1
|
Zeni C, Komiya Y, Habas R. Formin Binding Protein 1 (FNBP1) regulates non-canonical Wnt signaling and vertebrate gastrulation. Dev Biol 2024; 515:18-29. [PMID: 38945423 PMCID: PMC11317212 DOI: 10.1016/j.ydbio.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The Formin protein Daam1 is required for Wnt-induced cytoskeletal changes during gastrulation, though how it accomplishes this remains unresolved. Here we report the characterization of Formin Binding Protein 1 (FNBP1) as a binding partner of Daam1. The interaction of Daam1 with FNBP1 and its domains required for this interaction were delineated. Immunofluorescence studies showed FNBP1 co-localizes with Daam1, and is an integral component of the actin cytoskeletal complex that is responsive to Wnt stimulation. Specifically, FNBP1 can induce intracellular tubule-like structures and localize to focal adhesions suggesting a role for FNBP1 in cell migration. Functional FNBP1 studies in Xenopus embryos uncover a critical role for FNBP1 in regulating vertebrate gastrulation. Additionally, suboptimal doses of Daam1 and FNBP1 synergize to produce severe gastrulation defects, indicating FNBP1 and Daam1 may function within the same signaling pathway. These results together show FNBP1 is an integral component of Daam1-regulated non-canonical Wnt signaling required for vertebrate gastrulation.
Collapse
Affiliation(s)
- Courtney Zeni
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Yuko Komiya
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Mezzacappa C, Komiya Y, Habas R. Reversion induced LIM domain protein (RIL) is a Daam1-interacting protein and regulator of the actin cytoskeleton during non-canonical Wnt signaling. Dev Biol 2024; 515:46-58. [PMID: 38968989 PMCID: PMC11321505 DOI: 10.1016/j.ydbio.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
The Daam1 protein regulates Wnt-induced cytoskeletal changes during vertebrate gastrulation though its full mode of action and binding partners remain unresolved. Here we identify Reversion Induced LIM domain protein (RIL) as a new interacting protein of Daam1. Interaction studies uncover binding of RIL to the C-terminal actin-nucleating portion of Daam1 in a Wnt-responsive manner. Immunofluorescence studies showed subcellular localization of RIL to actin fibers and co-localization with Daam1 at the plasma membrane. RIL gain- and loss-of-function approaches in Xenopus produced severe gastrulation defects in injected embryos. Additionally, a simultaneous loss of Daam1 and RIL synergized to produce severe gastrulation defects indicating RIL and Daam1 may function in the same signaling pathway. RIL further synergizes with another novel Daam1-interacting protein, Formin Binding Protein 1 (FNBP1), to regulate gastrulation. Our studies altogether show RIL mediates Daam1-regulated non-canonical Wnt signaling that is required for vertebrate gastrulation.
Collapse
Affiliation(s)
| | - Yuko Komiya
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
3
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
4
|
Miao L, Lu Y, Nusrat A, Zhao L, Castillo M, Xiao Y, Guo H, Liu Y, Gunaratne P, Schwartz RJ, Burns AR, Kumar A, DiPersio CM, Wu M. β1 integrins regulate cellular behaviour and cardiomyocyte organization during ventricular wall formation. Cardiovasc Res 2024; 120:1279-1294. [PMID: 38794925 PMCID: PMC11416060 DOI: 10.1093/cvr/cvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 03/17/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS The mechanisms regulating the cellular behaviour and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behaviour and organization during ventricular wall morphogenesis in the mouse. METHODS AND RESULTS We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the β1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of β1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. CONCLUSION β1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of β1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.
Collapse
Affiliation(s)
- Lianjie Miao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yangyang Lu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Anika Nusrat
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Luqi Zhao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Yongqi Xiao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Hongyang Guo
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yu Liu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
| | - Ashok Kumar
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | | | - Mingfu Wu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| |
Collapse
|
5
|
Li D, Taylor A, Shi H, Zhou F, Li P, Joshi J, Zhu W, Wang S. Peptide-Guided Nanoparticle Drug Delivery for Cardiomyocytes. BIOLOGY 2024; 13:47. [PMID: 38248477 PMCID: PMC10812947 DOI: 10.3390/biology13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nanoparticles (NPs) have been extensively utilized as a drug delivery system to control the release of therapeutic agents to treat cardiac injuries. However, despite the advantages of utilizing NP-based drug delivery for treating heart diseases, the current delivery system lacks specificity in targeting the cardiac tissue, thus limiting its application. METHODS We created three linear peptides, each consisting of 16-24 amino acids. These peptides were conjugated on the surface of NPs, resulting in the formation of cardiac targeting peptide (CTP)-NPs (designated as CTP-NP1, CTP-NP2, and CTP-NP3). To assess their effectiveness, we compared the binding efficiency of these three CTP-NPs to human and mouse cardiomyocytes. Additionally, we determined their distribution 24 h after injecting the CTP-NPs intravenously into adult C57BL/6J mice. RESULTS When compared to control NPs without CTP (Con-NPs), all three CTP-NPs exhibited significantly increased binding affinity to both human and mouse cardiomyocytes in vitro and enhanced retention in mouse hearts in vivo. A thorough assessment of the heart sections demonstrated that the binding specificity of CTP-NP3 to cardiomyocytes in vivo was significantly greater than that of Con-NPs. None of the three CTP-NPs were proven to cause cardiomyocyte apoptosis. CONCLUSIONS Biocompatible and safe CTP-NP3 can target the heart via binding to cardiomyocytes. This approach of targeting specific molecules-coated NPs may help in delivering therapeutic compounds to cardiomyocytes for the treatment of heart diseases with high efficacy and low toxicity to other tissues.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Austin Taylor
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Haiwang Shi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
6
|
Liu X, Shao Y, Han L, Zhu Y, Tu J, Ma J, Zhang R, Yang Z, Chen J. Microbiota affects mitochondria and immune cell infiltrations via alternative polyadenylation during postnatal heart development. Front Cell Dev Biol 2024; 11:1310409. [PMID: 38283994 PMCID: PMC10820713 DOI: 10.3389/fcell.2023.1310409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
