1
|
Liu W, Ding Y, Shen Z, Xu C, Yi W, Wang D, Zhou Y, Zon LI, Liu JX. BF170 hydrochloride enhances the emergence of hematopoietic stem and progenitor cells. Development 2024; 151:dev202476. [PMID: 38940293 DOI: 10.1242/dev.202476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - YuYan Ding
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Shen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Xu
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William Yi
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhou
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute/Children's Hospital, 300 Longwood Avenue, Karp 8, Boston, MA 02115, USA
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 2017; 232:3261-3272. [PMID: 28079253 DOI: 10.1002/jcp.25797] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan You
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Li Z, Vink CS, Mariani SA, Dzierzak E. Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head. Dev Biol 2016; 416:34-41. [PMID: 27235813 PMCID: PMC4968554 DOI: 10.1016/j.ydbio.2016.05.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/07/2016] [Accepted: 05/24/2016] [Indexed: 11/03/2022]
Abstract
Hematopoietic cell generation in the midgestation mouse embryo occurs through the natural transdifferentiation of temporally and spatially restricted set of hemogenic endothelial cells. These cells take on hematopoietic fate in the aorta, vitelline and umbilical arteries and appear as hematopoietic cell clusters that emerge from the vascular wall. Genetic and live imaging data have supported this. Recently, the embryonic head has been shown to contain fully functional hematopoietic stem cells (HSC). By lineage tracing, cerebrovascular specific endothelial cells were shown to contribute to the postnatal mouse hematopoietic system. Since Ly6aGFP is a marker of all HSCs, some hematopoietic cluster cells and hemogenic endothelial cells in the midgestation mouse aorta, we examine here whether embryonic head HSCs and vascular endothelial cells are positive for this marker. Whereas some head vasculature, single hematopoietic cells and all HSCs are Ly6aGFP expressing, we do not find clusters of hematopoietic cells emerging from the cerebrovasculature that are characteristic of endothelial-to-hematopoietic transition.
Collapse
Affiliation(s)
- Zhuan Li
- University of Edinburgh, Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, UK
| | - Chris S Vink
- University of Edinburgh, Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, UK
| | - Samanta A Mariani
- University of Edinburgh, Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, UK
| | - Elaine Dzierzak
- University of Edinburgh, Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, UK; Erasmus MC Stem Cell Institute, Departments of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Abbasi H, Hosseini SM, Hajian M, Nasiri Z, Bahadorani M, Tahmoorespur M, Nasiri MR, Nasr-Esfahani MH. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia. Anim Reprod Sci 2015; 163:10-7. [DOI: 10.1016/j.anireprosci.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/05/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
|
6
|
Hirota S, Ogawa M. Activin A in combination with OP9 cells facilitates development of Flk-1+ PDGFRα− and Flk-1+ PDGFRα+ hematopoietic mesodermal cells from murine embryonic stem cells. Biochem Biophys Res Commun 2015; 467:583-8. [DOI: 10.1016/j.bbrc.2015.09.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
|
7
|
Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, Wang Y, Sun H, Chen X, Xu C, Li S, Pang Y, Zhang G, Yang L, Zhu L, Fan M, Shang A, Ju Z, Luo L, Ding Y, Guo W, Yuan W, Yang X, Liu B. Mouse Embryonic Head as a Site for Hematopoietic Stem Cell Development. Cell Stem Cell 2012; 11:663-75. [DOI: 10.1016/j.stem.2012.07.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 10/27/2022]
|
8
|
Modeling human hematopoietic cell development from pluripotent stem cells. Exp Hematol 2012; 40:601-11. [PMID: 22510344 DOI: 10.1016/j.exphem.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
Understanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process. Here we review recent efforts to develop defined and quantitative systems to address outstanding developmental questions against a background of what we know about the development of hematopoietic cells in the fetus and derived from mouse embryonic stem cells.
Collapse
|
9
|
Abstract
Notch is a well-conserved signaling pathway and its function in cell fate determination is crucial in embryonic development and in the maintenance of tissue homeostasis during adult life. Notch activation depends on cell-cell interactions that are essential for the generation of cell diversity from initially equivalent cell populations. In the adult hematopoiesis, Notch is undoubtedly a very efficient promoter of T-cell differentiation, and this has masked for a long time the effects of Notch on other blood lineages, which are gradually being identified. However, the adult hematopoietic stem cell (HSC) remains mostly refractory to Notch intervention in experimental systems. In contrast, Notch is essential for the generation of the HSCs, which takes place during embryonic development. This review summarizes the knowledge accumulated in recent years regarding the role of the Notch pathway in the different stages of HSC ontology from embryonic life to fetal and adult bone marrow stem cells. In addition, we briefly examine other systems where Notch regulates specific stem cell capacities, in an attempt to understand how Notch functions in stem cell biology.
