1
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
2
|
Zhao H, Zhou B. Lineage tracing of pancreatic cells for mechanistic and therapeutic insights. Trends Endocrinol Metab 2025:S1043-2760(24)00330-8. [PMID: 39828453 DOI: 10.1016/j.tem.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in lineage-tracing technologies have significantly improved our understanding of pancreatic cell biology, particularly in elucidating the ontogeny and regenerative capacity of pancreatic cells. A deeper appreciation of the mechanisms underlying pancreatic cell identity and plasticity holds the potential to inform the development of new therapeutic modalities for conditions such as diabetes and pancreatitis. With this goal in mind, here we summarize advances, challenges, and future directions in tracing pancreatic cell origins and fates using lineage-tracing technologies. Given their essential role for blood glucose regulation, we pay particular attention on the insights gained from endocrine cells, especially β-cells.
Collapse
Affiliation(s)
- Huan Zhao
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Zhou
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Davidson RK, Wu W, Kanojia S, George RM, Huter K, Sandoval K, Osmulski M, Casey N, Spaeth JM. The SWI/SNF chromatin remodelling complex regulates pancreatic endocrine cell expansion and differentiation in mice in vivo. Diabetologia 2024; 67:2275-2288. [PMID: 38958700 PMCID: PMC11912225 DOI: 10.1007/s00125-024-06211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
AIMS/HYPOTHESIS Strategies to augment functional beta cell mass include directed differentiation of stem cells towards a beta cell fate, which requires extensive knowledge of transcriptional programs governing endocrine progenitor cell differentiation in vivo. We aimed to study the contributions of the Brahma-related gene-1 (BRG1) and Brahma (BRM) ATPase subunits of the SWI/SNF chromatin remodelling complex to endocrine cell development. METHODS We generated mice with endocrine progenitor-specific Neurog3-Cre BRG1 removal in the presence of heterozygous (Brg1Δendo;Brm+/-) or homozygous (double knockout: DKOΔendo) BRM deficiency. Whole-body metabolic phenotyping, islet function characterisation, islet quantitative PCR and histological characterisation were performed on animals and tissues postnatally. To test the mechanistic actions of SWI/SNF in controlling gene expression during endocrine cell development, single-cell RNA-seq was performed on flow-sorted endocrine-committed cells from embryonic day 15.5 control and mutant embryos. RESULTS Brg1Δendo;Brm+/- mice exhibit severe glucose intolerance, hyperglycaemia and hypoinsulinaemia, resulting, in part, from reduced islet number; diminished alpha, beta and delta cell mass; compromised islet insulin secretion; and altered islet gene expression programs, including reductions in MAFA and urocortin 3 (UCN3). DKOΔendo mice were not recovered at weaning; however, postnatal day 6 DKOΔendo mice were severely hyperglycaemic with reduced serum insulin levels and beta cell area. Single-cell RNA-seq of embryonic day 15.5 lineage-labelled cells revealed endocrine progenitor, alpha and beta cell populations from SWI/SNF mutants have reduced expression of Mafa, Gcg, Ins1 and Ins2, suggesting limited differentiation capacity. Reduced Neurog3 transcripts were discovered in DKOΔendo endocrine progenitor clusters, and the proliferative capacity of neurogenin 3 (NEUROG3)+ cells was reduced in Brg1Δendo;Brm+/- and DKOΔendo mutants. CONCLUSIONS/INTERPRETATION Loss of BRG1 from developing endocrine progenitor cells has a severe postnatal impact on glucose homeostasis, and loss of both subunits impedes animal survival, with both groups exhibiting alterations in hormone transcripts embryonically. Taken together, these data highlight the critical role SWI/SNF plays in governing gene expression programs essential for endocrine cell development and expansion. DATA AVAILABILITY Raw and processed data for scRNA-seq have been deposited into the NCBI Gene Expression Omnibus (GEO) database under the accession number GSE248369.
Collapse
Grants
- DK127129 Division of Diabetes, Endocrinology, and Metabolic Diseases
- DK106846 Division of Diabetes, Endocrinology, and Metabolic Diseases
- R03 DK127129 NIDDK NIH HHS
- F32 DK104426 NIDDK NIH HHS
- DK097512 Division of Diabetes, Endocrinology, and Metabolic Diseases
- P30 CA082709 NCI NIH HHS
- DK129287 Division of Diabetes, Endocrinology, and Metabolic Diseases
- P30 DK097512 NIDDK NIH HHS
- R01 DK129287 NIDDK NIH HHS
- DK097771 Division of Diabetes, Endocrinology, and Metabolic Diseases
- F31 DK128918 NIDDK NIH HHS
- DK115633 Division of Diabetes, Endocrinology, and Metabolic Diseases
- K01 DK115633 NIDDK NIH HHS
- U24 DK097771 NIDDK NIH HHS
- DK128918 Division of Diabetes, Endocrinology, and Metabolic Diseases
- CA082709 Division of Cancer Prevention, National Cancer Institute
Collapse
Affiliation(s)
- Rebecca K Davidson
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenting Wu
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sukrati Kanojia
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajani M George
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kayla Huter
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kassandra Sandoval
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Osmulski
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nolan Casey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason M Spaeth
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Azad A, Altunbas HA, Manguoglu AE. From islet transplantation to beta-cell regeneration: an update on beta-cell-based therapeutic approaches in type 1 diabetes. Expert Rev Endocrinol Metab 2024; 19:217-227. [PMID: 38693782 DOI: 10.1080/17446651.2024.2347263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hasan Ali Altunbas
- Department of Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Esra Manguoglu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Li M, Zhang R, Ge Q, Yue L, Ma D, Khattab F, Xie W, Cui Y, Gilon P, Zhao X, Li X, Cheng R. Chemerin as an Inducer of β Cell Proliferation Mediates Mitochondrial Homeostasis and Promotes β Cell Mass Expansion. Int J Mol Sci 2023; 24:ijms24119136. [PMID: 37298086 DOI: 10.3390/ijms24119136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Loss of the β cell population is a crucial feature of type 2 diabetes. Restoring the β cell mass by stimulating β cell proliferation and preventing its apoptosis was proposed as a therapeutic approach to treating diabetes. Therefore, researchers have been increasingly interested in identifying exogenous factors that can stimulate β cell proliferation in situ and in vitro. Adipokine chemerin, which is secreted from adipose tissue and the liver, has been identified as a chemokine that plays a critical role in the regulation of metabolism. In this study, we demonstrate that chemerin as a circulating adipokine promotes β cell proliferation in vivo and in vitro. Chemerin serum levels and the expression of the main receptors within islets are highly regulated under a variety of challenging conditions, including obesity and type 2 diabetes. As compared to their littermates, mice overexpressing chemerin had a larger islet area and increased β cell mass with both a normal and high-fat diet. Moreover, in chemerin-overexpressed mice, we observed improved mitochondrial homeostasis and increased insulin synthesis. In summary, our findings confirm the potential role of chemerin as an inducer of β cell proliferation, and they provide novel insights into the helpful strategy to expand β cell population.
