1
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Sup ME, Abraham AC, Kim MKM, Thomopoulos S. Development of a Mouse Model of Enthesis-Specific NF-κB Activation. J Orthop Res 2025; 43:719-727. [PMID: 39789822 PMCID: PMC11903135 DOI: 10.1002/jor.26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies. Therefore, we developed a murine model of inducible enthesis-specific inflammation by constitutively activating the NF-κB pathway in Gli1+ cells. Gli1CreERT mice were crossed with IKKβ-overexpression mice and given tamoxifen injections 5 days postnatally to induce enthesitis. Sixteen weeks of IKKβ overexpression in enthesis cells led to impaired mechanical properties, subtle histologic changes, and changes to expression of extracellular matrix- and inflammation-related genes. Increased loading from treadmill overuse activity did not exacerbate this phenotype. Clinical significance: The new murine model may have utility for studying the pathogenesis of enthesitis and approaches to treat the condition.
Collapse
Affiliation(s)
- McKenzie E. Sup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Kyu M. Kim
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Fang F, Casserly M, Robbins J, Thomopoulos S. Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing. NPJ Regen Med 2025; 10:3. [PMID: 39833191 PMCID: PMC11747568 DOI: 10.1038/s41536-025-00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair. This study revealed cell-cell communication within the Hh-lineage cell population. To further characterize the role of Hh signaling, we used mouse models to activate and inactivate the Hh pathway in enthesis progenitors. Activation of Hh target genes during enthesis development increased its mineralization and mechanical properties. Activation of Hh signaling at the injured mature enthesis promoted fibrocartilage formation, enhanced mineralization, and increased expression of chondrogenic and osteogenic markers, which implies that Hh signaling drives cell differentiation to regenerate the damaged enthesis. Conversely, deletion of Hh target genes impaired enthesis healing. In summary, this study revealed a new strategy for enthesis repair via activation of Hh signaling in endogenous cells.
Collapse
Affiliation(s)
- Fei Fang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew Casserly
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Robbins
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Giacomini F, Rho HS, Eischen‐Loges M, Tahmasebi Birgani Z, van Blitterswijk C, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller R. Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment. Adv Healthc Mater 2024; 13:e2401815. [PMID: 39188199 PMCID: PMC11650547 DOI: 10.1002/adhm.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Maria Eischen‐Loges
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Martijn van Griensven
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
5
|
Dyment NA, Kamalitdinov TB, Kuntz AF. The 2024 Kappa Delta Young Investigator Award: Leveraging Insights From Development to Improve Adult Repair: Hedgehog Signaling as a Master Regulator of Enthesis Fibrocartilage Formation. J Am Acad Orthop Surg 2024; 32:1074-1086. [PMID: 39589737 PMCID: PMC11753257 DOI: 10.5435/jaaos-d-24-00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 11/27/2024] Open
Abstract
The work in this article summarizes findings from our group on key biochemical cues that govern the formation and repair of tendons and ligaments. Specifically, we summarize the journey that started with a serendipitous discovery that is now being translated into novel therapies to improve tendon-to-bone repair outcomes. This journey began with the discovery that the Hedgehog (Hh) signaling pathway was expressed within the enthesis during development and that its primary role was to promote fibrocartilage production and maturation. Next, we developed an anterior cruciate ligament reconstruction model in novel transgenic mice that allowed us to discover that the Hh pathway promotes fibrocartilaginous tendon-to-bone attachments during the integration process. In addition, we established that the coordinated stages of zonal tendon-to-bone integration after anterior cruciate ligament reconstruction were comparable with the stages required for enthesis formation during development. Now that we have demonstrated that the Hh pathway is a potent therapeutic target, we are currently advancing these findings to develop drug delivery systems to improve tendon-to-bone repair. Ultimately, our group aims to establish key mechanisms that govern tendon and ligament formation that can be leveraged for novel regenerative therapies to improve clinical care.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- From the Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA (Dr. Dyment, Dr. Kamalitdinov, and Dr. Kuntz), and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA (Dr. Dyment and Dr. Kamalitdinov)
| | | | | |
Collapse
|
6
|
Littlejohn GO. Bone and entheseal targets for growth factors in diffuse idiopathic skeletal hyperostosis. Semin Arthritis Rheum 2024; 68:152532. [PMID: 39146917 DOI: 10.1016/j.semarthrit.2024.152532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Diffuse idiopathic skeletal hyperostosis (DISH) is a common condition of the adult skeleton where new bone growth occurs in entheseal and bony regions. The cause for the new bone growth is unclear but many lines of evidence point to a role for growth factors linked to abnormal metabolism in these patients. The bone targets for these presumed growth factors are poorly defined. This review summarises the clinical evidence relevant to the sites of origin of new bone formation in DISH to better define potential cellular targets for bone growth in DISH. METHODS This is a narrative review of relevant papers identified from searches of PubMed and online journals. RESULTS Sites of new bone growth in the enthesis were identified in patients with DISH, with likely cellular targets for growth factors being mesenchymal stem cells in the outer part of the enthesis. Similar undifferentiated skeletal stem cells are present in the outer annulus fibrosis and in the bony eminences of vertebral bodies and other bones, with the potential for response to growth factors. CONCLUSION Mesenchymal stem cells are present in specific entheseal and bony locations that are likely responsive to putative growth factors leading to new bone formation characteristic of DISH. Further study of these regions in the context of metabolic abnormalities in DISH will allow for better understanding of the pathophysiology of this common condition.
Collapse
Affiliation(s)
- Geoffrey Owen Littlejohn
- Adjunct Clinical Professor, Department of Medicine, Private Consulting Rooms, Monash Medical Centre, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Victoria, Clayton 3168, Australia.
