1
|
Isogai T, Murali VS, Zhou F, Wang X, Rajendran D, Perez-Castro L, Venkateswaran N, Conacci-Sorrell M, Danuser G. Anchorage-independent cell proliferation promoted by fascin's F-actin bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592404. [PMID: 38746129 PMCID: PMC11092747 DOI: 10.1101/2024.05.04.592404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.
Collapse
|
2
|
Burgess SG, Paul NR, Richards MW, Ault JR, Askenatzis L, Claydon SG, Corbyn R, Machesky LM, Bayliss R. A nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. Open Biol 2024; 14:230376. [PMID: 38503329 PMCID: PMC10960945 DOI: 10.1098/rsob.230376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024] Open
Abstract
Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third β-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.
Collapse
Affiliation(s)
- Selena G. Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nikki R. Paul
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Mark W. Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James R. Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laurie Askenatzis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sophie G. Claydon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ryan Corbyn
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M. Machesky
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Brücker L, Becker SK, Maissl V, Harms G, Parsons M, May-Simera HL. The actin-bundling protein Fascin-1 modulates ciliary signalling. J Mol Cell Biol 2023; 15:mjad022. [PMID: 37015875 PMCID: PMC10485897 DOI: 10.1093/jmcb/mjad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 04/06/2023] Open
Abstract
Primary cilia are microtubule-based cell organelles important for cellular communication. Since they are involved in the regulation of numerous signalling pathways, defects in cilia development or function are associated with genetic disorders, collectively called ciliopathies. Besides their ciliary functions, recent research has shown that several ciliary proteins are involved in the coordination of the actin cytoskeleton. Although ciliary and actin phenotypes are related, the exact nature of their interconnection remains incompletely understood. Here, we show that the protein BBS6, associated with the ciliopathy Bardet-Biedl syndrome, cooperates with the actin-bundling protein Fascin-1 in regulating filopodia and ciliary signalling. We found that loss of Bbs6 affects filopodia length potentially via attenuated interaction with Fascin-1. Conversely, loss of Fascin-1 leads to a ciliary phenotype, subsequently affecting ciliary Wnt signalling, possibly in collaboration with BBS6. Our data shed light on how ciliary proteins are involved in actin regulations and provide new insight into the involvement of the actin regulator Fascin-1 in ciliogenesis and cilia-associated signalling. Advancing our knowledge of the complex regulations between primary cilia and actin dynamics is important to understand the pathogenic consequences of ciliopathies.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefanie Kornelia Becker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Vanessa Maissl
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Gregory Harms
- Imaging Core Facility, Cell Biology Unit, University Medical Centre, Johannes Gutenberg University Mainz, 55101 Mainz, Germany
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
4
|
Haage A, Tanentzapf G. Analysis of Integrin-Dependent Melanoblast Migration During Development. Methods Mol Biol 2023; 2608:207-221. [PMID: 36653710 DOI: 10.1007/978-1-0716-2887-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neural crest is a transient embryonic structure that gives rise to a number of important cell types and tissues, including most of the peripheral and enteric nervous systems, pigment-producing skin cells known as melanocytes, and many craniofacial structures. Melanoblasts, the precursors of melanocytes, are derived from the so-called trunk neural crest cells. These cells delaminate and migrate along a dorsolateral pathway to colonize their final destination in the skin, and consequently, defects in melanoblast migration result in pigmentation defects. Studying melanocyte migration is a topic of great interest due to the involvement of melanocytes in highly metastatic skin cancer. A role for integrin-mediated adhesion is well established in neural crest migration, and our recent work has provided direct evidence for a key role for integrin-based adhesion in melanocyte migration. Imaging of melanoblast migration in the context of intact skin has proven to be a particularly powerful tool to study integrin-based adhesion during melanoblast migration. Here, we describe the use of skin explants combined with genetically encoded markers for melanocytes and high-resolution live imaging as a powerful and informative approach to analyze melanoblast migration in an ex vivo context.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhang N, Bian Q, Gao Y, Wang Q, Shi Y, Li X, Ma X, Chen H, Zhao Z, Yu H. The Role of Fascin-1 in Human Urologic Cancers: A Promising Biomarker or Therapeutic Target? Technol Cancer Res Treat 2023; 22:15330338231175733. [PMID: 37246525 PMCID: PMC10240877 DOI: 10.1177/15330338231175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qiang Bian
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yankun Gao
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qianqian Wang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiangling Li
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiaolei Ma
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Huiyuan Chen
- College of Radiology, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong, People's Republic of China
| |
Collapse
|
6
|
Diazzi S, Baeri A, Fassy J, Lecacheur M, Marin-Bejar O, Girard CA, Lefevre L, Lacoux C, Irondelle M, Mounier C, Truchi M, Couralet M, Ohanna M, Carminati A, Berestjuk I, Larbret F, Gilot D, Vassaux G, Marine JC, Deckert M, Mari B, Tartare-Deckert S. Blockade of the pro-fibrotic reaction mediated by the miR-143/-145 cluster enhances the responses to targeted therapy in melanoma. EMBO Mol Med 2022; 14:e15295. [PMID: 35156321 PMCID: PMC8899916 DOI: 10.15252/emmm.202115295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Lineage dedifferentiation toward a mesenchymal‐like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti‐fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK‐targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR‐143/‐145 pro‐fibrotic cluster as a driver of this mesenchymal‐like phenotype. Upregulation of the miR‐143/‐145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR‐143‐3p and miR‐145‐5p, collaborated to mediate transition toward a drug‐resistant undifferentiated mesenchymal‐like state by targeting Fascin actin‐bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA‐mediated regulatory network that contributes to non‐genetic adaptive drug resistance and provides proof of principle that preventing MAPKi‐induced pro‐fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.
