1
|
Nobuhisa I, Melig G, Taga T. Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos. Cells 2024; 13:1840. [PMID: 39594589 PMCID: PMC11593047 DOI: 10.3390/cells13221840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Gao M, Zha Y, Sheng N, Cao Y, Yao W, Bao B, Shan M, Cheng F, Yu S, Zhang Y, Geng T, Liu S, Yan H, Chen P, Zhang J, Zhang L. Integrated transcriptomics and lipidomics reveals protective effect in vascular endothelial barrier of a polysaccharide from Typhae Pollen. Int J Biol Macromol 2024; 282:136817. [PMID: 39490477 DOI: 10.1016/j.ijbiomac.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Endothelial cell dysfunction caused by inflammation and even vascular leakage are important manifestations of blood stasis syndrome (BSS). Reversible regulation of vascular integrity to cure BSS has attracted considerable interest. Herein, a novel acidic polysaccharide (TPP-4) was purified and characterized from Typhae Pollen, a typical traditional Chinese medicine for treating BSS, especially for bleeding caused by blood stasis. A series of structural characterization methods, including spectroscopic methods (FT-IR and UV), chromatographic methods (HPGPC, HPAEC-PDA and GC-MS) and NMR, have been used to reveal the fine structure of TPP-4. TPP-4 was a homogeneous heteropolysaccharide comprised with RG-I backbone. TPP-4 showed fantastic activities in vascular integrity regulation both in vitro (HUVECs) and in vivo (zebrafish). Transcriptomics revealed that SOX7 and lipid metabolism were the potential targets. Lipidomics showed that TPP-4 could regulate lipid metabolism disorders caused by vascular inflammation, particularly affecting LPE levels. The above regulatory effects were furtherly demonstrated to be related with VEGFA/PI3K/mTOR signaling pathway through various molecular biological experiments.
Collapse
Affiliation(s)
- Mingliang Gao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuling Zha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yi Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ting Geng
- Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China.
| | - Shengjin Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Peidong Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juanjuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Feng Y, Zheng H, Yin C, Liang D, Zhang S, Chen J, Mai F, Lan Z, Zhu M, Mai Z, Shen S, Jayawardana T, Wu R, Tang W, Zhang R, He X, Zheng S, Hu Q, Han Y, Yang Y, Gong S, Wang Z, El-Omar EM, Luo W, Chen X, Chen G, Li P, Chen X. β-resorcylic acid released by Limosilactobacillus reuteri protects against cisplatin-induced ovarian toxicity and infertility. Cell Rep Med 2024; 5:101678. [PMID: 39096912 PMCID: PMC11384965 DOI: 10.1016/j.xcrm.2024.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
Chemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, β-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or β-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, β-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that β-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.
Collapse
Affiliation(s)
- Yinglin Feng
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China; Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province, China
| | - Huimin Zheng
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Chunhua Yin
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Dong Liang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Siyou Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Jingrui Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Feihong Mai
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zixin Lan
- The Second Clinical Medical College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Menglin Zhu
- The Second Clinical Medical College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhensheng Mai
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| | - Thisun Jayawardana
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| | - Rong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Renfang Zhang
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoyun He
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shanshan Zheng
- Health Medical Center, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Qian Hu
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Yubin Han
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Yuanhao Yang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong Province, China
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xueqin Chen
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| | - Guoqiang Chen
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, Guangdong Province, China.
| | - Pan Li
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia.
| | - Xia Chen
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
4
|
Ream MW, Randolph LN, Jiang Y, Chang Y, Bao X, Lian XL. Direct programming of human pluripotent stem cells into endothelial progenitors with SOX17 and FGF2. Stem Cell Reports 2024; 19:579-595. [PMID: 38518781 PMCID: PMC11096437 DOI: 10.1016/j.stemcr.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.
Collapse
Affiliation(s)
- Michael W Ream
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
6
|
Chiang IKN, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez‐Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red‐Horse K, del Monte‐Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep 2023; 24:e55043. [PMID: 37551717 PMCID: PMC10561369 DOI: 10.15252/embr.202255043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Collapse
Affiliation(s)
- Ivy KN Chiang
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - David Humphrey
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Richard J Mills
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Peter Kaltzis
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Shikha Pachauri
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Matthew Graus
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Diptarka Saha
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Zhijian Wu
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Paul Young
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Choon Boon Sim
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Tara Davidson
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | | | - Chad A Shaw
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Alexander Renwick
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Daryl A Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Enzo R Porrello
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
- Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineThe Royal Children's HospitalMelbourneVICAustralia
- Department of Anatomy and Physiology, School of Biomedical SciencesThe University of MelbourneMelbourneVICAustralia
| | - Emily S Wong
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | | | - Mathias Francois
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| |
Collapse
|
7
|
Jung HS, Suknuntha K, Kim YH, Liu P, Dettle ST, Sedzro DM, Smith PR, Thomson JA, Ong IM, Slukvin II. SOX18-enforced expression diverts hemogenic endothelium-derived progenitors from T towards NK lymphoid pathways. iScience 2023; 26:106621. [PMID: 37250328 PMCID: PMC10214392 DOI: 10.1016/j.isci.2023.106621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 04/01/2023] [Indexed: 05/31/2023] Open
Abstract
Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation. However, forced expression of SOX18 in HE during endothelial-to-hematopoietic transition (EHT) greatly increases NK versus T cell lineage commitment of hematopoietic progenitors (HPs) arising from HE predominantly expanding CD34+CD43+CD235a/CD41a-CD45- multipotent HPs and altering the expression of genes related to T cell and Toll-like receptor signaling. These studies improve our understanding of lymphoid cell specification during EHT and provide a new tool for enhancing NK cell production from hPSCs for immunotherapies.