| |
Collapse
|
7
|
Wu B, Zhang T, Chen H, Shi X, Guan C, Hu J, Lu H. Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration. J Orthop Translat 2024; 48:89-106. [PMID: 39189009 PMCID: PMC11345897 DOI: 10.1016/j.jot.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Fibrovascular scar healing of bone-tendon interface (BTI) instead of functional fibrocartilage regeneration is the main concern associated with unsatisfactory prognosis in rotator cuff repair. Mesenchymal stem cells (MSCs) exosomes have been reported to be a new promising cell-free approach for rotator cuff healing. Whereas, controversies abound in whether exosomes of native MSCs alone can effectively induce chondrogenesis. Purpose To explore the effect of exosomes derived from low-intensity pulsed ultrasound stimulation (LIPUS)-preconditioned bone marrow mesenchymal stem cells (LIPUS-BMSC-Exos) or un-preconditioned BMSCs (BMSC-Exos) on rotator cuff healing and the underlying mechanism. Methods C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to saline, BMSCs-Exos or LIPUS-BMSC-Exos injection therapy. Histological, immunofluorescent and biomechanical tests were detected to investigate the effect of exosomes injection on BTI healing and muscle fatty infiltration of the repaired rotator cuff. In vitro, native BMSCs were incubated with BMSC-Exos or LIPUS-BMSC-Exos and then chondrogenic/adipogenic differentiation were observed. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the chondrogenesis/adipogenesis-related miRNA profiles of LIPUS-BMSC-Exos and BMSC-Exos. The chondrogenic/adipogenic potential of the key miRNA was verified through function recover test with its mimic and inhibitor. Results The results indicated that the biomechanical properties of the supraspinatus tendon-humeral junction were significantly improved in the LIPUS-BMSC-Exos group than that of the BMSCs-Exos group. The LIPUS-BMSC-Exos group also exhibited a higher histological score and more newly regenerated fibrocartilage at the repair site at postoperative 2 and 4 weeks and less fatty infiltration at 4 weeks than the BMSCs-Exos group. In vitro, co-culture of BMSCs with LIPUS-BMSC-Exos could significantly promote BMSCs chondrogenic differentiation and inhibit adipogenic differentiation. Subsequently, qRT-PCR revealed significantly higher enrichment of chondrogenic miRNAs and less enrichment of adipogenic miRNAs in LIPUS-BMSC-Exos compared with BMSC-Exos. Moreover, we demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-140, one of the most abundant miRNAs in LIPUS-BMSC-Exos. Conclusion LIPUS-preconditioned BMSC-Exos can effectively promote BTI fibrocartilage regeneration and ameliorate supraspinatus fatty infiltration by positive regulation of pro-chondrogenesis and anti-adipogenesis, which was primarily through delivering miR-140. The translational potential of this article These findings propose an innovative "LIPUS combined Exosomes strategy" for rotator cuff healing which combines both physiotherapeutic and biotherapeutic advantages. This strategy possesses a good translational potential as a local injection of LIPUS preconditioned BMSC-derived Exos during operation can be not only efficient for promoting fibrocartilage regeneration and ameliorating rotator cuff fatty infiltration, but also time-saving, simple and convenient for patients.
Collapse
Affiliation(s)
- Bing Wu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xin Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
8
|
Bousso I, Genin G, Thomopoulos S. Achieving tendon enthesis regeneration across length scales. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100547. [PMID: 39219714 PMCID: PMC11364215 DOI: 10.1016/j.cobme.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Surgical reattachment of tendon to bone is a clinical challenge, with unacceptably high retear rates in the early period after repair. A primary reason for these repeated tears is that the multiscale toughening mechanisms found at the healthy tendon enthesis are not regenerated during tendon-to-bone healing. The need for technologies to improve these outcomes is pressing, and the tissue engineering community has responded with many advances that hold promise for eventually regenerating the multiscale tissue interface that transfers loads between the two dissimilar materials, tendon, and bone. This review provides an assessment of the state of these approaches, with the aim of identifying a critical agenda for future progress.
Collapse
Affiliation(s)
- Ismael Bousso
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Guy Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Orthopaedic Surgery, Columbia University, New York, NY USA
| |
Collapse
|
9
|
Yambe S, Yoshimoto Y, Ikeda K, Maki K, Takimoto A, Tokuyama A, Higuchi S, Yu X, Uchibe K, Miura S, Watanabe H, Sakuma T, Yamamoto T, Tanimoto K, Kondoh G, Kasahara M, Mizoguchi T, Docheva D, Adachi T, Shukunami C. Sclerostin modulates mineralization degree and stiffness profile in the fibrocartilaginous enthesis for mechanical tissue integrity. Front Cell Dev Biol 2024; 12:1360041. [PMID: 38895158 PMCID: PMC11183276 DOI: 10.3389/fcell.2024.1360041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Fibrocartilaginous entheses consist of tendons, unmineralized and mineralized fibrocartilage, and subchondral bone, each exhibiting varying stiffness. Here we examined the functional role of sclerostin, expressed in mature mineralized fibrochondrocytes. Following rapid mineralization of unmineralized fibrocartilage and concurrent replacement of epiphyseal hyaline cartilage by bone, unmineralized fibrocartilage reexpanded after a decline in alkaline phosphatase activity at the mineralization front. Sclerostin was co-expressed with osteocalcin at the base of mineralized fibrocartilage adjacent to subchondral bone. In Scx-deficient mice with less mechanical loading due to defects of the Achilles tendon, sclerostin+ fibrochondrocyte count significantly decreased in the defective enthesis where chondrocyte maturation was markedly impaired in both fibrocartilage and hyaline cartilage. Loss of the Sost gene, encoding sclerostin, elevated mineral density in mineralized zones of fibrocartilaginous entheses. Atomic force microscopy analysis revealed increased fibrocartilage stiffness. These lines of evidence suggest that sclerostin in mature mineralized fibrochondrocytes acts as a modulator for mechanical tissue integrity of fibrocartilaginous entheses.
Collapse
Affiliation(s)
- Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Takimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Kitamura A, Yamamoto M, Hirouchi H, Watanabe G, Taniguchi S, Sekiya S, Ishizuka S, Jeong J, Higa K, Yamashita S, Abe S. Downregulation of SOX9 expression in developing entheses adjacent to intramembranous bone. PLoS One 2024; 19:e0301080. [PMID: 38728328 PMCID: PMC11086909 DOI: 10.1371/journal.pone.0301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.
Collapse
Affiliation(s)
- Asahi Kitamura
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Masahito Yamamoto
- Division of Basic Medical Science, Department of Anatomy, Tokai University School of Medicine, Kanagawa, Japan
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Sayo Sekiya
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Song L, Golman M, Abraham AC, Zelzer E, Thomopoulos S. A role for TGFβ signaling in Gli1+ tendon and enthesis cells. FASEB J 2024; 38:e23568. [PMID: 38522021 PMCID: PMC10962263 DOI: 10.1096/fj.202301452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFβ signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFβ signaling in Gli1+ cell function, the receptor for TGFβ, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFβ signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFβ signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFβ controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFβ directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.
