1
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
2
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
4
|
Sinagoga KL, McCauley HA, Múnera JO, Reynolds NA, Enriquez JR, Watson C, Yang HC, Helmrath MA, Wells JM. Deriving functional human enteroendocrine cells from pluripotent stem cells. Development 2018; 145:dev.165795. [PMID: 30143540 DOI: 10.1242/dev.165795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) are a minor cell population in the intestine yet they play a major role in digestion, satiety and nutrient homeostasis. Recently developed human intestinal organoid models include EECs, but their rarity makes it difficult to study their formation and function. Here, we used the EEC-inducing property of the transcription factor NEUROG3 in human pluripotent stem cell-derived human intestinal organoids and colonic organoids to promote EEC development in vitro An 8-h pulse of NEUROG3 expression induced expression of known target transcription factors and after 7 days organoids contained up to 25% EECs in the epithelium. EECs expressed a broad array of human hormones at the mRNA and/or protein level, including motilin, somatostatin, neurotensin, secretin, substance P, serotonin, vasoactive intestinal peptide, oxyntomodulin, GLP-1 and INSL5. EECs secreted several hormones including gastric inhibitory polypeptide (GIP), ghrelin, GLP-1 and oxyntomodulin. Injection of glucose into the lumen of organoids caused an increase in both GIP secretion and K-cell number. Lastly, we observed formation of all known small intestinal EEC subtypes following transplantation and growth of human intestinal organoids in mice.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Nichole A Reynolds
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Hsiu-Chiung Yang
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA .,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
5
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
7
|
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol 2017; 431:36-47. [PMID: 28751238 DOI: 10.1016/j.ydbio.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA.
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Parvana Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Samuel Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Kian Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
8
|
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A, Roelf K, Calderon RI, Cynn E, Hu X, Mandleywala K, Wilhelmy J, Grimes SM, Corney DC, Boutet SC, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Wang F, von Furstenberg RJ, Smith NR, Chandrakesan P, May R, Chrissy MAS, Jain R, Cartwright CA, Niland JC, Hong YK, Carrington J, Breault DT, Epstein J, Houchen CW, Lynch JP, Martin MG, Plevritis SK, Curtis C, Ji HP, Li L, Henning SJ, Wong MH, Kuo CJ. Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell 2017; 21:78-90.e6. [PMID: 28686870 PMCID: PMC5642297 DOI: 10.1016/j.stem.2017.06.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
Collapse
Affiliation(s)
- Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Benedict Anchang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Probert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn A Larkin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paige S Davies
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Zhuan-Fen Cheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Arnold Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Translational Immunology, Department of Medicine, Division of Digestive and Liver Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kelly Roelf
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruben I Calderon
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Esther Cynn
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaoyi Hu
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Komal Mandleywala
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie Wilhelmy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sue M Grimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David C Corney
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | - Fengchao Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Nicholas R Smith
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Parthasarathy Chandrakesan
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mary Ann S Chrissy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joyce C Niland
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Young-Kwon Hong
- Departments of Surgery and of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill Carrington
- National Institutes of Health, Division of Digestive Diseases and Nutrition, NIDDK, Bethesda, MD 20892, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan Epstein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Lynch
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvia K Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan J Henning
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa H Wong
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB. Costorage of Enteroendocrine Hormones Evaluated at the Cell and Subcellular Levels in Male Mice. Endocrinology 2017; 158:2113-2123. [PMID: 28430903 DOI: 10.1210/en.2017-00243] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Recent studies reveal complex patterns of hormone coexpression within enteroendocrine cells (EECs), contrary to the traditional view that gut hormones are expressed individually in EECs. Moreover, different hormones have been found in separate subcellular vesicles. However, detailed analysis of relative expression of multiple hormones has not been made. Subcellular studies have been confined to peptide hormones, and have not included the indolamine 5-hydroxytryptamine (5-HT) or the neuroendocrine protein chromogranin A (CgA). In the present work, coexpression of 5-HT, CgA, secretin, cholecystokinin (CCK), ghrelin, and glucagonlike peptide (GLP)-1 in mouse duodenum was quantified at a cellular and subcellular level by semiautomated cell counting and quantitative vesicle measurements. We investigated whether relative numbers of cells with colocalized hormones analyzed at a cell level matched the numbers revealed by examination of individual storage vesicles within cells. CgA and 5-HT were frequently expressed in EECs that contained combinations of GLP-1, ghrelin, secretin, and CCK. Separate subcellular stores of 5-HT, CgA, secretin, CCK, ghrelin, and GLP-1 were identified. In some cases, high-resolution analysis revealed small numbers of immunoreactive vesicles in cells dominated by a different hormone. Thus the observed incidence of cells with colocalized hormones is greater when analyzed at a subcellular, compared with a cellular, level. Subcellular analysis also showed that relative numbers of vesicles differ considerably between cells. Thus separate packaging of hormones that are colocalized is a general feature of EECs, and EECs exhibit substantial heterogeneity, including the colocalization of hormones that were formerly thought to be in cells of different lineages.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Integrated Neural and Endocrine Control of Gastrointestinal Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:159-73. [PMID: 27379644 DOI: 10.1007/978-3-319-27592-5_16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and phytochemical receptors, are primarily located on EEC. Hormones released by EEC act via both the ENS and CNS to optimise digestion. Toxic chemicals and pathogens are sensed and then avoided, expelled or metabolised. These defensive activities also involve the EEC and signalling from EEC to the ENS and the CNS. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut, via its effector systems, the ENS, extrinsic innervation, EEC and the gut immune system, to the sensory information it receives.
Collapse
|
11
|
Diwakarla S, Fothergill LJ, Fakhry J, Callaghan B, Furness JB. Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13101. [PMID: 28485065 PMCID: PMC5475263 DOI: 10.1111/nmo.13101] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Abstract
Enterochromaffin cells were the first endocrine cells of the gastrointestinal tract to be chemically distinguished, almost 150 years ago. It is now known that the chromaffin reaction of these cells was due to their content of the reactive aromatic amine, 5-hydroxytryptamine (5-HT, also known as serotonin). They have commonly been thought to be a special class of gut endocrine cells (enteroendocrine cells) that are distinct from the enteroendocrine cells that contain peptide hormones. The study by Martin et al. in the current issue of this journal reveals that the patterns of expression of nutrient receptors and transporters differ considerably between chromaffin cells of the mouse duodenum and colon. However, even within regions, chromaffin cells differ; in the duodenum there are chromaffin cells that contain both secretin and 5-HT, cholecystokinin and 5-HT, and all three of secretin, cholecystokinin, and 5-HT. Moreover, the ratios of these different cell types differ substantially between species. And, in terms of function, 5-HT has many roles, including in appetite, motility, fluid secretion, release of digestive enzymes and bone metabolism. The paper thus emphasizes the need to define the many different classes of enterochromaffin cells and relate this to their roles.
