1
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2025; 145:766-779. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Sadu Murari LS, Kunkel S, Shetty A, Bents A, Bhandary A, Rivera-Mulia JC. p63: A Master Regulator at the Crossroads Between Development, Senescence, Aging, and Cancer. Cells 2025; 14:43. [PMID: 39791744 PMCID: PMC11719615 DOI: 10.3390/cells14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases. miRNA-p63 interactions are also critical regulators in the context of cancer metastasis. This review aims to elaborate on the diverse roles of p63, focusing on disease, development, and the mechanisms controlling genome organization and function.
Collapse
Affiliation(s)
- Lakshana Sruthi Sadu Murari
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sam Kunkel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Anala Shetty
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Addison Bents
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Aayush Bhandary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
7
|
Droll SH, Zhang BJ, Levine MC, Xue C, Ho PJ, Bao X. CASZ1 Is Essential for Skin Epidermal Terminal Differentiation. J Invest Dermatol 2024; 144:2029-2038. [PMID: 38458428 PMCID: PMC11344692 DOI: 10.1016/j.jid.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The barrier function of skin epidermis is crucial for our bodies to interface with the environment. Because epidermis continuously turns over throughout the lifetime, this barrier must be actively maintained by regeneration. Although several transcription factors have been established as essential activators in epidermal differentiation, it is unclear whether additional factors remain to be identified. In this study, we show that CASZ1, a multi zinc-finger transcription factor previously characterized in nonepithelial cell types, shows highest expression in skin epidermis. CASZ1 expression is upregulated during epidermal terminal differentiation. In addition, CASZ1 expression is impaired in several skin disorders with impaired barrier function, such as atopic dermatitis, psoriasis, and squamous cell carcinoma. Using transcriptome profiling coupled with RNA interference, we identified 674 differentially expressed genes with CASZ1 knockdown. Downregulated genes account for 91.2% of these differentially expressed genes and were enriched for barrier function. In organotypic epidermal regeneration, CASZ1 knockdown promoted proliferation and strongly impaired multiple terminal differentiation markers. Mechanistically, we found that CASZ1 upregulation in differentiation requires the action of both the master transcription factor, p63, and the histone acetyltransferase, p300. Taken together, our findings identify CASZ1 as an essential activator of epidermal differentiation, paving the way for future studies understanding of CASZ1 roles in skin disease.
Collapse
Affiliation(s)
- Stephenie H Droll
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | - Benny J Zhang
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | - Maxwell C Levine
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | - Celia Xue
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | - Patric J Ho
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
8
|
La Banca V, De Domenico S, Nicolai S, Gatti V, Scalera S, Maugeri M, Mauriello A, Montanaro M, Pahnke J, Candi E, D’Amico S, Peschiaroli A. ABCC1 Is a ΔNp63 Target Gene Overexpressed in Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:8741. [PMID: 39201428 PMCID: PMC11354449 DOI: 10.3390/ijms25168741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The transcription factor ΔNp63 plays a pivotal role in maintaining the integrity of stratified epithelial tissues by regulating the expression of distinct target genes involved in lineage specification, cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily member ABCC1 as a novel ΔNp63 target gene. We found that in immortalized human keratinocytes and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels are positively correlated raising the possibility that ABCC1 might be involved in the regulation of the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice. Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment. Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those skin diseases characterized by dysregulation of proliferation/differentiation balance.
Collapse
Affiliation(s)
- Veronica La Banca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara De Domenico
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Stefano Scalera
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Marcello Maugeri
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology (PAT), Medical Faculty/Clinical Medicine (KlinMed), Clinics for Laboratory Medicine (KLM), University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway;
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, The Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv 6997801, Israel
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166 Rome, Italy
| | - Silvia D’Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| |
Collapse
|
9
|
Stephens RK, Miroshnikova YA. Nuclear periphery and its mechanical regulation in cell fate transitions. Curr Opin Struct Biol 2024; 87:102867. [PMID: 38889500 DOI: 10.1016/j.sbi.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.
Collapse
Affiliation(s)
- Rebecca K Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. https://twitter.com/BecKateStephens
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Kellett C, Bhogal RK, Botchkareva NV, Fessing MY. ATP-dependent chromatin remodeller brahma related gene 1 promotes keratinocyte migration and modulates cell Signalling during wound healing in human skin. Exp Dermatol 2024; 33:e15100. [PMID: 38840387 DOI: 10.1111/exd.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.