Collapse
Affiliation(s)
- Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Alberto Baeri
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Julien Fassy
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Oskar Marin-Bejar
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Lauren Lefevre
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Caroline Lacoux
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | | | - Carine Mounier
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,CYU Université, ERRMECe (EA1391), Neuville-sur-Oise, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Marie Couralet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Mickael Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Alexandrine Carminati
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Frederic Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - David Gilot
- INSERM U1242, University of Rennes, Rennes, France
| | - Georges Vassaux
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,FHU-OncoAge, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France.,FHU-OncoAge, Nice, France
| |
Collapse
|
7
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Ahmed HA, Mohammed Assiri A, Broering DC. Targeting Interleukin-10 Restores Graft Microvascular Supply and Airway Epithelium in Rejecting Allografts. Int J Mol Sci 2022; 23:1269. [PMID: 35163192 PMCID: PMC8836023 DOI: 10.3390/ijms23031269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and β-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and β-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and β-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, β-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Mohammad Afzal Khan
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Talal Shamma
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Abdullah Altuhami
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 12713, Saudi Arabia
| | - Dieter Clemens Broering
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| |
Collapse
|
8
|
Li CH, Chan MH, Liang SM, Chang YC, Hsiao M. Fascin-1: Updated biological functions and therapeutic implications in cancer biology. BBA ADVANCES 2022; 2:100052. [PMID: 37082587 PMCID: PMC10074911 DOI: 10.1016/j.bbadva.2022.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Filopodia are cellular protrusions that respond to a variety of stimuli. Filopodia are formed when actin is bound to the protein Fascin, which may play a crucial role in cellular interactions and motility during cancer metastasis. Significantly, the noncanonical features of Fascin-1 are gradually being clarified, including the related molecular network contributing to metabolic reprogramming, chemotherapy resistance, stemness ac-tivity, and tumor microenvironment events. However, the relationship between biological characteristics and pathological features to identify effective therapeutic strategies needs to be studied further. The pur-pose of this review article is to provide a broad overview of the latest molecular networks and multiomics research regarding fascins and cancer. It also highlights their direct and indirect effects on available cancer treatments. With this multidisciplinary approach, researchers and clinicians can gain the most relevant in-formation on the function of fascins in cancer progression, which may facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Corresponding authors.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding authors.
| |
Collapse
|
9
|
Ma K, Zhang C, Li W. Fascin1 mediated release of pro-inflammatory cytokines and invasion/migration in rheumatoid arthritis via the STAT3 pathway. Cell Cycle 2021; 20:2210-2220. [PMID: 34499588 PMCID: PMC8794504 DOI: 10.1080/15384101.2021.1974790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, multi-factorial disease characterized by Synovial hyperplasia, chronic inflammation, and autoimmune reaction. Fascin1 overexpression has been implicated in cancer, immune, and inflammatory diseases. However, the relationship between Fascin1 and rheumatoid arthritis (RA) has not yet been determined. We investigated whether Fascin1 could modulate pro-inflammatory cytokine secretion and the proliferation, apoptosis, and invasion/migration of fibroblast-like synoviocytes (RA-FLSs). Fascin 1 was suppressed with a short interfering (si)RNA approach. Functional analysis contained MTT assay, flow cytometry,Transwell™ assays, wound healing, Quantitative polymerase chain reaction and western blotting were used to detect cell proliferation,apoptosis ratio, invasion/ migration, the mRNA and protein expression of the realted markers, respectively. Overexpression of fascin1 was observed in RA-FLSs group compared with control group. Fascin1 expression positively correlated with changes in the expression of RA disease activity markers (RF, CRP, and DAB28, respectively). We also observed a significant positive correlation between Fascin1 and STAT3 mRNA levels in RA- FLSs.Fascin1 silencing attenuated the expression of pro-inflammatory cytokines; reduced FLS proliferation in vitro; and increased apoptosis ratio and bax, cleaved PARP, and caspase-3 expression. si- Fascin1 transfection delayed RA-FLS invasion/migration and reversed the epithelial- mesenchymal transition. These data suggest that Fascin1 exerts positive effects on the proliferation, cell cycle, and invasion/migration of RA-FLSs by activating signal transducer and activator of transcription 3 signaling.After all, Fascin1 contributed to RA development.