Collapse
Affiliation(s)
- Shanti Diwakarla
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Linda J Fothergill
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Josiane Fakhry
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Suzuki K, Iwasaki K, Murata Y, Harada N, Yamane S, Hamasaki A, Shibue K, Joo E, Sankoda A, Fujiwara Y, Hayashi Y, Inagaki N. Distribution and hormonal characterization of primary murine L cells throughout the gastrointestinal tract. J Diabetes Investig 2017; 9:25-32. [PMID: 28429513 PMCID: PMC5754545 DOI: 10.1111/jdi.12681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/24/2016] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Aims/Introduction Glucagon‐like peptide‐1 (GLP‐1) secreted from enteroendocrine L cells is an incretin that potentiates insulin secretion and is already applied in therapies for type 2 diabetes. However, detailed examination of L cells throughout the gastrointestinal tract remains unclear, because of difficulties in purifying scattered L cells from other cells. In the present study, we identified characteristics of L cells of the upper small intestine (UI), the lower small intestine (LI) and the colon using glucagon‐green fluorescent protein‐expressing mice that express GFP driven by the proglucagon promoter. Materials and Methods The localization and density of primary L cells were evaluated by anti‐green fluorescent protein antibody reactivity. GLP‐1 content, messenger ribonucleic acid (mRNA) expression levels and secretion in purified L cells were measured. Results The number of L cells significantly increased toward the colon. In contrast, the GLP‐1 content and secretion from L cells were higher in the UI than in the LI and colon. L cells from the UI and LI expressed notably high mRNA levels of the transcription factor, islet 1. The mRNA expression levels of peptide YY in L cells were higher in the LI than in the UI and colon. The mRNA expression levels of gastric inhibitory polypeptide in L cells from the UI were significantly higher compared with those from the LI and colon. Conclusions L cells show different numbers and characteristics throughout the gut, and they express different mRNA levels of transcription factors and gastrointestinal hormones. These results contribute to the therapeutic application of promoting GLP‐1 release from L cells for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kazuyo Suzuki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Murata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimitaka Shibue
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erina Joo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Sankoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Fujiwara
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition.
Collapse
|
14
|
Abstract
The enteroendocrine system orchestrates how the body responds to the ingestion of foods, employing a diversity of hormones to fine-tune a wide range of physiological responses both within and outside the gut. Recent interest in gut hormones has surged with the realization that they modulate glucose tolerance and food intake through a variety of mechanisms, and such hormones are therefore excellent therapeutic candidates for the treatment of diabetes and obesity. Characterizing the roles and functions of different enteroendocrine cells is an essential step in understanding the physiology, pathophysiology, and therapeutics of the gut-brain-pancreas axis.
Collapse
Affiliation(s)
- Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| |
Collapse
|
15
|
Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 2015; 34:1149-63. [PMID: 25792515 DOI: 10.15252/embj.201490686] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host-parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
17
|
Sykaras AG, Demenis C, Cheng L, Pisitkun T, Mclaughlin JT, Fenton RA, Smith CP. Duodenal CCK cells from male mice express multiple hormones including ghrelin. Endocrinology 2014; 155:3339-51. [PMID: 25004095 DOI: 10.1210/en.2013-2165] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enteroendocrine (EEC) cells have a pivotal role in intestinal nutrient sensing and release hormones that orchestrate food digestion and regulate appetite. EEC cells are found scattered throughout the intestine and have typically been classified based on the primary hormone they contain. I cells represent a subset of EEC cells that secrete cholecystokinin (CCK) and are mainly localized to the duodenum. Recent studies have shown that I cells express mRNAs encoding several gut hormones. In this study, we investigated the hormonal profile of murine fluorescence-activated cell sorting-sorted duodenal I cells using semiquantitative RT-PCR, liquid chromatography tandem mass spectrometry, and immunostaining methods. We report that I cells are enriched in mRNA transcripts encoding CCK and also other key gut hormones, including neurotensin, glucose-dependent insulinotropic peptide (GIP), secretin, peptide YY, proglucagon, and ghrelin (Ghrl). Furthermore, liquid chromatography tandem mass spectrometry analysis of fluorescence-activated cell sorting-purified I cells and immunostaining confirmed the presence of these gut hormones in duodenal I cells. Immunostaining highlighted that subsets of I cells in both crypts and villi coexpress differential amounts of CCK, Ghrl, GIP, or peptide YY, indicating that a proportion of I cells contain several hormones during maturation and when fully differentiated. Our results reveal that although I cells express several key gut hormones, including GIP or proglucagon, and thus have a considerable overlap with classically defined K and L cells, approximately half express Ghrl, suggesting a potentially important subset of duodenal EEC cells that require further consideration.
Collapse
Affiliation(s)
- Alexandros G Sykaras
- Faculty of Life Sciences (A.G.S., C.D., C.P.S.) and School of Medicine (J.T.M.), The University of Manchester, Manchester, M13 9PT United Kingdom; Department of Biomedicine (L.C., T.P., R.A.F.), InterPrET Center and Membranes, Aarhus University, Aarhus, DK-800 Denmark; Faculty of Medicine (T.P.), Chulalongkorn University, Bangkok, 10330 Thailand; and Graduate Program Molecular Basis of Human Diseases (A.G.S.), University of Crete Medical School, 71003 Iraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
18
|
Aprea J, Nonaka-Kinoshita M, Calegari F. Generation and characterization of Neurod1-CreER(T2) mouse lines for the study of embryonic and adult neurogenesis. Genesis 2014; 52:870-8. [PMID: 24913893 DOI: 10.1002/dvg.22797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/18/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Neurod1 is a transcription factor involved in several developmental programs of the gastrointestinal tract, pancreas, neurosensory, and central nervous system. In the brain, Neurod1 has been shown to be essential for neurogenesis as well as migration, maturation, and survival of newborn neurons during development and adulthood. Interestingly, Neurod1 expression is maintained in a subset of fully mature neurons where its function remains unclear. To study the role of Neurod1, systems are required that allow the temporal and spatial genetic manipulation of Neurod1-expressing cells. To this aim, we have generated four Neurod1-CreER(T2) mouse lines in which CreER(T2) expression, although at different levels, is restricted within areas of physiological Neurod1 expression and Neurod1 positive cells. In particular, the different levels of CreER(T2) expression in different mouse lines offers the opportunity to select the one that is more suited for a given experimental approach. Hence, our Neurod1-CreER(T2) lines provide valuable new tools for the manipulation of newborn neurons during development and adulthood as well as for studying the subpopulation of mature neurons that retain Neurod1 expression throughout life. In this context, we here report that Neurod1 is not only expressed in immature newborn neurons of the adult hippocampus, as already described, but also in fully mature granule cells of the dentate gyrus.