Collapse
Affiliation(s)
- Min Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruifan Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Ge
- The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Lingzhi Yue
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Ma
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Firas Khattab
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wenhua Xie
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yewei Cui
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Xueya Zhao
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
9
|
Chai W, Hao W, Liu J, Han Z, Chang S, Cheng L, Sun M, Yan G, Liu Z, Liu Y, Zhang G, Xing L, Chen H, Liu P. Visualizing Cathepsin K-Cre Expression at the Single-Cell Level with GFP Reporters. JBMR Plus 2022; 7:e10706. [PMID: 36699636 PMCID: PMC9850439 DOI: 10.1002/jbm4.10706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Cre/lox system is a fundamental tool for functional genomic studies, and a number of Cre lines have been generated to target genes of interest spatially and temporally in defined cells or tissues; this approach has greatly expanded our knowledge of gene functions. However, the limitations of this system have recently been recognized, and we must address the challenge of so-called nonspecific/off-target effects when a Cre line is utilized to investigate a gene of interest. For example, cathepsin K (Ctsk) has been used as a specific osteoclast marker, and Cre driven by its promoter is widely utilized for osteoclast investigations. However, Ctsk-Cre expression has recently been identified in other cell types, such as osteocytes, periosteal stem cells, and tenocytes. To better understand Ctsk-Cre expression and ensure appropriate use of this Cre line, we performed a comprehensive analysis of Ctsk-Cre expression at the single-cell level in major organs and tissues using two green fluorescent protein (GFP) reporters (ROSA nT-nG and ROSA tdT) and a tissue clearing technique in young and aging mice. The expression profile was further verified by immunofluorescence staining and droplet digital RT-PCR. The results demonstrate that Ctsk-Cre is expressed not only in osteoclasts but also at various levels in osteoblast lineage cells and other major organs/tissues, particularly in the brain, kidney, pancreas, and blood vessels. Furthermore, Ctsk-Cre expression increases markedly in the bone marrow, skeletal muscle, and intervertebral discs in aging mice. These data will be valuable for accurately interpreting data obtained from in vivo studies using Ctsk-Cre mice to avoid potentially misleading conclusions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wenhuan Chai
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Weiwei Hao
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Jintao Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zhenglin Han
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Shiyu Chang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Liben Cheng
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Mingxin Sun
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guofang Yan
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zemin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Yin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guodong Zhang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Li Xing
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Hongqian Chen
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Peng Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
10
|
McDonald S, Ray P, Bunn RC, Fowlkes JL, Thrailkill KM, Popescu I. Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochem 2022; 124:151940. [PMID: 35969910 DOI: 10.1016/j.acthis.2022.151940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
A primary underlying defect makes β-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, β-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main β-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype. We found that: 1) conversion to overt diabetes is paralleled by a progressive reduction of insulin-expressing cells and expansion of a glucagon-positive population, together with alteration of islet size and shape; 2) the β-cell population is highly heterogeneous in terms of insulin content and specific transcription factors like PDX1 and NKX6.1, that are gradually lost during diabetes progression; 3) GLUT2 expression is altered early and strongly reduced at late stages of diabetes; 4) an endocrine developmental program dependent on NGN3-expressing progenitors is revived when hyperglycaemia becomes severe; and 5) the re-expression of the EMT-associated factor vimentin occurs as diabetes worsens, representing a possible regenerative response to β-cell loss. Based on these results, we formulated additional hypotheses for the β-cell identity alteration in the TH model, together with several limitations of the study, that constitute future research directions.