Collapse
Affiliation(s)
- Carl Kellett
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Y Fessing
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
11
|
Leśniak W. Dynamics and Epigenetics of the Epidermal Differentiation Complex. EPIGENOMES 2024; 8:9. [PMID: 38534793 DOI: 10.3390/epigenomes8010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
Epidermis is the outer skin layer built of specialized cells called keratinocytes. Keratinocytes undergo a unique differentiation process, also known as cornification, during which their gene expression pattern, morphology and other properties change remarkably to the effect that the terminally differentiated, cornified cells can form a physical barrier, which separates the underlying tissues from the environment. Many genes encoding proteins that are important for epidermal barrier formation are located in a gene cluster called epidermal differentiation complex (EDC). Recent data provided valuable information on the dynamics of the EDC locus and the network of interactions between EDC gene promoters, enhancers and other regions, during keratinocytes differentiation. These data, together with results concerning changes in epigenetic modifications, provide a valuable insight into the mode of regulation of EDC gene expression.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Abstract
Keratinocyte senescence contributes to skin ageing and epidermal dysfunction. According to the existing knowledge, the transcription factor ΔNp63α plays pivotal roles in differentiation and proliferation of keratinocytes. It is traditionally accepted that ΔNp63α exerts its functions via binding to promoter regions to activate or repress gene transcription. However, accumulating evidence demonstrates that ΔNp63α can bind to elements away from promoter regions of its target genes, mediating epigenetic regulation. On the other hand, several epigenetic alterations, including DNA methylation, histone modification and variation, chromatin remodelling, as well as enhancer-promoter looping, are found to be related to cell senescence. To systematically elucidate how ΔNp63α affects keratinocyte senescence via epigenetic regulation, we comprehensively compiled the literatures on the roles of ΔNp63α in keratinocyte senescence, epigenetics in cellular senescence, and the relation between ΔNp63α-mediated epigenetic regulation and keratinocyte senescence. Based on the published data, we conclude that ΔNp63α mediates epigenetic regulation via multiple mechanisms: recruiting epigenetic enzymes to modify DNA or histones, coordinating chromatin remodelling complexes (CRCs) or regulating their expression, and mediating enhancer-promoter looping. Consequently, the expression of genes related to cell cycle is modulated, and proliferation of keratinocytes and renewal of stem cells are maintained, by ΔNp63α. During skin inflammaging, the decline of ΔNp63α may lead to epigenetic dysregulation, resultantly deteriorating keratinocyte senescence.
Collapse
Affiliation(s)
- Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Nayak S, Jiang K, Hope E, Cross M, Overmiller A, Naz F, Worrell S, Bajpai D, Hasneen K, Brooks SR, Dell'Orso S, Morasso MI. Chromatin Landscape Governing Murine Epidermal Differentiation. J Invest Dermatol 2023; 143:1220-1232.e9. [PMID: 36708949 PMCID: PMC10293054 DOI: 10.1016/j.jid.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
Chromatin landscape and regulatory networks are determinants in lineage specification and differentiation. To define the temporospatial differentiation axis in murine epidermal cells in vivo, we generated datasets profiling expression dynamics (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin using sequencing), architecture (Hi-C), and histone modifications (chromatin immunoprecipitation followed by sequencing) in the epidermis. We show that many differentially regulated genes are suppressed during the differentiation process, with superenhancers controlling differentiation-specific epigenomic changes. Our data shows the relevance of the Dlx/Klf/Grhl combinatorial regulatory network in maintaining correct temporospatial gene expression during epidermal differentiation. We determined differential open compartments, topologically associating domain score, and looping in the basal cell and suprabasal cell epidermal fractions, with the evolutionarily conserved epidermal differentiation complex region showing distinct suprabasal cell-specific topologically associating domain and loop formation that coincided with superenhancer sites. Overall, our study provides a global genome-wide resource of chromatin dynamics that define unrecognized regulatory networks and the epigenetic control of Dlx3-bound superenhancer elements during epidermal differentiation.