Collapse
Affiliation(s)
- Julieta Aprea
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Dresden, Germany
| | | | | |
Collapse
|
19
|
Petersen N, Reimann F, Bartfeld S, Farin HF, Ringnalda FC, Vries RGJ, van den Brink S, Clevers H, Gribble FM, de Koning EJP. Generation of L cells in mouse and human small intestine organoids. Diabetes 2014; 63:410-20. [PMID: 24130334 PMCID: PMC4306716 DOI: 10.2337/db13-0991] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Upon a nutrient challenge, L cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L cells from three-dimensional cultures of mouse and human intestinal crypts. We show that short-chain fatty acids selectively increase the number of L cells, resulting in an elevation of GLP-1 release. This is accompanied by the upregulation of transcription factors associated with the endocrine lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L cells in mouse and human crypts as a potential basis for novel therapeutic strategies in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Natalia Petersen
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
| | - Frank Reimann
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, UK
| | - Sina Bartfeld
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
| | - Henner F. Farin
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
| | - Femke C. Ringnalda
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
| | - Robert G. J. Vries
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
- Utrecht University Medical Center, Utrecht, Netherlands
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, UK
| | - Eelco J. P. de Koning
- Hubrecht Institute for Development Biology and Stem Cell Research, Utrecht, Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Abstract
Targeted cell ablation has proven to be a valuable approach to study in vivo cell functions during organogenesis, tissue homeostasis, and regeneration. Over the last two decades, various approaches have been developed to refine the control of cell ablation. In this review, we give an overview of the distinct genetic tools available for targeted cell ablation, with a particular emphasis on their respective specificity.
Collapse
|
21
|
Pedersen J, Ugleholdt RK, Jørgensen SM, Windeløv JA, Grunddal KV, Schwartz TW, Füchtbauer EM, Poulsen SS, Holst PJ, Holst JJ. Glucose metabolism is altered after loss of L cells and α-cells but not influenced by loss of K cells. Am J Physiol Endocrinol Metab 2013; 304:E60-73. [PMID: 23115082 DOI: 10.1152/ajpendo.00547.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enteroendocrine K and L cells are responsible for secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon like-peptide 1 (GLP-1), whereas pancreatic α-cells are responsible for secretion of glucagon. In rodents and humans, dysregulation of the secretion of GIP, GLP-1, and glucagon is associated with impaired regulation of metabolism. This study evaluates the consequences of acute removal of Gip- or Gcg-expressing cells on glucose metabolism. Generation of the two diphtheria toxin receptor cellular knockout mice, TgN(GIP.DTR) and TgN(GCG.DTR), allowed us to study effects of acute ablation of K and L cells and α-cells. Diphtheria toxin administration reduced the expression of Gip and content of GIP in the proximal jejunum in TgN(GIP.DTR) and expression of Gcg and content of proglucagon-derived peptides in both proximal jejunum and terminal ileum as well as content of glucagon in pancreas in TgN(GCG.DTR) compared with wild-type mice. GIP response to oral glucose was attenuated following K cell loss, but oral and intraperitoneal glucose tolerances were unaffected. Intraperitoneal glucose tolerance was impaired following combined L cell and α-cell loss and normal following α-cell loss. Oral glucose tolerance was improved following L cell and α-cell loss and supernormal following α-cell loss. We present two mouse models that allow studies of the effects of K cell or L cell and α-cell loss as well as isolated α-cell loss. Our findings show that intraperitoneal glucose tolerance is dependent on an intact L cell mass and underscore the diabetogenic effects of α-cell signaling. Furthermore, the results suggest that K cells are less involved in acute regulation of mouse glucose metabolism than L cells and α-cells.
Collapse
Affiliation(s)
- J Pedersen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, Pedersen J, Windeløv JA, Füchtbauer EM, Olsen J, Sundler F, Christensen JP, Wierup N, Olsen JV, Holst JJ, Zigman JM, Poulsen SS, Schwartz TW. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 2012; 153:5782-95. [PMID: 23064014 PMCID: PMC7958714 DOI: 10.1210/en.2012-1595] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cellular bases for interactions between immunocytes and enteroendocrine cells in the intestinal mucosal barrier of rhesus macaques. Cell Tissue Res 2012; 350:135-41. [PMID: 22777742 DOI: 10.1007/s00441-012-1464-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023]
Abstract
The roles of the interactions between nervous, endocrine, and immune systems have been well established in human health and diseases. At present, little is known about the cellular bases for neural-endocrine-immune networks in the gastrointestinal mucosa. In the current study, duodenum, jejunum, ileum, cecum, colon, and rectum autopsies from 15 rhesus macaques and endoscopic duodenal biopsies from 12 rhesus macaques were collected, and the spatial relationships between the endocrine cells and immune cells in the intestinal mucosa were examined by transmission electron microscopy. Eight types of enteroendocrine cells similar to human enterochromaffin cells (EC), D1, G, I, K, L, N, and S cells were found to lie within a one-cell-size distance from immunocytes, in particular the eosinophils in the epithelia or lamina propria. Close apposition of large areas of plasma membranes between many types of enteroendocrine cells and immunocytes, especially between EC, K, S cells and eosinophils, were observed in the epithelia for the first time. These data indicate that complex interactions occur between diverse types of enteroendocrine cells and various immune cells through paracrine mechanisms or via mechanisms dependent on cell-to-cell contact; such interactions might play key roles in maintaining the gut mucosal barrier integrity of rhesus macaques.
Collapse
|
24
|
Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CAM, Parker HE, Morley TCE, Yeo GSH, Reimann F, Gribble FM. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 2012; 153:3054-65. [PMID: 22685263 PMCID: PMC3440453 DOI: 10.1210/en.2011-2170] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestine secretes a range of hormones with important local and distant actions, including the control of insulin secretion and appetite. A number of enteroendocrine cell types have been described, each characterized by a distinct hormonal signature, such as K-cells producing glucose-dependent insulinotropic polypeptide (GIP), L-cells producing glucagon-like peptide-1 (GLP-1), and I-cells producing cholecystokinin (CCK). To evaluate similarities between L-, K-, and other enteroendocrine cells, primary murine L- and K-cells, and pancreatic α- and β-cells, were purified and analyzed by flow cytometry and microarray-based transcriptomics. By microarray expression profiling, L cells from the upper small intestinal (SI) more closely resembled upper SI K-cells than colonic L-cells. Upper SI L-cell populations expressed message for hormones classically localized to different enteroendocrine cell types, including GIP, CCK, secretin, and neurotensin. By immunostaining and fluorescence-activated cell sorting analysis, most colonic L-cells contained GLP-1 and PeptideYY In the upper SI, most L-cells contained CCK, approximately 10% were GIP positive, and about 20% were PeptideYY positive. Upper SI K-cells exhibited approximately 10% overlap with GLP-1 and 6% overlap with somatostatin. Enteroendocrine-specific transcription factors were identified from the microarrays, of which very few differed between the enteroendocrine cell populations. Etv1, Prox1, and Pax4 were significantly enriched in L-cells vs. K cells by quantitative RT-PCR. In summary, our data indicate a strong overlap between upper SI L-, K-, and I-cells and suggest they may rather comprise a single cell type, within which individual cells exhibit a hormonal spectrum that may reflect factors such as location along the intestine and exposure to dietary nutrients.