Collapse
Affiliation(s)
- Sarah McDonald
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA
| | - Phil Ray
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Robert C Bunn
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - John L Fowlkes
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Kathryn M Thrailkill
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Iuliana Popescu
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Perez-Frances M, Abate MV, Baronnier D, Scherer PE, Fujitani Y, Thorel F, Herrera PL. Adult pancreatic islet endocrine cells emerge as fetal hormone-expressing cells. Cell Rep 2022; 38:110377. [PMID: 35172145 PMCID: PMC8864465 DOI: 10.1016/j.celrep.2022.110377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
The precise developmental dynamics of the pancreatic islet endocrine cell types, and their interrelation, are unknown. Some authors claim the persistence of islet cell differentiation from precursor cells after birth (“neogenesis”). Here, using four conditional cell lineage tracing (“pulse-and-chase”) murine models, we describe the natural history of pancreatic islet cells, once they express a hormone gene, until late in life. Concerning the contribution of early-appearing embryonic hormone-expressing cells to the formation of islets, we report that adult islet cells emerge from embryonic hormone-expressing cells arising at different time points during development, without any evidence of postnatal neogenesis. We observe specific patterns of hormone gene activation and switching during islet morphogenesis, revealing that, within each cell type, cells have heterogeneous developmental trajectories. This likely applies to most maturating cells in the body, and explains the observed phenotypic variability within differentiated cell types. Such knowledge should help devising novel regenerative therapies. Adult pancreatic islet endocrine cells arise as embryonic hormone-expressing cells No detectable islet cell differentiation from putative precursor cells after birth Some embryonic hormone-producing cells display a switch in hormone gene expression
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Valentina Abate
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Fabrizio Thorel
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
13
|
Sequential progenitor states mark the generation of pancreatic endocrine lineages in mice and humans. Cell Res 2021; 31:886-903. [PMID: 33692492 DOI: 10.1038/s41422-021-00486-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The pancreatic islet contains multiple hormone+ endocrine lineages (α, β, δ, PP and ε cells), but the developmental processes that underlie endocrinogenesis are poorly understood. Here, we generated novel mouse lines and combined them with various genetic tools to enrich all types of hormone+ cells for well-based deep single-cell RNA sequencing (scRNA-seq), and gene coexpression networks were extracted from the generated data for the optimization of high-throughput droplet-based scRNA-seq analyses. These analyses defined an entire endocrinogenesis pathway in which different states of endocrine progenitor (EP) cells sequentially differentiate into specific endocrine lineages in mice. Subpopulations of the EP cells at the final stage (EP4early and EP4late) show different potentials for distinct endocrine lineages. ε cells and an intermediate cell population were identified as distinct progenitors that independently generate both α and PP cells. Single-cell analyses were also performed to delineate the human pancreatic endocrinogenesis process. Although the developmental trajectory of pancreatic lineages is generally conserved between humans and mice, clear interspecies differences, including differences in the proportions of cell types and the regulatory networks associated with the differentiation of specific lineages, have been detected. Our findings support a model in which sequential transient progenitor cell states determine the differentiation of multiple cell lineages and provide a blueprint for directing the generation of pancreatic islets in vitro.
Collapse
|
14
|
Yong HJ, Xie G, Liu C, Wang W, Naji A, Irianto J, Wang YJ. Gene Signatures of NEUROGENIN3+ Endocrine Progenitor Cells in the Human Pancreas. Front Endocrinol (Lausanne) 2021; 12:736286. [PMID: 34566896 PMCID: PMC8456125 DOI: 10.3389/fendo.2021.736286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yue J. Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
- *Correspondence: Yue J. Wang,
| |
Collapse
|
15
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Tracing the cellular basis of islet specification in mouse pancreas. Nat Commun 2020; 11:5037. [PMID: 33028844 PMCID: PMC7541446 DOI: 10.1038/s41467-020-18837-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic islets play an essential role in regulating blood glucose level. Although the molecular pathways underlying islet cell differentiation are beginning to be resolved, the cellular basis of islet morphogenesis and fate allocation remain unclear. By combining unbiased and targeted lineage tracing, we address the events leading to islet formation in the mouse. From the statistical analysis of clones induced at multiple embryonic timepoints, here we show that, during the secondary transition, islet formation involves the aggregation of multiple equipotent endocrine progenitors that transition from a phase of stochastic amplification by cell division into a phase of sublineage restriction and limited islet fission. Together, these results explain quantitatively the heterogeneous size distribution and degree of polyclonality of maturing islets, as well as dispersion of progenitors within and between islets. Further, our results show that, during the secondary transition, α- and β-cells are generated in a contemporary manner. Together, these findings provide insight into the cellular basis of islet development. The cellular basis of islet morphogenesis and fate allocation remain unclear. Here, the authors use a R26-CreER-R26R-Confetti mouse line to follow quantitatively the clonal dynamics of islet formation showing how, during the secondary transition, islet progenitors amplify through rounds of stochastic cell division before becoming restricted to α and β cell sublineages.