Collapse
|
10
|
Bahadorani M, Hosseini SM, Abedi P, Hajian M, Hosseini SE, Vahdati A, Baharvand H, Nasr-Esfahani MH. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J Assist Reprod Genet 2012; 29:39-46. [PMID: 22160429 PMCID: PMC3252412 DOI: 10.1007/s10815-011-9687-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the effect of serum supplementing on short-term culture, fate determination and gene expression of goat spermatogonial stem cells (SSCs). METHODS Crude testicular cells were plated over Datura-Stramonium Agglutinin (DSA) for 1 h, and non-adhering cells were cultured in the presence of different serum concentrations (1, 5, 10, and 15%) for 7 days in a highly enriched medium initially developed in mice. Colonies developed in each group were used for the assessment of morphology, immunocytochemistry, and gene expression. RESULTS Brief incubation of testicular cells with DSA resulted in a significant increase in the number of cells that expressed the germ cell marker (VASA). The expression of THY1, a specific marker of undifferentiated spermatogonia, was significantly higher in colonies developed in the presence of 1% rather than 5, 10 and 15% serum. CONCLUSION Goat SSCs could proliferate and maintain in SSC culture media for 1 week at serum concentrations as low as 1%, while higher concentrations had detrimental effects on SSC culture/expansion.
Collapse
Affiliation(s)
- M. Bahadorani
- Department of Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - S. M. Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - P. Abedi
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - M. Hajian
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - S. E. Hosseini
- Department of Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - A. Vahdati
- Department of Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - H. Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad H. Nasr-Esfahani
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Bipartite anterior extraperitoneal teratoma: evidence for the embryological origins of teratomas? Case Rep Med 2011; 2011:208940. [PMID: 21949666 PMCID: PMC3163403 DOI: 10.1155/2011/208940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/03/2011] [Indexed: 11/20/2022] Open
Abstract
Teratomas are thought to arise from totipotent primordial germ cells (PGCs) Dehner (1983) which may miss their target destination Moore and Persaud (1984). Teratomas can occur anywhere from the brain to the coccygeal area but are usually in the midline close to the embryological position of the gonadal ridges Bale (1984), Nguyen and Laberge (2000). We report a case of a bipartite anterior extraperitoneal teratoma. This is an unusual position for a teratoma, but one which may support the “missed target” theory of embryology.
Collapse
|
12
|
Caprioli A, Koyano-Nakagawa N, Iacovino M, Shi X, Ferdous A, Harvey RP, Olson EN, Kyba M, Garry DJ. Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation 2011; 123:1633-41. [PMID: 21464046 PMCID: PMC3110259 DOI: 10.1161/circulationaha.110.008185] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 02/15/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recent studies suggest that the hematopoietic and cardiac lineages have close ontogenic origins, and that an early mesodermal cell population has the potential to differentiate into both lineages. Studies also suggest that specification of these lineages is inversely regulated. However, the transcriptional networks that govern the cell fate specification of these progenitors are incompletely defined. METHODS AND RESULTS Here, we show that Nkx2-5 regulates the hematopoietic/erythroid fate of the mesoderm precursors early during cardiac morphogenesis. Using transgenic technologies to isolate Nkx2-5 expressing cells, we observed an induction of the erythroid molecular program, including Gata1, in the Nkx2-5-null embryos. We further observed that overexpression of Nkx2-5 with an Nkx2-5-inducible embryonic stem cell system significantly repressed Gata1 gene expression and suppressed the hematopoietic/erythroid potential, but not the endothelial potential, of the embryonic stem cells. This suppression was cell-autonomous, and was partially rescued by overexpressing Gata1. In addition, we demonstrated that Nkx2-5 binds to the Gata1 gene enhancer and represses the transcriptional activity of the Gata1 gene. CONCLUSIONS Our results demonstrate that the hematopoietic/erythroid cell fate is suppressed via Nkx2-5 during mesodermal fate determination, and that the Gata1 gene is one of the targets that are suppressed by Nkx2-5.
Collapse
Affiliation(s)
- Arianna Caprioli
- Center for Developmental Biology, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Anwarul Ferdous
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute and Faculties of Medicine and Life Science, University of New South Wales, Sidney, Australia
| | - Eric N. Olson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
13
|
Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells. J Assist Reprod Genet 2009; 26:143-9. [PMID: 19199023 DOI: 10.1007/s10815-009-9298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 01/22/2009] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Isolating spermatogonia cells with high purity and viability and achieving better survival rate following cryopreservation METHODS Isolating the cells by Magnetic Activating Cell Sorting (MACS) method using anti CD49f (alpha6 integrin) antibody and Dynabeads and freezing in DMSO-based freezing mediums containing three different FBS concentrations of 50%, 60% and 70%. RESULTS The mean (+/-SD) purity of the isolated cells was 92.52+/-3.57 (range 92.43-98.25). The cells frozen in group I, II and III had mean 39.60+/-1.48 (range 37.98-41.62), 89.05+/-3.83 (range 80.83-90.33) and 90.52+/-1.71 (range 89.07-92.52) viability, respectively. CONCLUSION Higher viable cell counts and purity can be attained by the use of alpha6 integrin and magnetic beads. After the thawing of spermatogonial cells, optimum viability was achieved in freezing media containing 60% FBS.