Collapse
Affiliation(s)
- Abdella M Habib
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke's Hospital, Box 139, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sangle GV, Lauffer LM, Grieco A, Trivedi S, Iakoubov R, Brubaker PL. Novel biological action of the dipeptidylpeptidase-IV inhibitor, sitagliptin, as a glucagon-like peptide-1 secretagogue. Endocrinology 2012; 153:564-73. [PMID: 22186413 DOI: 10.1210/en.2011-1732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted into the circulation by the intestinal L cell. The dipeptidylpeptidase-IV (DPP-IV) inhibitor, sitagliptin, prevents GLP-1 degradation and is used in the clinic to treat patients with type 2 diabetes mellitus, leading to improved glycated hemoglobin levels. When the effect of sitagliptin on GLP-1 levels was examined in neonatal streptozotocin rats, a model of type 2 diabetes mellitus, a 4.9 ± 0.9-fold increase in basal and 3.6 ± 0.4-fold increase in oral glucose-stimulated plasma levels of active GLP-1 was observed (P < 0.001), in association with a 1.5 ± 0.1-fold increase in the total number of intestinal L cells (P < 0.01). The direct effects of sitagliptin on GLP-1 secretion and L cell signaling were therefore examined in murine GLUTag (mGLUTag) and human hNCI-H716 intestinal L cells in vitro. Sitagliptin (0.1-2 μM) increased total GLP-1 secretion by mGLUTag and hNCI-H716 cells (P < 0.01-0.001). However, MK0626 (1-50 μM), a structurally unrelated inhibitor of DPP-IV, did not affect GLP-1 secretion in either model. Treatment of mGLUTag cells with the GLP-1 receptor agonist, exendin-4, did not modulate GLP-1 release, indicating the absence of feedback effects of GLP-1 on the L cell. Sitagliptin increased cAMP levels (P < 0.01) and ERK1/2 phosphorylation (P < 0.05) in both mGLUTag and hNCI-H716 cells but did not alter either intracellular calcium or phospho-Akt levels. Pretreatment of mGLUTag cells with protein kinase A (H89 and protein kinase inhibitor) or MAPK kinase-ERK1/2 (PD98059 and U0126) inhibitors prevented sitagliptin-induced GLP-1 secretion (P < 0.05-0.01). These studies demonstrate, for the first time, that sitagliptin exerts direct, DPP-IV-independent effects on intestinal L cells, activating cAMP and ERK1/2 signaling and stimulating total GLP-1 secretion.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| | | | | | | | | | | |
Collapse
|
26
|
Li HJ, Ray SK, Singh NK, Johnston B, Leiter AB. Basic helix-loop-helix transcription factors and enteroendocrine cell differentiation. Diabetes Obes Metab 2011; 13 Suppl 1:5-12. [PMID: 21824251 PMCID: PMC3467197 DOI: 10.1111/j.1463-1326.2011.01438.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For over 30 years it has been known that enteroendocrine cells derive from common precursor cells in the intestinal crypts. Until recently little was understood about the events that result in commitment to endocrine differentiation or the eventual segregation of over 10 different hormone-expressing cell types in the gastrointestinal tract. Enteroendocrine cells arise from pluripotent intestinal stem cells. Differentiation of enteroendocrine cells is controlled by the sequential expression of three basic helix-loop-helix transcription factors, Math1, Neurogenin 3 (Neurog3) and NeuroD. Math1 expression is required for specification and segregation of the intestinal secretory lineage (Paneth, goblet,and enteroendocrine cells) from the absorptive enterocyte lineage. Neurog3 expression represents the earliest stage of enteroendocrine differentiation and in its absence enteroendocrine cells fail to develop. Subsequent expression of NeuroD appears to represent a later stage of differentiation for maturing enteroendocrine cells. Enteroendocrine cell fate is inhibited by the Notch signalling pathway, which appears to inhibit both Math1 and Neurog3. Understanding enteroendocrine cell differentiation will become increasingly important for identifying potential future targets for common diseases such as diabetes and obesity.
Collapse
Affiliation(s)
| | | | | | | | - Andrew B. Leiter
- Corresponding author: Andrew B. Leiter M.D., Ph.D., Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street LRB217, Worcester, MA 01605, Telephone: (508) 856-8101, Fax: (508) 856-4770,
| |
Collapse
|
27
|
Abstract
Neuroendocrine neoplasms arise in almost every organ of the body and are variably defined according to the site of origin. This Review focuses on neuroendocrine neoplasms of the digestive tract and pancreas. The 2010 WHO classification of tumors of the digestive system introduces grading and staging tools for neuroendocrine neoplasms. A carcinoid is now defined as a grade 1 or 2 neuroendocrine tumor and grade 3, small-cell or large-cell carcinomas are defined as neuroendocrine carcinoma. Epidemiological data show a worldwide increase in the prevalence and incidence of gastroentero-pancreatic neuroendocrine tumors in the past few decades, which is probably due to improved methods of detection of these tumors. The current diagnostic procedures and treatment options for neuroendocrine neoplasms are defined and summarized in the Review, although evidence-based data are lacking. Surgery remains the treatment mainstay and somatostatin analogues the basis for both diagnosis and therapy as the only 'theranostic' tool. Emerging compounds including chemotherapeutic agents, small molecules and biological therapies may provide new hope for patients.
Collapse
Affiliation(s)
- Guido Rindi
- Institute of Pathology, Università Cattolica del Sacro Cuore-Policlinico A. Gemelli, Largo A. Gemelli 8, I-00168 Rome, Italy.
| | | |
Collapse
|
28
|
K-cells and glucose-dependent insulinotropic polypeptide in health and disease. VITAMINS AND HORMONES 2011; 84:111-50. [PMID: 21094898 DOI: 10.1016/b978-0-12-381517-0.00004-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 1970s, glucose-dependent insulinotropic polypeptide (GIP, formerly gastric inhibitory polypeptide), a 42-amino acid peptide hormone, was discovered through a search for enterogastrones and subsequently identified as an incretin, or an insulinotropic hormone secreted in response to intraluminal nutrients. Independent of the discovery of GIP, the K-cell was identified in small intestine by characteristic ultrastructural features. Subsequently, it was realized that K-cells are the predominant source of circulating GIP. The density of K-cells may increase under conditions including high-fat diet and obesity, and generally correlates with plasma GIP levels. In addition to GIP, K-cells secrete xenin, a peptide with as of yet poorly understood physiological functions, and GIP is often colocalized with the other incretin hormone glucagon-like peptide-1 (GLP-1). Differential posttranslational processing of proGIP produces 30 and 42 amino acid versions of GIP. Its secretion is elicited by intraluminal nutrients, especially carbohydrate and fat, through the action of SGLT1, GPR40, GPR120, and GPR119. There is also evidence of regulation of GIP secretion via neural pathways and somatostatin. Intracellular signaling mechanisms of GIP secretion are still elusive but include activation of adenylyl cyclase, protein kinase A (PKA), and protein kinase C (PKC). GIP has extrapancreatic actions on adipogenesis, neural progenitor cell proliferation, and bone metabolism. However, the clinical or physiological relevance of these extrapancreatic actions remain to be defined in humans. The application of GIP as a glucose-lowering drug is limited due to reduced efficacy in humans with type 2 diabetes and its potential obesogenic effects demonstrated by rodent studies. There is some evidence to suggest that a reduction in GIP production or action may be a strategy to reduce obesity. The meal-dependent nature of GIP release makes K-cells a potential target for genetically engineered production of satiety factors or glucose-lowering agents, for example, insulin. Transgenic mice engineered to produce insulin from intestinal K-cells are resistant to diabetes induced by a beta-cell toxin. Collectively, K-cells and GIP play important roles in health and disease, and both may be targets for novel therapies.
