1
|
Joyner AL, Ortigão-Farias JR, Kornberg T. Conserved roles of engrailed: patterning tissues and specifying cell types. Development 2024; 151:dev204250. [PMID: 39671171 DOI: 10.1242/dev.204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
More than 40 years ago, studies of the Drosophila engrailed and Hox genes led to major discoveries that shaped the history of developmental biology. We learned that these genes define the state of determination of cells that populate particular spatially defined regions: the identity of segmental domains by Hox genes, and the identity of posterior developmental compartments by engrailed. Hence, the boundaries that delimit spatial domains depend on engrailed. Here, we review the engrailed field, which now includes orthologs in Drosophila and mouse, as well as many other animals. We focus on fly and mouse and highlight additional functions that span early stages of embryogenesis and neural development.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Biochemistry, Cell & Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | - Thomas Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
3
|
Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, Prochiantz A. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep 2023; 24:e56525. [PMID: 37534581 PMCID: PMC10398658 DOI: 10.15252/embr.202256525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Several homeoprotein transcription factors transfer between cells and regulate gene expression, protein translation, and chromatin organization in recipient cells. ENGRAILED-1 is one such homeoprotein expressed in spinal V1 interneurons that synapse on α-motoneurons. Neutralizing extracellular ENGRAILED-1 by expressing a secreted single-chain antibody blocks its capture by spinal motoneurons resulting in α-motoneuron loss and limb weakness. A similar but stronger phenotype is observed in the Engrailed-1 heterozygote mouse, confirming that ENGRAILED-1 exerts a paracrine neurotrophic activity on spinal cord α-motoneurons. Intrathecal injection of ENGRAILED-1 leads to its specific internalization by spinal motoneurons and has long-lasting protective effects against neurodegeneration and weakness. Midbrain dopaminergic neurons express Engrailed-1 and, similarly to spinal cord α-motoneurons, degenerate in the heterozygote. We identify genes expressed in spinal cord motoneurons whose expression changes in mouse Engrailed-1 heterozygote midbrain neurons. Among these, p62/SQSTM1 shows increased expression during aging in spinal cord motoneurons in the Engrailed-1 heterozygote and upon extracellular ENGRAILED-1 neutralization. We conclude that ENGRAILED-1 might regulate motoneuron aging and has non-cell-autonomous neurotrophic activity.
Collapse
Affiliation(s)
- Mélanie Lebœuf
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Stephanie E Vargas-Abonce
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Eugénie Pezé-Hedsieck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| |
Collapse
|
4
|
Joliot A. Role of PI(4,5)P2 and Cholesterol in Unconventional Protein Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:381-392. [PMID: 36988889 DOI: 10.1007/978-3-031-21547-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Besides its protective role in the maintenance of cell homeostasis, the plasma membrane is the site of exchanges between the cell interior and the extracellular medium. To circumvent the hydrophobic barrier formed by the acyl chains of the lipid bilayer, protein channels and transporters are key players in the exchange of small hydrophilic compounds such as ions or nutrients, but they hardly account for the transport of larger biological molecules. Exchange of proteins usually relies on membrane-fusion events between vesicles and the plasma membrane. In recent years, several alternative unconventional protein secretion (UPS) pathways across the plasma membrane have been characterised for a specific set of secreted substrates, some of them excluding any membrane-fusion events (Dimou and Nickel, Curr Biol 28:R406-R410, 2018). One of thesbe pathways, referred as type I UPS, relies on the direct translocation of the protein across the plasma membrane and not surprisingly, lipids are essential players in this process. In this chapter, we discuss the roles of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and cholesterol in unconventional pathways involving Engrailed-2 homeoprotein and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Bolatto C, Nieves S, Reyes A, Olivera-Bravo S, Cambiazo V. Patched-Related Is Required for Proper Development of Embryonic Drosophila Nervous System. Front Neurosci 2022; 16:920670. [PMID: 36081658 PMCID: PMC9446084 DOI: 10.3389/fnins.2022.920670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Patched-related (Ptr), classified primarily as a neuroectodermal gene, encodes a protein with predicted topology and domain organization closely related to those of Patched (Ptc), the canonical receptor of the Hedgehog (Hh) pathway. To investigate the physiological function of Ptr in the developing nervous system, Ptr null mutant embryos were immunolabeled and imaged under confocal microscopy. These embryos displayed severe alterations in the morphology of the primary axonal tracts, reduced number, and altered distribution of the Repo-positive glia as well as peripheral nervous system defects. Most of these alterations were recapitulated by downregulating Ptr expression, specifically in embryonic nerve cells. Because similar nervous system phenotypes have been observed in hh and ptc mutant embryos, we evaluated the Ptr participation in the Hh pathway by performing cell-based reporter assays. Clone-8 cells were transfected with Ptr-specific dsRNA or a Ptr DNA construct and assayed for changes in Hh-mediated induction of a luciferase reporter. The results obtained suggest that Ptr could act as a negative regulator of Hh signaling. Furthermore, co-immunoprecipitation assays from cell culture extracts premixed with a conditioned medium revealed a direct interaction between Ptr and Hh. Moreover, in vivo Ptr overexpression in the domain of the imaginal wing disc where Engrailed and Ptc coexist produced wing phenotypes at the A/P border. Thus, these results strongly suggest that Ptr plays a crucial role in nervous system development and appears to be a negative regulator of the Hh pathway.
