1
|
Gu L, Kang T, Zeng T, Wang H, Zhu B, Du X, Liu Y. Comprehensive identification and expression analysis of the CPP gene family in maize (Zea mays L.). BMC PLANT BIOLOGY 2025; 25:731. [PMID: 40442593 PMCID: PMC12124014 DOI: 10.1186/s12870-025-06783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Maize is an important crop. The cysteine-rich polycomb-like protein (CPP) is crucial for plant development and abiotic stress response. However, few reports have been reported on the function of ZmCPPs. This study conducted bioinformatics and expression analyses of the ZmCPP gene family. RESULTS Based on the homologous comparison methods, 12 ZmCPPs were identified in the last assembly of maize B73 genome (V5). They were unevenly distributed across six maize chromosomes. Six ZmCPPs formed 3 groups due to segmental but no tandem duplication, indicating segmental duplication as the key driving force of the ZmCPPs family expansion. Homologous evolutionary analysis classified 12 ZmCPPs into three groups, with each containing four members. ZmCPP gene structure and protein motif in the same group were highly conserved. The promoter regions of 12 ZmCPP genes containing plant growth, hormone, and abiotic stress-responsive elements. RNA-seq data indicated that the expression pattern of ZmCPPs exhibited organizational specificity and the ZmCPPs transcript levels could be influenced by abiotic/biotic stresses. RT-qPCR analysis of six ZmCPPs (ZmCPP2/4/8/9/11/12) showed that the expression of ZmCPPs were induced or reduced by short-term heat, cold, dehydration, and waterlogging stresses. Furthermore, ZmCPP2/9 was localized in the cytoplasm and nucleus, without transactivation activity in yeast. CONCLUSION Taken together, the comprehensive analysis of ZmCPPs in the whole genome provides a novel perspective on the evolutionary relationship among ZmCPP genes and lays a foundation for further study of the biological functions of ZmCPPs.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, 550025, China
| | - Tianyu Kang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yinglang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, 550025, China.
| |
Collapse
|
2
|
Liu R, Feng Y, Li Q, Wu H, Guo S, Li J, Liu X, Zhang Y, Tang X, Cao S. Genome-Wide Analysis of CPP Transcription Factor Family in Endangered Plant Phoebe bournei and Its Response to Adversity. PLANTS (BASEL, SWITZERLAND) 2025; 14:803. [PMID: 40094804 PMCID: PMC11902078 DOI: 10.3390/plants14050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
The CPP gene family comprises transcription factor genes containing a conserved CRC domain, which is mainly involved in plant development and evolution. Although CPP genes have been widely studied in many plants, little is known about them in woody plants, especially in the endangered species Phoebe bournei (Hemsl.). In the genome of Phoebe bournei, we identified 11 PbCPP genes (PbCPP1-PbCPP11) distributed on four chromosomes, with large differences in the number of amino acids. They encode both acidic and alkaline proteins. A phylogenetic analysis showed that these PbCPP genes can be divided into three subfamilies, A, B, and C, which contain seven, two, and two genes, respectively. Through an interspecific collinearity analysis, we identified homologous PbCPP genes. A promoter cis-acting element analysis revealed that PbCPPs contain a variety of elements that respond to plant hormones, stress signals, and light and play a role in growth and development, and most PbCPP genes (except PbCPP3 and PbCPP8) contain MYB binding site elements that regulate drought-induced stress responses, indicating that they play an important role in plant drought resistance. An expression analysis showed that PbCPP3 and PbCPP4 expression was high in the roots and stems and lower in the leaves, whereas the expression of most of the other genes was low in the roots, stems, and leaves. In addition, six representative PbCPP genes were detected using qRT-PCR. The results show significant differences in the expression of PbCPP genes under abiotic stress conditions (drought, cold, and salt), indicating that they play an important role in stress responses. This study preliminarily verified the role of the PbCPP gene family in different abiotic stress responses, which is of great significance for understanding its mechanism in plant growth and development and stress adaptation.