Collapse
Affiliation(s)
- Kun Ma
- Luoyang Orthopaedic Hospital of Henan Province & Orthopaedic Hospital of Henan Province, Luoyang, Henan, P.R. China
| | - Chuan Zhang
- Luoyang Orthopaedic Hospital of Henan Province & Orthopaedic Hospital of Henan Province, Luoyang, Henan, P.R. China
| | - Wuyin Li
- Luoyang Orthopaedic Hospital of Henan Province & Orthopaedic Hospital of Henan Province, Luoyang, Henan, P.R. China
| |
Collapse
|
10
|
Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, Liu Y, Zhu Z, Zheng M, Jing J. Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Front Pharmacol 2021; 12:729524. [PMID: 34646136 PMCID: PMC8502808 DOI: 10.3389/fphar.2021.729524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
Recent research indicates that after spinal cord injury (SCI), microglia accumulate at the borders of lesions between astrocytic and fibrotic scars and perform inflammation-limiting and neuroprotective functions, however, the mechanism of microglial migration remains unclear. Fascin-1 is a key actin-bundling protein that regulates cell migration, invasion and adhesion, but its role during SCI has not been reported. Here, we found that at 7–14 days after SCI in mice, Fascin-1 is significantly upregulated, mainly distributed around the lesion, and specifically expressed in CX3CR1-positive microglia. However, Fascin-1 is not expressed in GFAP-positive astrocytes, NeuN-positive neurons, NG2-positive cells, PDGFRβ-positive cells, or blood-derived Mac2-positive macrophages infiltrating into the lesion core. The expression of Fascin-1 is correspondingly decreased after microglia are specifically depleted in the injured spinal cord by the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. The upregulation of Fascin-1 expression is observed when microglia are activated by myelin debris in vitro, and microglial migration is prominently increased. The inhibition of Fascin-1 expression using small interfering RNA (siRNA) markedly suppresses the migration of microglia, but this effect can be reversed by treatment with myelin. The M1/M2-like polarization of microglia does not affect the expression of Fascin-1. Together, our results suggest that Fascin-1 is highly expressed specifically in microglia after SCI and can play an important role in the migration of microglia and the formation of microglial scars. Hence, the elucidation of this mechanism will provide novel therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Shuisheng Yu
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Li
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Fei Yao
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Luo
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yanchang Liu
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhenyu Zhu
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Anatomy, Zhongshan School of Medicine, Research Center for Neurobiology, Sun Yat-Sen University, Guangzhou, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
12
|
Kim YW, Ko EA, Jung SC, Lee D, Seo Y, Kim S, Kim JH, Bang H, Zhou T, Ko JH. Transcriptomic insight into the translational value of two murine models in human atopic dermatitis. Sci Rep 2021; 11:6616. [PMID: 33758305 PMCID: PMC7988112 DOI: 10.1038/s41598-021-86049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
This study sought to develop a novel diagnostic tool for atopic dermatitis (AD). Mouse transcriptome data were obtained via RNA-sequencing of dorsal skin tissues of CBA/J mice affected with contact hypersensitivity (induced by treatment with 1-chloro-2,4-dinitrobenzene) or brush stimulation-induced AD-like skin condition. Human transcriptome data were collected from German, Swedish, and American cohorts of AD patients from the Gene Expression Omnibus database. edgeR and SAM algorithms were used to analyze differentially expressed murine and human genes, respectively. The FAIME algorithm was then employed to assign pathway scores based on KEGG pathway database annotations. Numerous genes and pathways demonstrated similar dysregulation patterns in both the murine models and human AD. Upon integrating transcriptome information from both murine and human data, we identified 36 commonly dysregulated differentially expressed genes, which were designated as a 36-gene signature. A severity score (AD index) was applied to each human sample to assess the predictive power of the 36-gene AD signature. The diagnostic power and predictive accuracy of this signature were demonstrated for both AD severity and treatment outcomes in patients with AD. This genetic signature is expected to improve both AD diagnosis and targeted preclinical research.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Korea
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Yelim Seo
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Seongtae Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, 06973, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
13
|
Lamb MC, Tootle TL. Fascin in Cell Migration: More Than an Actin Bundling Protein. BIOLOGY 2020; 9:biology9110403. [PMID: 33212856 PMCID: PMC7698196 DOI: 10.3390/biology9110403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Cell migration is an essential biological process that regulates both development and diseases, such as cancer metastasis. Therefore, understanding the factors that promote cell migration is crucial. One of the factors known to regulate cell migration is the actin-binding protein, Fascin. Fascin is typically thought to promote cell migration through bundling actin to form migratory structures such as filopodia and invadapodia. However, Fascin has many other functions in the cell that may contribute to cell migration. How these novel functions promote cell migration and are regulated is still not well understood. Here, we review the structure of Fascin, the many functions of Fascin and how they may promote cell migration, how Fascin is regulated, and Fascin’s role in diseases such as cancer metastasis. Abstract Fascin, an actin-binding protein, regulates many developmental migrations and contributes to cancer metastasis. Specifically, Fascin promotes cell motility, invasion, and adhesion by forming filopodia and invadopodia through its canonical actin bundling function. In addition to bundling actin, Fascin has non-canonical roles in the cell that are thought to promote cell migration. These non-canonical functions include regulating the activity of other actin-binding proteins, binding to and regulating microtubules, mediating mechanotransduction to the nucleus via interaction with the Linker of the Nucleoskeleton and Cytoskeleton (LINC) Complex, and localizing to the nucleus to regulate nuclear actin, the nucleolus, and chromatin modifications. The many functions of Fascin must be coordinately regulated to control cell migration. While much remains to be learned about such mechanisms, Fascin is regulated by post-translational modifications, prostaglandin signaling, protein–protein interactions, and transcriptional means. Here, we review the structure of Fascin, the various functions of Fascin and how they contribute to cell migration, the mechanisms regulating Fascin, and how Fascin contributes to diseases, specifically cancer metastasis.