Collapse
Affiliation(s)
- Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Hope
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Faiza Naz
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Worrell
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Deepti Bajpai
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefania Dell'Orso
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
14
|
Botchkarev VA, Fessing MY, Sharov AA. Deciphering a Message from the Nucleus: How Transcription Factors and Spatial Chromatin Interactions Orchestrate Epidermal Differentiation. J Invest Dermatol 2023; 143:1117-1120. [PMID: 37045617 PMCID: PMC10715816 DOI: 10.1016/j.jid.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Michael Y Fessing
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, West Yorkshire, United Kingdom
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Fierro C, Gatti V, La Banca V, De Domenico S, Scalera S, Corleone G, Fanciulli M, De Nicola F, Mauriello A, Montanaro M, Calin GA, Melino G, Peschiaroli A. The long non-coding RNA NEAT1 is a ΔNp63 target gene modulating epidermal differentiation. Nat Commun 2023; 14:3795. [PMID: 37365156 PMCID: PMC10293300 DOI: 10.1038/s41467-023-39011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor ΔNp63 regulates epithelial stem cell function and maintains the integrity of stratified epithelial tissues by acting as transcriptional repressor or activator towards a distinct subset of protein-coding genes and microRNAs. However, our knowledge of the functional link between ∆Np63 transcriptional activity and long non-coding RNAs (lncRNAs) expression is quite limited. Here, we show that in proliferating human keratinocytes ∆Np63 represses the expression of the lncRNA NEAT1 by recruiting the histone deacetylase HDAC1 to the proximal promoter of NEAT1 genomic locus. Upon induction of differentiation, ∆Np63 down-regulation is associated by a marked increase of NEAT1 RNA levels, resulting in an increased assembly of paraspeckles foci both in vitro and in human skin tissues. RNA-seq analysis associated with global DNA binding profile (ChIRP-seq) revealed that NEAT1 associates with the promoter of key epithelial transcription factors sustaining their expression during epidermal differentiation. These molecular events might explain the inability of NEAT1-depleted keratinocytes to undergo the proper formation of epidermal layers. Collectively, these data uncover the lncRNA NEAT1 as an additional player of the intricate network orchestrating epidermal morphogenesis.
Collapse
Affiliation(s)
- Claudia Fierro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
- Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCSS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Veronica La Banca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Stefano Scalera
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
16
|
Weiner AI, Zhao G, Zayas HM, Holcomb NP, Adams-Tzivelekidis S, Wong J, Gentile ME, Reddy D, Wei J, Palashikar G, Quansah KK, Vaughan AE. ΔNp63 drives dysplastic alveolar remodeling and restricts epithelial plasticity upon severe lung injury. Cell Rep 2022; 41:111805. [PMID: 36516758 PMCID: PMC9808897 DOI: 10.1016/j.celrep.2022.111805] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The lung exhibits a robust, multifaceted regenerative response to severe injuries such as influenza infection, during which quiescent lung-resident epithelial progenitors participate in two distinct reparative pathways: functionally beneficial regeneration via alveolar type 2 (AT2) cell proliferation and differentiation, and dysplastic tissue remodeling via intrapulmonary airway-resident basal p63+ progenitors. Here we show that the basal cell transcription factor ΔNp63 is required for intrapulmonary basal progenitors to participate in dysplastic alveolar remodeling following injury. We find that ΔNp63 restricts the plasticity of intrapulmonary basal progenitors by maintaining either active or repressive histone modifications at key differentiation gene loci. Following loss of ΔNp63, intrapulmonary basal progenitors are capable of either airway or alveolar differentiation depending on their surrounding environment both in vitro and in vivo. Uncovering these regulatory mechanisms of dysplastic repair and lung basal cell fate choice highlight potential therapeutic targets to promote functional alveolar regeneration following severe lung injuries.
Collapse
Affiliation(s)
- Aaron I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna M Zayas
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas P Holcomb
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Wong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria E Gentile
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dyuthi Reddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joey Wei
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gargi Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kwaku K Quansah
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
18
|
Wu Z, Chen A, Zhang G, Liu C, Yin S, Song R, Ma J, Cao G, Sun R, Liu J, Wang Y. ALDH3B1 protects interfollicular epidermal cells against lipid peroxidation via the NRF2 pathway. Cell Stress Chaperones 2022; 27:703-715. [PMID: 36327089 PMCID: PMC9672232 DOI: 10.1007/s12192-022-01306-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) production is critical for the initiation of wound repair; however, persistently high levels of ROS can lead to lipid peroxidation in cells and thus affect wound healing. Iron is a transition metal that is an essential component of almost all living cells and organisms. When present in excess in cells and tissues, iron disrupts redox homeostasis and catalyzes the generation of ROS, leading to increased lipid peroxidation. In this study, we found that after treating interfollicular epidermal (IFE) cells with different concentrations of holotransferrin (0 µg/ml, 1 µg/ml, 10 µg/ml, 100 µg/ml, and 1 mg/ml), the intracellular iron content increased, and cell viability and function did not differ significantly among the treatment groups of cells. In addition, the level of lipid peroxidation in IFE cells did not increase following holotransferrin treatment. We speculated that there is a protective mechanism within IFE cells that reduces the occurrence of intracellular lipid peroxidation. We also found that the elevated intracellular iron content of IFE cells was accompanied by elevated ALDH3B1 expression. We investigated the effect of ALDH3B1 on the level of lipid peroxidation in IFE cells and found that elevated ALDH3B1 expression decreased the damage to IFE cells induced by lipid peroxidation. In addition, the NRF2 pathway was found to affect the expression of ALDH3B1, which in turn affected lipid peroxidation in IFE cells. These findings suggest that in IFE cells, activation of the NRF2 pathway can increase the expression of ALDH3B1 and thus reduce the production of intracellular ROS and the occurrence of intracellular lipid peroxidation. Therefore, ALDH3B1 may be a potential target for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zhenjie Wu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Aoyu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Guang Zhang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Siyuan Yin
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Ru Song
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Jiaxu Ma
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Guoqi Cao
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Rui Sun
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
19
|
Fatima I, Chen G, Botchkareva NV, Sharov AA, Thornton D, Wilkinson HN, Hardman MJ, Grutzkau A, Pedro de Magalhaes J, Seluanov A, Smith ESJ, Gorbunova V, Mardaryev AN, Faulkes CG, Botchkarev VA. Skin Aging in Long-Lived Naked Mole-Rats Is Accompanied by Increased Expression of Longevity-Associated and Tumor Suppressor Genes. J Invest Dermatol 2022; 142:2853-2863.e4. [PMID: 35691364 PMCID: PMC9613526 DOI: 10.1016/j.jid.2022.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 10/31/2022]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.