Collapse
|
29
|
Hartenstein V, Takashima S, Adams KL. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. Gen Comp Endocrinol 2010; 166:462-9. [PMID: 20005229 PMCID: PMC3950663 DOI: 10.1016/j.ygcen.2009.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/04/2009] [Indexed: 11/26/2022]
Abstract
The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
30
|
Svejda B, Kidd M, Giovinazzo F, Eltawil K, Gustafsson BI, Pfragner R, Modlin IM. The 5-HT2B receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment. Cancer 2010; 116:2902-12. [DOI: 10.1002/cncr.25049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Abstract
In this review, I summarize some aspects of murine pancreas development, with particular emphasis on the analysis of the ontogenetic relationships between different pancreatic cell types. Lineage analyses allow the identification of the progenitor cells from which mature cell types arise. The identification and successful in vitro culture of putative pancreatic stem cells is highly relevant for future cell replacement therapies in diabetic patients.
Collapse
|
32
|
TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 2009; 106:3408-13. [PMID: 19211797 DOI: 10.1073/pnas.0805323106] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is abundantly present throughout the gastrointestinal tract and stored mostly in enterochromaffin (EC) cells, which are located on the mucosal surface. 5-HT released from EC cells stimulate both intrinsic and extrinsic nerves, which results in various physiological and pathophysiological responses, such as gastrointestinal contractions. EC cells are believed to have the ability to respond to the chemical composition of the luminal contents of the gut; however, the underlying molecular and cellular mechanisms have not been identified. Here, we demonstrate that the transient receptor potential (TRP) cation channel TRPA1, which is activated by pungent compounds or cold temperature, is highly expressed in EC cells. We also found that TRPA1 agonists, including allyl isothiocyanate and cinnamaldehyde, stimulate EC cell functions, such as increasing intracellular Ca(2+) levels and 5-HT release, by using highly concentrated EC cell fractions and a model of EC cell function, the RIN14B cell line. Furthermore, we showed that allyl isothiocyanate promotes the contraction of isolated guinea pig ileum via the 5-HT(3) receptor. Taken together, our results indicate that TRPA1 acts as a sensor molecule for EC cells and may regulate gastrointestinal function.
Collapse
|
33
|
Jepeal LI, Boylan MO, Wolfe MM. GATA-4 upregulates glucose-dependent insulinotropic polypeptide expression in cells of pancreatic and intestinal lineage. Mol Cell Endocrinol 2008; 287:20-9. [PMID: 18343025 PMCID: PMC2707930 DOI: 10.1016/j.mce.2008.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
Abstract
A thorough examination of glucose-dependent insulinotropic polypeptide (GIP) expression has been hampered by difficulty in isolating widely dispersed, GIP-producing enteroendocrine K-cells. To elucidate the molecular mechanisms governing the regulation of GIP expression, 14 intestinal and pancreatic cell lines were assessed for their suitability for studies examining GIP expression. Both STC-1 cells and the pancreatic cell line betaTC-3 were found to express GIP mRNA and secrete biologically active GIP. However, levels of GIP mRNA and bioactive peptide and the activity of transfected GIP reporter constructs were significantly lower in betaTC-3 than STC-1 cells. When betaTC-3 cells were analyzed for transcription factors known to be important for GIP expression, PDX-1 and ISL-1, but not GATA-4, were detected. Double staining for GIP-1 and GATA-4 in mouse duodenum demonstrated GATA-4 expression in intestinal K-cells. Exogenous expression of GATA-4 in betaTC-3 cells led to marked increases in both GIP transcription and secretion. Lastly suppression of GATA-4 via RNA interference, in GTC-1 cells, a subpopulation of STC-1 cells with high endogenous GIP expression resulted in a marked an attenuation of GIP promoter activity. Our data support the hypothesis that GATA-4 may function to augment or enhance GIP expression rather than act as an initiator of GIP transcription.
Collapse
Affiliation(s)
- Lisa I. Jepeal
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, United States
| | - Michael O. Boylan
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, United States
| | - M. Michael Wolfe
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, United States
| |
Collapse
|
34
|
Du Pasquier D, Chesneau A, Ymlahi-Ouazzani Q, Boistel R, Pollet N, Ballagny C, Sachs LM, Demeneix B, Mazabraud A. tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis. Genesis 2007; 45:1-10. [PMID: 17154276 DOI: 10.1002/dvg.20252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Xenopus is a well proven model for a wide variety of developmental studies, including cell lineage. Cell lineage in Xenopus has largely been addressed by injection of tracer molecules or by micro-dissection elimination of blastomeres. Here we describe a genetic method for cell ablation based on the use of tBid, a direct activator of the mitochondrial apoptotic pathway. In mammalian cells, cross-talk between the main apoptotic pathways (the mitochondrial and the death domain protein pathways) involve the pro-death protein BID, the active form of which, tBID, results from protease truncation and translocation to mitochondria. In transgenic Xenopus, restricting tBID expression to the lens-forming cells enables the specific ablation of the lens without affecting the development of other eye structures. Thus, overexpression of tBid can be used in vivo as a tool to eliminate a defined cell population by apoptosis in a developing organism and to evaluate the degree of autonomy or the inductive effects of a specific tissue during embryonic development.
Collapse
Affiliation(s)
- D Du Pasquier
- Laboratoire de Transgenèse et Génétique des Amphibiens, Université Paris-Sud, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The gastrointestinal endocrine tumors are neoplastic lesions with often elusive malignant clinical behavior. The current WHO classification attempted to define a more effective approach by introducing the concepts of cell differentiation and site-specific malignancy, as well as specific criteria for carcinoma definition. WHO clinicopathological correlations embed the prognostic features: degree of cell differentiation, angioinvasion, proliferation fraction as assessed by mitotic index and Ki67, size, and functional activity. Other prognostic variables have been recognized, most of which related to specific biological features of neuroendocrine cancer cells. Nonetheless, the presence of liver or distant metastases are the prognostic variables ultimately determining the patients' fate in terms of survival and/or therapy response. A recent proposal of tumor grading and tumor, nodes, and metastases (TNM) staging aims at a simple and practical system for patients stratification. Application of such proposal should be implemented in routine clinical practice.