There is a growing body of evidence supporting the significant impact of microbiota on heart development. Alternative polyadenylation (APA) is a crucial mechanism for gene expression regulation and has been implicated in postnatal heart development. Nonetheless, whether microbiota can influence postnatal heart development through the regulation of APA remains unclear. Therefore, we conducted APA sequencing on heart tissues collected from specific pathogen-free (SPF) mice and germ-free (GF) mice at three different developmental stages: within the first 24 h after birth (P1), 7-day-old SPF mice, and 7-day-old GF mice. This approach allowed us to obtain a comprehensive genome-wide profile of APA sites in the heart tissue samples. In this study, we made a significant observation that GF mice exhibited noticeably longer 3' untranslated region (3' UTR) lengths. Furthermore, we confirmed significant alterations in the 3' UTR lengths of mitochondria-related genes, namely Rala, Timm13, and Uqcc3. Interestingly, the GF condition resulted in a marked decrease in mitochondrial cristae density and a reduction in the level of Tomm20 in postnatal hearts. Moreover, we discovered a connection between Rala and Src, which further implicated their association with other differentially expressed genes (DEGs). Notably, most of the DEGs were significantly downregulated in GF mice, with the exceptions being Thbs1 and Egr1. Importantly, the GF condition demonstrated a correlation with a lower infiltration of immune cells, whereby the levels of resting NK cells, Th17 cells, immature dendritic cells, and plasma cells in GF mice were comparable to those observed in P1 mice. Furthermore, we established significant correlations between these immune cells and Rala as well as the related DEGs. Our findings clearly indicated that microbiota plays a vital role in postnatal heart development by affecting APA switching, mitochondria and immune cell infiltrations.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yuanting Zhu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Jianrui Ma
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Zhen Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| |
Collapse
|
7
|
Soh JEC, Shimizu A, Sato A, Ogita H. Novel cardiovascular protective effects of RhoA signaling and its therapeutic implications. Biochem Pharmacol 2023; 218:115899. [PMID: 37907138 DOI: 10.1016/j.bcp.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ras homolog gene family member A (RhoA) belongs to the Rho GTPase superfamily, which was first studied in cancers as one of the essential regulators controlling cellular function. RhoA has long attracted attention as a key molecule involved in cell signaling and gene transcription, through which it affects cellular processes. A series of studies have demonstrated that RhoA plays crucial roles under both physiological states and pathological conditions in cardiovascular diseases. RhoA has been identified as an important regulator in cardiac remodeling by regulating actin stress fiber dynamics and cytoskeleton formation. However, its underlying mechanisms remain poorly understood, preventing definitive conclusions being drawn about its protective role in the cardiovascular system. In this review, we outline the characteristics of RhoA and its related signaling molecules, and present an overview of RhoA classical function and the corresponding cellular responses of RhoA under physiological and pathological conditions. Overall, we provide an update on the novel signaling under RhoA in the cardiovascular system and its potential clinical and therapeutic targets in cardiovascular medicine.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
8
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
9
|
Fernández-Santos B, Reyes-Corral M, Caro-Vega JM, Lao-Pérez M, Vallejo-Grijalba C, Mesa-Cruz C, Morón FJ, Ybot-González P. The loop-tail mouse model displays open and closed caudal neural tube defects. Dis Model Mech 2023; 16:dmm050175. [PMID: 37589570 PMCID: PMC10481946 DOI: 10.1242/dmm.050175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Neural tube defects (NTDs) are the second most common cause of congenital malformations and are often studied in animal models. Loop-tail (Lp) mice carry a mutation in the Vangl2 gene, a member of the Wnt-planar cell polarity pathway. In Vangl2+/Lp embryos, the mutation induces a failure in the completion of caudal neural tube closure, but only a small percentage of embryos develop open spina bifida. Here, we show that the majority of Vangl2+/Lp embryos developed caudal closed NTDs and presented cellular aggregates that may facilitate the sealing of these defects. The cellular aggregates expressed neural crest cell markers and, using these as a readout, we describe a systematic method to assess the severity of the neural tube dorsal fusion failure. We observed that this defect worsened in combination with other NTD mutants, Daam1 and Grhl3. Besides, we found that in Vangl2+/Lp embryos, these NTDs were resistant to maternal folic acid and inositol supplementation. Loop-tail mice provide a useful model for research on the molecular interactions involved in the development of open and closed NTDs and for the design of prevention strategies for these diseases.
Collapse
Affiliation(s)
- Beatriz Fernández-Santos
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - José Manuel Caro-Vega
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Claudia Vallejo-Grijalba
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Cristina Mesa-Cruz
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Francisco J. Morón
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| |
Collapse
|
10
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
11
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
12
|
Bao B, Hu H, Chen L, Lu S, Tang Q, Liang Z. SNP and DNA methylation analyses of a monozygotic twins discordant for complete endocardial cushion defect: a case report. Am J Transl Res 2022; 14:8271-8278. [PMID: 36505317 PMCID: PMC9730093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
The exact cause of complete endocardial cushion defect (ECD) is still unknown. This report describes a unique pair of monozygotic twins (MZ twins) discordant for ECD. The chromosome karyotyping analysis revealed normal karyotype of 46, XY, 16qh+ and mat in both MZ twins. A genome-wide analysis of DNA using the Affymetrix SNP 6.0 revealed identical genotyping of single nucleotide polymorphisms (SNPs) and copy number variations (CNVs). An extensive methylation assay was carried out by NimbleGen 3 × 720 K CpG Island Plus RefSeq Promoter Arrays to analyze the potential epigenetic differences. The DNA methylation profiles of the affected twin seemed increased compared with that of the unaffected twin. However, further validation of Notch1 promoter hypermethylation and six top-ranked differentially methylated CpG sites by sodium bisulfate modification and methylation-specific PCR, failed to reveal consistent methylation differences between the twins. Other relevant factors, such as heritability and penetrance of the condition that place the MZ twins near to a threshold for ECD or variations in local epigenetic events in the twins' heart tissues, are probably responsible for the phenotypic discordance.