Collapse
Affiliation(s)
- Iqra Fatima
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Guodong Chen
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Daniel Thornton
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Andreas Grutzkau
- Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Joao Pedro de Magalhaes
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Andrei Seluanov
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Vera Gorbunova
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Andrei N Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Chris G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
20
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
21
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Epigenetic Mechanisms of Epidermal Differentiation. Int J Mol Sci 2022; 23:ijms23094874. [PMID: 35563264 PMCID: PMC9102508 DOI: 10.3390/ijms23094874] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Keratinocyte differentiation is an essential process for epidermal stratification and stratum corneum formation. Keratinocytes proliferate in the basal layer of the epidermis and start their differentiation by changing their functional or phenotypical type; this process is regulated via induction or repression of epidermal differentiation complex (EDC) genes that play a pivotal role in epidermal development. Epidermal development and the keratinocyte differentiation program are orchestrated by several transcription factors, signaling pathways, and epigenetic regulators. The latter exhibits both activating and repressive effects on chromatin in keratinocytes via the ATP-dependent chromatin remodelers, histone demethylases, and genome organizers that promote terminal keratinocyte differentiation, and the DNA methyltransferases, histone deacetylases, and Polycomb components that stimulate proliferation of progenitor cells and inhibit premature activation of terminal differentiation-associated genes. In addition, microRNAs are involved in different processes between proliferation and differentiation during the program of epidermal development. Here, we bring together current knowledge of the mechanisms controlling gene expression during keratinocyte differentiation. An awareness of epigenetic mechanisms and their alterations in health and disease will help to bridge the gap between our current knowledge and potential applications for epigenetic regulators in clinical practice to pave the way for promising target therapies.
Collapse
|
23
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
24
|
Gatti V, Fierro C, Compagnone M, La Banca V, Mauriello A, Montanaro M, Scalera S, De Nicola F, Candi E, Ricci F, Fania L, Melino G, Peschiaroli A. ΔNp63-Senataxin circuit controls keratinocyte differentiation by promoting the transcriptional termination of epidermal genes. Proc Natl Acad Sci U S A 2022; 119:e2104718119. [PMID: 35235452 PMCID: PMC8915885 DOI: 10.1073/pnas.2104718119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
SignificanceΔNp63 is a master regulator of skin homeostasis since it finely controls keratinocyte differentiation and proliferation. Here, we provide cellular and molecular evidence demonstrating the functional role of a ΔNp63 interactor, the R-loop-resolving enzyme Senataxin (SETX), in fine-tuning keratinocyte differentiation. We found that SETX physically binds the p63 DNA-binding motif present in two early epidermal differentiation genes, Keratin 1 (KRT1) and ZNF750, facilitating R-loop removal over their 3' ends and thus allowing efficient transcriptional termination and gene expression. These molecular events translate into the inability of SETX-depleted keratinocytes to undergo the correct epidermal differentiation program. Remarkably, SETX is dysregulated in cutaneous squamous cell carcinoma, suggesting its potential involvement in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Veronica Gatti
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Stefano Scalera
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Francesco Ricci
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Luca Fania
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
25
|
Tomimatsu K, Bihary D, Olan I, Parry AJ, Schoenfelder S, Chan ASL, Slater GSC, Ito Y, Rugg-Gunn PJ, Kirschner K, Bermejo-Rodriguez C, Seko T, Kugoh H, Shiraishi K, Sayama K, Kimura H, Fraser P, Narita M, Samarajiwa SA, Narita M. Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. NATURE AGING 2022; 2:31-45. [PMID: 37118356 DOI: 10.1038/s43587-021-00147-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPβ signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Shiga University of Medical Science, Shiga, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Dóra Bihary
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Ioana Olan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aled J Parry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Adelyne S L Chan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guy St C Slater
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Yoko Ito
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- International University of Health and Welfare, Tochigi, Japan
| | | | - Kristina Kirschner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Institute for Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Camino Bermejo-Rodriguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tomomi Seko
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| | - Ken Shiraishi
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Koji Sayama
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hiroshi Kimura
- Tokyo Tech World Research Hub Initiative and Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Masako Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Shamith A Samarajiwa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative and Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
26
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine
| | - Sarah Millar