Collapse
Affiliation(s)
- Carmen Bolatto
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
- Cell and Molecular Neurobiology Laboratory, Computational and Integrative Neuroscience (NCIC) Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- *Correspondence: Carmen Bolatto
| | - Sofía Nieves
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Agustina Reyes
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Cell and Molecular Neurobiology Laboratory, Computational and Integrative Neuroscience (NCIC) Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Verónica Cambiazo
- Bioinformatic and Gene Expression Laboratory, Institute of Nutrition and Food Technology (INTA)-Universidad de Chile and Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| |
Collapse
|
6
|
Joliot A, Prochiantz A. Unconventional Secretion, Gate to Homeoprotein Intercellular Transfer. Front Cell Dev Biol 2022; 10:926421. [PMID: 35837333 PMCID: PMC9274163 DOI: 10.3389/fcell.2022.926421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Unconventional secretion allows for the secretion of fully mature and biologically active proteins mostly present in the cytoplasm or nucleus. Besides extra vesicle-driven secretion, non-extravesicular pathways also exist that specifically rely on the ability of the secreted proteins to translocate directly across the plasma membrane. This is the case for several homeoproteins, a family of over 300 transcription factors characterized by the structure of their DNA-binding homeodomain. The latter highly conserved homeodomain is necessary and sufficient for secretion, a process that requires PI(4,5)P2 binding, as is the case for FGF2 and HIV Tat unconventional secretion. An important feature of homeoproteins is their ability to cross membranes in both directions and thus to transfer between cells. This confers to homeoproteins their paracrine activity, an essential facet of their physiological functions.
Collapse
Affiliation(s)
- Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
- *Correspondence: Alain Joliot,
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Labex MemoLife, Paris, France
| |
Collapse
|
7
|
Lepeta K, Bauer M, Aguilar G, Vigano MA, Matsuda S, Affolter M. Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila. Methods Mol Biol 2022; 2540:219-237. [PMID: 35980580 DOI: 10.1007/978-1-0716-2541-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct manipulation of proteins by nanobodies and other protein binders has become an additional and valuable approach to investigate development and homeostasis in Drosophila. In contrast to other techniques, that indirectly interfere with proteins via their nucleic acids (CRISPR, RNAi, etc.), protein binders permit direct and acute protein manipulation. Since the first use of a nanobody in Drosophila a decade ago, many different applications exploiting protein binders have been introduced. Most of these applications use nanobodies against GFP to regulate GFP fusion proteins. In order to exert specific protein manipulations, protein binders are linked to domains that confer them precise biochemical functions. Here, we reflect on the use of tools based on protein binders in Drosophila. We describe their key features and provide an overview of the available reagents. Finally, we briefly explore the future avenues that protein binders might open up and thus further contribute to better understand development and homeostasis of multicellular organisms.
Collapse
Affiliation(s)
| | - Milena Bauer
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Vincent C, Gilabert-Juan J, Gibel-Russo R, Alvarez-Fischer D, Krebs MO, Le Pen G, Prochiantz A, Di Nardo AA. Non-cell-autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Mol Psychiatry 2021; 26:6469-6480. [PMID: 33963285 PMCID: PMC8760049 DOI: 10.1038/s41380-021-01132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The OTX2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, which projects to limbic structures controlling complex behaviors. OTX2 is also produced in choroid plexus epithelium, from which it is secreted into cerebrospinal fluid and transferred to limbic structure parvalbumin interneurons. Previously, adult male mice subjected to early-life stress were found susceptible to anxiety-like behaviors, with accompanying OTX2 expression changes in ventral tegmental area or choroid plexus. Here, we investigated the consequences of reduced OTX2 levels in Otx2 heterozygote mice, as well as in Otx2+/AA and scFvOtx2tg/0 mouse models for decreasing OTX2 transfer from choroid plexus to parvalbumin interneurons. Both male and female adult mice show anxiolysis-like phenotypes in all three models. In Otx2 heterozygote mice, we observed no changes in dopaminergic neuron numbers and morphology in ventral tegmental area, nor in their metabolic output and projections to target structures. However, we found reduced expression of parvalbumin in medial prefrontal cortex, which could be rescued in part by adult overexpression of Otx2 specifically in choroid plexus, resulting in increased anxiety-like behavior. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of anxiety-related phenotypes in the mouse.
Collapse
Affiliation(s)
- Clémentine Vincent
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Javier Gilabert-Juan
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rachel Gibel-Russo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
| | | | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- Faculté de Médecine, Université de Paris, Pôle Hospitalo-Universitaire Evaluation Prévention et Innovation Thérapeutique, GHU Paris Psychiatrie et Neurosciences site Sainte-Anne, Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| |
Collapse
|
9
|
Di Nardo AA, Joliot A, Prochiantz A. Homeoprotein transduction in neurodevelopment and physiopathology. SCIENCE ADVANCES 2020; 6:6/44/eabc6374. [PMID: 33115744 PMCID: PMC7608782 DOI: 10.1126/sciadv.abc6374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 05/28/2023]
Abstract
Homeoproteins were originally identified for embryonic cell-autonomous transcription activity, but they also have non-cell-autonomous activity owing to transfer between cells. This Review discusses transfer mechanisms and focuses on some established functions, such as neurodevelopmental regulation of axon guidance, and postnatal critical periods of brain plasticity that affect sensory processing and cognition. Homeoproteins are present across all eukaryotes, and intercellular transfer occurs in plants and animals. Proposed functions have evolutionary relevance, such as morphogenetic activity and sexual exchange during the mating of unicellular eukaryotes, while others have physiopathological relevance, such as regulation of mood and cognition by influencing brain compartmentalization, connectivity, and plasticity. There are more than 250 known homeoproteins with conserved transfer domains, suggesting that this is a common mode of signal transduction but with many undiscovered functions.
