1
|
Lozano D, Chinarro A, Yanguas L, Morona R, Moreno N, López JM. Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis. J Comp Neurol 2025; 533:e70053. [PMID: 40275424 DOI: 10.1002/cne.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Adrián Chinarro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Lucía Yanguas
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| |
Collapse
|
2
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Kozmik Z, Kozmikova I. Ancestral role of Pax6 in chordate brain regionalization. Front Cell Dev Biol 2024; 12:1431337. [PMID: 39119036 PMCID: PMC11306081 DOI: 10.3389/fcell.2024.1431337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The Pax6 gene is essential for eye and brain development across various animal species. Here, we investigate the function of Pax6 in the development of the anterior central nervous system (CNS) of the invertebrate chordate amphioxus using CRISPR/Cas9-induced genome editing. Specifically, we examined Pax6 mutants featuring a 6 bp deletion encompassing two invariant amino acids in the conserved paired domain, hypothesized to impair Pax6 DNA-binding capacity and gene regulatory functions. Although this mutation did not result in gross morphological changes in amphioxus larvae, it demonstrated a reduced ability to activate Pax6-responsive reporter gene, suggesting a hypomorphic effect. Expression analysis in mutant larvae revealed changes in gene expression within the anterior CNS, supporting the conserved role of Pax6 gene in brain regionalization across chordates. Additionally, our findings lend support to the hypothesis of a zona limitans intrathalamica (ZLI)-like region in amphioxus, suggesting evolutionary continuity in brain patterning mechanisms. ZLI region, found in both hemichordates and vertebrates, functions as a key signaling center and serves as a restrictive boundary between major thalamic regions.
Collapse
Affiliation(s)
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Cole JD, McDaniel JA, Nilak J, Ban A, Rodriguez C, Hameed Z, Grannonico M, Netland PA, Yang H, Provencio I, Liu X. Characterization of neural damage and neuroinflammation in Pax6 small-eye mice. Exp Eye Res 2024; 238:109723. [PMID: 37979905 PMCID: PMC10843716 DOI: 10.1016/j.exer.2023.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.
Collapse
Affiliation(s)
- James D Cole
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John A McDaniel
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joelle Nilak
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ashley Ban
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Zuhaad Hameed
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA.
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
8
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
9
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin Remodeling Enzyme Snf2h Is Essential for Retinal Cell Proliferation and Photoreceptor Maintenance. Cells 2023; 12:1035. [PMID: 37048108 PMCID: PMC10093269 DOI: 10.3390/cells12071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication, and DNA repair. However, the contribution of these complexes to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during the development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice (Snf2h cKO), we found that when Snf2h is deleted, the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. The depletion of Snf2h did not influence the ability of retinal progenitors to generate all the differentiated retinal cell types. Instead, the Snf2h function is critical for the proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although all retinal cell types appear to be specified in the absence of the Snf2h function, cell-cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer, and consequently, a physiologically non-functional retina.
Collapse
Affiliation(s)
- Andrea Kuzelova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Barbora Antosova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Arthur I. Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Tomas Stopka
- Biocev, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
10
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin remodeling enzyme Snf2h is essential for retinal cell proliferation and photoreceptor maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528323. [PMID: 36824843 PMCID: PMC9948993 DOI: 10.1101/2023.02.13.528323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication and DNA repair. However, how these complexes contribute to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice ( Snf2h cKO), we found that when Snf2h is deleted the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. Depletion of Snf2h did not influence the ability of retinal progenitors to generate all of the differentiated retinal cell types. Instead, Snf2h function is critical for proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although, all retinal cell types appear to be specified in the absence of Snf2h function, cell cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer and, consequently, in a physiologically non-functional retina.
Collapse
|
11
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Sunny SS, Lachova J, Dupacova N, Kozmik Z. Multiple roles of Pax6 in postnatal cornea development. Dev Biol 2022; 491:1-12. [PMID: 36049534 DOI: 10.1016/j.ydbio.2022.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
Mammalian corneal development is a multistep process, including formation of the corneal epithelium (CE), endothelium and stroma during embryogenesis, followed by postnatal stratification of the epithelial layers and continuous renewal of the epithelium to replace the outermost corneal cells. Here, we employed the Cre-loxP system to conditionally deplete Pax6 proteins in two domains of ocular cells, i.e., the ocular surface epithelium (cornea, limbus and conjunctiva) (OSE) or postnatal CE via K14-cre or Aldh3-cre, respectively. Earlier and broader inactivation of Pax6 in the OSE resulted in thickened OSE with CE and limbal cells adopting the conjunctival keratin expression pattern. More restricted depletion of Pax6 in postnatal CE resulted in an abnormal cornea marked by reduced epithelial thickness despite increased epithelial cell proliferation. Immunofluorescence studies revealed loss of intermediate filament Cytokeratin 12 and diffused expression of adherens junction components, together with reduced tight junction protein, Zonula occludens-1. Furthermore, the expression of Cytokeratin 14, a basal cell marker in apical layers, indicates impaired differentiation of CE cells. Collectively, our data demonstrate that Pax6 is essential for maintaining proper differentiation and strong intercellular adhesion in postnatal CE cells, whereas limbal Pax6 is required to prevent the outgrowth of conjunctival cells to the cornea.