Collapse
Affiliation(s)
- Bihui Bao
- Department of Obstetrics and Gynecology, Qingbaijiang Women’s and Children’s Hospital (Maternal and Child Health Hospital), West China Second University Hospital, Sichuan UniversityChengdu 610300, Sichuan, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical UniversityChongqing 400037, China
| | - Limei Chen
- Department of Obstetrics and Gynecology, Qingbaijiang Women’s and Children’s Hospital (Maternal and Child Health Hospital), West China Second University Hospital, Sichuan UniversityChengdu 610300, Sichuan, China
| | - Shiyong Lu
- Department of Obstetrics and Gynecology, Qingbaijiang Women’s and Children’s Hospital (Maternal and Child Health Hospital), West China Second University Hospital, Sichuan UniversityChengdu 610300, Sichuan, China
| | - Qifeng Tang
- Department of Anesthesiology, Shanghai Hechuan-Rhine TCM HospitalShanghai 201103, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital (Southwest Hospital), Army Medical UniversityChongqing 400038, China
| |
Collapse
|
13
|
Jang J, Song G, Pettit SM, Li Q, Song X, Cai CL, Kaushal S, Li D. Epicardial HDAC3 Promotes Myocardial Growth Through a Novel MicroRNA Pathway. Circ Res 2022; 131:151-164. [PMID: 35722872 PMCID: PMC9308743 DOI: 10.1161/circresaha.122.320785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Guang Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah M. Pettit
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qinshan Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaosu Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chen-leng Cai
- Department of Pediatrics, Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201
| | - Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deqiang Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
14
|
Rojanasopondist P, Nesheiwat L, Piombo S, Porter GA, Ren M, Phoon CKL. Genetic Basis of Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003517. [PMID: 35549379 DOI: 10.1161/circgen.121.003517] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is the third most common pediatric cardiomyopathy characterized by a thinned myocardium and prominent trabeculations. Next-generation genetic testing has led to a rapid increase in the number of genes reported to be associated with LVNC, but we still have little understanding of its pathogenesis. We sought to grade the strength of the gene-disease relationship for all genes reported to be associated with LVNC and identify molecular pathways that could be implicated. METHODS Following a systematic PubMed review, all genes identified with LVNC were graded using a validated, semi-quantitative system based on all published genetic and experimental evidence created by the Clinical Genome Resource (ClinGen). Genetic pathway analysis identified molecular processes and pathways associated with LVNC. RESULTS We identified 189 genes associated with LVNC: 11 (6%) were classified as definitive, 21 (11%) were classified as moderate, and 140 (74%) were classified as limited, but 17 (9%) were classified as no evidence. Of the 32 genes classified as definitive or moderate, the most common gene functions were sarcomere function (n=11; 34%), transcriptional/translational regulator (n=6; 19%), mitochondrial function (n=3; 9%), and cytoskeletal protein (n=3; 9%). Furthermore, 18 (56%) genes were implicated in noncardiac syndromic presentations. Lastly, 3 genetic pathways (cardiomyocyte differentiation via BMP receptors, factors promoting cardiogenesis in vertebrates, and Notch signaling) were found to be unique to LVNC and not overlap with pathways identified in dilated cardiomyopathy and hypertrophic cardiomyopathy. CONCLUSIONS LVNC is a genetically heterogeneous cardiomyopathy. Distinct from dilated or hypertrophic cardiomyopathies, LVNC appears to arise from abnormal developmental processes.
Collapse
Affiliation(s)
- Pakdee Rojanasopondist
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Leigh Nesheiwat
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Sebastian Piombo
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - George A Porter
- Division of Pediatric Cardiology, Department of Pediatrics, University of Rochester School of Medicine, NY (G.A.P.)
| | - Mindong Ren
- Departments of Anesthesiology and Cell Biology (M.R.), NYU Grossman School of Medicine, NY
| | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| |
Collapse
|
15
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
16
|
Left Ventricular Noncompaction Is Associated with Valvular Regurgitation and a Variety of Arrhythmias. J Cardiovasc Dev Dis 2022; 9:jcdd9020049. [PMID: 35200702 PMCID: PMC8876824 DOI: 10.3390/jcdd9020049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is a type of cardiomyopathy characterized anatomically by prominent ventricular trabeculation and deep intertrabecular recesses. The mortality associated with LVNC ranges from 5% to 47%. The etiology of LVNC is yet to be fully understood, although decades have passed since its recognition as a clinical entity globally. Furthermore, critical questions, i.e., whether LVNC represents an acquired pathology or has a congenital origin and whether the reduced contractile function in LVNC patients is a cause or consequence of noncompaction, remain to be addressed. In this study, to answer some of these questions, we analyzed the clinical features of LVNC patients. Out of 9582 subjects screened for abnormal cardiac functions, 45 exhibit the characteristics of LVNC, and 1 presents right ventricular noncompaction (RVNC). We found that 40 patients show valvular regurgitation, 39 manifest reduced systolic contractions, and 46 out of the 46 present different forms of arrhythmias that are not restricted to be caused by the noncompact myocardium. This retrospective examination of LVNC patients reveals some novel findings: LVNC is associated with regurgitation in most patients and arrhythmias in all patients. The thickness ratio of the trabecular layer to compact layer negatively correlates with fractional shortening, and reduced contractility might result from LVNC. This study adds evidence to support a congenital origin of LVNC that might benefit the diagnosis and subsequent characterization of LVNC patients.
Collapse
|
17
|
Müller D, Donath S, Brückner EG, Biswanath Devadas S, Daniel F, Gentemann L, Zweigerdt R, Heisterkamp A, Kalies SMK. How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes. Bioengineering (Basel) 2021; 8:bioengineering8120213. [PMID: 34940366 PMCID: PMC8698600 DOI: 10.3390/bioengineering8120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The proper function of cardiomyocytes (CMs) is highly related to the Z-disc, which has a pivotal role in orchestrating the sarcomeric cytoskeletal function. To better understand Z-disc related cardiomyopathies, novel models of Z-disc damage have to be developed. Human pluripotent stem cell (hPSC)-derived CMs can serve as an in vitro model to better understand the sarcomeric cytoskeleton. A femtosecond laser system can be applied for localized and defined damage application within cells as single Z-discs can be removed. We have investigated the changes in force generation via traction force microscopy, and in gene expression after Z-disc manipulation in hPSC-derived CMs. We observed a significant weakening of force generation after removal of a Z-disc. However, no significant changes of the number of contractions after manipulation were detected. The stress related gene NF-kB was significantly upregulated. Additionally, α-actinin (ACTN2) and filamin-C (FLNc) were upregulated, pointing to remodeling of the Z-disc and the sarcomeric cytoskeleton. Ultimately, cardiac troponin I (TNNI3) and cardiac muscle troponin T (TNNT2) were significantly downregulated. Our results allow a better understanding of transcriptional coupling of Z-disc damage and the relation of damage to force generation and can therefore finally pave the way to novel therapies of sarcomeric disorders.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Emanuel Georg Brückner
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Santoshi Biswanath Devadas
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Fiene Daniel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefan Michael Klaus Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
18
|
Jo J, Woo J, Cristobal CD, Choi JM, Wang C, Ye Q, Smith JA, Ung K, Liu G, Cortes D, Jung SY, Arenkiel BR, Lee HK. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22:e53200. [PMID: 34633730 PMCID: PMC8647146 DOI: 10.15252/embr.202153200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Junsung Woo
- Center for Cell and Gene TherapyBaylor College of MedicineHoustonTXUSA
| | - Carlo D Cristobal
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
| | - Jong Min Choi
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Chih‐Yen Wang
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Qi Ye
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Joshua A Smith
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Kevin Ung
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Gary Liu
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Diego Cortes
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Sung Yun Jung
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Hyun Kyoung Lee
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
19
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
20
|
Bellchambers HM, Ware SM. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 2021; 30:2402-2415. [PMID: 34274973 DOI: 10.1093/hmg/ddab195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Loss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.