Collapse
Affiliation(s)
- Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France.
| | - Alain Joliot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France.
| |
Collapse
|
10
|
H 2O 2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Commun Biol 2020; 3:536. [PMID: 32994473 PMCID: PMC7524761 DOI: 10.1038/s42003-020-01268-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Although a physiological role for redox signaling is now clearly established, the processes sensitive to redox signaling remains to be identified. Ratiometric probes selective for H2O2 have revealed its complex spatiotemporal dynamics during neural development and adult regeneration and perturbations of H2O2 levels disturb cell plasticity and morphogenesis. Here we ask whether endogenous H2O2 could participate in the patterning of the embryo. We find that perturbations of endogenous H2O2 levels impact on the distribution of the Engrailed homeoprotein, a strong determinant of midbrain patterning. Engrailed 2 is secreted from cells with high H2O2 levels and taken up by cells with low H2O2 levels where it leads to increased H2O2 production, steering the directional spread of the Engrailed gradient. These results illustrate the interplay between protein signaling pathways and metabolic processes during morphogenetic events.
Collapse
|
11
|
OTX2 Non-Cell Autonomous Activity Regulates Inner Retinal Function. eNeuro 2020; 7:ENEURO.0012-19.2020. [PMID: 32737182 PMCID: PMC7477954 DOI: 10.1523/eneuro.0012-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
OTX2 is a homeoprotein transcription factor expressed in photoreceptors and bipolar cells in the retina. OTX2, like many other homeoproteins, transfers between cells and exerts non-cell autonomous effects such as promoting the survival of retinal ganglion cells that do not express the protein. Here we used a genetic approach to target extracellular OTX2 in the retina by conditional expression of a secreted single-chain anti-OTX2 antibody. Compared with control mice, the expression of this antibody by parvalbumin-expressing neurons in the retina is followed by a reduction in visual acuity in 1-month-old mice with no alteration of the retinal structure or cell type number or aspect. The a-waves and b-waves measured by electroretinogram were also indistinguishable from those of control mice, suggesting no functional deficit of photoreceptors and bipolar cells. Mice expressing the OTX2-neutralizing antibody did show a significant doubling in the flicker amplitude and a reduction in oscillatory potential, consistent with a change in inner retinal function. Our results show that interfering in vivo with OTX2 non-cell autonomous activity in the postnatal retina leads to an alteration in inner retinal cell functions and causes a deficit in visual acuity.
Collapse
|
12
|
Amblard I, Dupont E, Alves I, Miralvès J, Queguiner I, Joliot A. Bidirectional transfer of homeoprotein EN2 across the plasma membrane requires PIP 2. J Cell Sci 2020; 133:jcs244327. [PMID: 32434869 DOI: 10.1242/jcs.244327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
Homeoproteins are a class of transcription factors sharing the unexpected property of intercellular trafficking that confers to homeoproteins a paracrine mode of action. Homeoprotein paracrine action participates in the control of patterning processes, including axonal guidance, brain plasticity and boundary formation. Internalization and secretion, the two steps of intercellular transfer, rely on unconventional mechanisms, but the cellular mechanisms at stake still need to be fully characterized. Thanks to the design of new quantitative and sensitive assays dedicated to the study of homeoprotein transfer within HeLa cells in culture, we demonstrate a core role of phosphatidylinositol (4,5)-bisphosphate (PIP2) together with cholesterol in the translocation of the homeobox protein engrailed-2 (EN2) across the plasma membrane. By using drug and enzyme treatments, we show that both secretion and internalization are regulated according to PIP2 levels. The requirement for PIP2 and cholesterol in EN2 trafficking correlates with their selective affinity for this protein in artificial bilayers, which is drastically decreased in a paracrine-deficient mutant of EN2. We propose that the bidirectional plasma membrane translocation events that occur during homeoprotein secretion and internalization are parts of a common process.
Collapse
Affiliation(s)
- Irène Amblard
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Sorbonne University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabel Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, 33600 Pessac, France
| | - Julie Miralvès
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
13
|
Wen DT, Wang WQ, Hou WQ, Cai SX, Zhai SS. Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity. Biol Open 2020; 9:bio045260. [PMID: 32414766 PMCID: PMC7272356 DOI: 10.1242/bio.045260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
A high-salt diet (HSD) is a major cause of many chronic and age-related defects such as myocardial hypertrophy, locomotor impairment and mortality. Exercise training can efficiently prevent and treat many chronic and age-related diseases. However, it remains unclear whether endurance exercise can resist HSD-induced impairment of climbing capacity and longevity in aging individuals. In our study, flies were given exercise training and fed a HSD from 1-week old to 5-weeks old. Overexpression or knockdown of salt and dFOXO were built by UAS/Gal4 system. The results showed that a HSD, salt gene overexpression and dFOXO knockdown significantly reduced climbing endurance, climbing index, survival, dFOXO expression and SOD activity level, and increased malondialdehyde level in aging flies. Inversely, in a HSD aging flies, endurance exercise and dFOXO overexpression significantly increased their climbing ability, lifespan and antioxidant capacity, but they did not significantly change the salt gene expression. Overall, current results indicated that a HSD accelerated the age-related decline of climbing capacity and mortality via upregulating salt expression and inhibiting the dFOXO/SOD pathway. Increased dFOXO/SOD pathway activity played a key role in mediating endurance exercise resistance to the low salt tolerance-induced impairment of climbing capacity and longevity in aging DrosophilaThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wei-Qing Wang
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wen-Qi Hou
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Shu-Xian Cai
- Co-Innovation Center for Utilization of Botanical Functional Ingredients, Department of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai-Shuai Zhai
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| |
Collapse
|
14
|
Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies. Proc Natl Acad Sci U S A 2020; 117:11589-11596. [PMID: 32393634 PMCID: PMC7261121 DOI: 10.1073/pnas.2002092117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Developmental genes can be coopted to generate evolutionary novelties by changing their spatial regulation. However, developmental genes seldom act independently, but rather work in a gene regulatory network (GRN). How is it possible to recruit a single gene from a whole GRN? What are the properties that allow parallel cooptions of the same genes during evolution? Here, we show that a novel engrailed gene expression underlies a novel wing color pattern in flies. We show that cooption is facilitated 1) because of GRN flexibility over development and 2) because every single gene of the GRN has its own functional time window. We suggest these two temporal properties could explain why the same gene can be independently recruited several times during evolution. Organisms have evolved endless morphological, physiological, and behavioral novel traits during the course of evolution. Novel traits were proposed to evolve mainly by orchestration of preexisting genes. Over the past two decades, biologists have shown that cooption of gene regulatory networks (GRNs) indeed underlies numerous evolutionary novelties. However, very little is known about the actual GRN properties that allow such redeployment. Here we have investigated the generation and evolution of the complex wing pattern of the fly Samoaia leonensis. We show that the transcription factor Engrailed is recruited independently from the other players of the anterior–posterior specification network to generate a new wing pattern. We argue that partial cooption is made possible because 1) the anterior–posterior specification GRN is flexible over time in the developing wing and 2) this flexibility results from the fact that every single gene of the GRN possesses its own functional time window. We propose that the temporal flexibility of a GRN is a general prerequisite for its possible cooption during the course of evolution.