Collapse
Affiliation(s)
- Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Qingyan Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Hua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Junnan Li
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| |
Collapse
|
3
|
Xiang Y, Liu W, Niu Y, Li Q, Zhao C, Pan Y, Li G, Bian X, Miao Y, Zhang A. The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. THE PLANT CELL 2025; 37:koaf032. [PMID: 39928574 PMCID: PMC11841367 DOI: 10.1093/plcell/koaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Glycogen synthase kinase 3 (GSK3)-like kinases play important roles in stress responses in plants. However, the mechanism of GSK3-like kinases in drought-induced antioxidant defense is not clear. In this study, we discovered that the GSK3-like kinase SHAGGY-like kinase 1 (ZmSK1) negatively regulates drought tolerance by inhibiting antioxidant defense in maize (Zea mays). Then, we determined that cysteine-rich polycomb-like protein 2 (ZmCPP2) interacts with ZmSK1 and enhances maize drought tolerance by inducing antioxidant defense. ZmCPP2 is phosphorylated at Ser-250 by ZmSK1, which is dependent on ZmSK1 kinase activity and attenuates maize drought tolerance. Furthermore, ZmCPP2 directly binds to the promoter of the superoxide dismutase (SOD) gene ZmSOD4, encoding an antioxidant defense enzyme, and activates its expression. ZmSK1 phosphorylating ZmCPP2 at Ser-250 represses the binding of ZmCPP2 to the ZmSOD4 promoter. Taken together, our results indicate that the phosphorylation of ZmCPP2 by ZmSK1 results in decreased SOD activity and thus reduces drought tolerance in maize. These findings reveal a mechanism of GSK3-like kinases regulating antioxidant defense in the drought stress response.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yingxue Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qian Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chongyang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yitian Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangdong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yadan Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, Hainan 572025, China
| |
Collapse
|
4
|
Tan J, Xuan X, Su S, Jiao Y, Guo H, Zhang Z. Comprehensive analysis of the CPP gene family in Moso bamboo: insights into their role in rapid shoot growth. BMC Genomics 2024; 25:1173. [PMID: 39627725 PMCID: PMC11613906 DOI: 10.1186/s12864-024-11084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
Cysteine-rich polycomb-like proteins (CPPs), pivotal transcription factors crucial for evolution of plants from germination to maturity, and adaptation to environmental stresses, have not yet been characterized within the context of Moso bamboo. The CPP gene family of Moso bamboo was identified through bioinformatics, and the structural and functional attributes of the gene, including its physicochemical properties, evolutionary relationships, and gene-protein structures, were revealed. Additionally, the current study also offers valuable information on the patterns of gene expression in bamboo shoots during the period of accelerated development. The results show that the Moso bamboo genome contains 17 CPP members. Molecular phylogenetic relationships indicated that CPPs could be divided into three subfamilies and that CPP members of the same subfamily shared similar gene structures, motifs and conserved structural domains. The covariance analysis showed that the covariance between CPP and Oryza sativa was higher than that between Arabidopsis. Protein homology modeling showed that CPP proteins contain the DNA-binding domain of typical transcription factors. Transcriptomic data analysis revealed that CPP gene expression differs between tissues and organs. CPP could be regulated in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). The qRT-PCR experiments demonstrated that CPP was crucial in the initial and fast expansion of bamboo shoots. Additionally, gene ontology (GO), KEGG enrichment and CPP regulatory network map analyses revealed multiple functional annotations of PeCPP-regulated downstream target genes. The results of this study will not only lay the foundation for further exploration of the detailed biological functions of CPP genes in the growth and development of Moso bamboo, but also establish the groundwork for future genetic enhancement of fast-growing forest trees.