Collapse
|
17
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
19
|
Legøy TA, Mathisen AF, Salim Z, Vethe H, Bjørlykke Y, Abadpour S, Paulo JA, Scholz H, Ræder H, Ghila L, Chera S. In vivo Environment Swiftly Restricts Human Pancreatic Progenitors Toward Mono-Hormonal Identity via a HNF1A/HNF4A Mechanism. Front Cell Dev Biol 2020; 8:109. [PMID: 32161757 PMCID: PMC7052484 DOI: 10.3389/fcell.2020.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Generating insulin-producing β-cells from human induced pluripotent stem cells is a promising cell replacement therapy for improving or curing insulin-dependent diabetes. The transplantation of end-stages differentiating cells into living hosts was demonstrated to improve β-cell maturation. Nevertheless, the cellular and molecular mechanisms outlining the transplanted cells’ response to the in vivo environment are still to be properly characterized. Here we use global proteomics and large-scale imaging techniques to demultiplex and filter the cellular processes and molecular signatures modulated by the immediate in vivo effect. We show that in vivo exposure swiftly confines in vitro generated human pancreatic progenitors to single hormone expression. The global proteome landscape of the transplanted cells was closer to native human islets, especially in regard to energy metabolism and redox balance. Moreover, our study indicates a possible link between these processes and certain epigenetic regulators involved in cell identity. Pathway analysis predicted HNF1A and HNF4A as key regulators controlling the in vivo islet-promoting response, with experimental evidence suggesting their involvement in confining islet cell fate following xeno-transplantation.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Zaidon Salim
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
21
|
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci 2019; 20:E5417. [PMID: 31671683 PMCID: PMC6861993 DOI: 10.3390/ijms20215417] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| |
Collapse
|
22
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
23
|
Kim JH, Park BG, Kim SK, Lee DH, Lee GG, Kim DH, Choi BO, Lee KB, Kim JH. Nanotopographical regulation of pancreatic islet-like cluster formation from human pluripotent stem cells using a gradient-pattern chip. Acta Biomater 2019; 95:337-347. [PMID: 30529081 DOI: 10.1016/j.actbio.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Bioengineering approaches to regulate stem cell fates aim to recapitulate the in vivo microenvironment. In recent years, manipulating the micro- and nano-scale topography of the stem cell niche has gained considerable interest for the purposes of controlling extrinsic mechanical cues to regulate stem cell fate and behavior in vitro. Here, we established an optimal nanotopographical system to improve 3-dimensional (3D) differentiation of pancreatic cells from human pluripotent stem cells (hPSCs) by testing gradient-pattern chips of nano-scale polystyrene surface structures with varying sizes and shapes. The optimal conditions for 3D differentiation of pancreatic cells were identified by assessing the expression of developmental regulators that are required for pancreatic islet development and maturation. Our results showed that the gradient chip of pore-part 2 (Po-2, 200-300 nm diameter) pattern was the most efficient setting to generate clusters of pancreatic endocrine progenitors (PDX1+ and NGN3+) compared to those of other pore diameters (Po-1, 100-200 or Po-3, 300-400 nm) tested across a range of pillar patterns and flat surfaces. Furthermore, the Po-2 gradient pattern-derived clusters generated islet-like 3D spheroids and tested positive for the zinc-chelating dye dithizone. The spheroids consisted of more than 30% CD200 + endocrine cells and also expressed NKX6.1 and NKX2.2. In addition, pancreatic β- cells expressing insulin and polyhormonal cells expressing both insulin and glucagon were obtained at the final stage of pancreatic differentiation. In conclusion, our data suggest that an optimal topographical structure for differentiation to specific cell types from hPSCs can be tested efficiently by using gradient-pattern chips designed with varying sizes and surfaces. STATEMENT OF SIGNIFICANCE: Our study provides demonstrates of using gradient nanopatterned chips for differentiation of pancreatic islet-like clusters. Gradient nanopatterned chips are consisted of two different shapes (nanopillar and nanopore) in three different ranges of nano sizes (100-200, 200-300, 300-400 nm). We found that optimal nanostructures for differentiation of pancreatic islet-like clusters were 200-300 nm nano pores. Cell transplantation is one of the major therapeutic option for type 1 diabetes mellitus (DM) using stem cell-derived β-like cells. We generated 50 um pancreatic islet-like clusters in size, which would be an optimal size for cell transplantation. Futuremore, the small clusters provide a powerful source for cell therapy. Our findings suggest gradient nanopatterned chip provides a powerful tool to generate specific functional cell types of a high purity for potential uses in cell therapy development.
Collapse
|
24
|
Hara A, Nakagawa Y, Nakao K, Tamaki M, Ikemoto T, Shimada M, Matsuhisa M, Mizukami H, Maruyama N, Watada H, Fujitani Y. Development of monoclonal mouse antibodies that specifically recognize pancreatic polypeptide. Endocr J 2019; 66:459-468. [PMID: 30842364 DOI: 10.1507/endocrj.ej18-0441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic polypeptide (PP) is a 36-amino acid peptide encoded by the Ppy gene, which is produced by a small population of cells located in the periphery of the islets of Langerhans. Owing to the high amino acid sequence similarity among neuropeptide Y family members, antibodies against PP that are currently available are not convincingly specific to PP. Here we report the development of mouse monoclonal antibodies that specifically bind to PP. We generated Ppy knockout (Ppy-KO) mice in which the Ppy-coding region was replaced by Cre recombinase. The Ppy-KO mice were immunized with mouse PP peptide, and stable hybridoma cell lines producing anti-PP antibodies were isolated. Firstly, positive clones were selected in an enzyme-linked immunosorbent assay for reactivity with PP coupled to bovine serum albumin. During the screening, hybridoma clones producing antibodies that cross-react to the peptide YY (PYY) were excluded. In the second screening, hybridoma clones in which their culture media produce no signal in Ppy-KO islets but detect specific cells in the peripheral region of wild-type islets, were selected. Further studies demonstrated that the selected monoclonal antibody (23-2D3) specifically recognizes PP-producing cells, not only in mouse, but also in human and rat islets. The monoclonal antibodies with high binding specificity for PP developed in this study will be fundamental for future studies towards elucidating the expression profiles and the physiological roles of PP.