- Black Family Stem Cell Institute, Departments of Cell, Developmental and Regenerative Biology and Dermatology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
28
|
Mancini M, Cappello A, Pecorari R, Lena AM, Montanaro M, Fania L, Ricci F, Di Lella G, Piro MC, Abeni D, Dellambra E, Mauriello A, Melino G, Candi E. Involvement of transcribed lncRNA uc.291 and SWI/SNF complex in cutaneous squamous cell carcinoma. Discov Oncol 2021; 12:14. [PMID: 35201472 PMCID: PMC8777507 DOI: 10.1007/s12672-021-00409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
While non-melanoma skin cancers (NMSCs) are the most common tumours in humans, only the sub-type cutaneous squamous cell carcinoma (cSCC), might become metastatic with high lethality. We have recently identified a regulatory pathway involving the lncRNA transcript uc.291 in controlling the expression of epidermal differentiation complex genes via the interaction with ACTL6A, a component of the chromatin remodelling complex SWI/SNF. Since transcribed ultra-conserved regions (T-UCRs) are expressed in normal tissues and are deregulated in tumorigenesis, here we hypothesize a potential role for dysregulation of this axis in cSCC, accounting for the de-differentiation process observed in aggressive poorly differentiated cutaneous carcinomas. We therefore analysed their expression patterns in human tumour biopsies at mRNA and protein levels. The results suggest that by altering chromatin accessibility of the epidermal differentiation complex genes, down-regulation of uc.291 and BRG1 expression contribute to the de-differentiation process seen in keratinocyte malignancy. This provides future direction for the identification of clinical biomarkers in cutaneous SCC. Analysis of publicly available data sets indicates that the above may also be a general feature for SCCs of different origins.
Collapse
Affiliation(s)
- M. Mancini
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - A. Cappello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - R. Pecorari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - A. M. Lena
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - M. Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - L. Fania
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - F. Ricci
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - G. Di Lella
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - M. C. Piro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - D. Abeni
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - E. Dellambra
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - A. Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - G. Melino
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - E. Candi
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
29
|
Carley E, Stewart RM, Zieman A, Jalilian I, King DE, Zubek A, Lin S, Horsley V, King MC. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 2021; 10:e58541. [PMID: 33779546 PMCID: PMC8051949 DOI: 10.7554/elife.58541] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.
Collapse
Affiliation(s)
- Emma Carley
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Rachel M Stewart
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Abigail Zieman
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Iman Jalilian
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Diane E King
- Sunnycrest BioinformaticsFlemingtonUnited States
| | - Amanda Zubek
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Samantha Lin
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Megan C King
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
30
|
Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers (Basel) 2021; 13:cancers13030536. [PMID: 33572532 PMCID: PMC7866788 DOI: 10.3390/cancers13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The protein p63 belongs to the family of the p53 tumor suppressor. Mouse models have, however, shown that it is not a classical tumor suppressor but instead involved in developmental processes. Mutations in the p63 gene cause several developmental defects in human patients characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia due to p63’s role as a master regulator of epidermal development. In addition, p63 plays a key role as a quality control factor in oocytes and p63 mutations can result either in compromised genetic quality control or premature cell death of all oocytes. Abstract The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.
Collapse
|
31
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Daher MT, Bausero P, Agbulut O, Li Z, Parlakian A. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System. Front Cell Dev Biol 2020; 8:581674. [PMID: 33363142 PMCID: PMC7758212 DOI: 10.3389/fcell.2020.581674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ctip2/Bcl11b is a zinc finger transcription factor with dual action (repression/activation) that couples epigenetic regulation to gene transcription during the development of various tissues. It is involved in a variety of physiological responses under healthy and pathological conditions. Its role and mechanisms of action are best characterized in the immune and nervous systems. Furthermore, its implication in the development and homeostasis of other various tissues has also been reported. In the present review, we describe its role in skin development, adipogenesis, tooth formation and cranial suture ossification. Experimental data from several studies demonstrate the involvement of Bcl11b in the control of the balance between cell proliferation and differentiation during organ formation and repair, and more specifically in the context of stem cell self-renewal and fate determination. The impact of mutations in the coding sequences of Bcl11b on the development of diseases such as craniosynostosis is also presented. Finally, we discuss genome-wide association studies that suggest a potential influence of single nucleotide polymorphisms found in the 3’ regulatory region of Bcl11b on the homeostasis of the cardiovascular system.