Collapse
Affiliation(s)
- Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Yun Hee Kim
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | - Peng Liu
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel T. Dettle
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Divine Mensah Sedzro
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Portia R. Smith
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A. Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Irene M. Ong
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I. Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
| |
Collapse
|
8
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
9
|
Kim D, Grath A, Lu YW, Chung K, Winkelman M, Schwarz JJ, Dai G. Sox17 mediates adult arterial endothelial cell adaptation to hemodynamics. Biomaterials 2023; 293:121946. [PMID: 36512862 PMCID: PMC9868097 DOI: 10.1016/j.biomaterials.2022.121946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Sox17 is a critical regulator of arterial identity during early embryonic vascular development. However, its role in adult endothelial cells (ECs) are not fully understood. Sox17 is highly expressed in arterial ECs but not in venous ECs throughout embryonic development to adulthood suggesting that it may play a functional role in adult arteries. Here, we investigated Sox17 mediated phenotypical changes in adult ECs. To precisely control the temporal expression level of Sox17, we designed a tetracycline-inducible lentiviral gene expression system to express Sox17 selectively in cultured venous ECs. We confirmed that Sox17-induced ECs exhibit a gene profile favoring arterial and tip cell identity. Furthermore, in comparison to control ECs, Sox17-activated ECs under shear leads to greater expression of arterial markers and suppression of venous identity. These data suggest that Sox17 enables greater hemodynamic adaptability of ECs in response to fluid shear stress. Here, we also demonstrate key morphogenic behaviors of Sox17-mediated ECs. In both vasculogenic and angiogenic 3D fibrin gel studies, Sox17-mediated ECs prefer to form cohesive vessels with one another while interfering the vessel formation of the control ECs. Sox17-mediated ECs elicit hyper-sprouting behavior in the presence of pericytes but not fibroblasts, suggesting Sox17 mediated sprouting frequency is dependent on supporting cell type. Using a microfluidic chip, we also show that Sox17-mediated ECs maintain thinner diameter vessels that do not widen under interstitial flow like the control ECs. Taken together, these data showed that Sox17 mediated EC gene expression and phenotypical changes are highly modulated in the context of biomechanical stimuli, suggesting Sox17 plays a role in regulating the arterial ECs adaptability under arterial hemodynamics as well as tip cells behavior during angiogenesis and vasculogenesis. The results from this study may be valuable in improving vein graft adaptation to arterial hemodynamics and bioengineering microvasculature for tissue engineering applications.
Collapse
Affiliation(s)
- Diana Kim
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Alexander Grath
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston's Children Hospital, Boston, MA, 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl Chung
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Max Winkelman
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - John J Schwarz
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, 12208, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nat Commun 2023; 14:41. [PMID: 36596806 PMCID: PMC9810727 DOI: 10.1038/s41467-022-35744-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
During embryogenesis, haematopoietic and endothelial lineages emerge closely in time and space. It is thought that the first blood and endothelium derive from a common clonal ancestor, the haemangioblast. However, investigation of candidate haemangioblasts in vitro revealed the capacity for mesenchymal differentiation, a feature more compatible with an earlier mesodermal precursor. To date, no evidence for an in vivo haemangioblast has been discovered. Using single cell RNA-Sequencing and in vivo cellular barcoding, we have unravelled the ancestral relationships that give rise to the haematopoietic lineages of the yolk sac, the endothelium, and the mesenchyme. We show that the mesodermal derivatives of the yolk sac are produced by three distinct precursors with dual-lineage outcomes: the haemangioblast, the mesenchymoangioblast, and a previously undescribed cell type: the haematomesoblast. Between E5.5 and E7.5, this trio of precursors seeds haematopoietic, endothelial, and mesenchymal trajectories.
Collapse
|
11
|
Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4. Mol Genet Genomics 2022; 297:671-687. [PMID: 35260939 DOI: 10.1007/s00438-022-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.
Collapse
|
12
|
Cohn-Schwartz D, Schary Y, Yalon E, Krut Z, Da X, Schwarz EM, Gazit D, Pelled G, Gazit Z. PTH-Induced Bone Regeneration and Vascular Modulation Are Both Dependent on Endothelial Signaling. Cells 2022; 11:cells11050897. [PMID: 35269519 PMCID: PMC8909576 DOI: 10.3390/cells11050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
The use of a bone allograft presents a promising approach for healing nonunion fractures. We have previously reported that parathyroid hormone (PTH) therapy induced allograft integration while modulating angiogenesis at the allograft proximity. Here, we hypothesize that PTH-induced vascular modulation and the osteogenic effect of PTH are both dependent on endothelial PTH receptor-1 (PTHR1) signaling. To evaluate our hypothesis, we used multiple transgenic mouse lines, and their wild-type counterparts as a control. In addition to endothelial-specific PTHR1 knock-out mice, we used mice in which PTHR1 was engineered to be constitutively active in collagen-1α+ osteoblasts, to assess the effect of PTH signaling activation exclusively in osteoprogenitors. To characterize resident cell recruitment and osteogenic activity, mice in which the Luciferase reporter gene is expressed under the Osteocalcin promoter (Oc-Luc) were used. Mice were implanted with calvarial allografts and treated with either PTH or PBS. A micro-computed tomography-based structural analysis indicated that the induction of bone formation by PTH, as observed in wild-type animals, was not maintained when PTHR1 was removed from endothelial cells. Furthermore, the induction of PTH signaling exclusively in osteoblasts resulted in significantly less bone formation compared to systemic PTH treatment, and significantly less osteogenic activity was measured by bioluminescence imaging of the Oc-Luc mice. Deletion of the endothelial PTHR1 significantly decreased the PTH-induced formation of narrow blood vessels, formerly demonstrated in wild-type mice. However, the exclusive activation of PTH signaling in osteoblasts was sufficient to re-establish the observed PTH effect. Collectively, our results show that endothelial PTHR1 signaling plays a key role in PTH-induced osteogenesis and has implications in angiogenesis.