Collapse
Affiliation(s)
- Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Xueyun Xuan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Shiying Su
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
5
|
Zhang L, Zhang R, Yan P, Zeng L, Zhao W, Feng H, Mu R, Hou W. PE ( Prickly Eggplant) encoding a cytokinin-activating enzyme responsible for the formation of prickles in eggplant. HORTICULTURE RESEARCH 2024; 11:uhae134. [PMID: 38974191 PMCID: PMC11226868 DOI: 10.1093/hr/uhae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 07/09/2024]
Abstract
Eggplant is one of the most important vegetables worldwide, with some varieties displaying prickles. These prickles, present on the leaves, stems, and fruit calyxes, posing challenges during cultivation, harvesting, and transportation, making them an undesirable agronomic trait. However, the genetic mechanisms underlying prickle morphogenesis in eggplant remain poorly understood, impeding genetic improvements. In this study, genetic analyses revealed that prickle morphogenesis is governed by a single dominant nuclear gene, termed PE (Prickly Eggplant). Subsequent bulk segregant RNA-sequencing (BSR-seq) and linkage analysis preliminarily mapped PE to chromosome 6. This locus was then fine mapped to a 9233 bp interval in a segregating population of 1109 plants, harboring only one candidate gene, SmLOG1, which encodes a LONELY GUY (LOG)-family cytokinin biosynthetic enzyme. Expression analyses via transcriptome and qRT-PCR demonstrate that SmLOG1 is predominantly expressed in immature prickles. CRISPR-Cas9 knockout experiments targeting SmLOG1 in prickly parental line 'PI 381159' abolished prickles across all tissues, confirming its critical role in prickle morphogenesis. Sequence analysis of SmLOG1 pinpointed variations solely within the non-coding region. We developed a cleaved amplified polymorphic sequences (CAPS) marker from a distinct SNP located at -735-bp within the SmLOG1 promoter, finding significant association with prickle variation in 190 eggplant germplasms. These findings enhance our understanding of the molecular mechanisms governing prickle development in eggplant and facilitate the use of marker-assisted selection (MAS) for breeding prickleless cultivars.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Runzhi Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Ping Yan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Liqian Zeng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Weiwei Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Huiqian Feng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| | - Ruyu Mu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenqian Hou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221100, Jiangsu Province, China
| |
Collapse
|
6
|
Chauhan M, Arshi SA, Narayanan N, Arfin HU, Sharma A. A mechanistic insight on how Compromised Hydrolysis of Triacylglycerol 7 (CHT7) restrains the involvement of it's CXC domain from quiescence repression. Int J Biol Macromol 2024; 265:130844. [PMID: 38484809 DOI: 10.1016/j.ijbiomac.2024.130844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
CHT7 is a regulator of quiescence repression in Chlamydomonas reinhardtii. Initially, CHT7's repression activity was thought to be managed by its DNA-binding CXC domain. Later, it was found that the CHT7-CXC domain is dispensable for CHT7's activities. Rather, CHT7's predicted protein domains were proposed to be involved in regulation activities by binding to other repressors in the cell. Yet, it remains unclear why and how CHT7 refrains its CXC domain from participating in any transcriptional activities. The question becomes more intriguing, since CXC binding regions are available in promoter regions of some of the misregulated genes in CHT7 mutant (cht7). Through biophysical experiments and molecular dynamics approaches, we studied the DNA recognition behavior of CHT7-CXC. The results indicate that this domain possesses sequence selectivity due to the differential binding abilities of its subdomains. Further, to understand if the case is that CXC loses its DNA binding capabilities in the vicinity of other repressors, we examined CHT7-CXC's DNA binding stability under the spatial constraint conditions created through fusing CHT7-CXC with AsLOV2. The results show limited ability of CHT7-CXC to withstand steric forces and provide insights to why and how algal cells may hold back CHT7-CXC's indulgence in quiescence repression. CLASSIFICATIONS: Biological Sciences, Biophysics and Computational Biology.