Collapse
Affiliation(s)
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics.,Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
21
|
Krneta-Stankic V, Corkins ME, Paulucci-Holthauzen A, Kloc M, Gladden AB, Miller RK. The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development. Cell Rep 2021; 36:109340. [PMID: 34233186 PMCID: PMC8629027 DOI: 10.1016/j.celrep.2021.109340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
E-cadherin junctions facilitate assembly and disassembly of cell contacts that drive development and homeostasis of epithelial tissues. In this study, using Xenopus embryonic kidney and Madin-Darby canine kidney (MDCK) cells, we investigate the role of the Wnt/planar cell polarity (PCP) formin Daam1 (Dishevelled-associated activator of morphogenesis 1) in regulating E-cadherin-based intercellular adhesion. Using live imaging, we show that Daam1 localizes to newly formed cell contacts in the developing nephron. Furthermore, analyses of junctional filamentous actin (F-actin) upon Daam1 depletion indicate decreased microfilament localization and slowed turnover. We also show that Daam1 is necessary for efficient and timely localization of junctional E-cadherin, mediated by Daam1’s formin homology domain 2 (FH2). Finally, we establish that Daam1 signaling promotes organized movement of renal cells. This study demonstrates that Daam1 formin junctional activity is critical for epithelial tissue organization. How cells remodel their adhesions through cell-surface proteins such as E-cadherin is a central question in epithelial tissue biology. Krneta-Stankic et al. show that the Wnt/PCP formin Daam1 regulates cytoskeletal membrane dynamics and E-cadherin localization within developing nephrons. These findings provide a new framework for studying cell-cell adhesion and nephron morphogenesis.
Collapse
Affiliation(s)
- Vanja Krneta-Stankic
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | | | - Malgorzata Kloc
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Andrew B Gladden
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel K Miller
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Bekhet GM, Sayed AA. Oregano-oil antagonist lipopolysaccharide (LPS) induced toxicity in pre- and post-hatch chick embryo. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1926258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gamal M. Bekhet
- Department of Biological Science, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdalla A. Sayed
- Department of Biological Science, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
23
|
Cheng Z, Vermeulen M, Rollins-Green M, DeVeale B, Babak T. Cis-regulatory mutations with driver hallmarks in major cancers. iScience 2021; 24:102144. [PMID: 33665563 PMCID: PMC7903341 DOI: 10.1016/j.isci.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the recent availability of complete genome sequences of tumors from thousands of patients, isolating disease-causing (driver) non-coding mutations from the plethora of somatic variants remains challenging, and only a handful of validated examples exist. By integrating whole-genome sequencing, genetic data, and allele-specific gene expression from TCGA, we identified 320 somatic non-coding mutations that affect gene expression in cis (FDR<0.25). These mutations cluster into 47 cis-regulatory elements that modulate expression of their subject genes through diverse molecular mechanisms. We further show that these mutations have hallmark features of non-coding drivers; namely, that they preferentially disrupt transcription factor binding motifs, are associated with a selective advantage, increased oncogene expression and decreased tumor suppressor expression. Enrichment of functional non-coding somatic mutations predicts drivers Elevated variant allele frequencies are consistent with roles in tumorigenesis Putative non-coding drivers disrupt transcription factor binding motifs Predicted drivers associate with increased oncogene and decreased TSG expression
Collapse
Affiliation(s)
- Zhongshan Cheng
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Vermeulen
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Brian DeVeale
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas Babak
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
24
|
PUFA Treatment Affects C2C12 Myocyte Differentiation, Myogenesis Related Genes and Energy Metabolism. Genes (Basel) 2021; 12:genes12020192. [PMID: 33525599 PMCID: PMC7910949 DOI: 10.3390/genes12020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are the main components of cell membrane affecting its fluidity, signaling processes and play a vital role in muscle cell development. The effects of docosahexaenoic acid (DHA) on myogenesis are well known, while the effects of arachidonic acid (AA) are largely unclear. The purpose of this study is to evaluate the effect of two PUFAs (DHA and AA) on cell fate during myogenic processes, Wnt signaling and energy metabolism by using the C2C12 cells. The cells were treated with different concentrations of AA or DHA for 48 h during the differentiation period. PUFA treatment increased mRNA level of myogenic factor 5 (Myf5), which is involved in early stage of myoblast proliferation. Additionally, PUFA treatment prevented myoblast differentiation, indicated by decreased myotube fusion index and differentiation index in parallel with reduced mRNA levels of myogenin (MyoG). After PUFA withdrawal, some changes in cell morphology and myosin heavy chain mRNA levels were still observed. Expression of genes associated with Wnt signaling pathway, and energy metabolism changed in PUFA treatment in a dose and time dependent manner. Our data suggests that PUFAs affect the transition of C2C12 cells from proliferation to differentiation phase by prolonging proliferation and preventing differentiation.
Collapse
|
25
|
Edwards JJ, Brandimarto J, Hu DQ, Jeong S, Yucel N, Li L, Bedi KC, Wada S, Murashige D, Hwang HTV, Zhao M, Margulies KB, Bernstein D, Reddy S, Arany Z. Noncanonical WNT Activation in Human Right Ventricular Heart Failure. Front Cardiovasc Med 2020; 7:582407. [PMID: 33134326 PMCID: PMC7575695 DOI: 10.3389/fcvm.2020.582407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background: No medical therapies exist to treat right ventricular (RV) remodeling and RV failure (RVF), in large part because molecular pathways that are specifically activated in pathologic human RV remodeling remain poorly defined. Murine models have suggested involvement of Wnt signaling, but this has not been well-defined in human RVF. Methods: Using a candidate gene approach, we sought to identify genes specifically expressed in human pathologic RV remodeling by assessing the expression of 28 WNT-related genes in the RVs of three groups: explanted nonfailing donors (NF, n = 29), explanted dilated and ischemic cardiomyopathy, obtained at the time of cardiac transplantation, either with preserved RV function (pRV, n = 78) or with RVF (n = 35). Results: We identified the noncanonical WNT receptor ROR2 as transcriptionally strongly upregulated in RVF compared to pRV and NF (Benjamini-Hochberg adjusted P < 0.05). ROR2 protein expression correlated linearly to mRNA expression (R2 = 0.41, P = 8.1 × 10−18) among all RVs, and to higher right atrial to pulmonary capillary wedge ratio in RVF (R2 = 0.40, P = 3.0 × 10−5). Utilizing Masson's trichrome and ROR2 immunohistochemistry, we identified preferential ROR2 protein expression in fibrotic regions by both cardiomyocytes and noncardiomyocytes. We compared RVF with high and low ROR2 expression, and found that high ROR2 expression was associated with increased expression of the WNT5A/ROR2/Ca2+ responsive protease calpain-μ, cleavage of its target FLNA, and FLNA phosphorylation, another marker of activation downstream of ROR2. ROR2 protein expression as a continuous variable, correlated strongly to expression of calpain-μ (R2 = 0.25), total FLNA (R2 = 0.67), calpain cleaved FLNA (R2 = 0.32) and FLNA phosphorylation (R2 = 0.62, P < 0.05 for all). Conclusion: We demonstrate robust reactivation of a fetal WNT gene program, specifically its noncanonical arm, in human RVF characterized by activation of ROR2/calpain mediated cytoskeleton protein cleavage.