Collapse
|
15
|
Aguilar G, Vigano MA, Affolter M, Matsuda S. Reflections on the use of protein binders to study protein function in developmental biology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e356. [PMID: 31265212 PMCID: PMC6851689 DOI: 10.1002/wdev.356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/01/2023]
Abstract
Studies in the field of developmental biology aim to unravel how a fertilized egg develops into an adult organism and how proteins and other macromolecules work together during this process. With regard to protein function, most of the developmental studies have used genetic and RNA interference approaches, combined with biochemical analyses, to reach this goal. However, there always remains much room for interpretation on how a given protein functions, because proteins work together with many other molecules in complex regulatory networks and it is not easy to reveal the function of one given protein without affecting the networks. Likewise, it has remained difficult to experimentally challenge and/or validate the proposed concepts derived from mutant analyses without tools that directly manipulate protein function in a predictable manner. Recently, synthetic tools based on protein binders such as scFvs, nanobodies, DARPins, and others have been applied in developmental biology to directly manipulate target proteins in a predicted manner. Although such tools would have a great impact in filling the gap of knowledge between mutant phenotypes and protein functions, careful investigations are required when applying functionalized protein binders to fundamental questions in developmental biology. In this review, we first summarize how protein binders have been used in the field, and then reflect on possible guidelines for applying such tools to study protein functions in developmental biology. This article is categorized under: Technologies > Analysis of Proteins Establishment of Spatial and Temporal Patterns > Gradients Invertebrate Organogenesis > Flies.
Collapse
|
16
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
17
|
Kaddour H, Coppola E, Di Nardo AA, Le Poupon C, Mailly P, Wizenmann A, Volovitch M, Prochiantz A, Pierani A. Extracellular Pax6 Regulates Tangential Cajal–Retzius Cell Migration in the Developing Mouse Neocortex. Cereb Cortex 2019; 30:465-475. [DOI: 10.1093/cercor/bhz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- H Kaddour
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| | - E Coppola
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| | - A A Di Nardo
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - C Le Poupon
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - P Mailly
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, Core Facility Orion, 11 Place Marcelin Berthelot, Paris, France
| | - A Wizenmann
- Department of Anatomy, Institute of Clinical Anatomy and Cell, University of Tübingen, Osterbergstrasse 3, Tübingen, Germany
| | - M Volovitch
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - A Prochiantz
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - A Pierani
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| |
Collapse
|
18
|
Di Nardo AA, Fuchs J, Joshi RL, Moya KL, Prochiantz A. The Physiology of Homeoprotein Transduction. Physiol Rev 2019; 98:1943-1982. [PMID: 30067157 DOI: 10.1152/physrev.00018.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The homeoprotein family comprises ~300 transcription factors and was long seen as primarily involved in developmental programs through cell autonomous regulation. However, recent evidence reveals that many of these factors are also expressed in the adult where they exert physiological functions not yet fully deciphered. Furthermore, the DNA-binding domain of most homeoproteins contains two signal sequences allowing their secretion and internalization, thus intercellular transfer. This review focuses on this new-found signaling in cell migration, axon guidance, and cerebral cortex physiological homeostasis and speculates on how it may play important roles in early arealization of the neuroepithelium. It also describes the use of homeoproteins as therapeutic proteins in mouse models of diseases affecting the central nervous system, in particular Parkinson disease and glaucoma.