Collapse
Affiliation(s)
- Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Keiko Nakao
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Motoyuki Tamaki
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|
25
|
Abstract
The pancreas plays important roles in the regulation of blood glucose, and is a well-studied organ in mammals because its dysfunction causes serious disorders, such as diabetes mellitus. However, mammals have the limited capacity for tissue regeneration in their organs, including pancreas. Fish may be an attractive model for regeneration studies, as fish exhibit a greater capacity for regeneration than do mammals. To elucidate the regenerative capacity of pancreatic β cells in medaka, we generated transgenic lines, in which β cells can be specifically ablated using the nitroreductase (NTR)/metronidazole (Mtz) system. We examined β-cell regeneration at embryonic-larval stages after specific ablation of β cells, and found that medaka rapidly regenerate β cells. Furthermore, we found that teleost-specific secondary islet have a unique feature in that their size increases in response to β-cell ablation in principal islets.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,2 CREST, Japan Science and Technology Agency
| |
Collapse
|
26
|
Yu XX, Qiu WL, Yang L, Zhang Y, He MY, Li LC, Xu CR. Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution. EMBO J 2019; 38:e100164. [PMID: 30737258 PMCID: PMC6463266 DOI: 10.15252/embj.2018100164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
The generation of terminally differentiated cell lineages during organogenesis requires multiple, coordinated cell fate choice steps. However, this process has not been clearly delineated, especially in complex solid organs such as the pancreas. Here, we performed single-cell RNA-sequencing in pancreatic cells sorted from multiple genetically modified reporter mouse strains at embryonic stages E9.5-E17.5. We deciphered the developmental trajectories and regulatory strategies of the exocrine and endocrine pancreatic lineages as well as intermediate progenitor populations along the developmental pathways. Notably, we discovered previously undefined programs representing the earliest events in islet α- and β-cell lineage allocation as well as the developmental pathway of the "first wave" of α-cell generation. Furthermore, we demonstrated that repressing ERK pathway activity is essential for inducing both α- and β-lineage differentiation. This study provides key insights into the regulatory mechanisms underlying cell fate choice and stepwise cell fate commitment and can be used as a resource to guide the induction of functional islet lineage cells from stem cells in vitro.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Liu Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mao-Yang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C, Schirge S, Burtscher I, Böttcher A, Theis F, Lickert H, Bakhti M. Massive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development 2019; 146:dev.173849. [DOI: 10.1242/dev.173849] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
Deciphering mechanisms of endocrine cell induction, specification and lineage allocation in vivo will provide valuable insights into how the islets of Langerhans are generated. Currently, it is ill defined how endocrine progenitors segregate into different endocrine subtypes during development. Here, we generated a novel Neurogenin3 (Ngn3)-Venus fusion (NVF) reporter mouse line, that closely mirrors the transient endogenous Ngn3 protein expression. To define an in vivo roadmap of endocrinogenesis, we performed single-cell RNA-sequencing of 36,351 pancreatic epithelial and NVF+ cells during secondary transition. This allowed to time-resolve and distinguish Ngn3low endocrine progenitors, Ngn3high endocrine precursors, Fev+ endocrine lineage and hormone+ endocrine subtypes and delineate molecular programs during the stepwise lineage restriction steps. Strikingly, we identified 58 novel signature genes that show the same transient expression dynamics as Ngn3 in the 7,260 profiled Ngn3-expressing cells. The differential expression of these genes in endocrine precursors associated with their cell-fate allocation towards distinct endocrine cell types. Thus, the generation of an accurately regulated NVF reporter allowed us to temporally resolve endocrine lineage development to provide a fine-grained single-cell molecular profile of endocrinogenesis in vivo.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Leander Dony
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, Department of Mathematics, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
29
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
30
|
Sznurkowska MK, Hannezo E, Azzarelli R, Rulands S, Nestorowa S, Hindley CJ, Nichols J, Göttgens B, Huch M, Philpott A, Simons BD. Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development. Dev Cell 2018; 46:360-375.e5. [PMID: 30057275 PMCID: PMC6085117 DOI: 10.1016/j.devcel.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/15/2018] [Accepted: 06/29/2018] [Indexed: 12/03/2022]
Abstract
Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Edouard Hannezo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK; Institute of Science and Technology IST Austria, 3400 Klosterneuburg, Austria
| | - Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Steffen Rulands
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sonia Nestorowa
- Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus Box 139, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher J Hindley
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus Box 139, Hills Road, Cambridge CB2 0XY, UK
| | - Meritxell Huch
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
31
|
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability. Am J Physiol Endocrinol Metab 2018; 314:E308-E321. [PMID: 29351489 PMCID: PMC5966755 DOI: 10.1152/ajpendo.00260.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Collapse
Affiliation(s)
- Peter A Kropp
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Doris A Stoffers
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
32
|
Westacott MJ, Ludin NWF, Benninger RKP. Spatially Organized β-Cell Subpopulations Control Electrical Dynamics across Islets of Langerhans. Biophys J 2017; 113:1093-1108. [PMID: 28877492 DOI: 10.1016/j.bpj.2017.07.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022] Open
Abstract
Understanding how heterogeneous cells within a multicellular system interact and affect overall function is difficult without a means of perturbing individual cells or subpopulations. Here we apply optogenetics to understand how subpopulations of β-cells control the overall [Ca2+]i response and insulin secretion dynamics of the islets of Langerhans. We spatiotemporally perturbed electrical activity in β-cells of channelrhodopsin2-expressing islets, mapped the [Ca2+]i response, and correlated this with the cellular metabolic activity and an in silico electrophysiology model. We discovered organized regions of metabolic activity across the islet, and these affect the way in which β-cells electrically interact. Specific regions acted as pacemakers by initiating calcium wave propagation. Our findings reveal the functional architecture of the islet, and show how distinct subpopulations of cells can disproportionality affect function. These results also suggest ways in which other neuroendocrine systems can be regulated, and demonstrate how optogenetic tools can discern their functional architecture.