Collapse
Affiliation(s)
- Jonathan J Edwards
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong-Qing Hu
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora Yucel
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle Murashige
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Tae V Hwang
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Mingming Zhao
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Bernstein
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Sushma Reddy
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Durbin MD, O'Kane J, Lorentz S, Firulli AB, Ware SM. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol 2020; 464:124-136. [PMID: 32511952 DOI: 10.1016/j.ydbio.2020.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3's novel role in cardiac development and CHD.
Collapse
Affiliation(s)
- Matthew D Durbin
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James O'Kane
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel Lorentz
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony B Firulli
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Jang J, Engleka KA, Liu F, Li L, Song G, Epstein JA, Li D. An Engineered Mouse to Identify Proliferating Cells and Their Derivatives. Front Cell Dev Biol 2020; 8:388. [PMID: 32523954 PMCID: PMC7261916 DOI: 10.3389/fcell.2020.00388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell proliferation is a fundamental event during development, disease, and regeneration. Effectively tracking and quantifying proliferating cells and their derivatives is critical for addressing many research questions. Cell cycle expression such as for Ki67, proliferating cell nuclear antigen (PCNA), or aurora kinase B (Aurkb), or measurement of 5-bromo-2'-deoxyuridine (BrdU) or 3H-thymidine incorporation have been widely used to assess and quantify cell proliferation. These are powerful tools for detecting actively proliferating cells, but they do not identify cell populations derived from proliferating progenitors over time. AIMS We developed a new mouse tool for lineage tracing of proliferating cells by targeting the Aurkb allele. RESULTS In quiescent cells or cells arrested at G1/S, little or no Aurkb mRNA is detectable. In cycling cells, Aurkb transcripts are detectable at G2 and become undetectable by telophase. These findings suggest that Aurkb transcription is restricted to proliferating cells and is tightly coupled to cell proliferation. Accordingly, we generated an Aurkb ER Cre/+ mouse by targeting a tamoxifen inducible Cre cassette into the start codon of Aurkb. We find that the Aurkb ER Cre/+ mouse faithfully labels proliferating cells in developing embryos and regenerative adult tissues such as intestine but does not label quiescent cells such as post-mitotic neurons. CONCLUSION The Aurkb ER Cre/+ mouse faithfully labels proliferating cells and their derivatives in developing embryos and regenerative adult tissues. This new mouse tool provides a novel genetic tracing capability for studying tissue proliferation and regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kurt A. Engleka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Feiyan Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li Li
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guang Song
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deqiang Li
- Department of Surgery, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Nakaya MA, Gudmundsson KO, Komiya Y, Keller JR, Habas R, Yamaguchi TP, Ajima R. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. PLoS One 2020; 15:e0232025. [PMID: 32353019 PMCID: PMC7192421 DOI: 10.1371/journal.pone.0232025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
The actin cytoskeleton plays a central role in establishing cell polarity and shape during embryonic morphogenesis. Daam1, a member of the Formin family of actin cytoskeleton regulators, is a Dvl2-binding protein that functions in the Wnt/Planar Cell Polarity (PCP) pathway. To examine the role of the Daam proteins in mammalian development, we generated Daam-deficient mice by gene targeting and found that Daam1, but not Daam2, is necessary for fetal survival. Embryonic development of Daam1 mutants was delayed most likely due to functional defects in the labyrinthine layer of the placenta. Examination of Daam2 and Daam1/2 double mutants revealed that Daam1 and Daam2 are functionally redundant during placental development. Of note, neural tube closure defects (NTD), which are observed in several mammalian PCP mutants, are not observed in Wnt5a or Daam1 single mutants, but arise in Daam1;Wnt5a double mutants. These findings demonstrate a unique function for Daam genes in placental development and are consistent with a role for Daam1 in the Wnt/PCP pathway in mammals.
Collapse
Affiliation(s)
- Masa-aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Kristibjorn Orri Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Yuko Komiya
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| |
Collapse
|
29
|
Lotufo GR, Gust KA, Ballentine ML, Moores LC, Kennedy AJ, Barker ND, Ji Q, Chappell P. Comparative Toxicological Evaluation of UV-Degraded versus Parent-Insensitive Munition Compound 1-Methyl-3-Nitroguanidine in Fathead Minnow. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:612-622. [PMID: 31845397 DOI: 10.1002/etc.4647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The US Army is replacing traditional munitions with insensitive munitions resistant to accidental detonation. Although the parent insensitive munition compound nitroguanidine (NQ) is generally not acutely toxic at concentrations >1000 mg/L in aquatic exposures, products formed by intensive ultraviolet (UV) degradation resulted in multiple-order of magnitude increases in toxicity. A methylated congener of NQ, 1-methyl-3-nitroguanidine (MeNQ), is also being assessed for potential use in insensitive munition explosive formulations; therefore, the present study investigated the hazard of parent versus UV-degraded MeNQ using fathead minnows (Pimephales promelas). Although up to 716 mg/L parent MeNQ caused no significant mortality or effects on growth in larval P. promelas fish in 7-d exposures, a similar concentration of MeNQ subjected to UV treatment resulted in 85% mortality. The UV treatment degraded only 3.3% of the MeNQ (5800 mg/L stock, UV-treated for 6 h), indicating that MeNQ degradation products have potentially high toxicity. The parent MeNQ exposure caused significantly decreased transcriptional expression of genes within the significantly enriched insulin metabolic pathway, suggesting antagonism of bioenergetics pathways, which complements observed, although nonsignificant, decreases in body weight. Significant differential transcriptional expression in the UV-degraded MeNQ treatments resulted in significant enrichment of pathways and functions related to the cell cycle, as well as erythrocyte function involved in O2 /CO2 exchange. These functions represent potential mechanistic sources of increased toxicity observed in the UV-degraded MeNQ exposures, which are distinct from previously observed mechanisms underlying increased toxicity of UV-degraded NQ in fish. Environ Toxicol Chem 2020;39:612-622. © 2019 SETAC.