Collapse
Affiliation(s)
- Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
| | - Mikhail Golman
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
14
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
15
|
Luzzi AJ, Ferrer X, Fang F, Golman M, Song L, Marshall BP, Lee AJ, Kim JJ, Hung CT, Thomopoulos S. Hedgehog Activation for Enhanced Rotator Cuff Tendon-to-Bone Healing. Am J Sports Med 2023; 51:3825-3834. [PMID: 37897335 PMCID: PMC10821775 DOI: 10.1177/03635465231203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
BACKGROUND Rotator cuff repair is a common orthopaedic procedure, yet the rate of failure to heal after surgery is high. Repair site rupture is due to poor tendon-to-bone healing and lack of regeneration of the native fibrocartilaginous enthesis. During development, the enthesis is formed and mineralized by a pool of progenitors activated by hedgehog signaling. Furthermore, hedgehog signaling drives regenerative enthesis healing in young animals, in contrast to older animals, in which enthesis injuries heal via fibrovascular scar and without participation of hedgehog signaling. HYPOTHESIS Hedgehog activation improves tendon-to-bone healing in an animal model of rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS A total of 78 adult Sprague-Dawley rats were used. Supraspinatus tendon injury and repair were completed bilaterally, with microsphere-encapsulated hedgehog agonist administered to right shoulders and control microspheres administered to left shoulders. Animals were sacrificed after 3, 14, 28, or 56 days. Gene expression and histological, biomechanical, and bone morphometric analyses were conducted. RESULTS At 3 days, hedgehog signaling pathway genes Gli1 (1.70; P = .029) and Smo (2.06; P = .0173), as well as Runx2 (1.69; P = .0386), a transcription factor of osteogenesis, were upregulated in treated relative to control repairs. At 14 days, transcription factors of tenogenesis, Scx (4.00; P = .041), and chondrogenesis, Sox9 (2.95; P = .010), and mineralized fibrocartilage genes Col2 (3.18; P = .031) and Colx (1.85; P = .006), were upregulated in treated relative to control repairs. Treatment promoted fibrocartilage formation at the healing interface by 28 days, with improvements in tendon-bone maturity, organization, and continuity. Treatment led to improved biomechanical properties. The material property strength (2.43 vs 1.89 N/m2; P = .046) and the structural property work to failure (29.01 vs 18.09 mJ; P = .030) were increased in treated relative to control repairs at 28 days and 56 days, respectively. Treatment had a marginal effect on bone morphometry underlying the repair. Trabecular thickness (0.08 vs 0.07 mm; P = .035) was increased at 28 days. CONCLUSION Hedgehog agonist treatment activated hedgehog signaling at the tendon-to-bone repair site and prompted increased mineralized fibrocartilage production. This extracellular matrix production and mineralization resulted in improved biomechanical properties, demonstrating the therapeutic potential of hedgehog agonism for improving tendon-to-bone healing after rotator cuff repair. CLINICAL RELEVANCE This study demonstrates the therapeutic potential of hedgehog agonist treatment for improving tendon-to-bone healing after rotator cuff injury and repair.
Collapse
Affiliation(s)
- Andrew J. Luzzi
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Xavier Ferrer
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Fei Fang
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Mikhail Golman
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Lee Song
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Brittany P. Marshall
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Andy J. Lee
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jieon J. Kim
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Clark T. Hung
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Brown ME, Puetzer JL. Enthesis maturation in engineered ligaments is differentially driven by loads that mimic slow growth elongation and rapid cyclic muscle movement. Acta Biomater 2023; 172:106-122. [PMID: 37839633 DOI: 10.1016/j.actbio.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Entheses are complex attachments that translate load between elastic-ligaments and stiff-bone via organizational and compositional gradients. Neither natural healing, repair, nor engineered replacements restore these gradients, contributing to high re-tear rates. Previously, we developed a culture system which guides ligament fibroblasts in high-density collagen gels to develop early postnatal-like entheses, however further maturation is needed. Mechanical cues, including slow growth elongation and cyclic muscle activity, are critical to enthesis development in vivo but these cues have not been widely explored in engineered entheses and their individual contribution to maturation is largely unknown. Our objective here was to investigate how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, individually drive enthesis maturation in our system so to shed light on the cues governing enthesis development, while further developing our tissue engineered replacements. Interestingly, we found these loads differentially drive organizational maturation, with slow stretch driving improvements in the interface/enthesis region, and cyclic load improving the ligament region. However, despite differentially affecting organization, both loads produced improvements to interface mechanics and zonal composition. This study provides insight into how mechanical cues differentially affect enthesis development, while producing some of the most organized engineered enthesis to date. STATEMENT OF SIGNIFICANCE: Entheses attach ligaments to bone and are critical to load transfer; however, entheses do not regenerate with repair or replacement, contributing to high re-tear rates. Mechanical cues are critical to enthesis development in vivo but their individual contribution to maturation is largely unknown and they have not been widely explored in engineered replacements. Here, using a novel culture system, we provide new insight into how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, differentially affect enthesis maturation in engineered ligament-to-bone tissues, ultimately producing some of the most organized entheses to date. This system is a promising platform to explore cues regulating enthesis formation so to produce functional engineered replacements and better drive regeneration following repair.
Collapse
Affiliation(s)
- M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
17
|
蔡 武, 李 箭, 李 棋. [Research progress on bioactive strategies for promoting tendon graft healing after anterior cruciate ligament reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1292-1299. [PMID: 37848327 PMCID: PMC10581880 DOI: 10.7507/1002-1892.202306088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Objective To review the bioactive strategies that enhance tendon graft healing after anterior cruciate ligament reconstruction (ACLR), and to provide insights for improving the therapeutic outcomes of ACLR. Methods The domestic and foreign literature related to the bioactive strategies for promoting the healing of tendon grafts after ACLR was extensively reviewed and summarized. Results At present, there are several kinds of bioactive materials related to tendon graft healing after ACLR: growth factors, cells, biodegradable implants/tissue derivatives. By constructing a complex interface simulating the matrix, environment, and regulatory factors required for the growth of native anterior cruciate ligament (ACL), the growth of transplanted tendons is regulated at different levels, thus promoting the healing of tendon grafts. Although the effectiveness of ACLR has been significantly improved in most studies, most of them are still limited to the early stage of animal experiments, and there is still a long way to go from the real clinical promotion. In addition, limited by the current preparation technology, the bionics of the interface still stays at the micron and millimeter level, and tends to be morphological bionics, and the research on the signal mechanism pathway is still insufficient. Conclusion With the further study of ACL anatomy, development, and the improvement of preparation technology, the research of bioactive strategies to promote the healing of tendon grafts after ACLR is expected to be further promoted.