Collapse
Affiliation(s)
- Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Syeda Amna Arshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, NCR-Cluster Faridabad, Haryana 121001, India
| | - Haseeb Ul Arfin
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
7
|
Sun Y, Jia X, Chen D, Fu Q, Chen J, Yang W, Yang H, Xu X. Genome-Wide Identification and Expression Analysis of Cysteine-Rich Polycomb-like Protein (CPP) Gene Family in Tomato. Int J Mol Sci 2023; 24:ijms24065762. [PMID: 36982833 PMCID: PMC10058331 DOI: 10.3390/ijms24065762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cysteine-rich polycomb-like protein (CPP) gene family is a class of transcription factors containing conserved cysteine-rich CRC structural domains that is involved in the regulation of plant growth and stress tolerance to adversity. Relative to other gene families, the CPP gene family has not received sufficient attention. In this study, six SlCPPs were identified for the first time using the most recent genome-wide identification data of tomato. Subsequently, a phylogenetic analysis classified SlCPPs into four subfamilies. The analysis of cis-acting elements in the promoter indicates that SlCPPs are involved in plant growth and development and also stress response. We present for the first time the prediction of the tertiary structure of these SlCPPs proteins using the AlphaFold2 artificial intelligence system developed by the DeepMind team. Transcriptome data analysis showed that SlCPPs were differentially expressed in different tissues. Gene expression profiling showed that all SlCPPs except SlCPP5 were up-regulated under drought stress; SlCPP2, SlCPP3 and SlCPP4 were up-regulated under cold stress; SlCPP2 and SlCPP5 were up-regulated under salt stress; all SlCPPs were up-regulated under inoculation with Cladosporium fulvum; and SlCPP1, SlCPP3, and SlCPP4 were up-regulated under inoculation with Stemphylium lycopersici. We performed a virus-induced gene silencing experiment on SlCPP3, and the results indicated that SlCPP3 was involved in the response to drought stress. Finally, we predicted the interaction network of the key gene SlCPP3, and there was an interaction relationship between SlCPP3 and 10 genes, such as RBR1 and MSI1. The positive outcome showed that SlCPPs responded to environmental stress. This study provides a theoretical and empirical basis for the response mechanisms of tomato in abiotic stresses.
Collapse
Affiliation(s)
- Yaoguang Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyi Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dexia Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qingjun Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinxiu Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Wang F, Wang W, Liu Z. Cyclin A participates in the TSO1-MYB3R1 regulatory module to maintain shoot meristem size and fertility in Arabidopsis. Development 2023; 150:287107. [PMID: 36805640 DOI: 10.1242/dev.201405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The stem cell pools at the shoot apex and root tip give rise to all the above- and below-ground tissues of a plant. Previous studies in Arabidopsis identified a TSO1-MYB3R1 transcriptional module that controls the number and size of the stem cell pools at the shoot apex and root tip. As TSO1 and MYB3R1 are homologous to components of an animal cell cycle regulatory complex, DREAM, Arabidopsis mutants of TSO1 and MYB3R1 provide valuable tools for investigations into the link between cell cycle regulation and stem cell maintenance in plants. In this study, an Arabidopsis cyclin A gene, CYCA3;4, was identified as a member of the TSO1-MYB3R1 regulatory module and cyca3;4 mutations suppressed the tso1-1 mutant phenotype specifically in the shoot. The work reveals how the TSO1-MYB3R1 module is integrated with the cell cycle machinery to control cell division at the shoot meristem.
Collapse
Affiliation(s)
- Fuxi Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Chen JJ, Wang W, Qin WQ, Men SZ, Li HL, Mitsuda N, Ohme-Takagi M, Wu AM. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:463-478. [PMID: 36342216 PMCID: PMC9806662 DOI: 10.1093/plphys/kiac513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.