Collapse
Affiliation(s)
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado.
| |
Collapse
|
33
|
Larsen HL, Martín-Coll L, Nielsen AV, Wright CVE, Trusina A, Kim YH, Grapin-Botton A. Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis. Nat Commun 2017; 8:605. [PMID: 28928395 PMCID: PMC5605525 DOI: 10.1038/s41467-017-00258-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Spatiotemporal balancing of cellular proliferation and differentiation is crucial for postnatal tissue homoeostasis and organogenesis. During embryonic development, pancreatic progenitors simultaneously proliferate and differentiate into the endocrine, ductal and acinar lineages. Using in vivo clonal analysis in the founder population of the pancreas here we reveal highly heterogeneous contribution of single progenitors to organ formation. While some progenitors are bona fide multipotent and contribute progeny to all major pancreatic cell lineages, we also identify numerous unipotent endocrine and ducto-endocrine bipotent clones. Single-cell transcriptional profiling at E9.5 reveals that endocrine-committed cells are molecularly distinct, whereas multipotent and bipotent progenitors do not exhibit different expression profiles. Clone size and composition support a probabilistic model of cell fate allocation and in silico simulations predict a transient wave of acinar differentiation around E11.5, while endocrine differentiation is proportionally decreased. Increased proliferative capacity of outer progenitors is further proposed to impact clonal expansion. The pancreas arises from a small population of cells but how individual cells contribute to organ formation is unclear. Here, the authors deconstruct pancreas organogenesis into clonal units, showing that single progenitors give rise to heterogeneous multi-lineage and endocrinogenic single-lineage clones.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Laura Martín-Coll
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | | | - Christopher V E Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232-0494, USA
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, 17 Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark.
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
34
|
Krentz NAJ, van Hoof D, Li Z, Watanabe A, Tang M, Nian C, German MS, Lynn FC. Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors. Dev Cell 2017; 41:129-142.e6. [PMID: 28441528 DOI: 10.1016/j.devcel.2017.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/28/2016] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
During pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation. During progression through the progenitor cell cycle, NEUROG3 phosphorylation is driven by the actions of cyclin-dependent kinases 2 and 4/6 at G1/S cell-cycle checkpoint. Using models of mouse and human pancreas development, we show that lengthening of the G1 phase of the pancreatic progenitor cell cycle is essential for proper induction of NEUROG3 and initiation of endocrine cell differentiation. In sum, these studies demonstrate that progenitor cell-cycle G1 lengthening, through its actions on stabilization of NEUROG3, is an essential variable in normal endocrine cell genesis.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Dennis van Hoof
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Zhongmei Li
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Akie Watanabe
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Mei Tang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Michael S German
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA; Department of Medicine, University of California San Francisco, 35 Medical Center Way, RMB 1025, San Francisco, CA 94143-0669, USA.
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
35
|
Late-stage differentiation of embryonic pancreatic β-cells requires Jarid2. Sci Rep 2017; 7:11643. [PMID: 28912479 PMCID: PMC5599523 DOI: 10.1038/s41598-017-11691-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023] Open
Abstract
Jarid2 is a component of the Polycomb Repressor complex 2 (PRC2), which is responsible for genome-wide H3K27me3 deposition, in embryonic stem cells. However, Jarid2 has also been shown to exert pleiotropic PRC2-independent actions during embryogenesis. Here, we have investigated the role of Jarid2 during pancreas development. Conditional ablation of Jarid2 in pancreatic progenitors results in reduced endocrine cell area at birth due to impaired endocrine cell differentiation and reduced prenatal proliferation. Inactivation of Jarid2 in endocrine progenitors demonstrates that Jarid2 functions after endocrine specification. Furthermore, genome-wide expression analysis reveals that Jarid2 is required for the complete activation of the insulin-producing β-cell differentiation program. Jarid2-deficient pancreases exhibit impaired deposition of RNAPII-Ser5P, the initiating form of RNAPII, but no changes in H3K27me3, at the promoters of affected endocrine genes. Thus, our study identifies Jarid2 as a fine-tuner of gene expression during late stages of pancreatic endocrine cell development. These findings are relevant for generation of transplantable stem cell-derived β-cells.
Collapse
|
36
|
Pdx1-Cre-driven conditional gene depletion suggests PAK4 as dispensable for mouse pancreas development. Sci Rep 2017; 7:7031. [PMID: 28765528 PMCID: PMC5539201 DOI: 10.1038/s41598-017-07322-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/21/2017] [Indexed: 12/01/2022] Open
Abstract
Constitutive depletion of p21-activated kinase 4 (PAK4) in the mouse causes embryonic lethality associated with heart and brain defects. Given that conventional gene depletion of PAK1 or PAK3 caused functional deficits in the mouse pancreas, while gene depletion of PAK5 or PAK6 did not, we asked if PAK4 might have a functional role in pancreas development. We therefore introduced conditional, Pdx1-Cre-mediated, pancreatic PAK4 gene depletion in the mouse, verified by loss of PAK4 protein expression in the pancreas. PAK4 knock-out (KO) mice were born at Mendelian ratios in both genders. Further, morphological and immunohistochemical examinations and quantifications indicated that exocrine, endocrine and ductal compartments retained the normal proportions and distributions upon PAK4 gene depletion. In addition, body weight records and a glucose tolerance test revealed no differences between WT and PAK4 KO mice. Together, this suggests that PAK4 is dispensable for mouse pancreas development. This will facilitate future use of our Pdx1-Cre-driven conditional PAK4 KO mouse model for testing in vivo potential functions of PAK4 in pancreatic disease models such as for pancreatitis and different pancreatic cancer forms.