Collapse
Affiliation(s)
- Guido Rindi
- Department of Pathology and Laboratory Medicine, Section of Anatomic Pathology, University of Parma, Via Gramsci, 14, 43100, Parma, Italy.
| | | | | | | | | |
Collapse
|
36
|
Hauck AL, Swanson KS, Kenis PJA, Leckband DE, Gaskins HR, Schook LB. Twists and turns in the development and maintenance of the mammalian small intestine epithelium. ACTA ACUST UNITED AC 2005; 75:58-71. [PMID: 15838920 DOI: 10.1002/bdrc.20032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental studies during the last decade have revealed a number of signaling pathways that are critical for the development and maintenance of the intestinal epithelium and that demonstrate the molecular basis for a variety of diseases. The Notch-Delta, Wnt, Hedge Hog, TGF-beta, and other signaling pathways have been shown to form and steadily maintain the crypt-villus system, generating the proper quantities of highly-specialized cells, and ultimately defining the architectural shape of the system. Based on the characterized phenotypes and functional defects of mice resulting from various targeted knockouts, and overexpression and misexpressions of genes, a picture is emerging of the sequence of gene expression events from within the epithelium, and in the underlying mesenchyme that contribute to the regulation of cell differentiation and proliferation. This review focuses on the contributions of multiple signaling pathways to intestinal epithelial proliferation, differentiation, and structural organization, as well as the possible opportunities for cross-talk between pathways. The Notch pathway's potential ability to maintain and regulate the intestinal epithelial stem cell is discussed, in addition to its role as the primary mediator of lineage specification. Recent research that has shed light on the function of Wnt signaling and epithelial-mesenchymal cross-talk during embryonic and postnatal development is examined, along with data on the interplay of heparan sulfate proteoglycans in the signaling process.
Collapse
Affiliation(s)
- Andrew L Hauck
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
37
|
Schonhoff S, Baggio L, Ratineau C, Ray SK, Lindner J, Magnuson MA, Drucker DJ, Leiter AB. Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY. Mol Cell Biol 2005; 25:4189-99. [PMID: 15870288 PMCID: PMC1087718 DOI: 10.1128/mcb.25.10.4189-4199.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gastrointestinal hormone peptide YY is a potent inhibitor of food intake and is expressed early during differentiation of intestinal and pancreatic endocrine cells. In order to better understand the role of peptide YY in energy homeostasis and development, we created mice with a targeted deletion of the peptide YY gene. All intestinal and pancreatic endocrine cells developed normally in the absence of peptide YY with the exception of pancreatic polypeptide (PP) cells, indicating that peptide YY expression was not required for terminal differentiation. We used recombination-based cell lineage trace to determine if peptide YY cells were progenitors for gastrointestinal endocrine cells. Peptide YY(+) cells gave rise to all L-type enteroendocrine cells and to islet partial differential and PP cells. In the pancreas, approximately 40% of pancreatic alpha and rare beta cells arose from peptide YY(+) cells, suggesting that most beta cells and surprisingly the majority of alpha cells are not descendants of peptide YY(+)/glucagon-positive/insulin-positive cells that appear during early pancreagenesis. Despite the anorectic effects of exogenous peptide YY(3-36) following intraperitoneal administration, mice lacking peptide YY showed normal growth, food intake, energy expenditure, and responsiveness to peptide YY(3-36). These observations suggest that targeted disruption of the peptide YY gene does not perturb terminal endocrine cell differentiation or the control of food intake and energy homeostasis.
Collapse
Affiliation(s)
- Susan Schonhoff
- Division of Gastroenterology, GRASP Digestive Disease Center, Tufts New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The gut contains one of the largest stem cell populations in the body, yet has been largely overlooked as a source of potentially therapeutic cells. The stem cells reside in the crypts located at the base of the protruding villi, reproduce themselves, and repopulate the gut lining as differentiated cells are sloughed off into the lumen. Some studies have demonstrated that gut stem cells can be isolated and maintained in culture, but the field is currently hampered by the lack of clear markers for these cells. Nevertheless, the relative accessibility of the cells and the similar pathways of differentiation of both intestinal and pancreatic endocrine cells make the gut an attractive potential source of cells to treat diabetes. In particular, it may be possible to recapitulate islet development by the introduction of specific factors to gut stem cells. Alternatively, gut endocrine cells might be coaxed to produce insulin and secrete it into the blood in a meal-responsive manner. Several investigations support the feasibility of both approaches as novel potential therapies for diabetes. Utilizing a patient's own gut cells to re-establish endogenous meal-regulated insulin secretion could represent an attractive approach to ultimately cure diabetes.
Collapse
Affiliation(s)
- Yukihiro Fujita
- The Laboratory of Molecular and Cellular Medicine, Department of Physiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
39
|
Lossi L, Bottarelli L, Candusso ME, Leiter AB, Rindi G, Merighi A. Transient expression of secretin in serotoninergic neurons of mouse brain during development. Eur J Neurosci 2004; 20:3259-69. [PMID: 15610158 DOI: 10.1111/j.1460-9568.2004.03816.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Existence of the gastro-intestinal peptide secretin in the CNS has been a matter of debate, and contrasting results have been reported, altogether indicating that the CNS is not a major site of production of this peptide. A thorough analysis was conducted in brain of transgenic mice in which the expression of the early region of simian virus 40 large T antigen (Tag) is under control of the rat secretin gene promoter. We studied Tag expression in the brains of E14-P90 transgenic mice as well as secretin mRNA and protein expression in transgenic and control CD1 mice at corresponding developmental stages. We show here a perfect correspondence of Tag and secretin mRNA expression in the mesencephalon of transgenic and normal mice between E14 and birth. In embryos, Tag is also expressed in the spinal cord, as well as in several areas of the peripheral nervous system. Localization of Tag in P0-P90 animals becomes restricted to a single compact cellular mass in mesencephalon at the level of the dorsal raphe, raphe magnus and lateral paragigantocellular nuclei. Neurons of these nuclei display secretin mRNA from E14 to birth, in both control CD1 and transgenic mice. Approximately half of these secretin-expressing neurons are immunoreactive for serotonin (5HT) and/or tryptophan hydroxylase. These results demonstrate that the secretin gene is transiently expressed in mouse serotoninergic mesencephalic neurons during development. In addition our data suggest a trophic role for secretin on neurons known to be involved in multiple superior functions in the normal brain, and lost in neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Torino, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Rindi G, Civallero M, Candusso ME, Marchetti A, Klersy C, Nano R, Leiter AB. Sudden onset of colitis after ablation of secretin-expressing lymphocytes in transgenic mice. Exp Biol Med (Maywood) 2004; 229:826-34. [PMID: 15337838 DOI: 10.1177/153537020422900816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Though secretin mRNA was demonstrated in mouse lymphoid organs, its role in the immune system is unknown. Here, secretin gene-expressing cells were ablated by ganciclovir infusion in mice transgenic for the rat secretin promoter (Sec) directing the expression of herpesvirus thymidine kinase (Sec-HSVTK). Thymus, spleen, blood, and colon were investigated by histology. Lymphoid cells were extracted and quantified, and CD19+ B-cells and CD3+, CD103+, CD4+, and CD8+ T-cells were analyzed by flow cytometry. Protein extracts from spleen and thymus were assayed for secretin by Western blotting, and isolated lymphocytes were investigated for HSVTK, secretin, and secretin receptor (Sec-R) mRNA by reverse transcription-polymerase chain reaction (RT-PCR). Ablation of secretin-expressing cells produced severe colitis with morphological features similar to those observed in graft-versus-host (GVH) disease. Profound lymphoid depletion was observed in spleen, thymus, and peripheral blood. The relative percentage of B- and T-cell subsets were unaffected. Analysis of colonic lymphocytes revealed a marked depletion of CD4+ T lymphocytes. Colitis and lymphoid depletion were not reversed by secretin cotreatment. Immunoblot analysis of protein extracts from spleen and thymus identified secretin-like immmunoreactant. RT-PCR of lymphocyte mRNA from spleen and thymus identified secretin and secretin receptor transcripts. We conclude that GVH-like colitis in ganciclovir-treated Sec-HSVTK mice arises from depletion of secretin gene-expressing lymphoid cells and not from the failure of secretin production.