Collapse
Affiliation(s)
- Jia-Jun Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Wen-Qi Qin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Zhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui-Ling Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Leng YJ, Yao YS, Yang KZ, Wu PX, Xia YX, Zuo CR, Luo JH, Wang P, Liu YY, Zhang XQ, Ye D, Le J, Chen LQ. Arabidopsis ERdj3B coordinates with ERECTA-family receptor kinases to regulate ovule development and the heat stress response. THE PLANT CELL 2022; 34:3665-3684. [PMID: 35897146 PMCID: PMC9516030 DOI: 10.1093/plcell/koac226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The endoplasmic reticulum-localized DnaJ family 3B (ERdj3B), is a component of the stromal cell-derived factor 2 (SDF2)-ERdj3B-binding immunoglobulin protein (BiP) chaperone complex, which functions in protein folding, translocation, and quality control. We found that ERdj3B mutations affected integument development in the Ler ecotype but not in the Col-0 ecotype of Arabidopsis (Arabidopsis thaliana). Map-based cloning identified the ERECTA (ER) gene as a natural modifier of ERdj3B. The double mutation of ERdj3B and ER caused a major defect in the inner integument under heat stress. Additional mutation of the ER paralog ERECTA-LIKE 1 (ERL1) or ERL2 to the erdj3b er double mutant exacerbated the defective integument phenotype. The double mutation of ER and SDF2, the other component of the SDF2-ERdj3B-BiP complex, resulted in similar defects in the inner integument. Furthermore, both the protein abundance and plasma membrane partitioning of ER, ERL1, and ERL2 were markedly reduced in erdj3b plants, indicating that the SDF2-ERdj3B-BiP chaperone complex might control the translocation of ERECTA-family proteins from the endoplasmic reticulum to the plasma membrane. Our results suggest that the SDF2-ERdj3B-BiP complex functions in ovule development and the heat stress response in coordination with ERECTA-family receptor kinases.
Collapse
Affiliation(s)
| | | | | | - Pei-Xiang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu-Xin Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao-Ran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Hong Luo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang-Yang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
11
|
Nisar T, Tahir MHN, Iqbal S, Sajjad M, Nadeem MA, Qanmber G, Baig A, Khan Z, Zhao Z, Geng Z, Ur Rehman S. Genome-wide characterization and sequence polymorphism analyses of cysteine-rich poly comb-like protein in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:996265. [PMID: 36204049 PMCID: PMC9531024 DOI: 10.3389/fpls.2022.996265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Cysteine-rich poly comb-like protein (CPP) is a member of cysteine-rich transcription factors that regulates plant growth and development. In the present work, we characterized twelve CPP transcription factors encoding genes in soybean (Glycine max). Phylogenetic analyses classified CPP genes into six clades. Sequence logos analyses between G. max and G. soja amino acid residues exhibited high conservation. The presence of growth and stress-related cis-acting elements in the upstream regions of GmCPPs highlight their role in plant development and tolerance against abiotic stress. Ka/Ks levels showed that GmCPPs experienced limited selection pressure with limited functional divergence arising from segmental or whole genome duplication events. By using the PAN-genome of soybean, a single nucleotide polymorphism was identified in GmCPP-6. To perform high throughput genotyping, a kompetitive allele-specific PCR (KASP) marker was developed. Association analyses indicated that GmCPP-6-T allele of GmCPP-6 (in exon region) was associated with higher thousand seed weight under both water regimes (well-water and water-limited). Taken together, these results provide vital information to further decipher the biological functions of CPP genes in soybean molecular breeding.