Collapse
Affiliation(s)
- 武峰 蔡
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| | - 箭 李
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| | - 棋 李
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| |
Collapse
|
18
|
Gao H, Wang L, Lin Z, Jin H, Lyu Y, Kang Y, Zhu T, Zhao J, Jiang J. Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface. Mater Today Bio 2023; 22:100749. [PMID: 37545569 PMCID: PMC10400930 DOI: 10.1016/j.mtbio.2023.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Facilitating regeneration of the tendon-to-bone interface can reduce the risk of postoperative retear after rotator cuff repair. Unfortunately, undesirable inflammatory responses following injury, difficulties in fibrocartilage regeneration, and bone loss in the surrounding area are major contributors to suboptimal tendon-bone healing. Thus, the development of biomaterials capable of regulating macrophage polarization to a favorable phenotype and promoting the synchronous regeneration of the tendon-to-bone interface is currently a top priority. Here, strontium-doped mesoporous bioglass nanoparticles (Sr-MBG) were synthesized through a modulated sol-gel method and Bi-lineage Inducible and Immunoregulatory Electrospun Fibers Scaffolds (BIIEFS) containing Sr-MBG were fabricated. The BIIEFS were biocompatible, showed sustained release of multiple types of bioactive ions, enhanced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs), and facilitated macrophage polarization towards the M2 phenotype in vitro. The implantation of BIIEFS at the torn rotator cuff resulted in greater numbers of M2 macrophages and the synchronous regeneration of tendon, fibrocartilage, and bone at the tendon-to-bone interface, leading to a significant improvement in the biomechanical strength of the supraspinatus tendon-humerus complexes. Our research offers a feasible strategy to fabricate immunoregulatory and multi-lineage inducible electrospun fibers scaffolds incorporating bioglass nanoparticles for the regeneration of soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
19
|
Chatterjee M, Evans MK, Bell R, Nguyen PK, Kamalitdinov TB, Korntner S, Kuo CK, Dyment NA, Andarawis-Puri N. Histological and immunohistochemical guide to tendon tissue. J Orthop Res 2023; 41:2114-2132. [PMID: 37321983 DOI: 10.1002/jor.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mary K Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefanie Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
20
|
Zhang T, Wan L, Xiao H, Wang L, Hu J, Lu H. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation. eLife 2023; 12:e85873. [PMID: 37698466 PMCID: PMC10513478 DOI: 10.7554/elife.85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/10/2023] [Indexed: 09/13/2023] Open
Abstract
The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open-source GSE182997 datasets (three samples) provided by Fang et al., we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And, we furtherly performed single-cell spatial transcriptomic sequencing on postnatal day 1 mouse enthesis, in order to deconvolute bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
21
|
Kamalitdinov TB, Fujino K, Keith Lang S, Jiang X, Madi R, Evans MK, Zgonis MH, Kuntz AF, Dyment NA. Targeting the hedgehog signaling pathway to improve tendon-to-bone integration. Osteoarthritis Cartilage 2023; 31:1202-1213. [PMID: 37146960 PMCID: PMC10524548 DOI: 10.1016/j.joca.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE While the role of hedgehog (Hh) signaling in promoting zonal fibrocartilage production during development is well-established, whether this pathway can be leveraged to improve tendon-to-bone repair in adults is unknown. Our objective was to genetically and pharmacologically stimulate the Hh pathway in cells that give rise to zonal fibrocartilaginous attachments to promote tendon-to-bone integration. DESIGN Hh signaling was stimulated genetically via constitutive Smo (SmoM2 construct) activation of bone marrow stromal cells or pharmacologically via systemic agonist delivery to mice following anterior cruciate ligament reconstruction (ACLR). To assess tunnel integration, we measured mineralized fibrocartilage (MFC) formation in these mice 28 days post-surgery and performed tunnel pullout testing. RESULTS Hh pathway-related genes increased in cells forming the zonal attachments in wild-type mice. Both genetic and pharmacologic stimulation of the Hh pathway increased MFC formation and integration strength 28 days post-surgery. We next conducted studies to define the role of Hh in specific stages of the tunnel integration process. We found Hh agonist treatment increased the proliferation of the progenitor pool in the first week post-surgery. Additionally, genetic stimulation led to continued MFC production in the later stages of the integration process. These results indicate that Hh signaling plays an important biphasic role in cell proliferation and differentiation towards fibrochondrocytes following ACLR. CONCLUSION This study reveals a biphasic role for Hh signaling during the tendon-to-bone integration process after ACLR. In addition, the Hh pathway is a promising therapeutic target to improve tendon-to-bone repair outcomes.
Collapse
Affiliation(s)
- Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Keitaro Fujino
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Osaka Medical and Pharmaceutical University, Takatsuki, Osaka Prefecture, Japan
| | - Sinaia Keith Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xi Jiang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Rashad Madi
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Kate Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Miltiadis H Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew F Kuntz
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Wernlé KK, Sonnenfelt MA, Leek CC, Ganji E, Sullivan AL, Offutt C, Shuff J, Ornitz DM, Killian ML. Loss of Fgfr1 and Fgfr2 in Scleraxis-lineage cells leads to enlarged bone eminences and attachment cell death. Dev Dyn 2023; 252:1180-1188. [PMID: 37212424 PMCID: PMC10524747 DOI: 10.1002/dvdy.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.
Collapse
Affiliation(s)
- Kendra K. Wernlé
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716
| | - Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Claudia Offutt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri, 63110
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Abdalla AA, Pendegrass CJ. Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review. BIOMATERIALS TRANSLATIONAL 2023; 4:85-103. [PMID: 38283917 PMCID: PMC10817785 DOI: 10.12336/biomatertransl.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 01/30/2024]
Abstract
Entheses are highly specialised organs connecting ligaments and tendons to bones, facilitating force transmission, and providing mechanical strengths to absorb forces encountered. Two types of entheses, fibrocartilaginous and fibrous, exist in interfaces. The gradual fibrocartilaginous type is in rotator cuff tendons and is more frequently injured due to the poor healing capacity that leads to loss of the original structural and biomechanical properties and is attributed to the high prevalence of retears. Fluctuating methodologies and outcomes of biological approaches are challenges to overcome for them to be routinely used in clinics. Therefore, stratifying the existing literature according to different categories (chronicity, extent of tear, and studied population) would effectively guide repair approaches. This literature review supports tissue engineering approaches to promote rotator cuff enthesis healing employing cells, growth factors, and scaffolds period. Outcomes suggest its promising role in animal studies as well as some clinical trials and that combination therapies are more beneficial than individualized ones. It then highlights the importance of tailoring interventions according to the tear extent, chronicity, and the population being treated. Contributing factors such as loading, deficiencies, and lifestyle habits should also be taken into consideration. Optimum results can be achieved if biological, mechanical, and environmental factors are approached. It is challenging to determine whether variations are due to the interventions themselves, the animal models, loading regimen, materials, or tear mechanisms. Future research should focus on tailoring interventions for different categories to formulate protocols, which would best guide regenerative medicine decision making.