Collapse
Affiliation(s)
- Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Kenneth L Moya
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| |
Collapse
|
19
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
20
|
Ahmed MU, Maurya AK, Cheng L, Jorge EC, Schubert FR, Maire P, Basson MA, Ingham PW, Dietrich S. Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Dev Biol 2017; 430:90-104. [PMID: 28807781 DOI: 10.1016/j.ydbio.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Collapse
Affiliation(s)
- Mohi U Ahmed
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Ashish K Maurya
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | - Louise Cheng
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Erika C Jorge
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Universidade Federal de Minas Gerais - Departamento de Morfologia, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Pascal Maire
- Institut Cochin, INSERM U567, CNRS UMR 8104, Univ. Paris Descartes, Département Génétique et Développement, Equipegénétique et développement du systèmeneuromusculaire, 24 Rue du Fg St Jacques, 75014 Paris, France
| | - M Albert Basson
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Philip W Ingham
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore; Dept. of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Susanne Dietrich
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
21
|
Morata G, Herrera SC. Cell reprogramming during regeneration in Drosophila: transgression of compartment boundaries. Curr Opin Genet Dev 2016; 40:11-16. [PMID: 27266970 DOI: 10.1016/j.gde.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
We discuss recent work about cellular reprogramming during regeneration of the imaginal discs of Drosophila. These contain various lineage blocks, compartments, which express distinct genetic programmes. It has been found that after massive damage to a compartment cells from a neighbour compartment can transgress the compartment border and contribute to its regeneration. The transgressing cells are genetically reprogrammed and acquire a new identity, a process facilitated by up regulation of the JNK pathway and transient loss of epigenetic control by the Pc-G and trx-G genes. The final acquisition of the new identity appears to be mediated by induction by neighbour cells, a phenomenon akin the Community Effect described for the specification of amphibian muscle cells.
Collapse
Affiliation(s)
- Ginés Morata
- Centro de Biología Molecular, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
22
|
Bernard C, Vincent C, Testa D, Bertini E, Ribot J, Di Nardo AA, Volovitch M, Prochiantz A. A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor. PLoS Genet 2016; 12:e1006035. [PMID: 27171438 PMCID: PMC4865174 DOI: 10.1371/journal.pgen.1006035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these “transfer” sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system. Classically, cell signaling is based on the secretion of molecules that bind cell surface receptors. Lipophilic agents can do without cell-surface receptors due to their ability to diffuse through the plasma membrane, but this is normally not the case for proteins, which cannot pass the membrane barrier. However, homeoprotein transcription factors represent an exception as they are secreted and internalized by live cells owing to two peptidic domains. An important illustration of this novel signaling mechanism is provided by Otx2, a homeoprotein that travels from the choroid plexus to specific inhibitory neurons in the cerebral cortex, where it regulates physiological plasticity throughout life. Because the two transfer peptides are in the DNA-binding domain of Otx2, it is impossible to mutate them without altering both cell signaling and cell-autonomous functions. We have therefore developed a mouse in which a secreted anti-Otx2 single-chain antibody can be induced to trap extracellular Otx2 while leaving its cell autonomous function untouched. We show that neutralizing extracellular Otx2 modifies the expression of plasticity genes in the visual cortex, thus providing the first genetic demonstration for homeoprotein signaling in a mammal.
Collapse
Affiliation(s)
- Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Clémentine Vincent
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Eva Bertini
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Ariel A. Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Michel Volovitch
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
24
|
Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. Development and Application of Functionalized Protein Binders in Multicellular Organisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:181-213. [DOI: 10.1016/bs.ircmb.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|
26
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
27
|
Abstract
Signaling classically involves the secretion of diverse molecules that bind specific cell-surface receptors and engage intracellular transduction cascades. Some exceptions-namely, lipophilic agents-can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell-autonomous mechanisms and explore how this "novel" signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases.
Collapse
|
28
|
Bukharina TA, Furman DP. The mechanisms determining bristle pattern in Drosophila melanogaster. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Quiñinao C, Prochiantz A, Touboul J. Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues. Development 2015; 142:1860-8. [PMID: 25968317 PMCID: PMC5207310 DOI: 10.1242/dev.113688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Boundary formation in the developing neuroepithelium decides on the position and size of compartments in the adult nervous system. In this study, we start from the French Flag model proposed by Lewis Wolpert, in which boundaries are formed through the combination of morphogen diffusion and of thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell-autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Alan Turing, on the other hand, proposed a model whereby two morphogens that exhibit self-activation and reciprocal inhibition, and are uniformly distributed and diffuse at different rates lead to the formation of territories of unpredictable shapes and positions but with sharp boundaries (the 'leopard spots'). Here, we have combined the two models and compared the stability of boundaries when the hypothesis of local homeoprotein intercellular diffusion is, or is not, introduced in the equations. We find that the addition of homeoprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when other parameters are significantly modified. This novel Turing/Wolpert combined model has thus important theoretical consequences for our understanding of the role of the intercellular diffusion of homeoproteins in the developmental robustness of and the changes that take place in the course of evolution.
Collapse
Affiliation(s)
- Cristóbal Quiñinao
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie (UPMC) - Paris VI, 4 place Jussieu, Paris 75005, France
| | - Alain Prochiantz
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France
| | - Jonathan Touboul
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France INRIA Paris Rocquencourt, MYCENAE Team, Domaine de Voluceau, Le Chesnay 78153, France
| |
Collapse
|
30
|
Prochiantz A, Fuchs J, Di Nardo AA. Postnatal signalling with homeoprotein transcription factors. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0518. [PMID: 25135979 DOI: 10.1098/rstb.2013.0518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homeoprotein (HP) transcription factors were originally identified for their embryonic cell-autonomous developmental functions. In this review, we discuss their postnatal and adult physiological functions based on the study of Otx2, Engrailed-1 and Engrailed-2 (collectively Engrailed). For Engrailed, we discuss its function in the cell-autonomous regulation of ventral midbrain dopaminergic neuron survival and physiology and in the non-cell-autonomous maintenance of axons. For Otx2, we describe how the protein is expressed in the choroid plexus and transported into cortical parvalbumin cells where it regulates plasticity in the visual cortex. These two examples illustrate how the understanding of HP postnatal and adult functions, including signalling functions, may lead to the identification of disease-associated genetic pathways and to the development of original therapeutic strategies.