Collapse
|
14
|
Papalazarou V, Swaminathan K, Jaber-Hijazi F, Spence H, Lahmann I, Nixon C, Salmeron-Sanchez M, Arnold HH, Rottner K, Machesky LM. The Arp2/3 complex is crucial for colonisation of the mouse skin by melanoblasts. Development 2020; 147:dev194555. [PMID: 33028610 PMCID: PMC7687863 DOI: 10.1242/dev.194555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
The Arp2/3 complex is essential for the assembly of branched filamentous actin, but its role in physiology and development is surprisingly little understood. Melanoblasts deriving from the neural crest migrate along the developing embryo and traverse the dermis to reach the epidermis, colonising the skin and eventually homing within the hair follicles. We have previously established that Rac1 and Cdc42 direct melanoblast migration in vivo We hypothesised that the Arp2/3 complex might be the main downstream effector of these small GTPases. Arp3 depletion in the melanocyte lineage results in severe pigmentation defects in dorsal and ventral regions of the mouse skin. Arp3 null melanoblasts demonstrate proliferation and migration defects and fail to elongate as their wild-type counterparts. Conditional deletion of Arp3 in primary melanocytes causes improper proliferation, spreading, migration and adhesion to extracellular matrix. Collectively, our results suggest that the Arp2/3 complex is absolutely indispensable in the melanocyte lineage in mouse development, and indicate a significant role in developmental processes that require tight regulation of actin-mediated motility.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Farah Jaber-Hijazi
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather Spence
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ines Lahmann
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Hans-Henning Arnold
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Wang L, Yan M, Wu S, Wu X, Bu T, Wong CK, Ge R, Sun F, Cheng CY. Actin binding proteins, actin cytoskeleton and spermatogenesis – Lesson from toxicant models. Reprod Toxicol 2020; 96:76-89. [DOI: 10.1016/j.reprotox.2020.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
|
16
|
McMenamin PG, Shields GT, Seyed-Razavi Y, Kalirai H, Insall RH, Machesky LM, Coupland SE. Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. Invest Ophthalmol Vis Sci 2020; 61:33. [PMID: 32797202 PMCID: PMC7441366 DOI: 10.1167/iovs.61.10.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.
Collapse
Affiliation(s)
- Paul G. McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graham T. Shields
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
17
|
Haage A, Wagner K, Deng W, Venkatesh B, Mitchell C, Goodwin K, Bogutz A, Lefebvre L, Van Raamsdonk CD, Tanentzapf G. Precise coordination of cell-ECM adhesion is essential for efficient melanoblast migration during development. Development 2020; 147:dev.184234. [PMID: 32580934 DOI: 10.1242/dev.184234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND 58202, ND, USA
| | - Kelsey Wagner
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Caitlin Mitchell
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aaron Bogutz
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Lamb MC, Anliker KK, Tootle TL. Fascin regulates protrusions and delamination to mediate invasive, collective cell migration in vivo. Dev Dyn 2020; 249:961-982. [PMID: 32352613 DOI: 10.1002/dvdy.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The actin bundling protein Fascin is essential for developmental cell migrations and promotes cancer metastasis. In addition to bundling actin, Fascin has several actin-independent roles; how these other functions contribute to cell migration remains unclear. Border cell migration during Drosophila oogenesis provides an excellent model to study Fascin's various roles during invasive, collective cell migration. RESULTS On-time border cell migration during Stage 9 requires Fascin (Drosophila Singed). Fascin functions not only within the migrating border cells, but also within the nurse cells, the substrate for this migration. Fascin genetically interacts with the actin elongation factor Enabled to promote on-time Stage 9 migration and overexpression of Enabled suppresses the defects seen with loss of Fascin. Loss of Fascin results in increased, shorter and mislocalized protrusions during migration. Additionally, loss of Fascin inhibits border cell delamination and increases E-Cadherin (Drosophila Shotgun) adhesions on both the border cells and nurse cells. CONCLUSIONS Overall, Fascin promotes on-time border cell migration during Stage 9 and contributes to multiple aspects of this invasive, collective cell migration, including both protrusion dynamics and delamination. These findings have implications beyond Drosophila, as border cell migration has emerged as a model to study mechanisms mediating cancer metastasis.
Collapse
Affiliation(s)
- Maureen C Lamb
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kelsey K Anliker
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Laurent-Gengoux P, Petit V, Aktary Z, Gallagher S, Tweedy L, Machesky L, Larue L. Simulation of melanoblast displacements reveals new features of developmental migration. Development 2018; 145:dev160200. [PMID: 29769218 PMCID: PMC6031402 DOI: 10.1242/dev.160200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/09/2018] [Indexed: 01/17/2023]
Abstract
To distribute and establish the melanocyte lineage throughout the skin and other developing organs, melanoblasts undergo several rounds of proliferation, accompanied by migration through complex environments and differentiation. Melanoblast migration requires interaction with extracellular matrix of the epidermal basement membrane and with surrounding keratinocytes in the developing skin. Migration has been characterized by measuring speed, trajectory and directionality of movement, but there are many unanswered questions about what motivates and defines melanoblast migration. Here, we have established a general mathematical model to simulate the movement of melanoblasts in the epidermis based on biological data, assumptions and hypotheses. Comparisons between experimental data and computer simulations reinforce some biological assumptions, and suggest new ideas for how melanoblasts and keratinocytes might influence each other during development. For example, it appears that melanoblasts instruct each other to allow a homogeneous distribution in the tissue and that keratinocytes may attract melanoblasts until one is stably attached to them. Our model reveals new features of how melanoblasts move and, in particular, suggest that melanoblasts leave a repulsive trail behind them as they move through the skin.