Collapse
Affiliation(s)
- Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Mark L Ballentine
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Lee C Moores
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Alan J Kennedy
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | | | - Qing Ji
- Bennett Aerospace, Cary, North Carolina, USA
| | | |
Collapse
|
30
|
Li D, Angermeier A, Wang J. Planar cell polarity signaling regulates polarized second heart field morphogenesis to promote both arterial and venous pole septation. Development 2019; 146:dev181719. [PMID: 31488563 PMCID: PMC6826042 DOI: 10.1242/dev.181719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The second heart field (SHF) harbors progenitors that are important for heart formation, but little is known about its morphogenesis. We show that SHF population in the mouse splanchnic mesoderm (SpM-SHF) undergoes polarized morphogenesis to preferentially elongate anteroposteriorly. Loss of Wnt5, a putative ligand of the planar cell polarity (PCP) pathway, causes the SpM-SHF to expand isotropically. Temporal tracking reveals that the Wnt5a lineage is a unique subpopulation specified as early as E7.5, and undergoes bi-directional deployment to form specifically the pulmonary trunk and the dorsal mesenchymal protrusion (DMP). In Wnt5a-/- mutants, Wnt5a lineage fails to extend into the arterial and venous poles, leading to both outflow tract and atrial septation defects that can be rescued by an activated form of PCP effector Daam1. We identify oriented actomyosin cables in the medial SpM-SHF as a potential Wnt5a-mediated mechanism that promotes SpM-SHF lengthening and restricts its widening. Finally, the Wnt5a lineage also contributes to the pulmonary mesenchyme, suggesting that Wnt5a/PCP is a molecular circuit recruited by the recently identified cardiopulmonary progenitors to coordinate morphogenesis of the pulmonary airways and the cardiac septations necessary for pulmonary circulation.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Ding Li
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| |
Collapse
|
31
|
Defects in Trabecular Development Contribute to Left Ventricular Noncompaction. Pediatr Cardiol 2019; 40:1331-1338. [PMID: 31342111 DOI: 10.1007/s00246-019-02161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Left ventricular noncompaction (LVNC) is a genetically heterogeneous disorder the etiology of which is still debated. During fetal development, trabecular cardiomyocytes contribute extensively to the working myocardium and the ventricular conduction system. The impact of developmental defects in trabecular myocardium in the etiology of LVNC has been debated. Recently we generated new mouse models of LVNC by the conditional deletion of the key cardiac transcription factor encoding gene Nkx2-5 in trabecular myocardium at critical steps of trabecular development. These conditional mutant mice recapitulate pathological features similar to those observed in LVNC patients, including a hypertrabeculated left ventricle with deep endocardial recesses, subendocardial fibrosis, conduction defects, strain defects, and progressive heart failure. After discussing recent findings describing the respective contribution of trabecular and compact myocardium during ventricular morphogenesis, this review will focus on new data reflecting the link between trabecular development and LVNC.
Collapse
|
32
|
PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene 2019; 38:7002-7016. [DOI: 10.1038/s41388-019-0948-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
33
|
Lee M, Hwang YS, Yoon J, Sun J, Harned A, Nagashima K, Daar IO. Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled. J Cell Biol 2019; 218:2659-2676. [PMID: 31270137 PMCID: PMC6683737 DOI: 10.1083/jcb.201811147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Our study reveals Drg1 as a new binding partner of Dishevelled. The Drg1–Dishevelled association regulates Daam1 and RhoA interactions and activity, leading to polymerization and stability of the actin cytoskeleton, a process that is essential for proper multiciliation. Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the Xenopus laevis embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1). The loss of Drg1 or disruption of the interaction with Dvl reduces the length and number of cilia and displays defects in basal body migration and docking to the apical surface of multiciliated cells (MCCs). Moreover, Drg1 morphants display abnormal rotational polarity of basal bodies and a decrease in apical actin and RhoA activity that can be attributed to disruption of the protein complex between Dvl and Daam1, as well as between Daam1 and RhoA. These results support the concept that the Drg1–Dvl interaction regulates apical actin polymerization and stability in MCCs. Thus, Drg1 is a newly identified partner of Dvl in regulating ciliogenesis.
Collapse
Affiliation(s)
| | | | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Adam Harned
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kunio Nagashima
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Ira O Daar
- National Cancer Institute, Frederick, MD
| |
Collapse
|
34
|
Sulistomo HW, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem 2018; 294:2924-2934. [PMID: 30573686 DOI: 10.1074/jbc.ra118.005471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Neural tube closure requires apical constriction during which contraction of the apical F-actin network forces the cell into a wedged shape, facilitating the folding of the neural plate into a tube. However, how F-actin assembly at the apical surface is regulated in mammalian neurulation remains largely unknown. We report here that formin homology 2 domain-containing 3 (Fhod3), a formin protein that mediates F-actin assembly, is essential for cranial neural tube closure in mouse embryos. We found that Fhod3 is expressed in the lateral neural plate but not in the floor region of the closing neural plate at the hindbrain. Consistently, in Fhod3-null embryos, neural plate bending at the midline occurred normally, but lateral plates seemed floppy and failed to flex dorsomedially. Because the apical accumulation of F-actin and constriction were impaired specifically at the lateral plates in Fhod3-null embryos, we concluded that Fhod3-mediated actin assembly contributes to lateral plate-specific apical constriction to advance closure. Intriguingly, Fhod3 expression at the hindbrain was restricted to neuromeric segments called rhombomeres. The rhombomere-specific accumulation of apical F-actin induced by the rhombomere-restricted expression of Fhod3 was responsible for the outward bulging of rhombomeres involving apical constriction along the anteroposterior axis, as rhombomeric bulging was less prominent in Fhod3-null embryos than in the wild type. Fhod3 thus plays a crucial role in the morphological changes associated with neural tube closure at the hindbrain by mediating apical constriction not only in the mediolateral but also in the anteroposterior direction, thereby contributing to tube closure and rhombomere segmentation, respectively.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Takayuki Nemoto
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Toshihiko Yanagita
- the Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ryu Takeya
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| |
Collapse
|
35
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
36
|
Liu Y, Chen H, Shou W. Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Pediatr Cardiol 2018; 39:1099-1106. [PMID: 29766225 PMCID: PMC6093786 DOI: 10.1007/s00246-018-1882-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Ventricular trabeculation and compaction are two essential morphogenetic events for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with hypoplastic wall and ventricular compact zone deficiencies, which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, the arrest of ventricular wall compaction (noncompaction) is believed to be causative to the left ventricular noncompaction (LVNC), a genetically heterogeneous disorder and the third most common cardiomyopathy among pediatric patients. After critically reviewing recent findings from genetically engineered mouse models, we suggest a model which proposes that defects in myofibrillogenesis and polarization in trabecular cardiomyocytes underly the common pathogenic mechanism for ventricular noncompaction.