Collapse
|
37
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
38
|
The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation 2017; 101:e112-e119. [PMID: 28207637 DOI: 10.1097/tp.0000000000001663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia. Here, we describe the design and efficacy of a novel prevascularized, subcutaneously implanted, retrievable poly (D,L-lactide-co-ε-caprolactone) scaffold. METHOD Three dosages of rat islets, that is, 400, 800, and 1200, were implanted in immune compromised mice to test the efficacy (n = 5). Islet transplantation under the kidney capsule served as control (n = 5). The efficacy was determined by nonfasting blood glucose measurements and glucose tolerance tests. RESULTS Transplantation of 800 (n = 5) and 1200 islets (n = 5) into the scaffold reversed diabetes in respectively 80 and 100% of the mice within 6.8 to 18.5 days posttransplant. The marginal dose of 400 islets (n = 5) induced normoglycemia in 20%. The glucose tolerance test showed major improvement of the glucose clearance in the scaffold groups compared to diabetic controls. However, the kidney capsule was slightly more efficacious because all 800 (n = 5) and 1200 islets (n = 5) recipients and 40% of the 400 islets (n = 5) recipients became normoglycemic within 8 days. Removal of the scaffolds or kidney grafts resulted in immediate return to hyperglycemia. Normoglycemia was not achieved with 1200 islets in the unmodified skin group. CONCLUSIONS Our findings demonstrate that the prevascularized poly (D,L-lactide-co-ε-caprolactone) scaffold maintains viability and function of islets in the subcutaneous site.
Collapse
|
39
|
Mihara Y, Matsuura K, Sakamoto Y, Okano T, Kokudo N, Shimizu T. Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J Tissue Eng Regen Med 2017; 11:3193-3201. [DOI: 10.1002/term.2228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Yuichiro Mihara
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo Japan
| | - Yoshihiro Sakamoto
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo Japan
| |
Collapse
|
40
|
Jiang FX, Li K, Archer M, Mehta M, Jamieson E, Charles A, Dickinson JE, Matsumoto M, Morahan G. Differentiation of Islet Progenitors Regulated by Nicotinamide into Transcriptome-Verified β Cells That Ameliorate Diabetes. Stem Cells 2017; 35:1341-1354. [DOI: 10.1002/stem.2567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Fang-Xu Jiang
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Kevin Li
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | | | - Munish Mehta
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Emma Jamieson
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Adrian Charles
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | - Jan E. Dickinson
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| |
Collapse
|
41
|
Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis. Int J Biochem Cell Biol 2017; 88:226-235. [PMID: 28119131 DOI: 10.1016/j.biocel.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023]
Abstract
In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types.
Collapse
|
42
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
43
|
Churchill AJ, Gutiérrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. eLife 2017; 6:e20010. [PMID: 28071588 PMCID: PMC5224921 DOI: 10.7554/elife.20010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.
Collapse
Affiliation(s)
- Angela J Churchill
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Giselle Dominguez Gutiérrez
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Ruth A Singer
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
| | | | - Kevin A Fischer
- Barbara Davis Center, University of Colorado, Denver, United States
| | - Lori Sussel
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
- Barbara Davis Center, University of Colorado, Denver, United States
| |
Collapse
|
44
|
Stanescu DE, Yu R, Won KJ, Stoffers DA. Single cell transcriptomic profiling of mouse pancreatic progenitors. Physiol Genomics 2016; 49:105-114. [PMID: 28011883 DOI: 10.1152/physiolgenomics.00114.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the developing pancreatic epithelium and low abundance of endocrine progenitors limit the information derived from traditional expression studies. To identify genes that characterize early developmental tissues composed of multiple progenitor lineages, we applied single-cell RNA-Seq to embryonic day (e)13.5 mouse pancreata and performed integrative analysis with single cell data from mature pancreas. We identified subpopulations expressing macrophage or endothelial markers and new pancreatic progenitor markers. We also identified potential α-cell precursors expressing glucagon (Gcg) among the e13.5 pancreatic cells. Despite their high Gcg expression levels, these cells shared greater transcriptomic similarity with other e13.5 cells than with adult α-cells, indicating their immaturity. Comparative analysis identified the sodium-dependent neutral amino acid transporter, Slc38a5, as a characteristic gene expressed in α-cell precursors but not mature cells. By immunofluorescence analysis, we observed SLC38A5 expression in pancreatic progenitors, including in a subset of NEUROG3+ endocrine progenitors and MAFB+ cells and in all GCG+ cells. Expression declined in α-cells during late gestation and was absent in the adult islet. Our results suggest SLC38A5 as an early marker of α-cell lineage commitment.