Collapse
Affiliation(s)
- Ahlam A. Abdalla
- Institute of Sport, Exercise and Health (ISEH), Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Catherine J. Pendegrass
- Department of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Sciences, University College London, Brockley Hill, Stanmore, UK
| |
Collapse
|
24
|
Insights into the Molecular and Hormonal Regulation of Complications of X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hypophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy), all of which lead to decreased quality of life. Many molecular and murine studies have detailed the role of mineral ions and hormones in regulating complications of XLH, including how they modulate growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral matrix resorption and canalicular organization, and enthesopathy development. While these studies have provided insight into the molecular underpinnings of these skeletal processes, current therapies available for XLH do not fully prevent or treat these complications. Therefore, further investigations are needed to determine the molecular pathophysiology underlying the complications of XLH.
Collapse
|
25
|
Liu Y, Liu S, Song Z, Chen D, Album Z, Green S, Deng X, Rodeo SA. GLI1 Deficiency Impairs the Tendon-Bone Healing after Anterior Cruciate Ligament Reconstruction: In Vivo Study Using Gli1-Transgenic Mice. J Clin Med 2023; 12:jcm12030999. [PMID: 36769647 PMCID: PMC9917856 DOI: 10.3390/jcm12030999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Hedgehog (Hh) signaling plays a fundamental role in the enthesis formation process and GLI-Kruppel family member GLI1 (Gli1) is a key downstream mediator. However, the role of Gli1 in tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is unknown. To evaluate the tendon-bone healing after ACLR in Gli1LacZ/LacZ (GLI1-NULL) mice, and compare Gli1LacZ/WT (GLI1-HET) and Gli1WT/WT wild type (WT) mice, a total of 45 mice, 15 mice each of GLI1-NULL, GLI1-HET and WT were used in this study. All mice underwent microsurgical ACLR at 12 weeks of age. Mice were euthanized at 4 weeks after surgery and were used for biomechanical testing, histological evaluation, and micro-CT analysis. The GLI1-NULL group had significantly lower biomechanical failure force, poorer histological healing, and lower BV/TV when compared with the WT and GLI1-HET groups. These significant differences were only observed at the femoral tunnel. Immunohistology staining showed positive expression of Indian hedgehog (IHH) and Patched 1(PTCH1) in all three groups, which indicated the activation of the Hh signal pathway. The GLI1 was negative in the GLI1-NULL group, validating the absence of GLI1 protein in these mice. These results proved that activation of the Hh signaling pathway occurs during ACL graft healing, and the function of Gli1 was necessary for tendon-bone healing. Healing in the femoral tunnel is more obviously impaired by Gli1 deficiency. Our findings provide further insight into the molecular mechanism of tendon-bone healing and suggest that Gli1 might represent a novel therapeutic target to improve tendon-bone healing after ACLR.
Collapse
Affiliation(s)
- Yake Liu
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shaohua Liu
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zhe Song
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Daoyun Chen
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zoe Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Samuel Green
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Xianghua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Scott A. Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Correspondence:
| |
Collapse
|
26
|
Anthwal N, Tucker AS. Evolution and development of the mammalian jaw joint: Making a novel structure. Evol Dev 2023; 25:3-14. [PMID: 36504442 PMCID: PMC10078425 DOI: 10.1111/ede.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
A jaw joint between the squamosal and dentary is a defining feature of mammals and is referred to as the temporomandibular joint (TMJ) in humans. Driven by changes in dentition and jaw musculature, this new joint evolved early in the mammalian ancestral lineage and permitted the transference of the ancestral jaw joint into the middle ear. The fossil record demonstrates the steps in the cynodont lineage that led to the acquisition of the TMJ, including the expansion of the dentary bone, formation of the coronoid process, and initial contact between the dentary and squamosal. From a developmental perspective, the components of the TMJ form through tissue interactions of muscle and skeletal elements, as well as through interaction between the jaw and the cranial base, with the signals involved in these interactions being both biomechanical and biochemical. In this review, we discuss the development of the TMJ in an evolutionary context. We describe the evolution of the TMJ in the fossil record and the development of the TMJ in embryonic development. We address the formation of key elements of the TMJ and how knowledge from developmental biology can inform our understanding of TMJ evolution.
Collapse
Affiliation(s)
- Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentisry, Oral and Craniofacial Sciences, London, UK
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentisry, Oral and Craniofacial Sciences, London, UK
| |
Collapse
|
27
|
Wang Z, Ma C, Chen D, Haslett C, Xu C, Dong C, Wang X, Zheng M, Jing Y, Feng JQ. Tendon Cells Root Into (Instead of Attach to) Humeral Bone Head via Fibrocartilage-Enthesis. Int J Biol Sci 2023; 19:183-203. [PMID: 36594083 PMCID: PMC9760439 DOI: 10.7150/ijbs.79007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Large joints are composed of two closely linked cartilages: articular cartilage (AC; rich in type II collagen, a well-studied tissue) and fibrocartilaginous enthesis (FE; rich in type I collagen, common disorder sites of enthesopathy and sporting injuries, although receiving little attention). For many years, both cartilages were thought to be formed by chondrocytes, whereas tendon, which attaches to the humeral bone head, is primarily considered as a completely different connective tissue. In this study, we raised an unconventional hypothesis: tendon cells directly form FE via cell transdifferentiation. To test this hypothesis, we first qualitatively and quantitatively demonstrated distinct differences between AC and FE in cell morphology and cell distribution, mineralization status, extracellular matrix (ECM) contents, and critical ECM protein expression profiles using comprehensive approaches. Next, we traced the cell fate of tendon cells using ScxLin (a tendon specific Cre ScxCreERT2; R26R-tdTomato line) with one-time tamoxifen induction at early (P3) or young adult (P28) stages and harvested mice at different development ages, respectively. Our early tracing data revealed different growth events in tendon and FE: an initial increase but gradual decrease in the ScxLin tendon cells and a continuous expansion in the ScxLin FE cells. The young adult tracing data demonstrated continuous recruitment of ScxLin cells into FE expansion during P28 and P56. A separate tracing line, 3.2 Col 1Lin (a so-called "bone-specific" line), further confirmed the direct contribution of tendon cells for FE cell formation, which occurred in days but FE ECM maturation (including high levels of SOST, a potent Wnt signaling inhibitor) took weeks. Finally, loss of function data using diphtheria toxin fragment A (DTA) in ScxLin cells demonstrated a significant reduction of ScxLin cells in both tendons and FE cells, whereas the gain of function study (by stabilizing β-catenin in ScxLin tendon cells via one-time injection of tamoxifen at P3 and harvesting at P60) displayed great expansion of both ScxLin tendon and FE mass. Together, our studies demonstrated that fibrocartilage is an invaded enthesis likely originating from the tendon via a quick cell transdifferentiation mechanism with a lengthy ECM maturation process. The postnatally formed fibrocartilage roots into existing cartilage and firmly connects tendon and bone instead of acting as a simple attachment site as widely believed. We believe that this study will stimulate more intense exploring in this understudied area, especially for patients with enthesopathy and sporting injuries.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Chi Ma
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75219, USA
| | - Diane Chen
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Caitlin Haslett
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Chunmei Xu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Changchun Dong
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,✉ Corresponding authors: Yan Jing, E-mail: Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA. Tel./Fax: +1-214-370-7327. Jian Q. Feng, E-mail: Dental School, the University of Western Australia, Nedlands, 6009 Perth, Australia. Tel./Fax: +1-469-487-4584
| | - Jian Q. Feng
- Dental School and Oral Health Centre, The University of Western Australia, Nedlands, 6009 Australia.,✉ Corresponding authors: Yan Jing, E-mail: Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, Texas 75246, USA. Tel./Fax: +1-214-370-7327. Jian Q. Feng, E-mail: Dental School, the University of Western Australia, Nedlands, 6009 Perth, Australia. Tel./Fax: +1-469-487-4584
| |
Collapse
|
28
|
Craft AM, Galloway J. Specialized cells for building tissue bridges. Cell Stem Cell 2022; 29:1615-1616. [PMID: 36459962 DOI: 10.1016/j.stem.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Fang and colleagues provide a comprehensive transcriptomic analysis of the cell types occupying the interface between tendon and bone, the enthesis. They establish a framework for understanding enthesis maturation and identify a potent Gli1-lineage progenitor with clonogenicity and multipotency that improves enthesis healing in an adult injury model.