Collapse
Affiliation(s)
- Marie-Thérèse Daher
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Pedro Bausero
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Ara Parlakian
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
33
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
34
|
Ortiz-Melo MT, Garcia-Murillo MJ, Salazar-Rojas VM, Campos JE, Castro-Muñozledo F. Transcriptional profiles along cell programming into corneal epithelial differentiation. Exp Eye Res 2020; 202:108302. [PMID: 33098888 DOI: 10.1016/j.exer.2020.108302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Using the rabbit corneal epithelial cell line RCE1(5T5) as a model, we analyzed three differentiation stages, distinguished on basis to the growth state of cultured cells and after studying the expression of transcription factors such as Oct4, Pax6 and ΔNp63α, selected differentiation markers, and signaling or epigenetic markers such as Notch receptors and Prdm3. Namely, proliferative non-differentiated cells, committed cells, and cells that constitute a stratified epithelium with a limbal epithelial-like structure. RNAseq based transcriptome analysis showed that 4891 genes were differentially expressed among these stages displaying distinctive gene signatures: proliferative cells had 1278 genes as gene signature, and seem to be early epithelial progenitors with an Oct4+, KLF4+, Myc+, ΔNp63α+, ABCG2+, Vimentin+, Zeb1+, VANGL1+, Krt3-, Krt12- phenotype. Committed cells had a gene signature with 417 genes and displayed markers indicative of the beginning of corneal differentiation, and genes characteristic of proliferative cells; we found the possible participation of Six3 and Six4 transcription factors along this stage. The third stage matches with a stratified corneal epithelium (gene signature comprising 979 genes) and is typified by an increase in the expression of WNT10A and NOTCH 2 and 3 signaling and Cux1 transcription factor, besides Pax6, KLF4 or Sox9. The differentiated cells express about 50% of the genes that belong to the Epidermal Differentiation Complex (EDC). Analysis of the differences between corneal epithelium and epidermis could be crucial to understand the regulatory mechanisms that lead to the expression of the differentiated phenotype.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico; Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Maria Jimena Garcia-Murillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico
| | - Víctor Manuel Salazar-Rojas
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Jorge E Campos
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico.
| |
Collapse
|
35
|
PML Regulates the Epidermal Differentiation Complex and Skin Morphogenesis during Mouse Embryogenesis. Genes (Basel) 2020; 11:genes11101130. [PMID: 32992884 PMCID: PMC7600374 DOI: 10.3390/genes11101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos.
Collapse
|
36
|
The Role of BRG1 in Antioxidant and Redox Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6095673. [PMID: 33014273 PMCID: PMC7512085 DOI: 10.1155/2020/6095673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Redox homeostasis is regulated by critical molecules that modulate antioxidant and redox signaling (ARS) within the cell. Imbalances among these molecules can lead to oxidative stress and damage to cell functions, causing a variety of diseases. Brahma-related gene 1 (BRG1), also known as SMARCA4, is the central ATPase catalytic subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a core role in DNA replication, repair, recombination, and transcriptional regulation. Numerous recent studies show that BRG1 is involved in the regulation of various cellular processes associated with ARS. BRG1, as a major factor in chromatin remodeling, is essential for the repair of oxidative stress-induced DNA damage and the activation of antioxidant genes under oxidative stress. Consequently, a comprehensive understanding of the roles of BRG1 in redox homeostasis is crucial to understand the normal functioning as well as pathological mechanisms. In this review, we summarized and discussed the role of BRG1 in the regulation of ARS.
Collapse
|
37
|
Abstract
p63 (also known as TP63) is a transcription factor of the p53 family, along with p73. Multiple isoforms of p63 have been discovered and these have diverse functions encompassing a wide array of cell biology. p63 isoforms are implicated in lineage specification, proliferative potential, differentiation, cell death and survival, DNA damage response and metabolism. Furthermore, p63 is linked to human disease states including cancer. p63 is critical to many aspects of cell signaling, and in this Cell science at a glance article and the accompanying poster, we focus on the signaling cascades regulating TAp63 and ΔNp63 isoforms and those that are regulated by TAp63 and ΔNp63, as well the role of p63 in disease.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Stony Brook University, Department of Molecular and Cell Biology, Stony Brook, NY, 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
38
|
Szigety KM, Liu F, Yuan CY, Moran DJ, Horrell J, Gochnauer HR, Cohen RN, Katz JP, Kaestner KH, Seykora JT, Tobias JW, Lazar MA, Xu M, Millar SE. HDAC3 ensures stepwise epidermal stratification via NCoR/SMRT-reliant mechanisms independent of its histone deacetylase activity. Genes Dev 2020; 34:973-988. [PMID: 32467224 PMCID: PMC7328513 DOI: 10.1101/gad.333674.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Here, Szigety et al. investigated the function of histone deacetylases in epidermal development, and they found that HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3, and suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. Their data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition. Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3. In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.