Collapse
Affiliation(s)
- Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Jitka Lachova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic.
| |
Collapse
|
14
|
Casas-Llera P, Ruiz-Casas D, Alió JL. Macular involvement in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:60-67. [PMID: 34836590 DOI: 10.1016/j.oftale.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 06/13/2023]
Abstract
This review updates the knowledge about the morphological assessment of the foveal hypoplasia in congenital aniridia and resumes the reported genotype-phenotype correlations known to date. Congenital aniridia is a pan ocular disease. Although iris absence is considered the hallmark of this entity, foveal hypoplasia is present in 94.7%-84% of patients. A foveal morphology assessed by optical coherence tomography in which external retina structures can be identified, with presence of the lengthening of photoreceptors outer segment and a greater external retinal thickness, is associated with a better visual outcome, regardless a foveal pit is identified or not. This analysis can be performed once the external retina has completed its differentiation, by 6 years old. PAX6 mutations that introduce premature termination codon, C terminal extension or PAX6 involving deletions have been related to lesser foveal differentiation. Better foveal differentiation has been associated to non-coding PAX6 mutations.
Collapse
Affiliation(s)
- P Casas-Llera
- Unidad de Glaucoma, Vissum Mirasierra, Madrid, Spain; Unidad de Glaucoma, Fernández Casas Oftalmólogos, Torrelavega, Cantabria, Spain.
| | - D Ruiz-Casas
- Departamento de Oftalmología, Hospital Ramón y Cajal, Madrid, Spain
| | - J L Alió
- Unidad de Córnea, Cataratas y Cirugía Refractiva de Vissum (Grupo Miranza), Alicante, Spain; Departamento de Oftalmología, Patología y Cirugía, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
15
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
16
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Becker C, Lust K, Wittbrodt J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 2021; 148:dev.199133. [PMID: 33722901 PMCID: PMC8077508 DOI: 10.1242/dev.199133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications. Highlighted Article: Targeted activation of Igf1r signaling in the retinal stem cell niche increases retina size through expanding the progenitor but not stem cell population.
Collapse
Affiliation(s)
- Clara Becker
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
18
|
Casas-Llera P, Ruiz-Casas D, Alió JL. Macular involvement in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00007-1. [PMID: 33736873 DOI: 10.1016/j.oftal.2020.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
This review updates the knowledge about the morphological assessment of the foveal hypoplasia in Congenital Aniridia and resumes the reported genotype-phenotype correlations known to date. Congenital Aniridia is a pan ocular disease. Although iris absence is considered the hallmark of this entity, foveal hypoplasia is present in 94.7-84% of patients. A foveal morphology assessed by optical coherence tomography in which external retina structures can be identified, with presence of the lengthening of photoreceptors outer segment and a greater external retinal thickness, is associated with a better visual outcome, regardless a foveal pit is identified or not. This analysis can be performed once the external retina has completed its differentiation, by 6 years old. PAX6 mutations that introduce premature termination codon, C terminal extension or PAX6 involving deletions have been related to lesser foveal differentiation. Better foveal differentiation has been associated to non-coding PAX6 mutations.
Collapse
Affiliation(s)
- P Casas-Llera
- Unidad de Glaucoma, Vissum Mirasierra, Madrid, España; Unidad de Glaucoma, Fernández Casas Oftalmólogos, Torrelavega, Cantabria, España.
| | - D Ruiz-Casas
- Departamento de Oftalmología. Hospital Ramón y Cajal, Madrid, España
| | - J L Alió
- Unidad de Córnea, Cataratas y Cirugía Refractiva de Vissum (Grupo Miranza), Alicante, España; Departamento de Oftalmología, Patología y Cirugía, Universidad Miguel Hernández, Alicante, España
| |
Collapse
|
19
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. Comparative Analysis of Expression Patterns of the Noggin Gene Family Genes at the Early Development Stages of Head Structures in the European River Lamprey Lampetra fluviatilis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
21
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Pedersen HR, Baraas RC, Landsend ECS, Utheim ØA, Utheim TP, Gilson SJ, Neitz M. PAX6 Genotypic and Retinal Phenotypic Characterization in Congenital Aniridia. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32396632 PMCID: PMC7405610 DOI: 10.1167/iovs.61.5.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the association between PAX6 genotype and macular morphology in congenital aniridia. Methods The study included 37 participants (15 males) with congenital aniridia (aged 10–72 years) and 58 age-matched normal controls (18 males). DNA was isolated from saliva samples. PAX6 exons, intron/exon junctions, and known regulatory regions were amplified in PCR and sequenced. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect larger deletions or duplications in PAX6 or known cis-regulatory regions. Spectral-domain optical coherence tomography images were acquired and segmented semiautomatically. Mean thicknesses were calculated for inner and outer retinal layers within the macula along nasal and temporal meridians. Results Mutations in PAX6 or regulatory regions were found in 97% of the participants with aniridia. Foveal hypoplasia was observed in all who had a mutation within the PAX6 gene. Aniridic eyes had thinner outer retinal layers than controls, but with large between-individual variation (mean ± SD, 156.3 ± 32.3 µm vs 210.8 ± 12.3 µm, P < 0.001). Parafoveal and perifoveal inner and outer retinal layers were thinner in aniridia. Participants with mutations in noncoding PAX6 regions had thicker foveal outer retinal layers than those with mutations in the PAX6 coding regions (P = 0.04) and showed signs of postnatal development and maturation. Mutations outside the PAX6 gene were associated with the mildest retinal phenotypes. Conclusions PAX6 mutations are associated with significant thinning of macular inner and outer retinal layers, consistent with misdirected retinal development resulting in abnormal foveal formation and reduced number of neurons in the macula, with mutations in PAX6 coding regions giving the worst outcome.