Collapse
Affiliation(s)
- April M Craft
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Stem Cells & Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Jenna Galloway
- Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Fang F, Xiao Y, Zelzer E, Leong KW, Thomopoulos S. A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential. Cell Stem Cell 2022; 29:1669-1684.e6. [PMID: 36459968 PMCID: PMC10422080 DOI: 10.1016/j.stem.2022.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
The enthesis, a fibrocartilaginous transition between tendon and bone, is necessary for force transfer from muscle to bone to produce joint motion. The enthesis is prone to injury due to mechanical demands, and it cannot regenerate. A better understanding of how the enthesis develops will lead to more effective therapies to prevent pathology and promote regeneration. Here, we used single-cell RNA sequencing to define the developmental transcriptome of the mouse entheses over postnatal stages. Six resident cell types, including enthesis progenitors and mineralizing chondrocytes, were identified along with their transcription factor regulons and temporal regulation. Following the prior discovery of the necessity of Gli1-lineage cells for mouse enthesis development and healing, we then examined their transcriptomes at single-cell resolution and demonstrated clonogenicity and multipotency of the Gli1-expressing progenitors. Transplantation of Gli1-lineage cells to mouse enthesis injuries improved healing, demonstrating their therapeutic potential for enthesis regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
30
|
Yuan W, Wu Y, Huang M, Zhou X, Liu J, Yi Y, Wang J, Liu J. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol 2022; 10:1074536. [PMID: 36507254 PMCID: PMC9732036 DOI: 10.3389/fbioe.2022.1074536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative disease with high incidence, deteriorating quality of patient life. Currently, due to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize on symptomatic treatments such as pain relief and inflammation alleviation, which are unable to halt or reverse the destruction of cartilage or subchondral bone. A number of studies have suggested the potential application prospect of mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage injury. Worthy of note, exosomes are increasingly being considered the principal efficacious agent of MSC secretions for TMJOA management. The extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes or adipose tissue et al.) on arthritis recently, has indicated exosomes and their specific miRNA components to be potential therapeutic agents for TMJOA. In this review, we aim to systematically summarize therapeutic properties and underlying mechanisms of MSCs and exosomes from different sources in TMJOA, also analyze and discuss the approaches to optimization, challenges, and prospects of exosome-based therapeutic strategy.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yange Wu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xueman Zhou
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| |
Collapse
|
31
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
32
|
Xu J, Liu H, Lan Y, Jiang R. The transcription factors Foxf1 and Foxf2 integrate the SHH, HGF and TGFβ signaling pathways to drive tongue organogenesis. Development 2022; 149:dev200667. [PMID: 36227576 PMCID: PMC10655918 DOI: 10.1242/dev.200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2023]
Abstract
The tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation. We performed chromatin immunoprecipitation sequencing analysis and identified Hgf, Tgfb2 and Tgfb3 among the target genes of Foxf2 in the embryonic tongue. Through genetic analyses of mice with CNCC-specific inactivation of Smo or both Foxf1 and Foxf2, we show that Foxf1 and Foxf2 mediate hedgehog signaling-mediated regulation of myoblast migration during tongue initiation and intrinsic tongue muscle formation by regulating the activation of the HGF and TGFβ signaling pathways. These data uncover the molecular network integrating the SHH, HGF and TGFβ signaling pathways in regulating tongue organogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
33
|
Camy C, Brioche T, Senni K, Bertaud A, Genovesio C, Lamy E, Fovet T, Chopard A, Pithioux M, Roffino S. Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J 2022; 36:e22548. [PMID: 36121701 DOI: 10.1096/fj.202200713r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Karim Senni
- Laboratoire EBInnov, Ecole de Biologie Industrielle-EBI, Cergy, France
| | - Alexandrine Bertaud
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Edouard Lamy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Department of Orthopaedics and Traumatology, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| | - Sandrine Roffino
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| |
Collapse
|
34
|
Bai X, Levental M, Karaplis AC. Burosumab Treatment for Autosomal Recessive Hypophosphatemic Rickets Type 1 (ARHR1). J Clin Endocrinol Metab 2022; 107:2777-2783. [PMID: 35896139 PMCID: PMC9516063 DOI: 10.1210/clinem/dgac433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Autosomal recessive hypophosphatemic rickets (ARHR) are rare, heritable renal phosphate-wasting disorders that arise from overexpression of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) leading to impaired bone mineralization (rickets and osteomalacia). Inactivating mutations of Dentin matrix protein 1 (DMP1) give rise to ARHR type 1 (ARHR1). Short stature, prominent bowing of the legs, fractures/pseudofractures, and severe enthesopathy are prominent in this patient population. Traditionally, treatment consists of oral phosphate replacement and the addition of calcitriol but this approach is limited by modest efficacy and potential renal and gastrointestinal side effects. OBJECTIVE The advent of burosumab (Crysvita), a fully humanized monoclonal antibody to FGF23 for the treatment of X-linked hypophosphatemia and tumor-induced osteomalacia, offers a unique opportunity to evaluate its safety and efficacy in patients with ARHR1. RESULTS Monthly administration of burosumab to 2 brothers afflicted with the disorder resulted in normalization of serum phosphate, healing of pseudofracture, diminished fatigue, less bone pain, and reduced incapacity arising from the extensive enthesopathy and soft tissue fibrosis/calcification that characterizes this disorder. No adverse effects were reported following burosumab administration. CONCLUSION The present report highlights the beneficial biochemical and clinical outcomes associated with the use of burosumab in patients with ARHR1.