Collapse
Affiliation(s)
- Alain Prochiantz
- CIRB, CNRS UMR 7241/INSERM U1050, College de France, 11 place Marcelin Berthelot, Paris Cedex 05 75231, France
| | - Julia Fuchs
- CIRB, CNRS UMR 7241/INSERM U1050, College de France, 11 place Marcelin Berthelot, Paris Cedex 05 75231, France
| | - Ariel A Di Nardo
- CIRB, CNRS UMR 7241/INSERM U1050, College de France, 11 place Marcelin Berthelot, Paris Cedex 05 75231, France
| |
Collapse
|
31
|
Rampon C, Gauron C, Lin T, Meda F, Dupont E, Cosson A, Ipendey E, Frerot A, Aujard I, Le Saux T, Bensimon D, Jullien L, Volovitch M, Vriz S, Joliot A. Control of brain patterning by Engrailed paracrine transfer: a new function of the Pbx interaction domain. Development 2015; 142:1840-9. [PMID: 25926358 PMCID: PMC4440920 DOI: 10.1242/dev.114181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022]
Abstract
Homeoproteins of the Engrailed family are involved in the patterning of mesencephalic boundaries through a mechanism classically ascribed to their transcriptional functions. In light of recent reports on the paracrine activity of homeoproteins, including Engrailed, we asked whether Engrailed intercellular transfer was also involved in brain patterning and boundary formation. Using time-controlled activation of Engrailed combined with tools that block its transfer, we show that the positioning of the diencephalic-mesencephalic boundary (DMB) requires Engrailed paracrine activity. Both zebrafish Eng2a and Eng2b are competent for intercellular transfer in vivo, but only extracellular endogenous Eng2b, and not Eng2a, participates in DMB positioning. In addition, disruption of the Pbx-interacting motif in Engrailed, known to strongly reduce the gain-of-function phenotype, also downregulates Engrailed transfer, thus revealing an unsuspected participation of the Pbx interaction domain in this pathway.
Collapse
Affiliation(s)
- Christine Rampon
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75205, Cedex 13, France Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Carole Gauron
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Thibault Lin
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Francesca Meda
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, Paris F-75005, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Adrien Cosson
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Eliane Ipendey
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, Paris F-75005, France
| | - Alice Frerot
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Isabelle Aujard
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, UMR 8640 CNRS-ENS-UPMC PASTEUR, 24, rue Lhomond, Paris 75005, France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, UMR 8640 CNRS-ENS-UPMC PASTEUR, 24, rue Lhomond, Paris 75005, France
| | - David Bensimon
- École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, Paris F-75005, France Laboratoire de Physique Statistique, UMR CNRS-ENS 8550, Paris F-75005, France Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, UMR 8640 CNRS-ENS-UPMC PASTEUR, 24, rue Lhomond, Paris 75005, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, Paris F-75005, France
| | - Sophie Vriz
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75205, Cedex 13, France Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB) - CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris F-75005, France
| |
Collapse
|
32
|
Wotton KR, Schubert FR, Dietrich S. Hypaxial muscle: controversial classification and controversial data? Results Probl Cell Differ 2015; 56:25-48. [PMID: 25344665 DOI: 10.1007/978-3-662-44608-9_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypaxial muscle is the anatomical term commonly used when referring to all the ventrally located musculature in the body of vertebrates, including muscles of the body wall and the limbs. Yet these muscles had very humble beginnings when vertebrates evolved from their chordate ancestors, and complex anatomical changes and changes in underlying gene regulatory networks occurred. This review summarises the current knowledge and controversies regarding the development and evolution of hypaxial muscles.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | | |
Collapse
|
33
|
Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm. PLoS One 2014; 9:e115208. [PMID: 25514127 PMCID: PMC4267835 DOI: 10.1371/journal.pone.0115208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.
Collapse
|
34
|
Kim N, Acampora D, Dingli F, Loew D, Simeone A, Prochiantz A, Di Nardo AA. Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Res 2014; 3:178. [PMID: 25165539 PMCID: PMC4133762 DOI: 10.12688/f1000research.4869.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 11/20/2022] Open
Abstract
Plasticity in the visual cerebral cortex is regulated by the internalization of Otx2 homeoprotein into parvalbumin neurons in cortical layers II/III and IV. However the Otx2 locus is not active in these neurons and the protein is imported from external sources, including the choroid plexus. Because Otx1 and Otx2 may have redundant functions, we wanted to verify if part of the staining in parvalbumin neurons corresponds to Otx1 transported from cortical layer V neurons. It is demonstrated here that Otx staining in layer IV cells is maintained in Otx1-null mice. The immunoprecipitation of extracts from finely dissected granular and supragranular cortex (layers I-IV) gave immunoblots with a band corresponding to Otx2 and not Otx1. Moreover, high-resolution mass spectrometry analysis after immunoprecipitation identifies two peptides within the Otx2 homeodomain. One of these peptides is specific for Otx2 and is not found in Otx1. These results unambiguously establish that the staining in parvalbumin neurons revealed with the anti-Otx2 antibodies used in our previous studies identifies non-cell autonomous Otx2.