Collapse
Affiliation(s)
- Ying Liu
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanying Chen
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weinian Shou
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
37
|
Zuidscherwoude M, Green HLH, Thomas SG. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics. Platelets 2018; 30:23-30. [PMID: 29913076 PMCID: PMC6406210 DOI: 10.1080/09537104.2018.1481937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The platelet and megakaryocyte cytoskeletons are essential for formation and function of these cells. A dynamic, properly organised tubulin and actin cytoskeleton is critical for the development of the megakaryocyte and the extension of proplatelets. Tubulin in particular plays a pivotal role in the extension of these proplatelets and the release of platelets from them. Tubulin is further required for the maintenance of platelet size, and actin is the driving force for shape change, spreading and platelet contraction during platelet activation. Whilst several key proteins which regulate these cytoskeletons have been described in detail, the formin family of proteins has received less attention. Formins are intriguing as, although they were initially believed to simply be a nucleator of actin polymerisation, increasing evidence shows they are important regulators of the crosstalk between the actin and microtubule cytoskeletons. In this review, we will introduce the formin proteins and consider the recent evidence that they play an important role in platelets and megakaryocytes in mediating both the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| | - Hannah L H Green
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Steven G Thomas
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| |
Collapse
|
38
|
Cho E, Mysliwiec MR, Carlson CD, Ansari A, Schwartz RJ, Lee Y. Cardiac-specific developmental and epigenetic functions of Jarid2 during embryonic development. J Biol Chem 2018; 293:11659-11673. [PMID: 29891551 DOI: 10.1074/jbc.ra118.002482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic regulation is critical in normal cardiac development. We have demonstrated that the deletion of Jarid2 (Jumonji (Jmj) A/T-rich interaction domain 2) in mice results in cardiac malformations recapitulating human congenital cardiac disease and dysregulation of gene expression. However, the precise developmental and epigenetic functions of Jarid2 within the developing heart remain to be elucidated. Here, we determined the cardiac-specific functions of Jarid2 and the genetic networks regulated by Jarid2. Jarid2 was deleted using different cardiac-specific Cre mice. The deletion of Jarid2 by Nkx2.5-Cre mice (Jarid2Nkx) caused cardiac malformations including ventricular septal defects, thin myocardium, hypertrabeculation, and neonatal lethality. Jarid2Nkx mice exhibited elevated expression of neural genes, cardiac jelly, and other key factors including Isl1 and Bmp10 in the developing heart. By employing combinatorial genome-wide approaches and molecular analyses, we showed that Jarid2 in the myocardium regulates a subset of Jarid2 target gene expression and H3K27me3 enrichment during heart development. Specifically, Jarid2 was required for PRC2 occupancy and H3K27me3 at the Isl1 promoter locus, leading to the proper repression of Isl1 expression. In contrast, Jarid2 deletion in differentiated cardiomyocytes by cTnt-Cre mice caused no gross morphological defects or neonatal lethality. Thus, the early deletion of Jarid2 in cardiac progenitors, prior to the differentiation of cardiac progenitors into cardiomyocytes, results in morphogenetic defects manifested later in development. Our studies reveal that there is a critical window during early cardiac progenitor differentiation when Jarid2 is crucial to establish the epigenetic landscape at later stages of development.
Collapse
Affiliation(s)
- Eunjin Cho
- From the Department of Cell and Regenerative Biology.,Molecular and Cellular Pharmacology Graduate Program, and
| | | | - Clayton D Carlson
- the Department of Biology, Trinity Christian College, Palos Heights, Illinois 60463, and
| | - Aseem Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Robert J Schwartz
- the Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Youngsook Lee
- From the Department of Cell and Regenerative Biology, .,Molecular and Cellular Pharmacology Graduate Program, and
| |
Collapse
|
39
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
40
|
Abstract
Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.
Collapse
Affiliation(s)
- Wen Lin
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Deqiang Li
- Division of Cardiac Surgery, School of Medicine, University of Maryland, 800 West Baltimore ST, Rm 314, Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
López-Escobar B, Caro-Vega JM, Vijayraghavan DS, Plageman TF, Sanchez-Alcazar JA, Moreno RC, Savery D, Márquez-Rivas J, Davidson LA, Ybot-González P. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development 2018; 145:dev.157487. [PMID: 29636380 DOI: 10.1242/dev.157487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells.
Collapse
Affiliation(s)
- Beatriz López-Escobar
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - José Manuel Caro-Vega
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | | | | | - José A Sanchez-Alcazar
- Centro Andaluz de Biología del Desarrollo (CABD), and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
| | - Roberto Carlos Moreno
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Javier Márquez-Rivas
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain .,Unidad de Gestión Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| |
Collapse
|
42
|
Ossipova O, Kerney R, Saint-Jeannet JP, Sokol SY. Regulation of neural crest development by the formin family protein Daam1. Genesis 2018; 56:e23108. [PMID: 29673042 DOI: 10.1002/dvg.23108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023]
Abstract
The neural crest (NC) multipotent progenitor cells form at the neural plate border and migrate to diverse locations in the embryo to differentiate into many cell types. NC is specified by several embryonic pathways, however the role of noncanonical Wnt signaling in this process remains poorly defined. Daam1 is a formin family protein that is present in embryonic ectoderm at the time of NC formation and can mediate noncanonical Wnt signaling. Our interference experiments indicated that Daam1 is required for NC gene activation. To further study the function of Daam1 in NC development we used a transgenic reporter Xenopus line, in which GFP transcription is driven by sox10 upstream regulatory sequences. The activation of the sox10:GFP reporter in a subset of NC cells was suppressed after Daam1 depletion and in embryos expressing N-Daam1, a dominant interfering construct. Moreover, N-Daam1 blocked reporter activation in neuralized ectodermal explants in response to Wnt11, but not Wnt8 or Wnt3a, confirming that the downstream pathways are different. In complementary experiments, a constitutively active Daam1 fragment expanded the NC territory, but this gain-of-function activity was eliminated in a construct with a point mutation in the FH2 domain that is critical for actin polymerization. These observations suggest a new role of Daam1 and actin remodeling in NC specification.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology,College of Dentistry, New York University, New York, New York
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
43
|
Sim JS, Kesawat MS, Kumar M, Kim SY, Mani V, Subramanian P, Park S, Lee CM, Kim SR, Hahn BS. Lack of the α1,3-Fucosyltransferase Gene ( Osfuct) Affects Anther Development and Pollen Viability in Rice. Int J Mol Sci 2018; 19:ijms19041225. [PMID: 29670011 PMCID: PMC5979348 DOI: 10.3390/ijms19041225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/04/2022] Open
Abstract
N-linked glycosylation is one of the key post-translational modifications. α1,3-Fucosyltransferase (OsFucT) is responsible for transferring α1,3-linked fucose residues to the glycoprotein N-glycan in plants. We characterized an Osfuct mutant that displayed pleiotropic developmental defects, such as impaired anther and pollen development, diminished growth, shorter plant height, fewer tillers, and shorter panicle length and internodes under field conditions. In addition, the anthers were curved, the pollen grains were shriveled, and pollen viability and pollen number per anther decreased dramatically in the mutant. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycans revealed that α1,3-fucose was lacking in the N-glycan structure of the mutant. Mutant complementation revealed that the phenotype was caused by loss of Osfuct function. Transcriptome profiling also showed that several genes essential for plant developmental processes were significantly altered in the mutant, including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis, and hypothetical proteins. Moreover, the mutant exhibited sensitivity to an increased concentration of salt. This study facilitates a further understanding of the function of genes mediating N-glycan modification and anther and pollen development in rice.