Collapse
Affiliation(s)
- Guido Rindi
- Department of Pathology, University of Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Barbareschi M, Roldo C, Zamboni G, Capelli P, Cavazza A, Macri E, Cangi MG, Chilosi M, Doglioni C. CDX-2 Homeobox Gene Product Expression in Neuroendocrine Tumors. Am J Surg Pathol 2004; 28:1169-76. [PMID: 15316316 DOI: 10.1097/01.pas.0000131531.75602.b9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CDX-2 is a homeobox gene product essential for intestinal development and differentiation. It can be used as a specific marker of colorectal adenocarcinomas and other tumors with intestinal differentiation, but little is known about its expression in endocrine and neuroendocrine (NE) cells and NE primary and metastatic tumors. Using the Cdx-2-88 monoclonal antibody, we evaluated CDX-2 expression in routine samples of 20 normal endocrine/NE tissues and of 299 samples of well-differentiated NE tumors (WDNET) and high-grade NE carcinomas (NEC) from different sites. For 17 cases, we examined primary and corresponding metastatic lesions. We also examined 8 cytologic samples of liver metastases derived from 4 ileal WDNETs, 1 lung WDNET, and 3 pancreatic endocrine tumors. CDX-2 mRNA expression with RT-PCR technique on frozen material was evaluated in 5 WDNETs. CDX-2 was expressed in normal NE cells of the intestine and gastric fundus. High CDX-2 expression was seen in all ileal and appendiceal WDNET, while low levels were seen in WDNETs from stomach, duodenum, and rectum; no reactivity was seen in other WDNETs. Low levels of CDX-2 expression were seen in one third of nonfunctioning pancreatic WDNET where it was more frequently observed in cases with metastatic disease (P = 0.002). CDX-2 was identified in all cytologic specimens of metastatic ileal WDNETs. CDX-2 mRNA analysis confirmed immunohistochemical results. CDX-2 was expressed at high levels in 81% of intestinal NEC. Unexpectedly, variable levels of expression of CDX-2 were seen also in 39% of NEC of other sites, without any relation with the site of origin. This reactivity frequently overlapped TTF-1 expression, suggesting deregulated expression of homeobox genes in NEC. The restricted pattern of CDX-2 expression may have diagnostic value in the identification of the primary site of a metastatic WDNET. Conversely, a limited diagnostic role is suggested for CDX-2 in NEC because of its frequent expression in nongastrointestinal tumors.
Collapse
|
42
|
Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol 2004; 270:443-54. [PMID: 15183725 DOI: 10.1016/j.ydbio.2004.03.013] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/11/2004] [Accepted: 03/11/2004] [Indexed: 12/24/2022]
Abstract
Mice deficient for the transcription factor neurogenin 3 (ngn3) fail to develop endocrine cells in the intestine and pancreas and show partial endocrine differentiation in the stomach. We expressed Cre recombinase under control of a ngn3 BAC to achieve high fidelity cell lineage tracing in vivo to determine whether endocrine cells in these organs differentiate from NGN3+ precursor cells. Our results indicate that all small intestinal enteroendocrine cells arise from ngn3-expressing cells and confirm that NGN3+ cells give rise to all pancreatic endocrine cells as noted previously. By examining mice at a developmental stage when all of the cell types in the stomach have differentiated, we have delineated region-associated differences in endocrine differentiation. A much smaller fraction of endocrine cells populating the acid-producing region of the stomach is derived from NGN3+ precursor in contrast to the antral-pyloric region. Unexpectedly, ngn3 is expressed in cells that adopt non-endocrine cell fates including significant fractions of goblet and Paneth cells in the intestine and a small number of duct and acinar cells in the pancreas. Rarely, ngn3 was expressed in pluripotent cells in intestinal crypts with resultant labeling of an entire crypt-villus unit. Thus, ngn3 expression occurs in mixed populations of immature cells that are not irreversibly committed to endocrine differentiation.
Collapse
Affiliation(s)
- Susan E Schonhoff
- Division of Gastroenterology, GRASP Digestive Disease Center, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
43
|
Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E. The "normal" endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 2004; 1014:1-12. [PMID: 15153415 DOI: 10.1196/annals.1294.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The endocrine cells of the gut are a highly specialized mucosal cell subpopulation. Within the gastrointestinal tract at least 14 different cell types produce a wide range of hormones with a specific regional distribution. The gut endocrine cells belong to the diffuse endocrine system. These cells present two regulated pathways of secretion characterized by large dense core vesicles (LDCV) and synaptic-like microvesicles (SLMV). Gut endocrine cells are recognized by the expression of several "general" markers, including the LDCV marker chromogranin A and the SLMV marker synaptophysin, in addition to the cytosolic markers neuron-specific enolase and protein gene product 9.5. The expression of different hormones identifies specific cell types. The gut endocrine cells are reputed to be terminally differentiated and incapable of proliferation. However, some data suggest that the number of gut endocrine cells may adapt in response to tissue-specific physiological stimuli. Gut endocrine cell differentiation appears to follow a "constitutive" tissue-specific pathway, which may be disrupted and investigated by genetic manipulation in mice. It is suggested that endocrine cell homeostasis is maintained by the entry of new endocrine-committed cells along the differentiation pathway and that such intermediate cells may be sensitive to physiological stimuli as well as transforming agents.