Collapse
Affiliation(s)
- Namsuk Kim
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Dario Acampora
- Institute of Genetics and Biophysics, Via Pietro Castellino 111, 80131 Napoli, Italy ; IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Antonio Simeone
- Institute of Genetics and Biophysics, Via Pietro Castellino 111, 80131 Napoli, Italy ; IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Alain Prochiantz
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ariel A Di Nardo
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
35
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
36
|
Herrera SC, Morata G. Transgressions of compartment boundaries and cell reprogramming during regeneration in Drosophila. eLife 2014; 3:e01831. [PMID: 24755288 PMCID: PMC3989595 DOI: 10.7554/elife.01831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals have developed mechanisms to reconstruct lost or damaged tissues. To regenerate those tissues the cells implicated have to undergo developmental reprogramming. The imaginal discs of Drosophila are subdivided into distinct compartments, which derive from different genetic programs. This feature makes them a convenient system to study reprogramming during regeneration. We find that massive damage inflicted to the posterior or the dorsal compartment of the wing disc causes a transient breakdown of compartment boundaries, which are quickly reconstructed. The cells involved in the reconstruction often modify their original identity, visualized by changes in the expression of developmental genes like engrailed or cubitus interruptus. This reprogramming is mediated by up regulation of the JNK pathway and transient debilitation of the epigenetic control mechanism. Our results also show that the local developmental context plays a role in the acquisition of new cell identities: cells expressing engrailed induce engrailed expression in neighbor cells. DOI:http://dx.doi.org/10.7554/eLife.01831.001 When cells or tissues are damaged, animals can often regenerate the affected tissues. In an effort to identify the genes and mechanisms that are involved in this regeneration process, researchers often perform experiments on relatively simple organisms or systems. These experiments frequently involve the amputation of specific cells or organs so the researchers can observe and manipulate the events that occur during the subsequent regeneration. One such model organism is the fruit-fly Drosophila. Inside the Drosophila larva are structures called imaginal discs, which are precursors to parts of the outer cuticle of the adult fly. Each imaginal disc contains two main boundaries, dividing it into anterior/posterior and dorsal/ventral compartments: posterior cells, for example, express a gene called engrailed to produce the relevant protein, whereas anterior cells do not; likewise, the gene apterous is expressed in dorsal cells but not ventral cells. These genes, engrailed and apterous, are the key factors that determine the developmental features–and hence the identity—of the posterior and the dorsal cells respectively. Herrera and Morata investigated how cells regenerate when parts of the imaginal disc are destroyed, using a genetic technique that causes high levels of programmed cell death in either the posterior or the dorsal compartments of the disc. Destroying most of the cells in either of these compartments in the imaginal disc leads to a temporary breakdown of the corresponding boundary, which is then rapidly reconstructed. During this reconstruction process, some of the imaginal disc cells are reprogrammed: for example, if the cells in the posterior compartment are destroyed, some anterior cells take on a posterior identity. This reprogramming occurs because the cell destruction disrupts the way that the expression of genes such as engrailed and apterous is controlled by other genes. Neighboring cells can also control gene expression, and therefore cell identity. Cells that express engrailed, for example, cause their neighbors to express engrailed too. This process is likely to involve group interactions that might help the distinct compartments in the imaginal disc to form by ensuring that adjacent cells develop in the same way. Similar processes may also occur as part of the normal development of organisms. DOI:http://dx.doi.org/10.7554/eLife.01831.002
Collapse
Affiliation(s)
- Salvador C Herrera
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
37
|
Prochiantz A. Signaling with homeoprotein transcription factors in development and throughout adulthood. Curr Genomics 2014; 14:361-70. [PMID: 24396269 PMCID: PMC3861887 DOI: 10.2174/1389202911314060009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/22/2022] Open
Abstract
The concept of homeoprotein transduction as a novel signaling pathway has dramatically evolved since it was first proposed in 1991. It is now well established in several biological systems from plants to mammals. In this review, the different steps that have led to this unexpected observation are recalled and the developmental and physiological models that have allowed us (and a few others) to consolidate the original hypothesis are described. Because homeoprotein signaling is active in plants and animals it is proposed that it has predated the separation between animals and plants and is thus very ancient. This may explain why the basic phenomenon of homeoprotein transduction is so minimalist, requiring no specific receptors or transduction pathways beside those offered by mitochondria, organelles present in all eukaryotic cells. Indeed complexity has been added in the course of evolution and the conservation of homeoprotein transduction is discussed in the context of its synergy with bona fide signaling mechanism that may have added robustness to this primitive cell communication device. The same synergy possibly explains why homeoprotein signaling is important both in embryonic development and in adult functions fulfilled by signaling entities (e.g. growth factors) themselves active throughout development and in the adult. The cell biological mechanism of homeoprotein transfer is also discussed. Although it is clear that many questions are still in want of precise answers, it appears that the sequences responsible both for secretion and internalization are in the DNA-binding domain and very highly conserved among most homeoproteins. On this basis, it is proposed that this signaling pathway is likely to imply as many as 200 proteins that participate in a myriad of developmental and physiological pathways.