Collapse
|
14
|
Abstract
The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
15
|
Abstract
Blood cells are constantly produced in the bone marrow (BM) of adult mammals. This constant turnover ultimately depends on a rare population of progenitors that displays self-renewal and multilineage differentiation potential, the hematopoietic stem cells (HSCs). It is generally accepted that HSCs are generated during embryonic development and sequentially colonize the fetal liver, the spleen, and finally the BM. Here we discuss the experimental evidence that argues for the extrinsic origin of HSCs and the potential locations where HSC generation might occur. The identification of the cellular components playing a role in the generation process, in these precise locations, will be important in understanding the molecular mechanisms involved in HSC production from undifferentiated mesoderm.
Collapse
Affiliation(s)
- Ana Cumano
- INSERM, U668, Unité de Développement des Lymphocytes, Department of Immunology, Institut Pasteur, 75724 Paris, France.
| | | |
Collapse
|
16
|
Baba S, Heike T, Umeda K, Iwasa T, Kaichi S, Hiraumi Y, Doi H, Yoshimoto M, Kanatsu-Shinohara M, Shinohara T, Nakahata T. Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells. Stem Cells 2007; 25:1375-83. [PMID: 17322104 DOI: 10.1634/stemcells.2006-0574] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. Here, we compared mGS, embryonic stem (ES), and embryonic germ (EG) cells with regard to their ability to differentiate into mesodermal cells, namely, cardiomyocytes and endothelial cells. The in situ morphological appearances of undifferentiated mGS, ES, and EG cells were similar, and 4 days after being induced to differentiate, approximately 30%-40% of each cell type differentiated into Flk1(+) cells. The sorted Flk1(+) cells differentiated efficiently into cardiomyocytes and endothelial cells. By day 10 after differentiation induction, the three cell types generated equal number of endothelial colonies. However, by day 13 after differentiation induction, the Flk1(+) mGS cells generated more contractile colonies than did the Flk1(+) ES cells, whereas the Flk1(+) EG cells generated equivalent numbers as the Flk1(+) mGS cells. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis of differentiation markers such as Rex1, FGF-5, GATA-4, Brachyury, and Flk1 revealed that mGS cells expressed these markers more slowly during days 0-4 after differentiation induction than did ES cells, but that this mGS cell pattern was similar to that of the EG cells. RT-PCR analysis also revealed that the three differentiation cell types expressed various cardiac markers. Moreover, immunohistochemical analysis revealed that the contractile colonies derived from Flk1(+) mGS cells express mature cardiac cell-specific markers. In conclusion, mGS cells are phenotypically similar to ES and EG cells and have a similar potential to differentiate into cardiomyocytes and endothelial cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Park C, Lugus JJ, Choi K. Stepwise commitment from embryonic stem to hematopoietic and endothelial cells. Curr Top Dev Biol 2005; 66:1-36. [PMID: 15797450 DOI: 10.1016/s0070-2153(05)66001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is great excitement in generating different types of somatic cells from in vitro differentiated embryonic stem (ES) cells, because they can potentially be utilized for therapies for human diseases for which there are currently no effective treatments. Successful generation and application of ES-derived somatic cells requires better understanding of molecular mechanisms that regulate self-renewal and lineage commitment. Accordingly, many studies are aimed toward understanding mechanisms for maintaining the stem cell state and pathways leading to lineage specification. In this chapter we discuss recent studies that examine molecules that are critical for ES cell self-renewal, as well as hematopoietic and endothelial cell lineage differentiation from ES cells.