Collapse
Affiliation(s)
- Doron Cohn-Schwartz
- Department of Internal Medicine B, Division of Internal Medicine, Rambam Healthcare Campus, Haifa 3109601, Israel;
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Yeshai Schary
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Eran Yalon
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopaedics, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Dan Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
13
|
Qiu C, Cao J, Martin BK, Li T, Welsh IC, Srivatsan S, Huang X, Calderon D, Noble WS, Disteche CM, Murray SA, Spielmann M, Moens CB, Trapnell C, Shendure J. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat Genet 2022; 54:328-341. [PMID: 35288709 PMCID: PMC8920898 DOI: 10.1038/s41588-022-01018-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single-cell zygote gives rise to millions of cells expressing a panoply of molecular programs. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here, we set out to integrate several single-cell RNA-sequencing (scRNA-seq) datasets that collectively span mouse gastrulation and organogenesis, supplemented with new profiling of ~150,000 nuclei from approximately embryonic day 8.5 (E8.5) embryos staged in one-somite increments. Overall, we define cell states at each of 19 successive stages spanning E3.5 to E13.5 and heuristically connect them to their pseudoancestors and pseudodescendants. Although constructed through automated procedures, the resulting directed acyclic graph (TOME (trajectories of mammalian embryogenesis)) is largely consistent with our contemporary understanding of mammalian development. We leverage TOME to systematically nominate transcription factors (TFs) as candidate regulators of each cell type's specification, as well as 'cell-type homologs' across vertebrate evolution.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Junyue Cao
- The Rockefeller University, New York, NY, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tony Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
14
|
Wu M, Chen Q, Li J, Xu Y, Lian J, Liu Y, Meng P, Zhang Y. Gfi1aa/Lsd1 Facilitates Hemangioblast Differentiation Into Primitive Erythrocytes by Targeting etv2 and sox7 in Zebrafish. Front Cell Dev Biol 2022; 9:786426. [PMID: 35096818 PMCID: PMC8790037 DOI: 10.3389/fcell.2021.786426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
The first wave of hematopoiesis is the primitive hematopoiesis, which produces embryonic erythroid and myeloid cells. Primitive erythrocytes are thought to be generated from bipotent hemangioblasts, but the molecular basis remains unclear. Transcriptional repressors Gfi1aa and Gfi1b have been shown to cooperatively promote primitive erythrocytes differentiation from hemangioblasts in zebrafish. However, the mechanism of these repressors during the primitive wave is largely unknown. Herein, by functional analysis of zebrafish gfi1aa smu10 , gfi1b smu11 , gfi1ab smu12 single, double, and triple mutants, we found that Gfi1aa not only plays a predominant role in primitive erythropoiesis but also synergizes with Gfi1ab. To screen Gfi1aa downstream targets, we performed RNA-seq and ChIP-seq analysis and found two endothelial transcription factors, etv2 and sox7, to be repressed by Gfi1aa. Genetic analysis demonstrated Gfi1aa to promote hemangioblast differentiation into primitive erythrocytes by inhibiting both etv2 and sox7 in an Lsd1-dependent manner. Moreover, the H3K4me1 level of etv2 and sox7 were increased in gfi1aa mutant. Taken together, these results suggest that Gfi1aa/Lsd1-dependent etv2/sox7 downregulation is critical for hemangioblast differentiation during primitive hematopoiesis by inhibition of endothelial specification. The different and redundant roles for Gfi1(s), as well as their genetic and epigenetic regulation during primitive hematopoiesis, help us to better know the molecular basis of the primitive hematopoiesis and sheds light on the understanding the Gfi1(s) related pathogenesis.
Collapse
Affiliation(s)
- Mei Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jing Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongxiang Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,*Correspondence: Yiyue Zhang,
| |
Collapse
|
15
|
Wang F, Tan P, Zhang P, Ren Y, Zhou J, Li Y, Hou S, Li S, Zhang L, Ma Y, Wang C, Tang W, Wang X, Huo Y, Hu Y, Cui T, Niu C, Wang D, Liu B, Lan Y, Yu J. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. SCIENCE ADVANCES 2022; 8:eabg5369. [PMID: 34995116 PMCID: PMC8741192 DOI: 10.1126/sciadv.abg5369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Shuaili Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Linlin Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanbo Tang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| |
Collapse
|
16
|
Hu YF, Lee AS, Chang SL, Lin SF, Weng CH, Lo HY, Chou PC, Tsai YN, Sung YL, Chen CC, Yang RB, Lin YC, Kuo TBJ, Wu CH, Liu JD, Chung TW, Chen SA. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat Biomed Eng 2021; 6:421-434. [PMID: 34811487 DOI: 10.1038/s41551-021-00812-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Pacemaker cells can be differentiated from stem cells or transdifferentiated from quiescent mature cardiac cells via genetic manipulation. Here we show that the exposure of rat quiescent ventricular cardiomyocytes to a silk-fibroin hydrogel activates the direct conversion of the quiescent cardiomyocytes to pacemaker cardiomyocytes by inducing the ectopic expression of the vascular endothelial cell-adhesion glycoprotein cadherin. The silk-fibroin-induced pacemaker cells exhibited functional and morphological features of genuine sinoatrial-node cardiomyocytes in vitro, and pacemaker cells generated via the injection of silk fibroin in the left ventricles of rats functioned as a surrogate in situ sinoatrial node. Biomaterials with suitable surface structure, mechanics and biochemistry could facilitate the scalable production of biological pacemakers for human use.
Collapse
Affiliation(s)
- Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Hui Weng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yu Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chun Chou
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Nan Tsai
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Han Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Dian Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Center for Advanced Pharmaceutical Research and Drug Delivery, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
18
|
Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-derived Erythroid Differentiation by Single-cell Transcriptome Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:358-376. [PMID: 34284135 PMCID: PMC8864192 DOI: 10.1016/j.gpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/22/2021] [Accepted: 03/06/2021] [Indexed: 10/28/2022]
Abstract