Collapse
Affiliation(s)
- Pascal Laurent-Gengoux
- Laboratory Mathematics in Interaction with Computer Science (MICS), Centrale Supélec, Université Paris Saclay, Gif-sur-Yvette 91190, France
| | - Valérie Petit
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Zackie Aktary
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Stuart Gallagher
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Luke Tweedy
- CRUK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura Machesky
- CRUK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| |
Collapse
|
20
|
Liakath-Ali K, Vancollie VE, Sequeira I, Lelliott CJ, Watt FM. Myosin 10 is involved in murine pigmentation. Exp Dermatol 2018; 28:391-394. [PMID: 29509981 PMCID: PMC6519374 DOI: 10.1111/exd.13528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 12/25/2022]
Abstract
Myosins are molecular motors that are well known for their role in cell movement and contractile functions. Although extensively studied in muscle physiology, little is known about the function of myosins in mammalian skin. As part of the Sanger Institute Mouse Genetics Project, we have identified a role for Myo10 in pigmentation, with a phenotype unlike those of Myo5a or Myo7a. Adult mice homozygous for a disrupted Myo10 allele on a C57BL/6N background displayed a high degree of penetrance for white patches on their abdomen and dorsal surface. Forepaw syndactyly and hind paw syndactyly were also observed in these mice. Tail epidermal wholemounts showed a complete lack of melanocytes in the hair follicles and interfollicular epidermis. Myo10 has previously been implicated in human pigmentation. Our current study reveals involvement of Myo10 in murine skin pigmentation.
Collapse
Affiliation(s)
| | | | - Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | | | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Williams JS, Hsu JY, Rossi CC, Artinger KB. Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration. Dev Biol 2018; 444 Suppl 1:S274-S286. [PMID: 29604249 DOI: 10.1016/j.ydbio.2018.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/13/2023]
Abstract
Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway.
Collapse
Affiliation(s)
- Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica Y Hsu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget 2018; 7:25162-79. [PMID: 27036017 PMCID: PMC5041895 DOI: 10.18632/oncotarget.7301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Fascin-1, an actin-bundling protein, plays an important role in cancer cell migration and invasion; however, the underlying mechanism remains unclear. On the basis of a 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell migration model, it was shown that TPA increased fascin-1 mRNA and protein expression and fascin-1-dependent cell migration. TPA dose- and time-dependently increased PKCδ and STAT3α activation and GSK3β phosphorylation; up-regulated Wnt-1, β-catenin, and STAT3α expression; and increased the nuclear translocation of β-catenin and STAT3α. Rottlerin, a PKCδ inhibitor, abrogated the increases in STAT3α activation and β-catenin and fascin-1 expression. WP1066, a STAT3 inhibitor, suppressed TPA-induced STAT3α DNA binding activity and β-catenin expression. Knockdown of β-catenin attenuated TPA-induced fascin-1 and STAT3α expression as well as cell migration. In addition to MCF-7, migration of Hs578T breast cancer cells was inhibited by silencing fascin-1, β-catenin, and STAT3α expression as well. TPA also induced Wnt-1 expression and secretion, and blocking Wnt-1 signaling abrogated β-catenin induction. DHA pretreatment attenuated TPA-induced cell migration, PKCδ and STAT3α activation, GSK3β phosphorylation, and Wnt-1, β-catenin, STAT3α, and fascin-1 expression. Our results demonstrated that TPA-induced migration is likely associated with the PKCδ and Wnt-1 pathways, which lead to STAT3α activation, GSK3β inactivation, and β-catenin increase and up-regulation of fascin-1 expression. Moreover, the anti-metastatic potential of DHA is partly attributed to its suppression of TPA-activated PKCδ and Wnt-1 signaling.
Collapse
|
23
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Wang B, Fan B, Dai Q, Xu X, Jiang P, Zhu L, Dai H, Yao Z, Xu Z, Liu X. Fascin-1 Contributes to Neuropathic Pain by Promoting Inflammation in Rat Spinal Cord. Neurochem Res 2017; 43:287-296. [PMID: 29052088 DOI: 10.1007/s11064-017-2420-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/17/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a complicated clinical syndrome caused by heterogeneous etiology. Despite the fact that the underlying mechanisms remain elusive, it is well accepted that neuroinflammation plays a critical role in the development of neuropathic pain. Fascin-1, an actin-bundling protein, has been proved to be involved in the processing of diverse biological events including cellular development, immunity, and tumor invasion etc. Recent studies have shown that Fascin-1 participates in antigen presentation and the regulation of pro-inflammatory agents. However, whether Fascin-1 is involved in neuropathic pain has not been reported. In the present study we examined the potential role of Fascin-1 by using a rodent model of chronic constriction injury (CCI). Our results showed that Fascin-1 increased rapidly in dorsal root ganglions (DRG) and spinal cord (SC) after CCI. The increased Fascin-1 widely expressed in DRG, however, it localized predominantly in microglia, seldom in neuron, and hardly in astrocyte in the SC. Intrathecal injection of Fascin-1 siRNA not only suppressed the activation of microglia and the release of pro-inflammatory mediators, but also attenuated the mechanical allodynia and thermal hyperalgesia induced by CCI.
Collapse
Affiliation(s)
- Binbin Wang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qijun Dai
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Xingguo Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peipei Jiang
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Lin Zhu
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Haifeng Dai
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Zhigang Yao
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 2266001, Jiangsu, China.
| |
Collapse
|
25
|
Woodham EF, Paul NR, Tyrrell B, Spence HJ, Swaminathan K, Scribner MR, Giampazolias E, Hedley A, Clark W, Kage F, Marston DJ, Hahn KM, Tait SWG, Larue L, Brakebusch CH, Insall RH, Machesky LM. Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Curr Biol 2017; 27:624-637. [PMID: 28238662 PMCID: PMC5344686 DOI: 10.1016/j.cub.2017.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.