Collapse
|
23
|
Tao Y, Cao J, Li M, Hoffmann B, Xu K, Chen J, Lu X, Guo F, Li X, Phillips MJ, Gamm DM, Chen H, Zhang S. PAX6D instructs neural retinal specification from human embryonic stem cell-derived neuroectoderm. EMBO Rep 2020; 21:e50000. [PMID: 32700445 PMCID: PMC7507545 DOI: 10.15252/embr.202050000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
PAX6 is essential for neural retina (NR) and forebrain development but how PAX6 instructs NR versus forebrain specification remains unknown. We found that the paired-less PAX6, PAX6D, is expressed in NR cells during human eye development and along human embryonic stem cell (hESC) specification to retinal cells. hESCs deficient for PAX6D failed to enter NR specification. Induced expression of PAX6D but not PAX6A in a PAX6-null background restored the NR specification capacity. ChIP-Seq, confirmed by functional assays, revealed a set of retinal genes and non-retinal neural genes that are potential targets of PAX6D, including WNT8B. Inhibition of WNTs or knocking down of WNT8B restored the NR specification capacity of neuroepithelia with PAX6D knockout, whereas activation of WNTs blocked NR specification even when PAX6D was induced. Thus, PAX6D specifies neuroepithelia to NR cells via the regulation of WNT8B.
Collapse
Affiliation(s)
- Yunlong Tao
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jingyuan Cao
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Mingxing Li
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Ke Xu
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Chen
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Lu
- Wuhan No. 1 HospitalWuhanChina
| | - Fangliang Guo
- Neurological Department of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiang Li
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - M Joseph Phillips
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- McPherson Eye Research InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - David M Gamm
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- McPherson Eye Research InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hong Chen
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Su‐Chun Zhang
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of NeuroscienceDepartment of NeurologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Program in Neuroscience & Behavioral DisordersDuke‐NUS Medical SchoolSingapore CitySingapore
| |
Collapse
|
24
|
Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors. PLoS One 2020; 15:e0237403. [PMID: 32790713 PMCID: PMC7425962 DOI: 10.1371/journal.pone.0237403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
Genome duplication leads to an emergence of gene paralogs that are essentially free to undergo the process of neofunctionalization, subfunctionalization or degeneration (gene loss). Onecut1 (Oc1) and Onecut2 (Oc2) transcription factors, encoded by paralogous genes in mammals, are expressed in precursors of horizontal cells (HCs), retinal ganglion cells and cone photoreceptors. Previous studies have shown that ablation of either Oc1 or Oc2 gene in the mouse retina results in a decreased number of HCs, while simultaneous deletion of Oc1 and Oc2 leads to a complete loss of HCs. Here we study the genetic redundancy between Oc1 and Oc2 paralogs and focus on how the dose of Onecut transcription factors influences abundance of individual retinal cell types and overall retina physiology. Our data show that reducing the number of functional Oc alleles in the developing retina leads to a gradual decrease in the number of HCs, progressive thinning of the outer plexiform layer and diminished electrophysiology responses. Taken together, these observations indicate that in the context of HC population, the alleles of Oc1/Oc2 paralogous genes are mutually interchangeable, function additively to support proper retinal function and their molecular evolution does not follow one of the typical routes after gene duplication.
Collapse
|
25
|
Pergner J, Vavrova A, Kozmikova I, Kozmik Z. Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Front Cell Dev Biol 2020; 8:705. [PMID: 32850825 PMCID: PMC7417673 DOI: 10.3389/fcell.2020.00705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.