There is an imbalance between the supply and demand of functional red blood cells (RBCs) in clinical applications. This imbalance can be addressed by regenerating RBCs using several in vitro methods. Induced pluripotent stem cells (iPSCs) can handle the low supply of cord blood and the ethical issues in embryonic stem cell research and provide a promising strategy to eliminate immune rejection. However, no complete single-cell level differentiation pathway exists for the iPSC-derived RBC differentiation system. In this study, we used iPSC line BC1 to establish a RBCs regeneration system. The 10× genomics single-cell transcriptome platform was used to map the cell lineage and differentiation trajectories on day 14 of the regeneration system. We observed that iPSCs differentiation was not synchronized during embryoid body (EB) culture. The cells (day 14) mainly consisted of mesodermal and various blood cells, similar to the yolk sac hematopoiesis. We identified six cell classifications and characterized the regulatory transcription factors (TFs) networks and cell-cell contacts underlying the system. iPSCs undergo two transformations during the differentiation trajectory, accompanied by the dynamic expression of cell adhesion molecules and estrogen-responsive genes. We identified different stages of erythroid cells, such as burst-forming unit erythroid (BFU-E) and orthochromatic erythroblasts (ortho-E), and found that the regulation of TFs (e.g., TFDP1 and FOXO3) is erythroid-stage specific. Immune erythroid cells were identified in our system. This study provides systematic theoretical guidance for optimizing the iPSCs-derived RBCs differentiation system, and this system is a useful model for simulating in vivo hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Zijuan Xin
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Yanming Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
19
|
Jiang X, Li T, Li B, Wei W, Li F, Chen S, Xu R, Sun K. SOX7 suppresses endothelial-to-mesenchymal transitions by enhancing VE-cadherin expression during outflow tract development. Clin Sci (Lond) 2021; 135:829-846. [PMID: 33720353 DOI: 10.1042/cs20201496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
The endothelial-to-mesenchymal transition (EndMT) is a critical process that occurs during the development of the outflow tract (OFT). Malformations of the OFT can lead to the occurrence of conotruncal defect (CTD). SOX7 duplication has been reported in patients with congenital CTD, but its specific role in OFT development remains poorly understood. To decipher this, histological analysis showed that SRY-related HMG-box 7 (SOX7) was regionally expressed in the endocardial endothelial cells and in the mesenchymal cells of the OFT, where EndMT occurs. Experiments, using in vitro collagen gel culture system, revealed that SOX7 was a negative regulator of EndMT that inhibited endocardial cell (EC) migration and resulted in decreased number of mesenchymal cells. Forced expression of SOX7 in endothelial cells blocked further migration and improved the expression of the adhesion protein vascular endothelial (VE)-cadherin (VE-cadherin). Moreover, a VE-cadherin knockdown could partly reverse the SOX7-mediated repression of cell migration. Luciferase and electrophoretic mobility shift assay (EMSA) demonstrated that SOX7 up-regulated VE-cadherin by directly binding to the gene's promoter in endothelial cells. The coding exons and splicing regions of the SOX7 gene were also scanned in the 536 sporadic CTD patients and in 300 unaffected controls, which revealed four heterozygous SOX7 mutations. Luciferase assays revealed that two SOX7 variants weakened the transactivation of the VE-cadherin promoter. In conclusion, SOX7 inhibited EndMT during OFT development by directly up-regulating the endothelial-specific adhesion molecule VE-cadherin. SOX7 mutations can lead to impaired EndMT by regulating VE-cadherin, which may give rise to the molecular mechanisms associated with SOX7 in CTD pathogenesis.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tingting Li
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bojian Li
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei Wei
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
20
|
The long noncoding RNA HCG18 participates in PM2.5-mediated vascular endothelial barrier dysfunction. Aging (Albany NY) 2020; 12:23960-23973. [PMID: 33203802 PMCID: PMC7762519 DOI: 10.18632/aging.104073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Increased vascular endothelial permeability can disrupt vascular barrier function and further lead to multiple human diseases. Our previous reports indicated that particulate matter 2.5 (PM2.5) can enhance the permeability of vascular endothelial cells. However, the regulatory mechanism was not comprehensively demonstrated. Therefore, this work elucidated this mechanism by demonstrating that PM2.5 can increase the permeability of HUVECs by inhibiting the expression of Hickson compact group 18 (HCG18). Moreover, we demonstrated that lncRNA HCG18 functioned as a ceRNA for miR-21-5p and led to the derepression of its target SOX7, which could further transcriptionally activate the expression of VE-cadherin to regulate the permeability of HUVECs. In this study, we provide evidence that HCG18/miR-21-5p/SOX7/VE-cadherin signaling is involved in PM2.5-induced vascular endothelial barrier dysfunction.
Collapse
|
21
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
22
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
23
|
Coarfa C, Grimm SL, Katz T, Zhang Y, Jangid RK, Walker CL, Moorthy B, Lingappan K. Epigenetic response to hyperoxia in the neonatal lung is sexually dimorphic. Redox Biol 2020; 37:101718. [PMID: 32961439 PMCID: PMC7509469 DOI: 10.1016/j.redox.2020.101718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Sex as a biological variable plays a critical role both during lung development and in modulating postnatal hyperoxic lung injury and repair. The molecular mechanisms behind these sex-specific differences need to be elucidated. Our objective was to determine if the neonatal lung epigenomic landscape reconfiguration has profound effects on gene expression and could underlie sex-biased differences in protection from or susceptibility to diseases. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia (95% FiO, PND 1-5: saccular stage) or room air and euthanized on PND 7 and 21. Pulmonary gene expression was studied using RNA-seq on Illumina HiSeq 2500 platform and quantified. Epigenomic landscape was assessed using Chromatin Immunoprecipitation (ChIP-Seq) of the H3K27ac histone modification mark, associated with active genes, enhancers, and super-enhancers. These data were then integrated, pathways identified and validated. Sex-biased epigenetic modulation of gene expression leads to differential regulation of biological processes in the developing lung at baseline and after exposure to hyperoxia. The female lung exhibits a more robust epigenomic response for the H3K27ac mark in response to hyperoxia. Epigenomic changes distribute over genomic and epigenomic domains in a sex-specific manner. The differential epigenomic responses also enrich for key transcription regulators crucial for lung development. In addition, by utilizing H3K27ac as the target epigenomic change we were also able to identify new epigenomic reprogramming at super-enhancers. Finally, we report for the first time that the upregulation of p21 (Cdkn1a) in the injured neonatal lung could be mediated through gain of H3K27ac. These data demonstrate that modulation of transcription via epigenomic landscape alterations may contribute to the sex-specific differences in preterm neonatal hyperoxic lung injury and repair.
Collapse
Affiliation(s)
- Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA.
| | - Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA
| | - Tiffany Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Obstetrics and Gynecology Department, Baylor College of Medicine, Houston, USA
| | - Yuhao Zhang
- Pediatrics/Neonatology, Baylor College of Medicine, Houston, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA
| | - Cheryl L Walker
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA
| | | | | |
Collapse
|
24
|
Takahashi S, Nobuhisa I, Saito K, Gerel M, Itabashi A, Harada K, Osawa M, Endo TA, Iwama A, Taga T. Sox17-mediated expression of adherent molecules is required for the maintenance of undifferentiated hematopoietic cluster formation in midgestation mouse embryos. Differentiation 2020; 115:53-61. [PMID: 32891959 DOI: 10.1016/j.diff.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Kiyoka Saito
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Melig Gerel
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayumi Itabashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kaho Harada
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mitsujiro Osawa
- Clinical Application Department, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takaho A Endo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
25
|
Deciphering human macrophage development at single-cell resolution. Nature 2020; 582:571-576. [DOI: 10.1038/s41586-020-2316-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
|
26
|
Klomp J, Hyun J, Klomp JE, Pajcini K, Rehman J, Malik AB. Comprehensive transcriptomic profiling reveals SOX7 as an early regulator of angiogenesis in hypoxic human endothelial cells. J Biol Chem 2020; 295:4796-4808. [PMID: 32071080 DOI: 10.1074/jbc.ra119.011822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Indexed: 01/24/2023] Open
Abstract
Endothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia. We observed that hypoxia modulates the expression levels of approximately one-third of the EC transcriptome. Intriguingly, expression of the gene encoding the developmental transcription factor SOX7 (SRY-box transcription factor 7) rapidly and transiently increased during hypoxia. Transcriptomic and functional analyses of ECs following SOX7 depletion established its critical role in regulating hypoxia-induced angiogenesis. We also observed that depletion of the hypoxia-inducible factor (HIF) genes, HIF1A (encoding HIF-1α) and endothelial PAS domain protein 1 (EPAS1 encoding HIF-2α), inhibited both distinct and overlapping transcriptional programs. Our results indicated a role for HIF-1α in down-regulating mitochondrial metabolism while concomitantly up-regulating glycolytic genes, whereas HIF-2α primarily up-regulated the angiogenesis transcriptional program. These results identify the concentration and time dependence of the endothelial transcriptomic response to hypoxia and an early key role for SOX7 in mediating angiogenesis.
Collapse
Affiliation(s)
- Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - James Hyun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jennifer E Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Kostandin Pajcini
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612 .,Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| |
Collapse
|
27
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
28
|
Higashijima Y, Kanki Y. Molecular mechanistic insights: The emerging role of SOXF transcription factors in tumorigenesis and development. Semin Cancer Biol 2019; 67:39-48. [PMID: 31536760 DOI: 10.1016/j.semcancer.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 09/15/2019] [Indexed: 01/22/2023]
Abstract
Over the last decade, the development and progress of next-generation sequencers incorporated with classical biochemical analyses have drastically produced novel insights into transcription factors, including Sry-like high-mobility group box (SOX) factors. In addition to their primary functions in binding to and activating specific downstream genes, transcription factors also participate in the dedifferentiation or direct reprogramming of somatic cells to undifferentiated cells or specific lineage cells. Since the discovery of SOX factors, members of the SOXF (SOX7, SOX17, and SOX18) family have been identified to play broad roles, especially with regard to cardiovascular development. More recently, SOXF factors have been recognized as crucial players in determining the cell fate and in the regulation of cancer cells. Here, we provide an overview of research on the mechanism by which SOXF factors regulate development and cancer, and discuss their potential as new targets for cancer drugs while offering insight into novel mechanistic transcriptional regulation during cell lineage commitment.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
29
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
30
|
Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells Dev 2019; 28:1089-1103. [PMID: 31154937 DOI: 10.1089/scd.2019.0040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Specification of the mesodermal lineages requires a complex set of morphogenetic events orchestrated by interconnected signaling pathways and gene regulatory networks. The transcription factor Sox7 has critical functions in differentiation of multiple mesodermal lineages, including cardiac, endothelial, and hematopoietic. Using a doxycycline-inducible mouse embryonic stem cell line, we have previously shown that expression of Sox7 in cardiovascular progenitor cells promotes expansion of endothelial progenitor cells (EPCs). In this study, we show that the ability of Sox7 to promote endothelial cell fate occurs at the expense of the cardiac lineage. Using ChIP-Seq coupled with ATAC-Seq we identify downstream target genes of Sox7 in cardiovascular progenitor cells and by integrating these data with transcriptomic analyses, we define Sox7-dependent gene programs specific to cardiac and EPCs. Furthermore, we demonstrate a protein-protein interaction between SOX7 and GATA4 and provide evidence that SOX7 interferes with the transcriptional activity of GATA4 on cardiac genes. In addition, we show that Sox7 modulates WNT and BMP signaling during cardiovascular differentiation. Our data represent the first genome-wide analysis of Sox7 function and reveal a critical role for Sox7 in regulating signaling pathways that affect cardiovascular progenitor cell differentiation.
Collapse
Affiliation(s)
- Michelle J Doyle
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Magli
- 2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.,3Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Nima Estharabadi
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Danielle Amundsen
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Lauren J Mills
- 4Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Cindy M Martin
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
31
|
Hamidi S, Sheng G. Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. J Biochem 2018; 164:265-275. [PMID: 30020470 DOI: 10.1093/jb/mvy063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process of cells that adopt an epithelial organization in their developmental ontogeny or homeostatic maintenance. Abnormalities in EMT regulation result in many malignant tumours in the human body. Tumours associated with the haematopoietic system, however, are traditionally not considered to involve EMT and haematopoietic stem cells (HSCs) are generally not associated with epithelial characteristics. In this review, we discuss the ontogeny and homeostasis of adult HSCs in the context of EMT intermediate states. We provide evidence that cell polarity regulation is critical for both HSC formation from embryonic dorsal aorta and HSC self-renewal and differentiation in adult bone marrow. HSC polarity is controlled by the same set of surface and transcriptional regulators as those described in canonical EMT processes. With an emphasis on partial EMT, we propose that the concept of EMT can be similarly applied in the study of HSC generation, maintenance and pathogenesis.
Collapse
Affiliation(s)
- Sofiane Hamidi
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Chen B, Teng J, Liu H, Pan X, Zhou Y, Huang S, Lai M, Bian G, Mao B, Sun W, Zhou Q, Yang S, Nakahata T, Ma F. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J Mol Cell Biol 2018; 9:262-273. [PMID: 28992293 DOI: 10.1093/jmcb/mjx032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models.
Collapse
Affiliation(s)
- B Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiawen Teng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Hongwei Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - X Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Y Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
33
|
SOX7 Target Genes and Their Contribution to Its Tumor Suppressive Function. Int J Mol Sci 2018; 19:ijms19051451. [PMID: 29757932 PMCID: PMC5983648 DOI: 10.3390/ijms19051451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
SOX7 is a transcription factor and acts as a tumor suppressor, but its target genes in cancers are poorly explored. We revealed SOX7-mediated gene expression profile in breast cancer cells using microarray chips and discovered multiple altered signaling pathways. When combinatorially analyzing the microarray data with a gene array dataset from 759 breast cancer patients, we identified four genes as potential targets of SOX7 and validated them by quantitative PCR and chromatin immunoprecipitation assays. Among these four genes, we determined that SOX7-activated SPRY1 and SLIT2, and SOX7-repressed TRIB3 and MTHFD2 could all differentially contribute to SOX7-mediated tumor suppression. Overall, we identified multiple cancer-related pathways mediated by SOX7 and for the first time revealed SOX7-regulated target genes in a cancer-relevant context.