Collapse
Affiliation(s)
- A Prochiantz
- College de France, Centre for Interdisciplinary Research in Biology (CIRB), UMR CNRS 7241/INSERM 1050, Labex Memolife, PSL Research University, Development and Neuropharmacology group, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
38
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
39
|
Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell Tissue Res 2013; 352:49-58. [DOI: 10.1007/s00441-012-1550-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/18/2012] [Indexed: 01/15/2023]
|
40
|
Spatazza J, Di Lullo E, Joliot A, Dupont E, Moya KL, Prochiantz A. Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed. Pharmacol Rev 2013; 65:90-104. [PMID: 23300132 DOI: 10.1124/pr.112.006577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homeoproteins constitute a major class of transcription factors active throughout development and in adulthood. Their membrane transduction properties were discovered over 20 years ago, opening an original field of research in the domain of vector peptides and signal transduction. In early development, homeoprotein transfer participates in tissue patterning, cell/axon guidance, and migration. In the axon guidance model, homeoproteins exert their non-cell autonomous activity through the regulation of translation, in particular, that of nuclear-transcribed mitochondrial mRNAs. An important aspect of these studies on patterning and migration is that homeoproteins sensitize the cells to the action of other growth factors, thus cooperating with established signaling pathways. The role of homeoprotein signaling at later developmental stages is also of interest. In particular, the transfer of homeoprotein Otx2 into parvalbumin-expressing inhibitory neurons (PV-cells) in the visual cortex regulates cortical plasticity. The molecular deciphering of the interaction of Otx2 with binding sites at the surface of PV-cells has allowed the development of a specific Otx2 antagonist that reopens plasticity in the adult cortex and cures mice from experimental amblyopia, a neurodevelopmental disease. Finally, the use of homeoproteins as therapeutic proteins in mouse models of glaucoma and Parkinson disease is reviewed. In the latter case, engrailed homeoproteins protect mesencephalic dopaminergic neurons by increasing the local translation of complex I mitochondrial mRNAs. In conclusion, this review synthesizes 20 years of work on the fundamental and potentially translational aspects of homeoprotein signaling.
Collapse
Affiliation(s)
- Julien Spatazza
- Development and Neuropharmacology Group, College de France, Centre for Interdisciplinary Research in Biology, CNRS UMR 7241/INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
MacLean JA, Hayashi K, Turner TT, Wilkinson MF. The Rhox5 homeobox gene regulates the region-specific expression of its paralogs in the rodent epididymis. Biol Reprod 2012; 86:189. [PMID: 22423045 DOI: 10.1095/biolreprod.112.099184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanisms by which the region-specific expression patterns of clustered genes evolve are poorly understood. The epididymis is an ideal organ to examine this, as it is a highly segmented tissue that differs significantly in structure between closely related species. Here we examined this issue through analysis of the rapidly evolving X-linked reproductive homeobox (Rhox) gene cluster, the largest known homeobox gene cluster in metazoans. In the mouse, we found that most Rhox genes are expressed primarily in the caput region of the epididymis, a site where sperm mature and begin acquiring forward motility. This region-specific expression pattern depends, in part, on the founding member of the Rhox cluster--Rhox5--as targeted mutation of Rhox5 greatly diminishes the expression of several other family members in the caput region. In the rat, Rhox5 expression switches from the caput to the site of sperm storage: the cauda. All Rhox genes under the control of Rhox5 in the mouse epididymis display a concomitant change in their regional expression in the rat epididymis. Our results lead us to propose that widespread changes in the region-specific expression pattern of genes over evolutionary time can be the result of alterations of one or only a few master regulatory genes.
Collapse
Affiliation(s)
- James A MacLean
- Department of Physiology, Southern Illinois University, Carbondale, Illinois 62901, USA.
| | | | | | | |
Collapse
|
43
|
Stettler O, Joshi RL, Wizenmann A, Reingruber J, Holcman D, Bouillot C, Castagner F, Prochiantz A, Moya KL. Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones. Development 2012; 139:215-24. [PMID: 22147955 DOI: 10.1242/dev.063875] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engrailed 1 and engrailed 2 homeoprotein transcription factors (collectively Engrailed) display graded expression in the chick optic tectum where they participate in retino-tectal patterning. In vitro, extracellular Engrailed guides retinal ganglion cell (RGC) axons and synergises with ephrin A5 to provoke the collapse of temporal growth cones. In vivo disruption of endogenous extracellular Engrailed leads to misrouting of RGC axons. Here we characterise the signalling pathway of extracellular Engrailed. Our results show that Engrailed/ephrin A5 synergy in growth cone collapse involves adenosine A1 receptor activation after Engrailed-dependent ATP synthesis, followed by ATP secretion and hydrolysis to adenosine. This is, to our knowledge, the first evidence for a role of the adenosine A1 receptor in axon guidance. Based on these results, together with higher expression of the adenosine A1 receptor in temporal than nasal growth cones, we propose a computational model that illustrates how the interaction between Engrailed, ephrin A5 and adenosine could increase the precision of the retinal projection map.
Collapse
Affiliation(s)
- Olivier Stettler
- CNRS Unité mixte de Recherche 7241/INSERM U1050, Equipe FRM, Center for Interdisciplinary Research in Biology, Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Development 2011; 138:4991-5001. [PMID: 22028031 DOI: 10.1242/dev.066282] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeoprotein transcription factors play fundamental roles in development, ranging from embryonic polarity to cell differentiation and migration. Research in recent years has underscored the physiological importance of homeoprotein intercellular transfer in eye field development, axon guidance and retino-tectal patterning, and visual cortex plasticity. Here, we have used the embryonic chick neural tube to investigate a possible role for homeoprotein Pax6 transfer in oligodendrocyte precursor cell (OPC) migration. We report the extracellular expression of Pax6 and the effects of gain and loss of extracellular Pax6 activity on OPCs. Open book cultures with recombinant Pax6 protein or Pax6 blocking antibodies, as well as in ovo gene transfer experiments involving expression of secreted Pax6 protein or secreted Pax6 antibodies, provide converging evidences that OPC migration is promoted by extracellular Pax6. The paracrine effect of Pax6 on OPC migration is thus a new example of direct non-cell autonomous homeoprotein activity.
Collapse
Affiliation(s)
- Elizabeth Di Lullo
- Collège de France, Center for Interdisciplinary Research in Biology, 11 place Marcelin Berthelot, Paris F-75005, France
| | | | | | | | | | | | | |
Collapse
|