Collapse
Affiliation(s)
- Emma F Woodham
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Nikki R Paul
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Benjamin Tyrrell
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather J Spence
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Michelle R Scribner
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Evangelos Giampazolias
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ann Hedley
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - William Clark
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Stephen W G Tait
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lionel Larue
- Institute Curie, CNRS UMR3347, INSERM U1021, Bat 110, Centre Universitaire, 91405 Orsay Cedex, France
| | - Cord H Brakebusch
- Biotech Research Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Robert H Insall
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
26
|
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res 2016; 29:559-71. [PMID: 27390154 PMCID: PMC5082549 DOI: 10.1111/pcmr.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
Abstract
The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.
Collapse
Affiliation(s)
- Benjamin J Tyrrell
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heather J Spence
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
Petit V, Larue L. Any route for melanoblasts to colonize the skin! Exp Dermatol 2016; 25:669-73. [DOI: 10.1111/exd.13061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Valérie Petit
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| | - Lionel Larue
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| |
Collapse
|
28
|
D'Esposito V, Passaretti F, Perruolo G, Ambrosio MR, Valentino R, Oriente F, Raciti GA, Nigro C, Miele C, Sammartino G, Beguinot F, Formisano P. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function. J Cell Biochem 2016; 116:2408-18. [PMID: 26012576 PMCID: PMC5042100 DOI: 10.1002/jcb.25235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/14/2015] [Indexed: 12/12/2022]
Abstract
Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Federica Passaretti
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Giuseppe Perruolo
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | | | - Rossella Valentino
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Gregory A Raciti
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
29
|
Ma Y, Machesky LM. Fascin1 in carcinomas: Its regulation and prognostic value. Int J Cancer 2015; 137:2534-44. [PMID: 25302416 DOI: 10.1002/ijc.29260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/01/2014] [Indexed: 01/06/2023]
Abstract
Previous cell biological studies demonstrate that the actin bundling protein fascin1 regulates cell motility, migration and invasion. Human studies demonstrate that fascin1 is upregulated in many epithelial cancers. This review gives a brief overview of the role of fascin1 in cell migration and invasion, but focuses mainly on the regulation and clinical relevance of fascin1 in epithelial cancers. Here, we propose fascin1 as a potent prognostic biomarker for breast, colorectal, esophageal cancers and head and neck squamous cell carcinomas. Fascin1 may also be an attractive drug target against these carcinomas in the future, but more studies are needed.
Collapse
Affiliation(s)
- Yafeng Ma
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW2170, New South Wales, Australia
| | - Laura M Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland, United Kingdom
| |
Collapse
|
30
|
Ling XL, Zhang T, Hou XM, Zhao D. Clinicopathological significance of fascin-1 expression in patients with non-small cell lung cancer. Onco Targets Ther 2015; 8:1589-95. [PMID: 26170694 PMCID: PMC4492659 DOI: 10.2147/ott.s84308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Fascin-1 promotes the formation of filopodia, lamellipodia, and microspikes of cell membrane after its cross-linking with F-actin, thereby enhancing the cell movement and metastasis and invasion of tumor cells. This study explored the fascin-1 protein's expression in non-small cell lung cancer (NSCLC) tissues and its relationship with clinical pathology and prognostic indicators. METHODS Immunohistochemical analysis was used to determine the expression of fascin-1 in NSCLC tissues. We used quantitative real-time polymerase chain reaction and western blot analysis to further verify the results. The fascin-1 expression and statistical method for clinical pathological parameters are examined by χ (2). Kaplan-Meier method is used for survival analysis. Cox's Proportional Hazard Model was used to conduct a combined-effect analysis for each covariate. RESULTS In 73 of the 128 cases, NSCLC cancer tissues (57.0%) were found with high expression of fascin-1, which was significantly higher than the adjacent tissues (35/128, 27.3%). The results suggested that the high expression of fascin-1 was significantly correlated with lymph node metastasis (P=0.022) and TNM stage (P=0.042). The high fascin-1 expression patients survived shorter than those NSCLC patients with low fascin-1 expression (P<0.05). Univariate analysis revealed that lymph node metastasis, TNM stage, and fascin-1 expression status were correlated with the overall survival. Similarly, lymph node metastasis, TNM stage, and fascin-1 expression status were significantly associated with the overall survival in multivariate analyses by using the Cox regression model. CONCLUSION The fascin-1 protein may be a useful prognostic indicator and hopeful new target for NSCLC patients.
Collapse
Affiliation(s)
- Xiao-Ling Ling
- Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang), Lanzhou, Gansu Province, People's Republic of China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang), Lanzhou, Gansu Province, People's Republic of China
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang), Lanzhou, Gansu Province, People's Republic of China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang), Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
31
|
Zhao H, Yang F, Zhao W, Zhang C, Liu J. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion. Technol Cancer Res Treat 2015; 15:322-33. [PMID: 25882880 DOI: 10.1177/1533034615580696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/28/2015] [Indexed: 01/04/2023] Open
Abstract
Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Haiying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Fuquan Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunjv Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Abstract
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. Summary: This Review discusses melanocyte development and differentiation, melanocyte stem cells, and the role of the melanocyte lineage in diseases such as melanoma.