Collapse
Affiliation(s)
- Jiri Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Vavrova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Bayramov AV, Ermakova GV, Zaraisky AG. Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Kon T, Furukawa T. Origin and evolution of the Rax homeobox gene by comprehensive evolutionary analysis. FEBS Open Bio 2020; 10:657-673. [PMID: 32144893 PMCID: PMC7137802 DOI: 10.1002/2211-5463.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Rax is one of the key transcription factors crucial for vertebrate eye development. In this study, we conducted comprehensive evolutionary analysis of Rax. We found that Bilateria and Cnidaria possess Rax, but Placozoa, Porifera, and Ctenophora do not, implying that the origin of the Rax gene dates back to the common ancestor of Cnidaria and Bilateria. The results of molecular phylogenetic and synteny analyses on Rax loci between jawed and jawless vertebrates indicate that segmental duplication of the Rax locus occurred in an early common ancestor of jawed vertebrates, resulting in two Rax paralogs in jawed vertebrates, Rax and Rax2. By analyzing 86 mammalian genomes from all four major groups of mammals, we found that at least five independent Rax2 gene loss events occurred in mammals. This study may provide novel insights into the evolution of the eye.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
28
|
Xie H, Zhang W, Zhang M, Akhtar T, Li Y, Yi W, Sun X, Zuo Z, Wei M, Fang X, Yao Z, Dong K, Zhong S, Liu Q, Shen Y, Wu Q, Wang X, Zhao H, Bao J, Qu K, Xue T. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. SCIENCE ADVANCES 2020; 6:eaay5247. [PMID: 32083182 PMCID: PMC7007246 DOI: 10.1126/sciadv.aay5247] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/25/2019] [Indexed: 05/06/2023]
Abstract
Retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs) provide potential opportunities for studying human retinal development and disorders; however, to what extent ROs recapitulate the epigenetic features of human retinal development is unknown. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics over long-term human retinal and RO development. Our results showed that ROs recapitulated the human retinogenesis to a great extent, but divergent chromatin features were also discovered. We further reconstructed the transcriptional regulatory network governing human and RO retinogenesis in vivo. Notably, NFIB and THRA were identified as regulators in human retinal development. The chromatin modifications between developing human and mouse retina were also cross-analyzed. Notably, we revealed an enriched bivalent modification of H3K4me3 and H3K27me3 in human but not in murine retinogenesis, suggesting a more dedicated epigenetic regulation on human genome.
Collapse
Affiliation(s)
- Haohuan Xie
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Wen Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Tasneem Akhtar
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Young Li
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Wenyang Yi
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Sun
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Zuqi Zuo
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Min Wei
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Xin Fang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Ziqin Yao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Dong
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Suijuan Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Liu
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Kun Qu
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
- Corresponding author. (T.X.); (K.Q.); (M.Z.)
| | - Tian Xue
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (T.X.); (K.Q.); (M.Z.)
| |
Collapse
|
29
|
Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci 2020; 40:1501-1513. [PMID: 31949107 DOI: 10.1523/jneurosci.2327-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.
Collapse
|
30
|
Shimizu J, Suzuki T, Hirotsu C, Ueno H, Takada E, Arimitsu N, Ueda Y, Wakisaka S, Suzuki N. Interaction between SDF1 and CXCR4 Promotes Photoreceptor Differentiation via Upregulation of NFκB Pathway Signaling Activity in Pax6 Gene-Transfected Photoreceptor Precursors. Ophthalmic Res 2020; 63:392-403. [PMID: 31935734 DOI: 10.1159/000503929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND CCL2 (also known as monocyte chemoattractant protein 1) and CX3CR1 (also known as Fractalkine receptor)-deficient mice have damaged photoreceptors. OBJECTIVES We examined the interaction of SDF1 and CXCR4 on the differentiation of retinal progenitors into rhodopsin-positive photoreceptors. METHODS Cloned retinal progenitors were obtained by Pax6 gene transfection of mouse iPS cells followed by serial dilution. Clones were selected by expression of nestin, Musashi1, Six3, and Chx10 mRNA. Cell surface protein expression was analyzed by flow cytometry. The levels of mRNA and intracellular protein were examined by real-time PCR and immunochemistry, respectively. Transient transfection experiments of retinal progenitors were conducted using a human rhodopsin promoter luciferase plasmid. RESULTS We selected 10 clones that expressed Six3, Chx10, Crx, Rx1, Nrl, CD73, and rhodopsin mRNA, which, except for rhodopsin, are photoreceptor precursor markers. Clones expressed both CD73 and CXCR4 on the cell surface and differentiated into rhodopsin-positive photoreceptors, which was reinforced by the addition of exogenous SDF1. A CXCR4 inhibitor AMD3100 blocked SDF1-mediated differentiation of progenitors into photoreceptors. SDF1 enhanced human rhodopsin promoter transcription activity, possibly via the NFκB pathway. Addition of SDF1 to the cell culture induced nuclear translocation of NFκB on retinal progenitor cell clones. Neonatal and newborn mouse retinas expressed SDF1 and CXCR4. Cells in the outer nuclear layer where photoreceptors are located expressed CXCR4 at P14 and P56. Cells in the inner nuclear layer expressed SDF1. CONCLUSIONS These findings suggest that retinal progenitor cell differentiation was at least partly regulated by SDF1 and CXCR4 via upregulation of NFκB activity.