Collapse
Affiliation(s)
- Tayyaba Nisar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Shahid Iqbal
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad, Islamabad, Pakistan
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ayesha Baig
- Department of Biotechnology, Commission on Science and Technology for Sustainable Development in the South (COMSATS), University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Zhengyun Zhao
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| |
Collapse
|
12
|
Comprehensive In Silico Analysis of RNA Silencing-Related Genes and Their Regulatory Elements in Wheat (Triticum aestivum L.). BIOMED RESEARCH INTERNATIONAL 2022; 2022:4955209. [PMID: 36177060 PMCID: PMC9513535 DOI: 10.1155/2022/4955209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are known as the three major gene families that act as the critical components of RNA interference or silencing mechanisms through the noncoding small RNA molecules (miRNA and siRNA) to regulate the expressions of protein-coding genes in eukaryotic organisms. However, most of their characteristics including structures, chromosomal location, subcellular locations, regulatory elements, and gene networking were not rigorously studied. Our analysis identified 7 TaDCL, 39 TaAGO, and 16 TaRDR genes as RNA interference (RNAi) genes from the wheat genome. Phylogenetic analysis of predicted RNAi proteins with the RNAi proteins of Arabidopsis and rice showed that the predicted proteins of TaDCL, TaAGO, and TaRDR groups are clustered into four, eight, and four subgroups, respectively. Domain, 3D protein structure, motif, and exon-intron structure analyses showed that these proteins conserve identical characteristics within groups and maintain differences between groups. The nonsynonymous/synonymous mutation ratio (Ka/Ks) < 1 suggested that these protein sequences conserve some purifying functions. RNAi genes networking with TFs revealed that ERF, MIKC-MADS, C2H2, BBR-BPC, MYB, and Dof are the key transcriptional regulators of the predicted RNAi-related genes. The cis-regulatory element (CREs) analysis detected some important CREs of RNAi genes that are significantly associated with light, stress, and hormone responses. Expression analysis based on an online database exhibited that almost all of the predicted RNAi genes are expressed in different tissues and organs. A case-control study from the gene expression level showed that some RNAi genes significantly responded to the drought and heat stresses. Overall results would therefore provide an excellent basis for in-depth molecular investigation of these genes and their regulatory elements for wheat crop improvement against different stressors.
Collapse
|
13
|
Ullah U, Buttar ZA, Shalmani A, Muhammad I, Ud-Din A, Ali H. Genome-wide identification and expression analysis of CPP-like gene family in Triticum aestivum L. under different hormone and stress conditions. Open Life Sci 2022; 17:544-562. [PMID: 35647295 PMCID: PMC9123298 DOI: 10.1515/biol-2022-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
The CPP-like plant‐specific transcription factor has a prominent role in plant development and growth through cell division and differential activities. However, little information is available about the CPP gene family in Triticum aestivum L. Herein, we identified 37 and 11 CPP genes in the wheat and rice genome databases, respectively. The phylogeny of the CPP protein-like family members was further divided into five subfamilies based on structural similarities and phenotypic functional diversities. The in silico expression analysis showed that CPP genes are highly expressed in some tissues, such as shoot apex, shoot, leaf, leaf sheath, and microspore. Furthermore, the qRT-PCR found higher expression for TaCPP gene family members in leaf, leaf blade, young spike, mature spike, and differential expression patterns under abiotic stresses, including heat, drought, salt, and hormonal treatment, such as indole acetic acid and 1-aminocyclopropane-1 carboxylic acid. We found that CPP gene family members are mostly located in the nucleus after infiltrating the CPP5-1B-GFP and TaCPP11-3B-GFP into tobacco leaves. The overexpression of the TaCPP5-1D gene revealed that the CPP gene positively regulates the germanium, shoot, and root activities in Arabidopsis. The TaCPP5-1D-overexpressed plants showed less anti-oxidative sensitivity under drought stress conditions. These results demonstrated that TaCPP5-1D protein has a crucial contribution by interacting with TaCPP11-3B protein in maintaining stress homeostasis under the natural and unfavorable environmental conditions for growth, development, and stress resistance activities. Therefore, this study could be used as pioneer knowledge to further investigate the function of CPP genes in plant growth and development.