Collapse
Affiliation(s)
- Changwon Park
- Developmental Biology Program, Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
18
|
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2005; 119:1001-12. [PMID: 15620358 DOI: 10.1016/j.cell.2004.11.011] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 10/07/2004] [Accepted: 11/02/2004] [Indexed: 12/12/2022]
Abstract
Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci U S A 2003; 100:5828-33. [PMID: 12724518 PMCID: PMC156286 DOI: 10.1073/pnas.1037282100] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Indexed: 02/08/2023] Open
Abstract
To understand the range of competence of embryonic stem (ES) cell-derived neural precursors, we have examined in vitro differentiation of mouse and primate ES cells into the dorsal- (neural crest) and ventralmost (floor plate) cells of the neural axis. Stromal cell-derived inducing activity (SDIA; accumulated on PA6 stromal cells) induces cocultured ES cells to differentiate into rostral CNS tissues containing both ventral and dorsal cells. Although early exposure of SDIA-treated ES cells to bone morphogenetic protein (BMP)4 suppresses neural differentiation and promotes epidermogenesis, late BMP4 exposure after the fourth day of coculture causes differentiation of neural crest cells and dorsalmost CNS cells, with autonomic system and sensory lineages induced preferentially by high and low BMP4 concentrations, respectively. In contrast, Sonic hedgehog (Shh) suppresses differentiation of neural crest lineages and promotes that of ventral CNS tissues such as motor neurons. Notably, high concentrations of Shh efficiently promote differentiation of HNF3beta(+) floor plate cells with axonal guidance activities. Thus, SDIA-treated ES cells generate naive precursors that have the competence of differentiating into the "full" dorsal-ventral range of neuroectodermal derivatives in response to patterning signals.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047 Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Talbot NC, Powell AM, Garrett WM. Spontaneous differentiation of porcine and bovine embryonic stem cells (epiblast) into astrocytes or neurons. In Vitro Cell Dev Biol Anim 2002; 38:191-7. [PMID: 12197769 DOI: 10.1290/1071-2690(2002)038<0191:sdopab>2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The culture of porcine or bovine epiblasts, i.e., embryonic stem cells, on STO feeder cells resulted in their spontaneous differentiation into multiple cell types that were subsequently isolated as separate cell lines. Some of these cell lines were "neuron-like" in morphology. Immunofluorescent analysis of two porcine epiblast-derived cell lines demonstrated that the cells were positive for the expression of vimentin and the glial fibrillary acidic protein (GFAP). Because of their stellate morphology and lack of neurofilament expression, it is possible that the cells are type 2 astrocytes. Similar analysis of a bovine epiblast-derived cell line showed that the cells were positive for vimentin but that they did not express GFAP. However, a few cells within the population expressed neurofilaments and alpha-internexin. It is possible that the bovine cells are neural precursor cells. The results confirm and extend the demonstrated in vitro pluripotency of porcine and bovine epiblast cultures and provide evidence for an in vitro model of embryonic neuroectoderm development.
Collapse
Affiliation(s)
- Neil C Talbot
- Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, Building 200, Room 13, Maryland 20705, USA
| | | | | |
Collapse
|
21
|
Pesce M, Klinger FG, De Felici M. Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mech Dev 2002; 112:15-24. [PMID: 11850175 DOI: 10.1016/s0925-4773(01)00624-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes of the adult. PGCs derive from cells of the most proximal part of the cup-shaped epiblast corresponding to the presumptive region of the extraembryonic mesoderm. At 7.2 days post coitum (dpc) a small group of PGCs located at the base of the allantois can be recognised due to a strong alkaline phosphatase activity. Thus far, scant information was available on the mechanism(s) controlling the lineage of PGCs in the mouse embryo. However, results obtained in mice defective for bone morphogenetic protein-4 (Bmp4) secreted molecule revealed that this growth factor has important functions for the derivation of PGCs from extraembryonic mesoderm cells. In this paper, we have studied the effects in culture of Bmp4 on epiblast cells obtained from egg-cylinder stage mouse embryos (5.5-6.0 dpc) and PGCs from 11.5 dpc embryos. We found that Bmp4 treatment enables recruitment of pluripotent cells to a PGC phenotype by a multi-step process involving an initial pre-commitment of epiblast cells and a following stage of PGC phenotypic determination. We further provide evidences that Bmp4 may promote the growth of gonadal PGCs through a Smad1/4 signalling.
Collapse
Affiliation(s)
- Maurizio Pesce
- Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy.
| | | | | |
Collapse
|
22
|
Choi K. The hemangioblast: a common progenitor of hematopoietic and endothelial cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:91-101. [PMID: 11847006 DOI: 10.1089/152581602753448568] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the developing embryo, the initial hematopoietic and vascular structure can be identified as the blood islands of the yolk sac. Blood islands are formed from mesodermal aggregates that have migrated from the primitive streak. The outer cells differentiate into endothelial cells and the inner to primitive blood. The close developmental association between hematopoietic and endothelial cell lineages has led to a hypothesis that they share a common progenitor, the hemangioblast. This review will examine emerging studies supporting the existence of such cells in order to further understand how the hematopoietic and vascular systems are established during mouse development.