Collapse
Affiliation(s)
- Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reynold Yu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Yang YP, Magnuson MA, Stein R, Wright CVE. The mammal-specific Pdx1 Area II enhancer has multiple essential functions in early endocrine cell specification and postnatal β-cell maturation. Development 2016; 144:248-257. [PMID: 27993987 DOI: 10.1242/dev.143123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
Abstract
The transcription factor Pdx1 is required for multiple aspects of pancreatic organogenesis. It remains unclear to what extent Pdx1 expression and function depend upon trans-activation through 5' conserved cis-regulatory regions and, in particular, whether the mammal-specific Area II (-2139 to -1958 bp) affects minor or major aspects of organogenesis. We show that Area II is a primary effector of endocrine-selective transcription in epithelial multipotent cells, nascent endocrine progenitors, and differentiating and mature β cells in vivo Pdx1ΔAREAII/- mice exhibit a massive reduction in endocrine progenitor cells and progeny hormone-producing cells, indicating that Area II activity is fundamental to mounting an effective endocrine lineage-specification program within the multipotent cell population. Creating an Area II-deleted state within already specified Neurog3-expressing endocrine progenitor cells increased the proportion of glucagon+ α relative to insulin+ β cells, associated with the transcriptional and epigenetic derepression of the α-cell-determining Arx gene in endocrine progenitors. There were also glucagon and insulin co-expressing cells, and β cells that were incapable of maturation. Creating the Pdx1ΔAREAII state after cells entered an insulin-expressing stage led to immature and dysfunctional islet β cells carrying abnormal chromatin marking in vital β-cell-associated genes. Therefore, trans-regulatory integration through Area II mediates a surprisingly extensive range of progenitor and β-cell-specific Pdx1 functions.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roland Stein
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA .,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I, Minichiello L, Pera EM. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling. Endocrinology 2016; 157:4615-4631. [PMID: 27740873 DOI: 10.1210/en.2016-1745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Collapse
Affiliation(s)
- Igor Arregi
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Maria Climent
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Dobromir Iliev
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jürgen Strasser
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Nadège Gouignard
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jenny K Johansson
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Tania Singh
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Magdalena Mazur
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Henrik Semb
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Isabella Artner
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Liliana Minichiello
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Edgar M Pera
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| |
Collapse
|
47
|
Pancreatic Mesenchyme Regulates Islet Cellular Composition in a Patched/Hedgehog-Dependent Manner. Sci Rep 2016; 6:38008. [PMID: 27892540 PMCID: PMC5125096 DOI: 10.1038/srep38008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/04/2016] [Indexed: 01/23/2023] Open
Abstract
Pancreas development requires restrained Hedgehog (Hh) signaling activation. While deregulated Hh signaling in the pancreatic mesenchyme has been long suggested to be detrimental for proper organogenesis, this association was not directly shown. Here, we analyzed the contribution of mesenchymal Hh signaling to pancreas development. To increase Hh signaling in the pancreatic mesenchyme of mouse embryos, we deleted Patched1 (Ptch1) in these cells. Our findings indicate that deregulated Hh signaling in mesenchymal cells was sufficient to impair pancreas development, affecting both endocrine and exocrine cells. Notably, transgenic embryos displayed disrupted islet cellular composition and morphology, with a reduced β-cell portion. Our results indicate that the cell-specific growth rates of α- and β-cell populations, found during normal development, require regulated mesenchymal Hh signaling. In addition, we detected hyperplasia of mesenchymal cells upon elevated Hh signaling, accompanied by them acquiring smooth-muscle like phenotype. By specifically manipulating mesenchymal cells, our findings provide direct evidence for the non-autonomous roles of the Hh pathway in pancreatic epithelium development. To conclude, we directly show that regulated mesenchymal Hh signaling is required for pancreas organogenesis and establishment of its proper cellular composition.
Collapse
|
48
|
Honoré C, Rescan C, Hald J, McGrath PS, Petersen MBK, Hansson M, Klein T, Østergaard S, Wells JM, Madsen OD. Revisiting the immunocytochemical detection of Neurogenin 3 expression in mouse and man. Diabetes Obes Metab 2016; 18 Suppl 1:10-22. [PMID: 27615127 DOI: 10.1111/dom.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/08/2016] [Indexed: 12/13/2022]
Abstract
During embryonic development, endocrine cells of the pancreas are specified from multipotent progenitors. The transcription factor Neurogenin 3 (NEUROG3) is critical for this development and it has been shown that all endocrine cells of the pancreas arise from endocrine progenitors expressing NEUROG3. A thorough understanding of the role of NEUROG3 during development, directed differentiation of pluripotent stem cells and in models of cellular reprogramming, will guide future efforts directed at finding novel sources of β-cells for cell replacement therapies. In this article, we review the expression and function of NEUROG3 in both mouse and human and present the further characterization of a monoclonal antibody directed against NEUROG3. This antibody has been previously been used for detection of both mouse and human NEUROG3. However, our results suggest that the epitope recognized by this antibody is specific to mouse NEUROG3. Thus, we have also generated a monoclonal antibody specifically recognizing human NEUROG3 and present the characterization of this antibody here. Together, these antibodies will provide useful tools for future studies of NEUROG3 expression, and the data presented in this article suggest that recently described expression patterns of NEUROG3 in human foetal and adult pancreas should be re-examined.
Collapse
Affiliation(s)
- C Honoré
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark.
| | - C Rescan
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - J Hald
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - P S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - M B K Petersen
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - M Hansson
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - T Klein
- Gubra Aps, Agern Alle 1, Hørsholm, Denmark
| | - S Østergaard
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - J M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - O D Madsen
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
49
|
Bechard ME, Bankaitis ED, Hipkens SB, Ustione A, Piston DW, Yang YP, Magnuson MA, Wright CVE. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes Dev 2016; 30:1852-65. [PMID: 27585590 PMCID: PMC5024683 DOI: 10.1101/gad.284729.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Bechard et al. show that a cell population defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein has a relatively high mitotic index and prolonged epithelial residency. They propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis.
Collapse
Affiliation(s)
- Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Susan B Hipkens
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Yu-Ping Yang
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
50
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|