Collapse
|
34
|
Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 9:513-527. [PMID: 28793247 PMCID: PMC5550222 DOI: 10.1016/j.stemcr.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Understanding molecules involved in differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes and endothelial cells is important in advancing hPSCs for cell therapy and drug testing. Here, we report that LGR5, a leucine-rich repeat-containing G-protein-coupled receptor, plays a critical role in hPSC differentiation into cardiomyocytes and endothelial cells. LGR5 expression was transiently upregulated during the early stage of cardiomyocyte differentiation, and knockdown of LGR5 resulted in reduced expression of cardiomyocyte-associated markers and poor cardiac differentiation. In contrast, knockdown of LGR5 promoted differentiation of endothelial-like cells with increased expression of endothelial cell markers and appropriate functional characteristics, including the ability to form tube-like structures and to take up acetylated low-density lipoproteins. Furthermore, knockdown of LGR5 significantly reduced the proliferation of differentiated cells and increased the nuclear translocation of β-catenin and expression of Wnt signaling-related genes. Therefore, regulation of LGR5 may facilitate efficient generation of cardiomyocytes or endothelial cells from hPSCs. LGR5 expression is upregulated in the early stage of cardiomyocyte differentiation Knockdown of LGR5 inhibits differentiation of cardiomyocytes Knockdown of LGR5 increases differentiation of endothelial cells Knockdown of LGR5 decreases the expression of Wnt signaling-related genes
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Cinsley Gentillon
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Lie-A-Ling M, Marinopoulou E, Lilly AJ, Challinor M, Patel R, Lancrin C, Kouskoff V, Lacaud G. Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development 2018; 145:dev149419. [PMID: 29530939 PMCID: PMC5868988 DOI: 10.1242/dev.149419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
During ontogeny, hematopoietic stem and progenitor cells arise from hemogenic endothelium through an endothelial-to-hematopoietic transition that is strictly dependent on the transcription factor RUNX1. Although it is well established that RUNX1 is essential for the onset of hematopoiesis, little is known about the role of RUNX1 dosage specifically in hemogenic endothelium and during the endothelial-to-hematopoietic transition. Here, we used the mouse embryonic stem cell differentiation system to determine if and how RUNX1 dosage affects hemogenic endothelium differentiation. The use of inducible Runx1 expression combined with alterations in the expression of the RUNX1 co-factor CBFβ allowed us to evaluate a wide range of RUNX1 levels. We demonstrate that low RUNX1 levels are sufficient and necessary to initiate an effective endothelial-to-hematopoietic transition. Subsequently, RUNX1 is also required to complete the endothelial-to-hematopoietic transition and to generate functional hematopoietic precursors. In contrast, elevated levels of RUNX1 are able to drive an accelerated endothelial-to-hematopoietic transition, but the resulting cells are unable to generate mature hematopoietic cells. Together, our results suggest that RUNX1 dosage plays a pivotal role in hemogenic endothelium maturation and the establishment of the hematopoietic system.
Collapse
Affiliation(s)
- Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Mairi Challinor
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Rahima Patel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Christophe Lancrin
- EMBL Rome, Epigenetics and Neurobiology Unit, Campus Adriano Buzzati-Traverso Via Ramarini 32, 00015 Monterotondo, Italy
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
36
|
Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells 2018; 7:cells7020009. [PMID: 29385069 PMCID: PMC5850097 DOI: 10.3390/cells7020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells. In our previous work, we used a novel hemangioblast-specific reporter to isolate the population of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays. Here we report the microarray profile analysis and the identification of upregulated genes not yet described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1, the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1, the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage. Future research into the function of these newly identified genes may reveal novel important regulators of hemangioblast development.
Collapse
|
37
|
Fan R, He H, Yao W, Zhu Y, Zhou X, Gui M, Lu J, Xi H, Deng Z, Fan M. SOX7 Suppresses Wnt Signaling by Disrupting β-Catenin/BCL9 Interaction. DNA Cell Biol 2017; 37:126-132. [PMID: 29271667 DOI: 10.1089/dna.2017.3866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Wnt signaling is involved in angiogenesis and tumor development. β-catenin is the core component of the Wnt pathway, which mediates oncogenic transcription and regulated by a series of proteins. Sex-determining region Y-box 7 (SOX7) is a member of high-mobility-group transcription factor family, which inhibits oncogenic Wnt signaling in lots of tumor cells with unknown mechanism. By coimmunoprecipitation (co-IP) and super Topflash reporter assay, SOX7 can bind β-catenin and inhibit β-catenin/T cell factor (TCF)-mediated transcription. Meanwhile, B cell lymphoma 9 (BCL9) drives Wnt signaling path through direct binding-mediated β-catenin. Finally, we found that SOX7 inhibits oncogenic β-catenin-mediated transcription by disrupting the β-catenin/BCL9 interaction. Mechanistically, SOX7 compete with BCL9 to bind β-catenin. Our results show SOX7 inhibited Wnt signaling as suppressor and could be an important target for anticancer therapy.
Collapse
Affiliation(s)
- Rong Fan
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - HaiYan He
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Wang Yao
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - YanFeng Zhu
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - XunJie Zhou
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - MingTai Gui
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Jing Lu
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Hao Xi
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - ZhongLong Deng
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Min Fan
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| |
Collapse
|
38
|
Rajgara RF, Lala-Tabbert N, Marchildon F, Lamarche É, MacDonald JK, Scott DA, Blais A, Skerjanc IS, Wiper-Bergeron N. SOX7 Is Required for Muscle Satellite Cell Development and Maintenance. Stem Cell Reports 2017; 9:1139-1151. [PMID: 28943254 PMCID: PMC5639291 DOI: 10.1016/j.stemcr.2017.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023] Open
Abstract
Satellite cells are skeletal-muscle-specific stem cells that are activated by injury to proliferate, differentiate, and fuse to enable repair. SOX7, a member of the SRY-related HMG-box family of transcription factors is expressed in quiescent satellite cells. To elucidate SOX7 function in skeletal muscle, we knocked down Sox7 expression in embryonic stem cells and primary myoblasts and generated a conditional knockout mouse in which Sox7 is excised in PAX3+ cells. Loss of Sox7 in embryonic stem cells reduced Pax3 and Pax7 expression. In vivo, conditional knockdown of Sox7 reduced the satellite cell population from birth, reduced myofiber caliber, and impaired regeneration after acute injury. Although Sox7-deficient primary myoblasts differentiated normally, impaired myoblast fusion and increased sensitivity to apoptosis in culture and in vivo were observed. Taken together, these results indicate that SOX7 is dispensable for myogenesis but is necessary to promote satellite cell development and survival.