Collapse
Affiliation(s)
- Kyunghee Choi
- School of Medicine, Department of Pathology and Immunology, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Cho SK, Bourdeau A, Letarte M, Zúñiga-Pflücker JC. Expression and function of CD105 during the onset of hematopoiesis from Flk1(+) precursors. Blood 2001; 98:3635-42. [PMID: 11739167 DOI: 10.1182/blood.v98.13.3635] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During ontogeny, the hematopoietic system is established from mesoderm-derived precursors; however, molecular events regulating the onset of hematopoiesis are not well characterized. Several members of the transforming growth factor beta (TGF-beta) superfamily have been implicated as playing a role during mesoderm specification and hematopoiesis. CD105 (endoglin) is an accessory receptor for members of the TGF-beta superfamily. Here it is reported that during the differentiation of murine embryonic stem (ES) cells in vitro, hematopoietic commitment within Flk1(+) mesodermal precursor populations is characterized by CD105 expression. In particular, CD105 is expressed during the progression from the Flk1(+)CD45(-) to Flk1(-)CD45(+) stage. The developmentally regulated expression of CD105 suggests that it may play a role during early hematopoiesis from Flk1(+) precursors. To determine whether CD105 plays a functional role during early hematopoietic development, the potential of CD105-deficient ES cells to differentiate into various hematopoietic lineages in vitro was assessed. In the absence of CD105, myelopoiesis and definitive erythropoiesis were severely impaired. In contrast, lymphopoiesis appeared to be only mildly affected. Thus, these findings suggest that the regulated expression of CD105 functions to support lineage-specific hematopoietic development from Flk1(+) precursors.
Collapse
Affiliation(s)
- S K Cho
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
The role of the thymus is to ensure the differentiation and selection of T lymphocytes, which are one of the major players in the immune system. Recent studies show that the establishment of the T lymphoid system requires a complex cell traffic. In this field, avian embryos yield particularly informative developmental models because they are amenable to many experimental approaches during the phases of morphogenesis, and, in addition, the immune system resembles that of mammals.
Collapse
Affiliation(s)
- D Dunon
- CNRS UMR 7622 Adhésion et Migration Cellulaires, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
25
|
Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28:31-40. [PMID: 11086981 DOI: 10.1016/s0896-6273(00)00083-0] [Citation(s) in RCA: 939] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have identified a stromal cell-derived inducing activity (SDIA) that promotes neural differentiation of mouse ES cells. SDIA accumulates on the surface of PA6 stromal cells and induces efficient neuronal differentiation of cocultured ES cells in serum-free conditions without use of either retinoic acid or embryoid bodies. BMP4, which acts as an antineuralizing morphogen in Xenopus, suppresses SDIA-induced neuralization and promotes epidermal differentiation. A high proportion of tyrosine hydroxylase-positive neurons producing dopamine are obtained from SDIA-treated ES cells. When transplanted, SDIA-induced dopaminergic neurons integrate into the mouse striatum and remain positive for tyrosine hydroxylase expression. Neural induction by SDIA provides a new powerful tool for both basic neuroscience research and therapeutic applications.
Collapse
Affiliation(s)
- H Kawasaki
- Department of Medical Embryology and Neurobiology, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shinohara T, Avarbock MR, Brinster RL. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999; 96:5504-9. [PMID: 10318913 PMCID: PMC21889 DOI: 10.1073/pnas.96.10.5504] [Citation(s) in RCA: 433] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although spermatogenesis is essential for reproduction, little is known about spermatogonial stem cells. These cells provide the basis for spermatogenesis throughout adult life by undergoing self-renewal and by providing progeny that differentiate into spermatozoa. A major impediment to our understanding of the biology of these stem cells is the inability to distinguish them from spermatogonia that are committed to differentiation. We made use of the known association of stem cells with basement membranes and our spermatogonial transplantation assay system to identify specific molecular markers on the stem cell surface. Selection of mouse testis cells with anti-beta1- or anti-alpha6-integrin antibody, but not anti-c-kit antibody, produced cell populations with a significantly enhanced ability to colonize recipient testes and generate donor cell-derived spermatogenesis. We demonstrate spermatogonial stem cell-associated antigens by using an assay system based on biological function. Furthermore, the presence of surface integrins on spermatogonial stem cells suggests that these cells share elements of a common molecular machinery with stem cells in other tissues.