Collapse
Affiliation(s)
- Guido Rindi
- Department of Pathology and Laboratory Medicine, University of Parma, Italy.
| | | | | | | | | |
Collapse
|
44
|
Abstract
For over 30 yr, it has been known that enteroendocrine cells derive from common precursor cells in the intestinal crypts. Until recently, relatively little was understood about the events that result in commitment to endocrine differentiation or the segregation of over 10 different hormone-expressing cell types in the gastrointestinal tract. The earliest cell fate decisions appear to be regulated by the Notch signaling pathway. Notch is inactive in endocrine precursor cells, allowing for expression of the proendocrine basic helix-loop-helix proteins Math1 and neurogenin3. Differentiating precursor cells activate Notch in neighboring cells to switch off expression of proendocrine factors and inhibit endocrine differentiation. Math1 is the first factor involved in endocrine specification, committing cells to become one of three secretory lineages-goblet, Paneth, and enteroendocrine. Neurogenin3 appears to be a downstream target that is essential for endocrine cell differentiation. Events that control the segregation of each mature lineage from progenitor cells have not been characterized in detail. The transcription factors Pax4, Pax6, BETA2/NeuroD, and pancreatic-duodenal homeobox 1 have all been implicated in enteroendocrine differentiation. BETA2/NeuroD appears to coordinate secretin gene expression in S-type enteroendocrine cells with cell cycle arrest as cells terminally differentiate. Powerful genetic approaches have established the murine intestine as the most important model for studying enteroendocrine differentiation. Enteroendocrine cells in the mouse are remarkably similar to those in humans, making it likely that insights learned from the mouse may contribute to both our understanding and treatment of a variety of human disorders.
Collapse
Affiliation(s)
- Susan E Schonhoff
- Division of Gastroenterology No. 218, New England Medical Center, 750 Washington Street, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
45
|
Abstract
In this review, analyses of the ontogenetic relations between the different pancreatic cell types are summarized. Lineage analyses allow identification of progenitor cells from which mature cell types differentiate. This knowledge is highly relevant for future cell replacement therapies in diabetic patients, helping to define the identity of putative pancreatic stem cells.
Collapse
Affiliation(s)
- Pedro Luis Herrera Merino
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
46
|
Developmental biology of the pancreas. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Linden DR, Chen JX, Gershon MD, Sharkey KA, Mawe GM. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003; 285:G207-16. [PMID: 12646422 DOI: 10.1152/ajpgi.00488.2002] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
5-HT released from enterochromaffin cells acts on enteric nerves to initiate motor reflexes. 5-HT's actions are terminated by a serotonin reuptake transporter (SERT). In this study, we tested the hypothesis that inflammation leads to altered mucosal 5-HT signaling. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and experiments were conducted on day 6. 5-HT content, number of 5-HT-immunoreactive cells, and the proportion of epithelial cells that were 5-HT-immunoreactive increased twofold in colitis. The amount of 5-HT released under basal and stimulated conditions was significantly increased in colitis. SERT inhibition increased the 5-HT concentration in media bathing-stimulated control tissue to a level comparable to that of the stimulated colitis tissue. mRNA encoding SERT and SERT immunoreactivity were reduced during inflammation. Slower propulsion and reduced sensitivity to 5-HT-receptor antagonism were observed in colitis. These data suggest that colitis alters 5-HT signaling by increasing 5-HT availability while decreasing 5-HT reuptake. Altered 5-HT availability may contribute to the dysmotility of inflammatory bowel disease, possibly due to desensitization of 5-HT receptors.
Collapse
Affiliation(s)
- David R Linden
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
48
|
Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci U S A 2003; 100:5034-9. [PMID: 12702762 PMCID: PMC154293 DOI: 10.1073/pnas.0936260100] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucagon-like peptide (GLP) 1 is produced through posttranslational processing of proglucagon and acts as a regulator of various homeostatic events. Among its analogs, however, the function of GLP-1-(1-37), synthesized in small amounts in the pancreas, has been unclear. Here, we find that GLP-1-(1-37) induces insulin production in developing and, to a lesser extent, adult intestinal epithelial cells in vitro and in vivo, a process mediated by up-regulation of the Notch-related gene ngn3 and its downstream targets, which are involved in pancreatic endocrine differentiation. These cells became responsive to glucose challenge in vitro and reverse insulin-dependent diabetes after implantation into diabetic mice. Our findings suggest that efficient induction of insulin production in intestinal epithelial cells by GLP-1-(1-37) could represent a new therapeutic approach to diabetes mellitus.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Surgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
49
|
Abstract
Id helix-loop-helix (Id HLH) proteins are negative regulators of basic HLH transcription factors. They are expressed during embryonic development and are important for the regulation of cell phenotypes in adults. They participate in the molecular networks controlling cell growth, differentiation, and carcinogenesis, through specific basic HLH and non-basic HLH protein interactions. Recent in vitro and in vivo data implicate Id HLH as important orchestrating proteins of homeostasis in glandular and protective epithelia. In particular, Id proteins have been reported to be involved in cell behavior in epidermis, respiratory system, digestive tract, pancreas, liver, thyroid, urinary system, prostate, testis, endometrium, cervix, ovary, and mammary gland. The purpose of this review is to summarize the evidence implicating Id proteins in the regulation of mammalian epithelial cell phenotypes.
Collapse
Affiliation(s)
- Jean-Philippe Coppé
- California Pacific Medical Center, Cancer Research Institute, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
50
|
Ray SK, Nishitani J, Petry MW, Fessing MY, Leiter AB. Novel transcriptional potentiation of BETA2/NeuroD on the secretin gene promoter by the DNA-binding protein Finb/RREB-1. Mol Cell Biol 2003; 23:259-71. [PMID: 12482979 PMCID: PMC140679 DOI: 10.1128/mcb.23.1.259-271.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic helix-loop-helix protein BETA2/NeuroD activates transcription of the secretin gene and is essential for terminal differentiation of secretin-producing enteroendocrine cells. However, in heterodimeric complexes with its partner basic helix-loop-helix proteins, BETA2 does not appear to be a strong activator of transcription by itself. Mutational analysis of a proximal enhancer in the secretin gene identified several cis-acting elements in addition to the E-box binding site for BETA2. We identified by expression cloning the zinc finger protein RREB-1, also known to exist as a longer form, Finb, as the protein binding to one of the mutationally sensitive elements. Finb/RREB-1 lacks an intrinsic activation domain and by itself did not activate secretin gene transcription. Here we show that Finb/RREB-1 can associate with BETA2 to enhance its transcription-activating function. Both DNA binding and physical interaction of Finb/RREB-1 with BETA2 are required to potentiate transcription. Thus, Finb/RREB-1 does not function as a classical activator of transcription that recruits an activation domain to a DNA-protein complex. Finb/RREB-1 may be distinguished from coactivators, which increase transcription without sequence-specific DNA binding. We suggest that Finb/RREB-1 should be considered a potentiator of transcription, representing a distinct category of transcription-regulating proteins.
Collapse
Affiliation(s)
- Subir K Ray
- Division of Gastroenterology, GRASP Digestive Disease Center, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|