Collapse
Affiliation(s)
- Katherine M Szigety
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fang Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chase Y Yuan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Deborah J Moran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy Horrell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Heather R Gochnauer
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan P Katz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John W Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
39
|
3D-FISH Analysis of the Spatial Genome Organization in Skin Cells in Situ. Methods Mol Biol 2020. [PMID: 32314220 DOI: 10.1007/978-1-0716-0648-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Spatial genome organization in the cell nucleus plays a crucial role in the control of genome functions. Our knowledge about spatial genome organization is relying on the advances in gene imaging technologies and the biochemical approaches based on the spatial dependent ligation of the genomic regions. Fluorescent in situ hybridization using specific fluorescent DNA and RNA probes in cells and tissues with the spatially preserved nuclear and genome architecture (3D-FISH) provides a powerful tool for the further advancement of our knowledge about genome structure and functions. Here we describe the 3D-FISH protocols allowing for such an analysis in mammalian tissue in situ including in the skin. These protocols include DNA probe amplification and labeling; tissue fixation; preservation and preparation for hybridization; hybridization of the DNA probes with genomic DNA in the tissue; and post-hybridization tissue sample processing.
Collapse
|
40
|
Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep 2020. [PMID: 32017402 DOI: 10.5252/embr.201846734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1-associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non-coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three-dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down-regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Marini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- IDI-IRCCS, Rome, Italy
| |
Collapse
|
41
|
Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep 2020; 21:e46734. [PMID: 32017402 PMCID: PMC7054673 DOI: 10.15252/embr.201846734] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1‐associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non‐coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three‐dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down‐regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Marini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Rome, Italy
| |
Collapse
|
42
|
Smirnov A, Anemona L, Novelli F, Piro CM, Annicchiarico-Petruzzelli M, Melino G, Candi E. p63 Is a Promising Marker in the Diagnosis of Unusual Skin Cancer. Int J Mol Sci 2019; 20:E5781. [PMID: 31744230 PMCID: PMC6888618 DOI: 10.3390/ijms20225781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023] Open
Abstract
Skin cancer is the most common type of cancer worldwide. Ozone depletion and climate changes might cause a further increase in the incidence rate in the future. Although the early detection of skin cancer enables it to be treated successfully, some tumours can evolve and become more aggressive, especially in the case of melanoma. Therefore, good diagnostic and prognostic markers are needed to ensure correct detection and treatment. Transcription factor p63, a member of the p53 family of proteins, plays an essential role in the development of stratified epithelia such as skin. In this paper, we conduct a comprehensive review of p63 expression in different types of skin cancer and discuss its possible use in the diagnosis and prognosis of cutaneous tumours.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Flavia Novelli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Cristina M. Piro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- MRC-Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Istituto Dermopatico dell’Immacolata-IRCCS, 00163 Rome, Italy
| |
Collapse
|
43
|
Miao Q, Hill MC, Chen F, Mo Q, Ku AT, Ramos C, Sock E, Lefebvre V, Nguyen H. SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nat Commun 2019; 10:4042. [PMID: 31492871 PMCID: PMC6731344 DOI: 10.1038/s41467-019-11880-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Tissue injury induces changes in cellular identity, but the underlying molecular mechanisms remain obscure. Here, we show that upon damage in a mouse model, epidermal cells at the wound edge convert to an embryonic-like state, altering particularly the cytoskeletal/extracellular matrix (ECM) components and differentiation program. We show that SOX11 and its closest relative SOX4 dictate embryonic epidermal state, regulating genes involved in epidermal development as well as cytoskeletal/ECM organization. Correspondingly, postnatal induction of SOX11 represses epidermal terminal differentiation while deficiency of Sox11 and Sox4 accelerates differentiation and dramatically impairs cell motility and re-epithelialization. Amongst the embryonic genes reactivated at the wound edge, we identify fascin actin-bundling protein 1 (FSCN1) as a critical direct target of SOX11 and SOX4 regulating cell migration. Our study identifies the reactivated embryonic gene program during wound repair and demonstrates that SOX11 and SOX4 play a central role in this process.