Collapse
Affiliation(s)
- Rashida F Rajgara
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Graduate Program in Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - François Marchildon
- Graduate Program in Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Émilie Lamarche
- Graduate Program in Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jennifer K MacDonald
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
39
|
Li Y, Zhu G, Zeng W, Wang J, Li Z, Wang B, Tian B, Lu D, Zhang X, Gao G, Li L. Long noncoding RNA AB073614 promotes the malignance of glioma by activating Wnt/β-catenin signaling through downregulating SOX7. Oncotarget 2017; 8:65577-65587. [PMID: 29029454 PMCID: PMC5630354 DOI: 10.18632/oncotarget.19305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA (lncRNA) AB073614 has recently shown to be aberrantly increased and identified as a poor prognostic biomarker in human glioma. However, the potential mechanisms remain unknown. This study demonstrated that AB073614 expression was significantly upregulated in both glioma tissues and cell lines, and glioma patients with high AB073614 expression had lower overall survival rates. Importantly, silencing AB073614 expression remarkably inhibited U251 cell proliferation, migration, and invasion in vitro, as well as suppressed tumor formation in vivo. The level of AB073614 was found to correlate inversely with sex-determining region Y-box 7 (SOX7) expression but correlate positively with Wnt/β-catenin signaling activity. Of note, the data showed that the inhibition of SOX7 could reverse the tumor-suppressive effect of the silencing AB073614 on glioma in vitro and in vivo. Furthermore, the results indicated that AB073614 induced Wnt/β-catenin signaling activity by repressing SOX7 expression. In conclusion, the findings demonstrated that AB073614 promoted the progression of glioma by targeting SOX7 to activate the Wnt/β-catenin signaling pathway, suggesting that the inhibition of AB073614 might be a potential target for therapeutic intervention in glioma patients.
Collapse
Affiliation(s)
- Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Wen Zeng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhihong Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Bo Tian
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Dan Lu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xingye Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
40
|
Lilly AJ, Lacaud G, Kouskoff V. SOXF transcription factors in cardiovascular development. Semin Cell Dev Biol 2017; 63:50-57. [PMID: 27470491 DOI: 10.1016/j.semcdb.2016.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Cardiovascular development during embryogenesis involves complex changes in gene regulatory networks regulated by a variety of transcription factors. In this review we discuss the various reported roles of the SOXF factors: SOX7, SOX17 and SOX18 in cardiac, vascular and lymphatic development. SOXF factors have pleiotropic roles during these processes, and there is significant redundancy and functional compensation between SOXF family members. Despite this, evidence suggests that there is some specificity in the transcriptional programs they regulate which is necessary to control the differentiation and behaviour of endothelial subpopulations. Furthermore, SOXF factors appear to have an indirect role in regulating cardiac mesoderm specification and differentiation. Understanding how SOXF factors are regulated, as well as their downstream transcriptional target genes, will be important for unravelling their roles in cardiovascular development and related diseases.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK, Stem Cell Biology group Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK.
| |
Collapse
|
41
|
Lilly AJ, Costa G, Largeot A, Fadlullah MZH, Lie-A-Ling M, Lacaud G, Kouskoff V. Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac. Development 2016; 143:4341-4351. [PMID: 27802172 DOI: 10.1242/dev.140970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/12/2016] [Indexed: 02/01/2023]
Abstract
Endothelial to hematopoietic transition (EHT) is a dynamic process involving the shutting down of endothelial gene expression and switching on of hematopoietic gene transcription. Although the factors regulating EHT in hemogenic endothelium (HE) of the dorsal aorta have been relatively well studied, the molecular regulation of yolk sac HE remains poorly understood. Here, we show that SOX7 inhibits the expression of RUNX1 target genes in HE, while having no effect on RUNX1 expression itself. We establish that SOX7 directly interacts with RUNX1 and inhibits its transcriptional activity. Through this interaction we demonstrate that SOX7 hinders RUNX1 DNA binding as well as the interaction between RUNX1 and its co-factor CBFβ. Finally, we show by single-cell expression profiling and immunofluorescence that SOX7 is broadly expressed across the RUNX1+ yolk sac HE population compared with SOX17. Collectively, these data demonstrate for the first time how direct protein-protein interactions between endothelial and hematopoietic transcription factors regulate contrasting transcriptional programs during HE differentiation and EHT.
Collapse
Affiliation(s)
- Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Guilherme Costa
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Anne Largeot
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
42
|
Garcia-Alegria E, Menegatti S, Batta K, Cuvertino S, Florkowska M, Kouskoff V. Emerging concepts for the in vitro derivation of murine haematopoietic stem and progenitor cells. FEBS Lett 2016; 590:4116-4125. [PMID: 27404333 DOI: 10.1002/1873-3468.12300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 02/11/2024]
Abstract
Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation. However, lack of compatible donors often means that patients remain on transplantation waiting lists for too long. The in vitro derivation of haematopoietic stem cells offers the possibility to generate tailor-made cells for the treatment of these patients. Promising approaches to generate in vitro-derived blood progenitors include the directed differentiation of pluripotent stem cells and the reprogramming of somatic cells.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Menegatti
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Cuvertino
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| |
Collapse
|
43
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
44
|
Cuvertino S, Filiciotto G, Masurekar A, Saha V, Lacaud G, Kouskoff V. SOX7 promotes the maintenance and proliferation of B cell precursor acute lymphoblastic cells. Oncotarget 2016; 8:64974-64983. [PMID: 29029405 PMCID: PMC5630305 DOI: 10.18632/oncotarget.10472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent type of cancer in children. Despite progresses in curative treatment, intensive chemotherapy regimens still cause life threatening complications. A better understanding of the molecular mechanisms underlying the emergence and maintenance of BCP-ALL is fundamental for the development of novel therapies. Here, we establish that SOX7 is frequently and specifically expressed in BCP-ALL and that the expression of this transcription factor does not correlate with any specific cytogenetic abnormalities. Using human leukemia model systems, we establish that the down-regulation of SOX7 in BCP-ALL causes a significant decrease in proliferation and clonogenicity in vitro that correlates with a delay in leukemia initiation and burden in vivo. Overall, these results identify a novel and important functional role for the transcription factor SOX7 in promoting the maintenance of BCP-ALL.