Collapse
Affiliation(s)
- Jun Shimizu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Tomoko Suzuki
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Chieko Hirotsu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroki Ueno
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Erika Takada
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nagisa Arimitsu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yuji Ueda
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Sueshige Wakisaka
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Noboru Suzuki
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan, .,Department of Regenerative Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan,
| |
Collapse
|
31
|
Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Sci Rep 2019; 9:19559. [PMID: 31863055 PMCID: PMC6925180 DOI: 10.1038/s41598-019-56085-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6β locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.
Collapse
|
32
|
Seritrakul P, Gross JM. Genetic and epigenetic control of retinal development in zebrafish. Curr Opin Neurobiol 2019; 59:120-127. [PMID: 31255843 PMCID: PMC6888853 DOI: 10.1016/j.conb.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
The vertebrate retina is a complex structure composed of seven cell types (six neuron and one glia), and all of which originate from a seemingly homogeneous population of proliferative multipotent retinal progenitor cells (RPCs) that exit the cell cycle and differentiate in a spatio-temporally regulated and stereotyped fashion. This neurogenesis process requires intricate genetic regulation involving a combination of cell intrinsic transcription factors and extrinsic signaling molecules, and many critical factors have been identified that influence the timing and composition of the developing retina. Adding complexity to the process, over the past decade, a variety of epigenetic regulatory mechanisms have been shown to influence neurogenesis, and these include changes in histone modifications and the chromatin landscape and changes in DNA methylation and hydroxymethylation patterns. This review summarizes recent findings in the genetic and epigenetic regulation of retinal development, with an emphasis on the zebrafish model system, and it outlines future areas of investigation that will continue to push the field forward into the epigenomics era.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi, 76120, Thailand.
| | - Jeffrey M Gross
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
33
|
Koch CR, D'Antin JC, Tresserra F, Barraquer RI, Michael R. Histological comparison of in vitro and in vivo development of peripheral posterior capsule opacification in human donor tissue. Exp Eye Res 2019; 188:107807. [PMID: 31539543 DOI: 10.1016/j.exer.2019.107807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
Abstract
In order to study the mechanisms involved in the development of posterior capsule opacification (PCO) we compared in vivo developed PCO with PCO formed in tissue culture with focus on the periphery of the lens capsule to evaluate lens regeneration potential. We studied three human tissue groups: Cultured lens capsules after mock cataract surgery (n = 6, 30 days), lens capsules from donors that had previously undergone cataract surgery (IOL capsules) (n = 12) and intact lenses (n = 6). All samples were stained with Vimentin, alpha Smooth Muscle Actin, Picro Sirius Red (for collagen) and Paired box protein (Pax6). We found that cultured capsules and less developed IOL capsules consisted mainly of monolayers of mesenchymal cells, while more developed IOL capsules, contained lens epithelial cells (LECs), globular cells and lens fiber cells. Many IOL capsule samples expressed collagen I and III in areas where cells were in contact with the IOL. Pax6 had a similar dispersed distribution in less developed IOL capsules and cultured capsules, while more developed IOL capsules and intact lenses, concentrated Pax6 in LECs at the equatorial lens bow. The similarities between cultured capsules and less developed IOL capsules indicate that our in vitro developed PCO is comparable to early in vivo developed PCO. The similar morphology of more developed IOL capsules and intact lenses seems to indicate an attempt at lens regeneration.
Collapse
Affiliation(s)
- Camila Ribeiro Koch
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Ophthalmology, University of São Paulo, São Paulo, Brazil
| | - Justin Christopher D'Antin
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Oftalmología Barraquer, Barcelona, Spain
| | | | - Rafael I Barraquer
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Oftalmología Barraquer, Barcelona, Spain; Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Oftalmología Barraquer, Barcelona, Spain
| |
Collapse
|
34
|
Pedersen HR, Neitz M, Gilson SJ, Landsend ECS, Utheim ØA, Utheim TP, Baraas RC. The Cone Photoreceptor Mosaic in Aniridia: Within-Family Phenotype-Genotype Discordance. Ophthalmol Retina 2019; 3:523-534. [PMID: 31174676 DOI: 10.1016/j.oret.2019.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Investigate in vivo cone photoreceptor structure in familial aniridia caused by deletion in the PAX6 gene to elucidate the complexity of between-individual variation in retinal phenotype. DESIGN Descriptive case-control study. PARTICIPANTS Eight persons with congenital aniridia (40-66 yrs) from 1 family and 33 normal control participants (14-69 yrs), including 7 unaffected family members (14-53 yrs). METHODS DNA was isolated from saliva samples and used in polymerase chain reaction analysis to amplify and sequence exons and intron or exon junctions of the PAX6 gene. High-resolution retinal images were acquired with OCT and adaptive optics scanning light ophthalmoscopy. Cone density (CD; in cones per square millimeter) and mosaic regularity were estimated along nasal-temporal meridians within the central 0° to 5° eccentricity. Horizontal spectral-domain OCT line scans were segmented to analyze the severity of foveal hypoplasia (FH) and to measure retinal layer thicknesses. MAIN OUTCOMES AND MEASURES Within-family variability in macular retinal layer thicknesses, cone photoreceptor density, and mosaic regularity in aniridia compared with normal control participants. RESULTS DNA sequencing revealed a known PAX6 mutation (IV2-2delA). Those with aniridia showed variable iris phenotype ranging from almost normal appearance to no iris. Four participants with aniridia demonstrated FH grade 2, 2 demonstrated grade 3 FH, and 1 demonstrated grade 4 FH. Visual acuity ranged from 0.20 to 0.86 logarithm of the minimum angle of resolution. Adaptive optics scanning light ophthalmoscopy images were acquired from 5 family members with aniridia. Foveal CD varied between 19 899 and 55 128 cones/mm2 with overlap between the foveal hypoplasia grades. Cone density was 3 standard deviations (SDs) or more less than the normal mean within 0.5°, 2 SDs less than the normal mean at 0.5° to 4°, and more than 1 SD less than the normal mean at 5° retinal eccentricity. CONCLUSIONS The results showed considerable variability in foveal development within a family carrying the same PAX6 mutation. This, together with the structural and functional variability within each grade of foveal hypoplasia, underlines the importance of advancing knowledge about retinal cellular phenotype in aniridia.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | | | | | - Tor Paaske Utheim
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.