Collapse
Affiliation(s)
- Qi Miao
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Amy T Ku
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Carlos Ramos
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopedic Surgery, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Ectrodactyly-ectodermal dysplasia-clefting syndrome with unusual cutaneous vitiligoid and psoriasiform lesions due to a novel single point TP63 gene mutation. Postepy Dermatol Alergol 2019; 36:358-364. [PMID: 31333354 PMCID: PMC6640015 DOI: 10.5114/ada.2018.73437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022] Open
|
45
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
46
|
Santos-Pereira JM, Gallardo-Fuentes L, Neto A, Acemel RD, Tena JJ. Pioneer and repressive functions of p63 during zebrafish embryonic ectoderm specification. Nat Commun 2019; 10:3049. [PMID: 31296872 PMCID: PMC6624255 DOI: 10.1038/s41467-019-11121-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a master regulator of ectoderm development. Although previous studies show that p63 triggers epidermal differentiation in vitro, the roles of p63 in developing embryos remain poorly understood. Here, we use zebrafish embryos to analyze in vivo how p63 regulates gene expression during development. We generate tp63-knock-out mutants that recapitulate human phenotypes and show down-regulated epidermal gene expression. Following p63-binding dynamics, we find two distinct functions clearly separated in space and time. During early development, p63 binds enhancers associated to neural genes, limiting Sox3 binding and reducing neural gene expression. Indeed, we show that p63 and Sox3 are co-expressed in the neural plate border. On the other hand, p63 acts as a pioneer factor by binding non-accessible chromatin at epidermal enhancers, promoting their opening and epidermal gene expression in later developmental stages. Therefore, our results suggest that p63 regulates cell fate decisions during vertebrate ectoderm specification.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
47
|
Qu J, Yi G, Zhou H. p63 cooperates with CTCF to modulate chromatin architecture in skin keratinocytes. Epigenetics Chromatin 2019; 12:31. [PMID: 31164150 PMCID: PMC6547520 DOI: 10.1186/s13072-019-0280-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
The transcription factor p63 regulates epidermal genes and the enhancer landscape in skin keratinocytes. Its molecular function in controlling the chromatin structure is, however, not yet completely understood. Here, we integrated multi-omics profiles, including the transcriptome, transcription factor DNA-binding and chromatin accessibility, in skin keratinocytes isolated from EEC syndrome patients carrying p63 mutations, to examine the role of p63 in shaping the chromatin architecture. We found decreased chromatin accessibility in p63- and CTCF-bound open chromatin regions that potentially contributed to gene deregulation in mutant keratinocytes. Cooperation of p63 and CTCF seemed to assist chromatin interactions between p63-bound enhancers and gene promoters in skin keratinocytes. Our study suggests an intriguing model where cell type-specific transcription factors such as p63 cooperate with the genome organizer CTCF in the three-dimensional chromatin space to regulate the transcription program important for the proper cell identity.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Guoqiang Yi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Present Address: Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese
Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Gatti V, Fierro C, Annicchiarico‐Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019; 13:981-1001. [PMID: 30845357 PMCID: PMC6487733 DOI: 10.1002/1878-0261.12473] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a treatment-refractory tumour which arises from the epithelium of diverse anatomical sites such as oesophagus, head and neck, lung and skin. Accumulating evidence has revealed a number of genomic, clinical and molecular features commonly observed in SCC of distinct origins. Some of these genetic events culminate in fostering the activity of ΔNp63, a potent oncogene which exerts its pro-tumourigenic effects by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival. In this review, we will describe the genetic and epigenetic determinants underlying ΔNp63 oncogenic activities in SCC, and discuss some relevant transcriptional effectors of ΔNp63, emphasizing their impact in modulating the crosstalk between tumour cells and tumour microenvironment (TME).
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
| | - Claudia Fierro
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
| | | | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
- Medical Research Council, Toxicology UnitUniversity of CambridgeUK
| | - Angelo Peschiaroli
- National Research Council of ItalyInstitute of Translational PharmacologyRomeItaly
| |
Collapse
|
49
|
Kang S, Chovatiya G, Tumbar T. Epigenetic control in skin development, homeostasis and injury repair. Exp Dermatol 2019; 28:453-463. [PMID: 30624812 PMCID: PMC6488370 DOI: 10.1111/exd.13872] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
Cell-type- and cell-state-specific patterns of covalent modifications on DNA and histone tails form global epigenetic profiles that enable spatiotemporal regulation of gene expression. These epigenetic profiles arise from coordinated activities of transcription factors and epigenetic modifiers, which result in cell-type-specific outputs in response to dynamic environmental conditions and signalling pathways. Recent mouse genetic and functional studies have highlighted the physiological significance of global DNA and histone epigenetic modifications in skin. Importantly, specific epigenetic profiles are emerging for adult skin stem cells that are associated with their cell fate plasticity and proper activity in tissue regeneration. We can now begin to draw a more comprehensive picture of how epigenetic modifiers orchestrate their cell-intrinsic role with microenvironmental cues for proper skin development, homeostasis and wound repair. The field is ripe to begin to implement these findings from the laboratory into skin therapies.
Collapse
Affiliation(s)
- Sangjo Kang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
50
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|