb is methylated and its level of expression, which results in a gradual decline in the number of HSPCs in zebrafish. Further experiments show that if the DNA methyltransferase is artificially activated in cells that don’t normally form blood cells, these cells change their identity to do so. This switch is accompanied by methylation of cmyb and an increase in its expression. Gore et al.’s findings reveal that the temporary activation of runx1 triggers the production of an enzyme that methylates cmyb to maintain the identity of HSPCs. Future studies should help to reveal exactly how runx1 promotes DNA methylation, and whether this process can be harnessed to promote HSPC formation for research or medical treatments. DOI:http://dx.doi.org/10.7554/eLife.11813.002
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Brett Athans
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - James R Iben
- Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Kristin Johnson
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Valya Russanova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Van N Pham
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Lisa Williams-Simons
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - James T Nichols
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Bejamin Feldman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Charles B Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
35
|
The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis. Neural Plast 2016; 2016:3276383. [PMID: 26881105 PMCID: PMC4737468 DOI: 10.1155/2016/3276383] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/18/2015] [Accepted: 11/22/2015] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits.
Collapse
|
36
|
McPherson AD, Barrios JP, Luks-Morgan SJ, Manfredi JP, Bonkowsky JL, Douglass AD, Dorsky RI. Motor Behavior Mediated by Continuously Generated Dopaminergic Neurons in the Zebrafish Hypothalamus Recovers after Cell Ablation. Curr Biol 2016; 26:263-269. [PMID: 26774784 DOI: 10.1016/j.cub.2015.11.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Postembryonic neurogenesis has been observed in several regions of the vertebrate brain, including the dentate gyrus and rostral migratory stream in mammals, and is required for normal behavior [1-3]. Recently, the hypothalamus has also been shown to undergo continuous neurogenesis as a way to mediate energy balance [4-10]. As the hypothalamus regulates multiple functional outputs, it is likely that additional behaviors may be affected by postembryonic neurogenesis in this brain structure. Here, we have identified a progenitor population in the zebrafish hypothalamus that continuously generates neurons that express tyrosine hydroxylase 2 (th2). We develop and use novel transgenic tools to characterize the lineage of th2(+) cells and demonstrate that they are dopaminergic. Through genetic ablation and optogenetic activation, we then show that th2(+) neurons modulate the initiation of swimming behavior in zebrafish larvae. Finally, we find that the generation of new th2(+) neurons following ablation correlates with restoration of normal behavior. This work thus identifies for the first time a population of dopaminergic neurons that regulates motor behavior capable of functional recovery.
Collapse
Affiliation(s)
- Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Sasha J Luks-Morgan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - John P Manfredi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Duncan RN, Xie Y, McPherson AD, Taibi AV, Bonkowsky JL, Douglass AD, Dorsky RI. Hypothalamic radial glia function as self-renewing neural progenitors in the absence of Wnt/β-catenin signaling. Development 2015; 143:45-53. [PMID: 26603385 DOI: 10.1242/dev.126813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
The vertebrate hypothalamus contains persistent radial glia that have been proposed to function as neural progenitors. In zebrafish, a high level of postembryonic hypothalamic neurogenesis has been observed, but the role of radial glia in generating these new neurons is unclear. We have used inducible Cre-mediated lineage labeling to show that a population of hypothalamic radial glia undergoes self-renewal and generates multiple neuronal subtypes at larval stages. Whereas Wnt/β-catenin signaling has been demonstrated to promote the expansion of other stem and progenitor cell populations, we find that Wnt/β-catenin pathway activity inhibits this process in hypothalamic radial glia and is not required for their self-renewal. By contrast, Wnt/β-catenin signaling is required for the differentiation of a specific subset of radial glial neuronal progeny residing along the ventricular surface. We also show that partial genetic ablation of hypothalamic radial glia or their progeny causes a net increase in their proliferation, which is also independent of Wnt/β-catenin signaling. Hypothalamic radial glia in the zebrafish larva thus exhibit several key characteristics of a neural stem cell population, and our data support the idea that Wnt pathway function may not be homogeneous in all stem or progenitor cells.