Collapse
Affiliation(s)
- Joon-Soo Sim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Mahipal Singh Kesawat
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Manu Kumar
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Su-Yeon Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Vimalraj Mani
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Parthiban Subramanian
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Soyoung Park
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Chang-Muk Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Bum-Soo Hahn
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
44
|
Venditti M, Fasano C, Santillo A, Aniello F, Minucci S. First evidence of DAAM1 localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. C R Biol 2018; 341:228-234. [PMID: 29571963 DOI: 10.1016/j.crvi.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a protein belonging to the formin family, which regulates, together with the small GTPase RhoA, the nucleation and the assembly of actin fibres through Wnt-Dishevelled PCP pathway. Its role has been investigated in essential biological processes, such as cell polarity, movement and adhesion during morphogenesis and organogenesis. In this work, we studied the expression of DAAM1 mRNA and protein by PCR and Western blot analyses and its co-localization with actin in adult mouse seminal vesicles by immunofluorescence. We show that both proteins are cytoplasmic: actin is evident at cell-cell junctions and at cell cortex; DAAM1 had a more diffused localization, but is also prominent at the apical plasmatic membrane of epithelial cells. These findings support our hypothesis of a role of DAAM1 in cytoskeletal rearrangement that occurs during the exocytosis of secretory vesicles, and in particular concerning actin filaments. We were also able to detect DAAM1 and actin association in the smooth muscle cells that surround the epithelium too. In this case, we could only speculate the possible involvement of this formin in muscular cells in the maintenance and the regulation of the contractile structures. The present results strongly suggest that DAAM1 could have a pivotal role in vesicle exocytosis and in the physiology of mouse seminal vesicles.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy.
| |
Collapse
|
45
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
46
|
Ushijima T, Fujimoto N, Matsuyama S, Kan-O M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. J Biol Chem 2017; 293:148-162. [PMID: 29158260 DOI: 10.1074/jbc.m117.813931] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.
Collapse
Affiliation(s)
- Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Noriko Fujimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Matsuyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Meikun Kan-O
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Kobe 650-0047; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Yohko Kage
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692.
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582.
| |
Collapse
|
47
|
Zhu W, Krishna S, Garcia C, Lin CCJ, Mitchell BD, Scott KL, Mohila CA, Creighton CJ, Yoo SH, Lee HK, Deneen B. Daam2 driven degradation of VHL promotes gliomagenesis. eLife 2017; 6. [PMID: 29053101 PMCID: PMC5650470 DOI: 10.7554/elife.31926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Von Hippel-Landau (VHL) protein is a potent tumor suppressor regulating numerous pathways that drive cancer, but mutations in VHL are restricted to limited subsets of malignancies. Here we identified a novel mechanism for VHL suppression in tumors that do not have inactivating mutations. Using developmental processes to uncover new pathways contributing to tumorigenesis, we found that Daam2 promotes glioma formation. Protein expression screening identified an inverse correlation between Daam2 and VHL expression across a host of cancers, including glioma. These in silico insights guided corroborating functional studies, which revealed that Daam2 promotes tumorigenesis by suppressing VHL expression. Furthermore, biochemical analyses demonstrate that Daam2 associates with VHL and facilitates its ubiquitination and degradation. Together, these studies are the first to define an upstream mechanism regulating VHL suppression in cancer and describe the role of Daam2 in tumorigenesis. Glioblastoma is the deadliest form of brain cancer, and the rate of patient survival has not significantly improved over the past 70 years. This cancer arises when glial cells, which provide support and insulation to nerve cells, develop mutations that alter the activity of certain genes or alter the role they play in cells. However, there are also several key genes linked to glioblastomas that don’t exhibit mutations, such as the gene that encodes the Von Hippel Landau protein (or VHL for short). This protein normally helps to protect us from developing cancer, but it is not clear how this protein is prevented from performing this role in glioblastomas. One possibility is that proteins that regulate how cells grow and develop may control VHL. For example, a protein called Daam2 plays a critical role in a signaling pathway that is required for glial cell development. Zhu et al. used biochemical techniques to study Daam2 and VHL in both human cells and mouse models of glioblastoma. The experiments show that glioblastoma cells have lower levels of VHL compared to normal cells. This decrease is caused by Daam 2, which interacts with VHL and promotes its degradation. Further experiments found that in several different types of cancer, higher levels of Daam2 are linked with the presence of lower levels of VHL. These findings indicate that the interaction between Daam2 and VHL could be a new target for drugs to treat glioblastoma and possibly other forms of cancer. Daam2 and VHL have also been linked to multiple sclerosis, cerebral palsy and other diseases that affect the nervous system. Therefore, understanding how these proteins interact may also help to develop new treatments for these conditions.
Collapse
Affiliation(s)
- Wenyi Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States
| | - Saritha Krishna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Cristina Garcia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Chia-Ching John Lin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Bartley D Mitchell
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, United States
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, United States
| | - Chad J Creighton
- Dan L Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, United States.,Department of Medicine, Baylor College of Medicine, Houston, United States
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Heath Science Center at Houston, Houston, United States
| | - Hyun Kyoung Lee
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
48
|
Towbin JA, Jefferies JL. Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism. Circ Res 2017; 121:838-854. [PMID: 28912186 DOI: 10.1161/circresaha.117.310987] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The normal function of the human myocardium requires the proper generation and utilization of energy and relies on a series of complex metabolic processes to achieve this normal function. When metabolic processes fail to work properly or effectively, heart muscle dysfunction can occur with or without accompanying functional abnormalities of other organ systems, particularly skeletal muscle. These metabolic derangements can result in structural, functional, and infiltrative deficiencies of the heart muscle. Mitochondrial and enzyme defects predominate as disease-related etiologies. In this review, left ventricular noncompaction cardiomyopathy, which is often caused by mutations in sarcomere and cytoskeletal proteins and is also associated with metabolic abnormalities, is discussed. In addition, cardiomyopathies resulting from mitochondrial dysfunction, metabolic abnormalities, storage diseases, and inborn errors of metabolism are described.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH.
| | - John Lynn Jefferies
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| |
Collapse
|
49
|
An ultra-effective method of generating extramultipotent cells from human fibroblasts by ultrasound. Biomaterials 2017; 143:65-78. [DOI: 10.1016/j.biomaterials.2017.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
|
50
|
Fowler VM, Dominguez R. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles. Biophys J 2017; 112:1742-1760. [PMID: 28494946 DOI: 10.1016/j.bpj.2017.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|