Collapse
Affiliation(s)
- T Shinohara
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
27
|
Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick JE. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 1999; 189:1139-48. [PMID: 10190905 PMCID: PMC2193014 DOI: 10.1084/jem.189.7.1139] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The identification of molecules that regulate human hematopoietic stem cells has focused mainly on cytokines, of which very few are known to act directly on stem cells. Recent studies in lower organisms and the mouse have suggested that bone morphogenetic proteins (BMPs) may play a critical role in the specification of hematopoietic tissue from the mesodermal germ layer. Here we report that BMPs regulate the proliferation and differentiation of highly purified primitive human hematopoietic cells from adult and neonatal sources. Populations of rare CD34(+)CD38(-)Lin- stem cells were isolated from human hematopoietic tissue and were found to express the BMP type I receptors activin-like kinase (ALK)-3 and ALK-6, and their downstream transducers SMAD-1, -4, and -5. Treatment of isolated stem cell populations with soluble BMP-2, -4, and -7 induced dose-dependent changes in proliferation, clonogenicity, cell surface phenotype, and multilineage repopulation capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Similar to transforming growth factor beta, treatment of purified cells with BMP-2 or -7 at high concentrations inhibited proliferation yet maintained the primitive CD34(+)CD38(-) phenotype and repopulation capacity. In contrast, low concentrations of BMP-4 induced proliferation and differentiation of CD34(+) CD38(-)Lin- cells, whereas at higher concentrations BMP-4 extended the length of time that repopulation capacity could be maintained in ex vivo culture, indicating a direct effect on stem cell survival. The discovery that BMPs are capable of regulating repopulating cells provides a new pathway for controlling human stem cell development and a powerful model system for studying the biological mechanism of BMP action using primary human cells.
Collapse
Affiliation(s)
- M Bhatia
- Department of Gene Therapy and Molecular Virology, The John P. Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Quantification of T-Cell Progenitors During Ontogeny: Thymus Colonization Depends on Blood Delivery of Progenitors. Blood 1999. [DOI: 10.1182/blood.v93.7.2234.407k11_2234_2243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vivo thymus reconstitution assay based on intrathymic injection of hematopoietic progenitors into irradiated chicks was used to determine the number of T-cell progenitors in peripheral blood, paraaortic foci, bone marrow (BM), and spleen during ontogeny. This study allowed us to analyze the regulation of thymus colonization occurring in three waves during embryogenesis. It confirmed that progenitors of the first wave of thymus colonization originate from the paraaortic foci, whereas progenitors of the second and the third waves originate from the BM. The analysis of the number of T-cell progenitors indicates that each wave of thymus colonization is correlated with a peak number of T-cell progenitors in peripheral blood, whereas they are almost absent during the periods defined as refractory for colonization. Moreover, injection of T-cell progenitors into the blood circulation showed that they homed into the thymus without delay during the refractory periods. Thus, thymus colonization kinetics depend mainly on the blood delivery of T-cell progenitors during embryogenesis.
Collapse
|
29
|
Abstract
Hematopoietic and endothelial cell lineages are the first to mature from mesoderm in the developing embryo. However, little is known about the molecular and (or) cellular events leading to hematopoietic commitment. The recent applications of technology utilizing gene targeted mice and the employment of many available in vitro systems have facilitated our understanding of hematopoietic establishment in the developing embryo. It is becoming clear that embryonic hematopoiesis occurs both in the extra-embryonic yolk sac and within the embryo proper in the mouse. The existence of the long pursued hemangioblast, a common progenitor of hematopoietic and endothelial cells, is now formally demonstrated. Based on this new information, many studies are being conducted to understand hematopoietic commitment events from mesoderm. In this review, we will first discuss the establishment of the hematopoietic system with special emphasis on the most primitive hematopoietic committed cells, the hemangioblast. We will then discuss mesoderm-inducing factors and their possible role in hematopoietic lineage commitment.Key words: hematopoietic commitment, hemangioblast, in vitro embryonic stem cell differentiation.
Collapse
|
30
|
Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8:761-9. [PMID: 9655490 DOI: 10.1016/s1074-7613(00)80581-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have investigated the lymphohematopoietic potentials of endothelial cells (EC) and hematopoietic cells (HPC) sorted from embryos. Expression of VE-cadherin, CD45, and Ter119 was used to distinguish EC (VE-cadherin+CD45-Ter119-) from HPC (VE-cadherin-CD45+). Thus defined, EC population takes up acetylated LDL and coexpresses CD31, Flk1, and CD34. In E9.5 embryos, EC from yolk sac (YS) and the embryo proper generate blood cells, including lymphocytes. Thus, lymphohematopoietic EC do exist in the embryo, and they are generated both in YS and the embryo proper. On the other hand, HPC with lymphopoietic potency appear first in the embryo proper. These findings implicate involvement of multiple environmental cues for acquiring lymphopoietic competency during differentiation of HPC.