Collapse
Affiliation(s)
- Sara Cuvertino
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.,Present address: Genetic Medicine, Institute of Human Development, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK
| | - Genny Filiciotto
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Ashish Masurekar
- Children's Cancer Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, UK
| | - Vaskar Saha
- Children's Cancer Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, UK.,TCS Translational Cancer Research Centre, Tata Medical Centre, Kolkata 700156, India
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
45
|
Cuvertino S, Lacaud G, Kouskoff V. SOX7-enforced expression promotes the expansion of adult blood progenitors and blocks B-cell development. Open Biol 2016; 6:160070. [PMID: 27411892 PMCID: PMC4967825 DOI: 10.1098/rsob.160070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022] Open
Abstract
During embryogenesis, the three SOXF transcription factors, SOX7, SOX17 and SOX18, regulate the specification of the cardiovascular system and are also involved in the development of haematopoiesis. The ectopic expression of SOX17 in both embryonic and adult blood cells enhances self-renewal. Likewise, the enforced expression of SOX7 during embryonic development promotes the proliferation of early blood progenitors and blocks lineage commitment. However, whether SOX7 expression can also affect the self-renewal of adult blood progenitors has never been explored. In this study, we demonstrate using an inducible transgenic mouse model that the enforced expression of Sox7 ex vivo in bone marrow/stroma cell co-culture promotes the proliferation of blood progenitors which retain multi-lineage short-term engrafting capacity. Furthermore, SOX7 expression induces a profound block in the generation of B lymphocytes. Correspondingly, the ectopic expression of SOX7 in vivo results in dramatic alterations of the haematopoietic system, inducing the proliferation of blood progenitors in the bone marrow while blocking B lymphopoiesis. In addition, SOX7 expression induces extra-medullary haematopoiesis in the spleen and liver. Together, these data demonstrate that the uncontrolled expression of the transcription factor SOX7 in adult haematopoietic cells has dramatic consequences on blood homeostasis.
Collapse
Affiliation(s)
- Sara Cuvertino
- Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
46
|
Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, Yang X, Nakamura M, Wang J, Zhuang R, Morikawa H, Xue Y, Braun H, Beyaert R, Samani N, Nakae S, Hams E, Dissing S, Fallon PG, Langer R, Cao Y. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun 2016; 7:11385. [PMID: 27150562 PMCID: PMC4859070 DOI: 10.1038/ncomms11385] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Signalling molecules and pathways that mediate crosstalk between various tumour cellular compartments in cancer metastasis remain largely unknown. We report a mechanism of the interaction between perivascular cells and tumour-associated macrophages (TAMs) in promoting metastasis through the IL-33–ST2-dependent pathway in xenograft mouse models of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription factor in PDGF-BB-stimulated pericytes. Gain- and loss-of-function experiments validate that IL-33 promotes metastasis through recruitment of TAMs. Pharmacological inhibition of the IL-33–ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis. These findings shed light on the role of tumour stroma in promoting metastasis and have therapeutic implications for cancer therapy. Elevated IL-33 levels have been correlated with metastasis and poor prognosis. Here the authors show in mouse tumour xenograft models that PDGF-BB produced by tumour cells induces IL-33 via Sox7 in tumour pericytes, and IL-33 promotes metastasis through its effects on tumour-associated macrophages.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Renhai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Xiaojuan Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Rujie Zhuang
- The TCM Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Hiromasa Morikawa
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yuan Xue
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Harald Braun
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Steen Dissing
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK.,Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
47
|
Largeot A, Perez-Campo FM, Marinopoulou E, Lie-a-Ling M, Kouskoff V, Lacaud G. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Exp Hematol 2016; 44:231-7.e4. [PMID: 26854485 PMCID: PMC4819447 DOI: 10.1016/j.exphem.2015.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
Abstract
The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16(INK4a) transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16(INK4a) transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16(INK4a) and p19(ARF)), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells.
Collapse
Affiliation(s)
- Anne Largeot
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Flor Maria Perez-Campo
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK.
| | - Elli Marinopoulou
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael Lie-a-Ling
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
48
|
Thambyrajah R, Mazan M, Patel R, Moignard V, Stefanska M, Marinopoulou E, Li Y, Lancrin C, Clapes T, Möröy T, Robin C, Miller C, Cowley S, Göttgens B, Kouskoff V, Lacaud G. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat Cell Biol 2016; 18:21-32. [PMID: 26619147 DOI: 10.1038/ncb3276] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
In vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process. We first demonstrate that Gfi1 expression specifically defines the rare population of HE that generates emerging HSCs. We further establish that in the absence of GFI1 proteins, HSCs and haematopoietic progenitor cells are not produced in the AGM, revealing the critical requirement for GFI1 proteins in intra-embryonic EHT. Finally, we demonstrate that GFI1 proteins recruit the chromatin-modifying protein LSD1, a member of the CoREST repressive complex, to epigenetically silence the endothelial program in HE and allow the emergence of blood cells.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Milena Mazan
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rahima Patel
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research &Wellcome Trust and MRC Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Monika Stefanska
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Yaoyong Li
- CRUK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Christophe Lancrin
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
- European Molecular Biology Laboratory, Mouse Biology Unit, 00015 Monterotondo, Italy
| | - Thomas Clapes
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM) and département de microbiologie et immunologie, Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Catherine Robin
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Crispin Miller
- CRUK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Shaun Cowley
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research &Wellcome Trust and MRC Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
49
|
Fleury M, Eliades A, Carlsson P, Lacaud G, Kouskoff V. FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development 2015; 142:3307-20. [PMID: 26293303 DOI: 10.1242/dev.124685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.
Collapse
Affiliation(s)
- Maud Fleury
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexia Eliades
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
50
|
Abstract
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE -cadherin-mediated contacts. VE -cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE -cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE -cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE -cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.
Collapse
|