Collapse
Affiliation(s)
- Xiuying Bai
- Lady Davis Institute for Medical Research, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Mark Levental
- Department of Radiology, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Andrew C Karaplis
- Correspondence: Andrew C. Karaplis, MD, PhD, Lady Davis Institute for Medical Research, 3755 Cote Steve Catherine, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
35
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
36
|
Macica CM, Luo J, Tommasini SM. The Enthesopathy of XLH Is a Mechanical Adaptation to Osteomalacia: Biomechanical Evidence from Hyp Mice. Calcif Tissue Int 2022; 111:313-322. [PMID: 35618776 DOI: 10.1007/s00223-022-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
A major comorbidity of X-linked hypophosphatemia (XLH) is fibrocartilaginous tendinous insertion site mineralization resulting in painful enthesophytes that contribute to the adult clinical picture and significantly impact physical function. Enthesophytes in Hyp mice, a murine model of XLH are the result of a hyperplastic expansion of resident alkaline phosphatase, Sox9-positive mineralizing fibrochondrocytes. Here, we hypothesized hyperplasia as a compensatory physical adaptation to aberrant mechanical stresses at the level of the entheses interface inserting into pathologically soft bone. To test this hypothesis, we examined the Achilles insertion of the triceps surae developed under normal and impaired loading conditions in Hyp and WT mice. Tensile stiffness, ultimate strength, and maximum strain were measured and compared. Biomechanical testing revealed that under normal loading conditions, despite inserting into a soft bone matrix, both the enthesophyte development (9 weeks) and progression (6-8 months) of Hyp mice were equivalent to the mechanical properties of WT mice. Unloading the insertion during development significantly reduced alkaline phosphatase, Sox9-positive fibrochondrocytes. In WT mice, this correlated with a decrease in stiffness and ultimate strength relative to the control limb, confirming the critical role of mechanical loading in the development of the enthesis. Most significantly, in response to unloading, maximum strain was increased in tensile tests only in the setting of subchondral osteomalacia of Hyp mice. These data suggest that mineralizing fibrochondrocyte expansion in XLH occurs as a compensatory adaptation to the soft bone matrix.
Collapse
Affiliation(s)
- Carolyn M Macica
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, 06518, USA.
- , 275, Mt Carmel Ave, Hamden, CT, 06518, USA.
| | - Jack Luo
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, 06518, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
37
|
Titan AL, Davitt M, Foster D, Salhotra A, Menon S, Chen K, Fahy E, Lopez M, Jones RE, Baiu I, Burcham A, Januszyk M, Gurtner G, Fox P, Chan C, Quarto N, Longaker M. Partial Tendon Injury at the Tendon-to-Bone Enthesis Activates Skeletal Stem Cells. Stem Cells Transl Med 2022; 11:715-726. [PMID: 35640155 PMCID: PMC9299518 DOI: 10.1093/stcltm/szac027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
The tendon enthesis plays a critical role in facilitating movement and reducing stress within joints. Partial enthesis injuries heal in a mechanically inferior manner and never achieve healthy tissue function. The cells responsible for tendon-to-bone healing remain incompletely characterized and their origin is unknown. Here, we evaluated the putative role of mouse skeletal stem cells (mSSCs) in the enthesis after partial-injury. We found that mSSCs were present at elevated levels within the enthesis following injury and that these cells downregulated TGFβ signaling pathway elements at both the RNA and protein levels. Exogenous application of TGFβ post-injury led to a reduced mSSC response and impaired healing, whereas treatment with a TGFβ inhibitor (SB43154) resulted in a more robust mSSC response. Collectively, these data suggest that mSSCs may augment tendon-to-bone healing by dampening the effects of TGFβ signaling within the mSSC niche.
Collapse
Affiliation(s)
- Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Davitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Deshka Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddharth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Fahy
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioana Baiu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Austin Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Paige Fox
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Chan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| |
Collapse
|
38
|
Nödl MT, Tsai SL, Galloway JL. The impact of Drew Noden's work on our understanding of craniofacial musculoskeletal integration. Dev Dyn 2022; 251:1250-1266. [PMID: 35338756 PMCID: PMC9357029 DOI: 10.1002/dvdy.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
The classical anatomist Drew Noden spearheaded craniofacial research, laying the foundation for our modern molecular understanding of development, evolution and disorders of the craniofacial skeleton. His work revealed the origin of cephalic musculature and the role of cranial neural crest in early formation and patterning of the head musculoskeletal structures. Much of modern cranial tendon research advances a foundation of knowledge that Noden built using classical quail-chick transplantation experiments. This elegant avian chimeric system involves grafting of donor quail cells into host chick embryos to identify the cell types they can form and their interactions with the surrounding tissues. In this review, we will give a brief background of vertebrate head formation and the impact of cranial neural crest on the patterning, development and evolution of the head musculoskeletal attachments. Using the zebrafish as a model system, we will discuss examples of modifications of craniofacial structures in evolution with a special focus on the role of tendon and ligaments. Lastly, we will discuss pathologies in craniofacial tendons and the importance of understanding the molecular and cellular dynamics during craniofacial tendon development in human disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marie-Therese Nödl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
39
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
40
|
Liu Y, Deng XH, Zhang X, Cong T, Chen D, Hall AJ, Ying L, Rodeo SA. The Role of Indian Hedgehog Signaling in Tendon Response to Subacromial Impingement: Evaluation Using a Mouse Model. Am J Sports Med 2022; 50:362-370. [PMID: 34904906 DOI: 10.1177/03635465211062244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. PURPOSE To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). RESULTS The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group (P < .001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P < .001; 53.9% vs 28.03%, P = .016; and 30% vs 12.19%, P = .036, respectively) and continuously increased after clip removal. CONCLUSION The authors' findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. CLINICAL RELEVANCE This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Yulei Liu
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Daoyun Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Arielle Jordan Hall
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
41
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
42
|
Fang F, Sup M, Luzzi A, Ferrer X, Thomopoulos S. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol 2022; 105:87-103. [PMID: 34954379 PMCID: PMC8821161 DOI: 10.1016/j.matbio.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling has been widely acknowledged to play essential roles in many developmental processes, including endochondral ossification and growth plate maintenance. Furthermore, a rising number of studies have shown that Hh signaling is necessary for tendon enthesis development. Specifically, the well-tuned regulation of Hh signaling during development drives the formation of a mineral gradient across the tendon enthesis fibrocartilage. However, aberrant Hh signaling can also lead to pathologic heterotopic ossification in tendon or osteophyte formation at the enthesis. Therefore, the therapeutic potential of Hh signaling modulation for treating tendon and enthesis diseases remains uncertain. For example, increased Hh signaling may enhance tendon-to-bone healing by promoting the formation of mineralized fibrocartilage at the healing interface, but pathologic heterotopic ossification may also be triggered in the adjacent tendon. Further work is needed to elucidate the distinct functions of Hh signaling in the tendon and enthesis to support the development of therapies that target the pathway.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - McKenzie Sup
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew Luzzi
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Xavier Ferrer
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
43
|
Wong J, Murphy M, Wu YF, Murphy R, Frueh FS, Farnebo S. Basic science approaches to common hand surgery problems. J Hand Surg Eur Vol 2022; 47:117-126. [PMID: 34472390 DOI: 10.1177/17531934211042697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of hand surgery is constantly evolving to meet challenges of populations with increasing age and higher demands for active living. While our surgical care has improved over the last decades, it seems that future major improvement in outcomes of clinical treatment will come through advances in biologics and the translation of major discoveries in basic science. This article aims to provide an update on where basic science solutions may answer some of the most critical issues in hand surgery, with a focus on augmentation of tissue repair.