Collapse
Affiliation(s)
- Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew V Taibi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
39
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015. [PMID: 25954163 DOI: 10.3389/fnana.2015.00047.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism's development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
40
|
Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 2015; 47:569-76. [PMID: 25915600 PMCID: PMC4828725 DOI: 10.1038/ng.3259] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/06/2015] [Indexed: 12/17/2022]
Abstract
Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, reveal genes’ changing functional roles across tissues, and illuminate disease-disease relationships. We introduce NetWAS, which combines genes with nominally significant GWAS p-values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS, and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than one hundred human tissues and cell types.
Collapse
|
41
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015; 9:47. [PMID: 25954163 PMCID: PMC4404869 DOI: 10.3389/fnana.2015.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
42
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One 2014; 9:e94408. [PMID: 24832538 PMCID: PMC4022625 DOI: 10.1371/journal.pone.0094408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/15/2014] [Indexed: 01/02/2023] Open
Abstract
During mouse neocortical development, the Wnt–β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs). Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1) contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs) committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1) and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7) and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Sakai
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuanjiang Xu
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Itoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yukiko Gotoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Mei G, Zou Z, Fu S, Xia L, Zhou J, Zhang Y, Tuo Y, Wang Z, Jin D. Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. Int J Mol Sci 2014; 15:6224-40. [PMID: 24733069 PMCID: PMC4013624 DOI: 10.3390/ijms15046224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 01/15/2023] Open
Abstract
Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10⁻¹⁰ to 10⁻⁸ M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10⁻⁹ to 10⁻⁸ M) significantly up-regulated the expressions of osteoblastic genes. SP (10⁻⁸ M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10-8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gang Mei
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Zhenlv Zou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Su Fu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Liheng Xia
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Jian Zhou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Yongtao Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Yonghua Tuo
- Department of Orthopaedic, Wuzhou Red Cross Hospital, Wuzhou 543002, Guangxi, China.
| | - Zhao Wang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London E1 4NS, UK.
| | - Dan Jin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
45
|
Yi T, Lee HJ, Cho YK, Jeon MS, Song SU. Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells. Immune Netw 2014; 14:54-65. [PMID: 24605081 PMCID: PMC3942508 DOI: 10.4110/in.2014.14.1.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.
Collapse
Affiliation(s)
- Tacghee Yi
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Inha Research Institute for Medical Sciences of Biomedical Sciences, Inha University School of Medicine, Incheon 400-712, Korea. ; HomeoTherapy Co. Ltd., Incheon 400-711, Korea
| | - Hyun-Joo Lee
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon 400-712, Korea
| | | | - Myung-Shin Jeon
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Inha Research Institute for Medical Sciences of Biomedical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea
| |
Collapse
|
46
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
47
|
Aujla PK, Naratadam GT, Xu L, Raetzman LT. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 2013; 140:3511-21. [PMID: 23884446 DOI: 10.1242/dev.098681] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hypothalamic arcuate nucleus (Arc), containing pro-opoiomelanocortin (POMC), neuropeptide Y (NPY) and growth hormone releasing hormone (GHRH) neurons, regulates feeding, energy balance and body size. Dysregulation of this homeostatic mediator underlies diseases ranging from growth failure to obesity. Despite considerable investigation regarding the function of Arc neurons, mechanisms governing their development remain unclear. Notch signaling factors such as Hes1 and Mash1 are present in hypothalamic progenitors that give rise to Arc neurons. However, how Notch signaling controls these progenitor populations is unknown. To elucidate the role of Notch signaling in Arc development, we analyzed conditional loss-of-function mice lacking a necessary Notch co-factor, Rbpjκ, in Nkx2.1-cre-expressing cells (Rbpjκ cKO), as well as mice with expression of the constitutively active Notch1 intracellular domain (NICD) in Nkx2.1-cre-expressing cells (NICD Tg). We found that loss of Rbpjκ results in absence of Hes1 but not of Hes5 within the primordial Arc at E13.5. Additionally, Mash1 expression is increased, coincident with increased proliferation and accumulation of Arc neurons at E13.5. At E18.5, Rbpjκ cKO mice have few progenitors and show increased numbers of differentiated Pomc, NPY and Ghrh neurons. By contrast, NICD Tg mice have increased hypothalamic progenitors, show an absence of differentiated Arc neurons and aberrant glial differentiation at E18.5. Subsequently, both Rbpjκ cKO and NICD Tg mice have changes in growth and body size during postnatal development. Taken together, our results demonstrate that Notch/Rbpjκ signaling regulates the generation and differentiation of Arc neurons, which contribute to homeostatic regulation of body size.