Collapse
Affiliation(s)
| | - Ian J Jackson
- MRC Human Genetics Unit and University of Edinburgh Cancer Research UK Cancer Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
33
|
Ma Y, Faller WJ, Sansom OJ, Brown ER, Doig TN, Melton DW, Machesky LM. Fascin expression is increased in metastatic lesions but does not correlate with progression nor outcome in melanoma. Melanoma Res 2015; 25:169-72. [PMID: 25535872 DOI: 10.1097/cmr.0000000000000135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Levels of the actin bundling protein fascin correlate with invasion and metastasis and reveal prognostic value in many epithelial carcinomas. However, we know very little about the potential role of fascin in melanoma. The purpose of this study is to compare fascin expression in primary melanomas and melanoma metastasis. Fascin expression was examined through the immunohistochemistry of paraffin embedded tissue microarrays including 560 cores of primary tumour and metastasis. Fascin expression was significantly elevated in 48 metastases compared with 254 primary tumours (P=0.034). In 187 patients with primary melanomas, fascin was not correlated with survival (P=0.067), whereas low fascin was significantly correlated with the presence of ulceration (P=0.005). Our results indicate that fascin status does not correlate with progression in melanoma. Upregulated fascin expression was detected in melanoma metastases, but was not correlated to patient outcome.
Collapse
Affiliation(s)
- Yafeng Ma
- aBeatson Institute for Cancer Research, Glasgow bEdinburgh Cancer Centre cDepartment of Pathology, NHS Lothian, Western General Hospital dEdinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK eMedical Oncology Group, Ingham Institute for Applied Medical Research, School of Medicine, University of New South Wales, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Gungor-Ordueri NE, Cheng CY. Fascin - An actin binding and bundling protein in the testis and its role in ectoplasmic specialization dynamics. SPERMATOGENESIS 2015; 5:e1002733. [PMID: 26413410 DOI: 10.1080/21565562.2014.1002733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
In the mammalian testis such as in rats, a unique actin-rich cell-cell adherens junction (AJ) known as ectoplasmic specialization (ES) is found in the seminiferous epithelium. ES is conspicuously found between Sertoli cells near the basement membrane known as the basal ES, which together with tight junction (TJ), gap junction, and desmosome constitute the blood-testis barrier (BTB). The BTB, in turn, anatomically divides the seminiferous epithelium into the basal and the adluminal (apical) compartment. On the other hand, ES is also found at the Sertoli-spermatid interface known as apical ES which is the only anchoring device for developing step 8-19 spermatids during spermiogenesis. One of the most typical features of the ES is the array of actin microfilament bundles that lie perpendicular to the Sertoli cell plasma membrane and are sandwiched in-between the cisternae of endoplasmic reticulum and the Sertoli cell plasma membrane. While these actin filament bundles confer the adhesive strength of Sertoli cells at the BTB and also spermatids in the adluminal compartment, they must be rapidly re-organized from their bundled to unbundled/branched configuration and vice versa to provide plasticity to the ES so that preleptotene spermatocytes and spermatids can be transported across the immunological barrier and the adluminal compartment, respectively, during the epithelial cycle of spermatogenesis. Fascin is a family of actin microfilament cross-linking and bundling proteins that is known to confer bundling of parallel actin microfilaments in mammalian cells. A recent report has illustrated the significance of a fascin protein called fascin 1 in actin microfilaments at the ES, pertinent to its role in spermatogenesis (Gungor-Ordueri et al. Am J Physiol Endocrinol Metab 307, E738-753, 2004 (DOI:10.1152/ajpendo.00113.2014). In this Commentary, we critically evaluate these findings in light of the role of fascin in other mammalian cells, providing some insightful information for future investigations.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
35
|
Boer EF, Howell ED, Schilling TF, Jette CA, Stewart RA. Fascin1-dependent Filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet 2015; 11:e1004946. [PMID: 25607881 PMCID: PMC4301650 DOI: 10.1371/journal.pgen.1004946] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/09/2014] [Indexed: 12/03/2022] Open
Abstract
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. During vertebrate embryogenesis, neural crest (NC) cells migrate extensively along stereotypical migration routes and differentiate into diverse derivatives, including the craniofacial skeleton and peripheral nervous system. While defects in NC migration underlie many human birth defects and may be coopted during cancer metastasis, the genetic pathways controlling directional NC migration remain incompletely understood. Filopodia protrusions are thought to act as “cellular antennae” that explore the environment for directional cues to ensure NC cells reach their correct location. To test this idea, we generated zebrafish fascin1a (fscn1a) mutants that have severe loss of filopodia. Surprisingly, we found that most NC cells migrate to their correct locations without robust filopodial protrusions. We found that fscn1a embryos have directional migration defects in a subset of NC cells, resulting in loss of specific craniofacial elements and peripheral neurons. Interestingly, these defects were only observed in ∼20% of fscn1a embryos, but were significantly enhanced by partial loss of the chemokine receptor Cxcr4a or disruption of the localized expression of its ligand Cxcl12b. Our data show that subsets of skeletal and neurogenic NC cells require filopodia to migrate and that fscn1a-dependent filopodia cooperate with chemokine signaling to promote directional migration of a subset of NC cells.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth D. Howell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
36
|
McDaneld TG, Kuehn LA, Thomas MG, Snelling WM, Smith TPL, Pollak EJ, Cole JB, Keele JW. Genomewide association study of reproductive efficiency in female cattle. J Anim Sci 2015; 92:1945-57. [PMID: 24782394 DOI: 10.2527/jas.2012-6807] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reproductive efficiency is of economic importance in commercial beef cattle production, as failure to achieve pregnancy reduces the number of calves marketed per cow exposed. Identification of genetic markers with predictive merit for reproductive success would facilitate early selection of sires with daughters having improved reproductive rate without increasing generation intervals. To identify regions of the genome harboring variation affecting reproductive success, we applied a genomewide association study (GWAS) approach based on the >700,000 SNP marker assay, using a procedure based on genotyping multianimal pools of DNA to increase the number of animals that could be genotyped with available resources. Cows from several populations were classified according to reproductive efficiency, and DNA was pooled within population and phenotype prior to genotyping. Populations evaluated included a research population at the U.S. Meat Animal Research Center, 2 large commercial ranch populations, and a number of smaller populations (<100 head) across the United States. We detected 2 SNP with significant genomewide association (P ≤ 1.49 × 10(-7)), on BTA21 and BTA29, 3 SNP with suggestive associations (P ≤ 2.91 × 10(-6)) on BTA5, and 1 SNP with suggestive association each on BTA1 and BTA25. In addition to our novel findings, we confirmed previously published associations for SNP on BTA-X and all autosomes except 3 (BTA21, BTA22, and BTA28) encompassing substantial breed diversity including Bos indicus and Bos taurus breeds. The study identified regions of the genome associated with reproductive efficiency, which are being targeted for further analysis to develop robust marker systems, and demonstrated that DNA pooling can be used to substantially reduce the cost of GWAS in cattle.