Collapse
Affiliation(s)
- Jason Wong
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Matthew Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Ya Fang Wu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ralph Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
45
|
Jiang X, Wojtkiewicz M, Patwardhan C, Greer S, Kong Y, Kuss M, Huang X, Liao J, Lu Y, Dudley A, Gundry RL, Fuchs M, Streubel P, Duan B. The effects of maturation and aging on the rotator cuff tendon-to-bone interface. FASEB J 2021; 35:e22066. [PMID: 34822203 DOI: 10.1096/fj.202101484r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area, with a high prevalence for the elderly population, but the underlying reason for this phenomenon is still unknown. The objective of this study is to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging in a mouse model. Four different age groups of mice (newborn, young, adult, and old) were studied. Striking variations of the entheses were observed between the newborn and other matured groups, with collagen content, proteoglycan deposition, collagen fiber dispersion was significantly higher in the newborn group. The compositional and histological features of young, adult, and old groups did not show significant differences, except having increased proteoglycan deposition and thinner collagen fibers at the insertion sites in the old group. Nanoindentation testing showed that the old group had a smaller compressive modulus at the insertion site when compared with other groups. However, tensile mechanical testing reported that the old group demonstrated a significantly higher failure stress when compared with the young and adult groups. The proteomics analysis detected dramatic differences in protein content between newborn and young groups but minor changes among young, adult, and old groups. These results demonstrated: (1) the significant alterations of the enthesis composition and structure occur from the newborn to the young time period; (2) the increased risk of rotator cuff tendon injuries in the elderly population is not solely because of old age alone in the rodent model.
Collapse
Affiliation(s)
- Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chinmay Patwardhan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Sydney Greer
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Andrew Dudley
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthias Fuchs
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Philipp Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
46
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
47
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
48
|
Moser HL, Abraham AC, Howell K, Laudier D, Zumstein MA, Galatz LM, Huang AH. Cell lineage tracing and functional assessment of supraspinatus tendon healing in an acute repair murine model. J Orthop Res 2021; 39:1789-1799. [PMID: 32497311 PMCID: PMC7714710 DOI: 10.1002/jor.24769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
Rotator cuff supraspinatus tendon injuries are common with high rates of anatomic failure after surgical repair. The purpose of the study was to define clinically relevant features of a mouse model of supraspinatus tendon injury to determine painful, functional, and structural outcomes; we further investigated two cell populations mediating healing using genetic lineage tracing after full detachment and repair of the supraspinatus tendon in mice. The pain was assessed using the mouse grimace scale and function by gait analysis and tensile testing. Histological and microCT analyses were used to determine enthesis/tendon and bone structure, respectively. Lineage tracing was carried out using inducible Cre lines for ScxCreERT2 (tendon cells) and αSMACreERT2 (myofibroblasts and mesenchymal progenitors). Mice only expressed pain transiently after surgery despite long-term impairment of functional and structural properties. Gait, tensile mechanical properties, and bone properties were significantly reduced after injury and repair. Lineage tracing showed relatively few Scx lin tendon cells while αSMA lin cells contributed strongly to scar formation. Despite surgical reattachment of healthy tendon, lineage tracing revealed poor preservation of supraspinatus tendon after acute injury and loss of tendon structure, suggesting that tendon degeneration is also a key impediment of successful rotator cuff repair. Scar formation after surgery is mediated largely by αSMA lin cells and results in permanently reduced functional and structural properties.
Collapse
Affiliation(s)
- Helen L. Moser
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA,Inselspital, Bern University Hospital, University of Bern, Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, 3010 Bern, Switzerland
| | - Adam C. Abraham
- Columbia University Irving Medical Center, Department of Orthopedic Surgery, New York, NY 10032, USA
| | - Kristen Howell
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Damien Laudier
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Matthias A. Zumstein
- Inselspital, Bern University Hospital, University of Bern, Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, 3010 Bern, Switzerland,Shoulder, Elbow and Orthopaedic Sports Medicine, Orthopaedics Sonnenhof, 3006 Bern, Switzerland
| | - Leesa M. Galatz
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Alice H. Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| |
Collapse
|
49
|
Lim J, Lietman C, Grol MW, Castellon A, Dawson B, Adeyeye M, Rai J, Weis M, Keene DR, Schweitzer R, Park D, Eyre DR, Krakow D, Lee BH. Localized chondro-ossification underlies joint dysfunction and motor deficits in the Fkbp10 mouse model of osteogenesis imperfecta. Proc Natl Acad Sci U S A 2021; 118:e2100690118. [PMID: 34161280 PMCID: PMC8237619 DOI: 10.1073/pnas.2100690118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Caressa Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Matthew W Grol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97239
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
50
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|