| |
Collapse
|
35
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
36
|
Cohen-Tayar Y, Cohen H, Mitiagin Y, Abravanel Z, Levy C, Idelson M, Reubinoff B, Itzkovitz S, Raviv S, Kaestner KH, Blinder P, Elkon R, Ashery-Padan R. Pax6 regulation of Sox9 in the mouse retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development 2018; 145:dev.163691. [PMID: 29986868 DOI: 10.1242/dev.163691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
The synchronized differentiation of neuronal and vascular tissues is crucial for normal organ development and function, although there is limited information about the mechanisms regulating the coordinated development of these tissues. The choroid vasculature of the eye serves as the main blood supply to the metabolically active photoreceptors, and develops together with the retinal pigmented epithelium (RPE). Here, we describe a novel regulatory relationship between the RPE transcription factors Pax6 and Sox9 that controls the timing of RPE differentiation and the adjacent choroid maturation. We used a novel machine learning algorithm tool to analyze high resolution imaging of the choroid in Pax6 and Sox9 conditional mutant mice. Additional unbiased transcriptomic analyses in mutant mice and RPE cells generated from human embryonic stem cells, as well as chromatin immunoprecipitation and high-throughput analyses, revealed secreted factors that are regulated by Pax6 and Sox9. These factors might be involved in choroid development and in the pathogenesis of the common blinding disease: age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Cohen
- Department of Particle Physics, Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, Biochemistry and Biophysics school, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Zohar Abravanel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Masha Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 9112001 Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 9112001 Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science 76100, Rehovot, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 12-126 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-6145, USA
| | - Pablo Blinder
- Department of Neurobiology, Biochemistry and Biophysics school, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
37
|
Ren X, Hamilton N, Müller F, Yamamoto Y. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev Biol 2018; 441:221-234. [PMID: 30031755 DOI: 10.1016/j.ydbio.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Astyanax mexicanus consists of two different populations: a sighted surface-dwelling form (surface fish) and a blind cave-dwelling form (cavefish). In the cavefish, embryonic expression of sonic hedgehog a (shha) in the prechordal plate is expanded towards the anterior midline, which has been shown to contribute to cavefish specific traits such as eye degeneration, enhanced feeding apparatus, and specialized brain anatomy. However, it is not clear how this expanded expression is achieved and which signaling pathways are involved. Nodal signaling has a crucial role for expression of shh and formation of the prechordal plate. In this study, we report increased expression of prechordal plate marker genes, nodal-related 2 (ndr2) and goosecoid (gsc) in cavefish embryos at the tailbud stage. To investigate whether Nodal signaling is responsible for the anterior expansion of the prechordal plate, we used an inhibitor of Nodal signaling and showed a decreased anterior expansion of the prechordal plate and increased pax6 expression in the anterior midline in treated cavefish embryos. Later in development, the lens and optic cup of treated embryos were significantly larger than untreated embryos. Conversely, increasing Nodal signaling in the surface fish embryo resulted in the expansion of anterior prechordal plate and reduction of pax6 expression in the anterior neural plate together with the formation of small lenses and optic cups later in development. These results confirmed that Nodal signaling has a crucial role for the anterior expansion of the prechordal plate and plays a significant role in cavefish eye development. We showed that the anterior expansion of the prechordal plate was not due to increased total cell number, suggesting the expansion is achieved by changes in cellular distribution in the prechordal plate. In addition, the distribution of presumptive prechordal plate cells in Spemann's organiser was also altered in the cavefish. These results suggested that changes in the cellular arrangement of Spemann's organiser in early gastrulae could have an essential role in the anterior expansion of the prechordal plate contributing to eye degeneration in the cavefish.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
38
|
Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, Zack DJ, Ashery-Padan R. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol 2017; 432:140-150. [PMID: 28993200 DOI: 10.1016/j.ydbio.2017.09.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 09/23/2017] [Indexed: 12/16/2022]
Abstract
In the developing retina, as in other regions of the CNS, neural progenitors give rise to individual cell types during discrete temporal windows. Pax6 is expressed in retinal progenitor cells (RPCs) throughout the course of retinogenesis, and has been shown to be required during early retinogenesis for generation of most early-born cell types. In this study, we examined the function of Pax6 in postnatal mouse retinal development. We found that Pax6 is essential for the generation of late-born interneurons, while inhibiting photoreceptor differentiation. Generation of bipolar interneurons requires Pax6 expression in RPCs, while Pax6 is required for the generation of glycinergic, but not for GABAergic or non-GABAergic-non-glycinergic (nGnG) amacrine cell subtypes. In contrast, overexpression of either full-length Pax6 or its 5a isoform in RPCs induces formation of cells with nGnG amacrine features, and suppresses generation of other inner retinal cell types. Moreover, overexpression of both Pax6 variants prevents photoreceptor differentiation, most likely by inhibiting Crx expression. Taken together, these data show that Pax6 acts in RPCs to control differentiation of multiple late-born neuronal cell types.