Collapse
Affiliation(s)
- S I Nishikawa
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. IMMUNOLOGY TODAY 1998; 19:228-36. [PMID: 9613041 DOI: 10.1016/s0167-5699(98)01258-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E Dzierzak
- Dept of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Natural Killer and B-Lymphoid Potential in CD34+ Cells Derived From Embryonic Stem Cells Differentiated in the Presence of Vascular Endothelial Growth Factor. Blood 1998. [DOI: 10.1182/blood.v91.7.2283.2283_2283_2295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiation of totipotent mouse embryonic stem (ES) cells to various lymphohematopoietic cells is an in vitro model of the hematopoietic cell development during embryogenesis. To understand this process at cellular levels, differentiation intermediates were investigated. ES cells generated progeny expressing CD34, which was significantly enhanced by vascular endothelial growth factor (VEGF). The isolated CD34+ cells were enriched for myeloid colony-forming cells but not significantly for erythroid colony-forming cells. When cultured on OP9 stroma cells in the presence of interleukin-2 and interleukin-7, the CD34+ cells developed two types of B220+ CD34−lymphocytes: CD3− cytotoxic lymphocytes and CD19+ pre-B cells, and such lymphoid potential was highly enriched in the CD34+ population. Interestingly, the cytotoxic cells expressed the natural killer (NK) cell markers, such as NKR-P1, perforin, and granzymes, classified into two types, one of which showed target specificity of NK cells. Thus, ES cells have potential to generate NK-type cytotoxic lymphocytes in vitro in addition to erythro-myeloid cells and pre-B cells, and both myeloid and lymphoid cells seem to be derived from the CD34+intermediate, on which VEGF may play an important role.
Collapse
|
33
|
Abstract
Hematopoietic stem cells are at the top of a hierarchy that regulates the generation of a vast repertoire of blood cells during the lifetime of a vertebrate. Recent experiments, using a vast variety of embryonic systems, shed new light on the origin of stem cells and the genes that function to regulate and maintain hematopoietic differentiation programs. Two distinct populations of stem cells develop--derived initially from transient, extraembryonic source and later from a stable, intraembryonic source; it is possible that both are generated from a pro-HSC able to respond differentially to local inductions. The initial blood cells develop from ventral mesoderm. The blood-forming region develops as a result of signaling from specific, secreted, embryonic growth factors, including the bone morphogenetic proteins. Stem cells give rise to progenitors that are restricted progressively in their ability to contribute to specific lineages. This process is regulated by transcription factors, whose functions are confirmed through genetic analyses. The identification of highly conserved, embryonic signaling pathways and transcription regulatory genes illustrates the enormous utility of analyzing embryonic hematopoiesis in frog, chick, fish, and mouse systems to further our understanding of human stem cells.
Collapse
Affiliation(s)
- T Evans
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
34
|
Kataoka H, Takakura N, Nishikawa S, Tsuchida K, Kodama H, Kunisada T, Risau W, Kita T, Nishikawa SI. Expressions of PDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev Growth Differ 1997; 39:729-40. [PMID: 9493833 DOI: 10.1046/j.1440-169x.1997.t01-5-00009.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In gastrulating embryos, various types of cells are generated before differentiation into specific lineages. The mesoderm of the gastrulating mouse embryo represents a group of such intermediate cells. PDGF receptor alpha (PDGFRalpha), c-Kit and fetal liver kinase 1 (Flk1) are expressed in distinctive mesodermal derivatives of post-gastrulation embryos. Their expressions during gastrulation were examined by whole mount immunostaining with monoclonal antibodies against these three receptors. The antibodies stained different mesodermal subsets in gastrulating embryos. Flow cytometry of head fold stage embryos revealed that Flk1+ mesodermal cells could be further classified by the level of c-Kit expression. To examine the possibility that hematopoietic cell differentiation is initiated from the Flk1+ mesoderm, embryonic stem (ES) cells were cultured on the OP9 or PA6 stromal cell layer; the former but not the latter supported in vitro hematopoiesis from ES cells. Flk1+ cells were detected only on the OP9 cell layer from day 3 of differentiation before the appearance of hematopoietic cells. Thus, Flk1+ cells will be required for in vitro ES cell differentiation into hematopoietic cells. The results suggest that these three receptor tyrosine kinases will be useful for defining and sorting subsets of mesodermal cells from embryos or in vitro cultured ES cells.
Collapse
Affiliation(s)
- H Kataoka
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The process of gastrulation is a pivotal step in the formation of the vertebrate body plan. The primary function of gastrulation is the correct placement of precursor tissues for subsequent morphogenesis. There is now mounting evidence that the body plan is established through inductive interactions between germ layer tissues and by the global patterning activity emanating from embryonic organizers. An increasing number of mouse mutants have been described that have gastrulation defects, providing important insights into the molecular mechanisms that regulate this complex process. In this review, we explore the mouse embryo before and during gastrulation, highlighting its similarities with other vertebrate embryos and its unique characteristics.