Collapse
Affiliation(s)
- Paven K Aujla
- University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
48
|
Wolf A, Ryu S. Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013; 140:1762-73. [PMID: 23533176 DOI: 10.1242/dev.085357] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypothalamus is a key integrative center in the brain that consists of diverse cell types required for a variety of functions including homeostasis, reproduction, stress response, social and cognitive behavior. Despite our knowledge of several transcription factors crucial for hypothalamic development, it is not known how the wide diversity of neuron types in the hypothalamus is produced. In particular, almost nothing is known about the mechanisms that specify neurons in the posteriormost part of the hypothalamus, the mammillary area. Here, we investigated the specification of two distinct neuron types in the mammillary area that produce the hypothalamic hormones Vasoactive intestinal peptide (Vip) and Urotensin 1 (Uts1). We show that Vip- and Uts1-positive neurons develop in distinct domains in the mammillary area defined by the differential expression of the transcription factors Fezf2, Otp, Sim1a and Foxb1.2. Coordinated activities of these factors are crucial for the establishment of the mammillary area subdomains and the specification of Vip- and Uts1-positive neurons. In addition, Fezf2 is important for early development of the posterior hypothalamus. Thus, our study provides the first molecular anatomical map of the posterior hypothalamus in zebrafish and identifies, for the first time, molecular requirements underlying the specification of distinct posterior hypothalamic neuron types.
Collapse
Affiliation(s)
- Andrea Wolf
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | |
Collapse
|
49
|
Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. J Neurosci 2013; 33:3879-90. [PMID: 23447599 DOI: 10.1523/jneurosci.4030-12.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sox2 is required for proper neuronal formation in the CNS, but the molecular mechanisms involved are not well characterized. Here, we addressed the role of Sox2 in neurogenesis of the developing chicken inner ear. Overexpressing Sox2 from a constitutive (β-actin) promoter induces the expression of the proneural gene, Neurogenin1 (Ngn1); however, the expression of a downstream target of Ngn1, Neurod1, is unchanged. As a result, there is a reduction of neural precursors to delaminate and populate the developing cochleo-vestibular ganglion. In contrast, overexpression of either Ngn1 or Neurod1 is sufficient to promote the neural fate in this system. These results suggest that high levels of Sox2 inhibit progression of neurogenesis in the developing inner ear. Furthermore, we provide evidence that Ngn1 and Neurod1 inhibit Sox2 transcription through a phylogenetically conserved Sox2 enhancer to mediate neurogenesis. We propose that Sox2 confers neural competency by promoting Ngn1 expression, and that negative feedback inhibition of Sox2 by Ngn1 is an essential step in the progression from neural precursor to nascent neuron.
Collapse
|
50
|
Hofmeister W, Key B. Frizzled-3a and Wnt-8b genetically interact during forebrain commissural formation in embryonic zebrafish. Brain Res 2013; 1506:25-34. [PMID: 23438515 DOI: 10.1016/j.brainres.2013.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 12/31/2022]
Abstract
The commissural plate forms the rostral surface of the embryonic vertebrate forebrain and provides a cellular substrate for forebrain commissural axons. We have previously reported that the Wnt receptor frizzled-3a (fzd3a) restricts the expression of the chemorepulsive guidance ligand slit2 to a discrete domain of neuroepithelial cells in the commissural plate of embryonic zebrafish. Loss of Fzd3a function perturbed slit2 expression and disrupted the formation of glial bridges which guide the formation of forebrain commissures. We now show that Wnt8b is also necessary for anterior commissural formation as well as for patterning of slit2 expression at the midline. Knock down of Wnt8b produced the same phenotype as loss of Fzd3a which suggested that these genes were acting together to regulate axon guidance. Simultaneous sub-threshold knock down of both Fzd3a and Wnt8b led to a greater than additive increase in the penetrance of the mutant phenotype which indicated that these two genes were indeed interacting. We have shown here that Fzd3a/Wnt8b signaling is essential for normal patterning of the commissural plate and that loss-of-function in either receptor or ligand causes Slit2-dependent defects in glial bridge morphology which indirectly attenuated axon midline crossing in the embryonic vertebrate forebrain.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|