Collapse
Affiliation(s)
- T G McDaneld
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jia D, Huang L, Bischoff J, Moses MA. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. FASEB J 2014; 29:1371-82. [PMID: 25550468 DOI: 10.1096/fj.14-258947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.
Collapse
Affiliation(s)
- Di Jia
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Huang
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce Bischoff
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Marsha A Moses
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Mort RL, Keighren M, Hay L, Jackson IJ. Ex vivo culture of mouse embryonic skin and live-imaging of melanoblast migration. J Vis Exp 2014. [PMID: 24894489 DOI: 10.3791/51352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Melanoblasts are the neural crest derived precursors of melanocytes; the cells responsible for producing the pigment in skin and hair. Melanoblasts migrate through the epidermis of the embryo where they subsequently colonize the developing hair follicles(1,2). Neural crest cell migration is extensively studied in vitro but in vivo methods are still not well developed, especially in mammalian systems. One alternative is to use ex vivo organotypic culture(3-6). Culture of mouse embryonic skin requires the maintenance of an air-liquid interface (ALI) across the surface of the tissue(3,6). High resolution live-imaging of mouse embryonic skin has been hampered by the lack of a good method that not only maintains this ALI but also allows the culture to be inverted and therefore compatible with short working distance objective lenses and most confocal microscopes. This article describes recent improvements to a method that uses a gas permeable membrane to overcome these problems and allow high-resolution confocal imaging of embryonic skin in ex vivo culture(6). By using a melanoblast specific Cre-recombinase expressing mouse line combined with the R26YFPR reporter line we are able to fluorescently label the melanoblast population within these skin cultures. The technique allows live-imaging of melanoblasts and observation of their behavior and interactions with the tissue in which they develop. Representative results are included to demonstrate the capability to live-image 6 cultures in parallel.
Collapse
Affiliation(s)
- Richard L Mort
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh
| | - Margaret Keighren
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh
| | - Leonard Hay
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh;
| |
Collapse
|
39
|
Abstract
The melanocyte stem cells of the hair follicle provide an attractive system for the study of the stem cells. Successful regeneration of a functional organ relies on the organized and timely orchestration of molecular events among distinct stem/progenitor cell populations. The stem cells are regulated by communication with their specialized microenvironment known as the niche. Despite remarkable progress in understanding stem cell-intrinsic behavior, the molecular nature of the extrinsic factors provided to the stem cells by the niche microenvironment remains poorly understood. In this regard, the bulge niche of the mammalian hair follicle offers an excellent model for study. It holds two resident populations of SCs: epidermal stem cells and melanocyte stem cells. While their behavior is tightly coordinated, very little of the crosstalk involved is known. This review summarized the recent development in trying to understand the regulation of melanocyte and melanocyte stem cells. A better understanding of the normal regulation and behaviors of the melanocytes and the melanocyte stem cells will help to improve the clinical applications in regenerative medicine, cancer therapy, and aging.
Collapse
Affiliation(s)
- Ang Li
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, PO 300, New York, NY 10065, USA
| |
Collapse
|
40
|
Ma Y, Reynolds LE, Li A, Stevenson RP, Hodivala-Dilke KM, Yamashiro S, Machesky LM. Fascin 1 is dispensable for developmental and tumour angiogenesis. Biol Open 2013; 2:1187-91. [PMID: 24244855 PMCID: PMC3828765 DOI: 10.1242/bio.20136031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/29/2013] [Indexed: 02/01/2023] Open
Abstract
The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.
Collapse
Affiliation(s)
- Yafeng Ma
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Louise E. Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute – a CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ang Li
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Richard P. Stevenson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kairbaan M. Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute – a CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shigeko Yamashiro
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA
| | - Laura M. Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
41
|
Ma Y, Li A, Faller WJ, Libertini S, Fiorito F, Gillespie DA, Sansom OJ, Yamashiro S, Machesky LM. Fascin 1 is transiently expressed in mouse melanoblasts during development and promotes migration and proliferation. J Cell Sci 2013. [DOI: 10.1242/jcs.135186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|