Collapse
Affiliation(s)
- Liv Aleen Remez
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Akishi Onishi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Yotam Menuchin-Lasowski
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Assaf Biran
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
| | - Donlad J Zack
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
40
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
41
|
Smith R, Huang YT, Tian T, Vojtasova D, Mesalles-Naranjo O, Pollard SM, Pratt T, Price DJ, Fotaki V. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci 2017; 37:7975-7993. [PMID: 28729440 PMCID: PMC5559767 DOI: 10.1523/jneurosci.0286-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in the nasal optic stalk. Foxg1-/- mutant mice have microphthalmic eyes with a large ventral coloboma. We found Wnt8b expression upregulated in the Foxg1-/- optic stalk and hypothesized that, similar to what is observed in telencephalic development, Foxg1 directs development of the optic neuroepithelium through transcriptional suppression of Wnt8b To test this, we generated Foxg1-/-;Wnt8b-/- double mutants of either sex and found that the morphology of the optic cup and stalk and the closure of the optic fissure were substantially rescued in these embryos. This rescue correlates with restored Pax2 expression in the anterior tip of the optic fissure. In addition, although we do not find evidence implicating altered proliferation in the rescue, we observe a significant increase in apoptotic cell density in Foxg1-/-;Wnt8b-/- double mutants compared with the Foxg1-/- single mutant. Upregulation of Wnt/β-catenin target molecules in the optic cup and stalk may underlie the molecular and morphological defects in the Foxg1-/- mutant. Our results show that proper optic fissure closure relies on Wnt8b suppression by Foxg1 in the nasal optic stalk to maintain balanced apoptosis and Pax2 expression in the nasal and temporal edges of the fissure.SIGNIFICANCE STATEMENT Coloboma is an ocular disorder that may result in a loss of visual acuity and accounts for ∼10% of childhood blindness. It results from errors in the sealing of the optic fissure (OF), a transient structure at the bottom of the eye. Here, we investigate the colobomatous phenotype of the Foxg1-/- mutant mouse. We identify upregulated expression of Wnt8b in the optic stalk of Foxg1-/- mutants before OF closure initiates. Foxg1-/-;Wnt8b-/- double mutants show a substantial rescue of the Foxg1-/- coloboma phenotype, which correlates with a rescue in molecular and cellular defects of Foxg1-/- mutants. Our results unravel a new role of Foxg1 in promoting OF closure providing additional knowledge about the molecules and cellular mechanisms underlying coloboma formation.