Collapse
Affiliation(s)
- P P Tam
- Embryology Unit, Children's Medical Research Institute, Wentworthville, NSW, Australia.
| | | |
Collapse
|
36
|
Abstract
The microenvironment is a key regulator of hematopoietic stem cells (HSCs) and is a likely source of extracellular factors that control stem cell fate. A better understanding of these microenvironmental factors may come from investigations of developmental cell fate determination in which the critical roles of cell-cell interactions of multipotential cells have been shown. The Wnt gene family is known to regulate the cell fate and cell-cell interactions of multipotential cells in a variety of tissues. Expression of Wnts and of their putative receptors encoded by murine homologs of the Drosophila frizzled gene in hematopoietic tissues was examined by reverse transcriptase-polymerase chain reaction. Wnt-5a and Wnt-10b were expressed in day-11 murine yolk sac, day-14 fetal liver, and fetal liver AA4+ cells. The expression profiles of four murine frizzled homologs, Mfz3-7, were nearly identical to that of Wnt-5a and Wnt-10b. Notably, Wnt-10b was expressed in the fetal liver AA4+ Sca+ c-kit+ (flASK) HSC population. A role for Wnts in HSC fate determination was studied by treatment of HSC populations in culture with soluble WNT proteins. The addition of conditioned media from cells transfected with Wnt-1, Wnt-5a, or Wnt-10b cDNAs to cultures of flASK cells stimulated a sevenfold, eightfold, and 11-fold expansion in cell number, respectively, relative to control media. Removal of WNT-5a from this media by immunodepletion depleted the stimulatory activity from the media, whereas addition of a partially purified WNT-5a stimulated a fivefold expansion relative to control cells. Transduction of flASK cells with a retrovirus bearing a Wnt-5a cDNA enhanced proliferation. We conclude that WNTs stimulate the survival/proliferation of hematopoietic progenitors, demonstrating that WNTs comprise a novel class of hematopoietic cell regulators.
Collapse
|
37
|
Abstract
Abstract
The microenvironment is a key regulator of hematopoietic stem cells (HSCs) and is a likely source of extracellular factors that control stem cell fate. A better understanding of these microenvironmental factors may come from investigations of developmental cell fate determination in which the critical roles of cell-cell interactions of multipotential cells have been shown. The Wnt gene family is known to regulate the cell fate and cell-cell interactions of multipotential cells in a variety of tissues. Expression of Wnts and of their putative receptors encoded by murine homologs of the Drosophila frizzled gene in hematopoietic tissues was examined by reverse transcriptase-polymerase chain reaction. Wnt-5a and Wnt-10b were expressed in day-11 murine yolk sac, day-14 fetal liver, and fetal liver AA4+ cells. The expression profiles of four murine frizzled homologs, Mfz3-7, were nearly identical to that of Wnt-5a and Wnt-10b. Notably, Wnt-10b was expressed in the fetal liver AA4+ Sca+ c-kit+ (flASK) HSC population. A role for Wnts in HSC fate determination was studied by treatment of HSC populations in culture with soluble WNT proteins. The addition of conditioned media from cells transfected with Wnt-1, Wnt-5a, or Wnt-10b cDNAs to cultures of flASK cells stimulated a sevenfold, eightfold, and 11-fold expansion in cell number, respectively, relative to control media. Removal of WNT-5a from this media by immunodepletion depleted the stimulatory activity from the media, whereas addition of a partially purified WNT-5a stimulated a fivefold expansion relative to control cells. Transduction of flASK cells with a retrovirus bearing a Wnt-5a cDNA enhanced proliferation. We conclude that WNTs stimulate the survival/proliferation of hematopoietic progenitors, demonstrating that WNTs comprise a novel class of hematopoietic cell regulators.
Collapse
|
38
|
Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 1996; 86:907-16. [PMID: 8808626 DOI: 10.1016/s0092-8674(00)80166-x] [Citation(s) in RCA: 421] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Emergence of hemopoietic stem cells in the mammalian embryo has yet to be definitively allocated. Previously, we detected multipotent hemopoietic precursors in the region surrounding the dorsal aorta (paraaortic splanchnopleura) beginning at 8.5 days postcoitum (dpc). However, as circulation is already established, it remained unclear whether hemopoietic precursors arise in situ or are blood-delivered. By adding an organotypic step to our former culture system, we now detect lymphocyte and multipotent myeloid precursors from the intraembryonic splanchnopleura as early as 7.5 dpc. Under identical conditions, yolk sacs from the same embryos are unable to generate lymphoid progeny and have a reduced potential for myeloid differentiation and maintenance. Thus, if isolated before circulation, the yolk sac does not produce multipotent precursors and therefore does not contribute to definitive hemopoiesis in the mouse.
Collapse
Affiliation(s)
- A Cumano
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, Paris, France
| | | | | |
Collapse
|