Collapse
Affiliation(s)
- Rowena Smith
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Tian Tian
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Dominika Vojtasova
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Oscar Mesalles-Naranjo
- Information Service Division, NHS National Services Scotland, Edinburgh, EH12 9EB, United Kingdom
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine, Edinburgh, EH16 4UU, United Kingdom, and
- Edinburgh Cancer Research UK Cancer Centre, Edinburgh, EH16 4UU, United Kingdom
| | - Thomas Pratt
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Vassiliki Fotaki
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom,
| |
Collapse
|
42
|
Chen CA, Yin J, Lewis RA, Schaaf CP. Genetic causes of optic nerve hypoplasia. J Med Genet 2017; 54:441-449. [PMID: 28501829 DOI: 10.1136/jmedgenet-2017-104626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023]
Abstract
Optic nerve hypoplasia (ONH) is the most common congenital optic nerve anomaly and a leading cause of blindness in the USA. Although most cases of ONH occur as isolated cases within their respective families, the advancement in molecular diagnostic technology has made us realise that a substantial fraction of cases has identifiable genetic causes, typically de novo mutations. An increasing number of genes has been reported, mutations of which can cause ONH. Many of the genes involved serve as transcription factors, participating in an intricate multistep process critical to eye development and neurogenesis in the neural retina. This review will discuss the respective genes and mutations, human phenotypes, and animal models that have been created to gain a deeper understanding of the disorders. The identification of the underlying gene and mutation provides an important step in diagnosis, medical care and counselling for the affected individuals and their families. We envision that future research will lead to further disease gene identification, but will also teach us about gene-gene and gene-environment interactions relevant to optic nerve development. How much of the functional impairment of the various forms of ONH is a reflection of altered morphogenesis versus neuronal homeostasis will determine the prospect of therapeutic intervention, with the ultimate goal of improving the quality of life of the individuals affected with ONH.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Jiani Yin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
43
|
Song AT, Galli A, Leclerc S, Nattel S, Mandato C, Andelfinger G. Characterization of Sgo1 expression in developing and adult mouse. Gene Expr Patterns 2017; 25-26:36-45. [PMID: 28465207 DOI: 10.1016/j.gep.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 01/29/2023]
Abstract
SGO1 has been characterized in its function in correct cell division and its role in centrosome cohesion in the nucleus. However, its organ-specific maturation-related expression pattern in vivo remains largely uncharacterized. Here, we show clear SGO1 expression in post-developmental neuronal cells and cytoplasmic localisation in nucleated cells with a transgenic mice model and immunohistochemistry of wild type mice. We demonstrate extranuclear expression of Sgo1 in the developing heart and gut, which have been shown to be dysregulated in humans with homozygous SGO1 mutation. Additionally, we show Sgo1 expression in select population of retinal cells in developing and post-developmental retina. Our expression analysis strongly suggests that the function of SGO1 goes beyond its well characterized role in cell division.
Collapse
Affiliation(s)
- Andrew T Song
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada; McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada
| | | | - Severine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Craig Mandato
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
44
|
Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc Natl Acad Sci U S A 2016; 113:10103-8. [PMID: 27555585 DOI: 10.1073/pnas.1600770113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system.
Collapse
|
45
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
46
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
47
|
Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, Ohnuma SI. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development 2016; 142:3351-61. [PMID: 26443635 DOI: 10.1242/dev.124438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of biological events. Here, we demonstrate that the SLRP family member Asporin (ASPN) plays a crucial role in the early stages of eye development in Xenopus embryos. During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo. Overexpression of ASPN causes the induction of ectopic eyes. By contrast, blocking ASPN function with a morpholino oligonucleotide (ASPN-MO) inhibits eye formation, indicating that ASPN is an essential factor for eye development. Detailed molecular analyses revealed that ASPN interacts with insulin growth factor receptor (IGFR) and is essential for activating the IGF receptor-mediated intracellular signalling pathway. Moreover, ASPN perturbed the Wnt, BMP and Activin signalling pathways, suggesting that ASPN thereby creates a favourable environment in which the IGF signal can dominate. ASPN is thus a novel secreted molecule essential for eye induction through the coordination of multiple signalling pathways.
Collapse
Affiliation(s)
- Kristin Luehders
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Noriaki Sasai
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Hongorzul Davaapil
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maiko Kurosawa-Yoshida
- Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| | - Hitoshi Hiura
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tara Brah
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Shin-ichi Ohnuma
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| |
Collapse
|
48
|
|
49
|
Fabian P, Kozmikova I, Kozmik Z, Pantzartzi CN. Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Front Genet 2015; 6:228. [PMID: 26191073 PMCID: PMC4488758 DOI: 10.3389/fgene.2015.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
Abstract
Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Chrysoula N Pantzartzi
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| |
Collapse
|
50
|
Fujimura N, Klimova L, Antosova B, Smolikova J, Machon O, Kozmik Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. Dev Genes Evol 2015; 225:121-8. [PMID: 25689933 DOI: 10.1007/s00427-015-0493-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022]
Abstract
Wnt/β-catenin signaling plays an essential role in the retinal pigment epithelium (RPE) determination. Since activity of Pax6 (together with Pax2) is also required for the RPE determination, we investigated a possible genetic interaction between Pax6 and Wnt/β-catenin signaling pathway by analyzing Pax6, β-catenin, and Pax6/β-catenin conditional knockout mice. Although Pax6 inactivation alone had no impact on initial specification determined by the expression of Mitf and Otx2, melanin pigmentation was reduced in the RPE. This suggests that along with Mitf and Otx2, Pax6 is required for the full differentiation of RPE. Reporter gene assays in vitro suggest that hypopigmentation is at least in part due to the direct regulation of genes encoding enzymes involved in melanin synthesis by Pax6, Mitf, and β-catenin. The RPE of a β-catenin/Pax6 double mutant was differentiated into the neural retina; however, the tissue was thinner than that of the conditional β-catenin mutant due to reduced proliferation. Together, our data demonstrate that Pax6 is required for the RPE differentiation by regulating pigmentation and accountable for hyperproliferation in the transdifferentiated RPE. In this context, Pax6 appears to function as a pleiotropic regulator, directing development of ocular tissues in concert with the signaling pathway and, at the same time, regulating expression of structural component of the eye, such as shielding pigment.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|