Collapse
Affiliation(s)
- Uzair Ullah
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Zeeshan Ali Buttar
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Abdullah Shalmani
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Izhar Muhammad
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| |
Collapse
|
14
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Sanchez J, Kaur PP, Pabuayon ICM, Karampudi NBR, Kitazumi A, Sandhu N, Catolos M, Kumar A, de Los Reyes BG. DECUSSATE network with flowering genes explains the variable effects of qDTY12.1 to rice yield under drought across genetic backgrounds. THE PLANT GENOME 2022; 15:e20168. [PMID: 34806842 DOI: 10.1002/tpg2.20168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The impact of qDTY12.1 in maintaining yield under drought has not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background genome either enhances or undermines its full potential. By modeling the transcriptional networks across sibling qDTY12.1-introgression lines with contrasting yield under drought (LPB = low-yield penalty; HPB = high-yield penalty), the qDTY12.1-encoded DECUSSATE gene (OsDEC) was revealed as the core of a synergy with other genes in the genetic background. OsDEC is expressed in flag leaves and induced by progressive drought at booting stage in LPB but not in HPB. The unique OsDEC signature in LPB is coordinated with 35 upstream and downstream peripheral genes involved in floral development through the cytokinin signaling pathway. Results support the differential network rewiring effects through genetic coupling-uncoupling between qDTY12.1 and other upstream and downstream peripheral genes across the distinct genetic backgrounds of LPB and HPB. The functional DEC-network in LPB defines a mechanism for early flowering as a means for avoiding the drought-induced depletion of photosynthate needed for reproductive growth. Its impact is likely through the timely establishment of stronger source-sink dynamics that sustains a robust reproductive transition under drought.
Collapse
Affiliation(s)
- Jacobo Sanchez
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | | | | | | | - Ai Kitazumi
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | - Nitika Sandhu
- International Rice Research Institute, Los Banos, Philippines
- Current address: School of Agricultural Biotechnology, Punjab Agricultural Univ., Ludhiana, India
| | | | - Arvind Kumar
- International Rice Research Institute, Los Banos, Philippines
- Current address: International Crops Research Institute for the Semi-Arid Tropics, Petancheru, India
| | | |
Collapse
|
16
|
Górska AM, Gouveia P, Borba AR, Zimmermann A, Serra TS, Carvalho P, Lourenço TF, Oliveira MM, Peterhänsel C, Saibo NJM. ZmOrphan94 Transcription Factor Downregulates ZmPEPC1 Gene Expression in Maize Bundle Sheath Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:559967. [PMID: 33897718 PMCID: PMC8062929 DOI: 10.3389/fpls.2021.559967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Spatial separation of the photosynthetic reactions is a key feature of C4 metabolism. In most C4 plants, this separation requires compartmentation of photosynthetic enzymes between mesophyll (M) and bundle sheath (BS) cells. The upstream region of the gene encoding the maize PHOSPHOENOLPYRUVATE CARBOXYLASE 1 (ZmPEPC1) has been shown sufficient to drive M-specific ZmPEPC1 gene expression. Although this region has been well characterized, to date, only few trans-factors involved in the ZmPEPC1 gene regulation were identified. Here, using a yeast one-hybrid approach, we have identified three novel maize transcription factors ZmHB87, ZmCPP8, and ZmOrphan94 as binding to the ZmPEPC1 upstream region. Bimolecular fluorescence complementation assays in maize M protoplasts unveiled that ZmOrphan94 forms homodimers and interacts with ZmCPP8 and with two other ZmPEPC1 regulators previously reported, ZmbHLH80 and ZmbHLH90. Trans-activation assays in maize M protoplasts unveiled that ZmHB87 does not have a clear transcriptional activity, whereas ZmCPP8 and ZmOrphan94 act as activator and repressor, respectively. Moreover, we observed that ZmOrphan94 reduces the trans-activation activity of both activators ZmCPP8 and ZmbHLH90. Using the electromobility shift assay, we showed that ZmOrphan94 binds to several cis-elements present in the ZmPEPC1 upstream region and one of these cis-elements overlaps with the ZmbHLH90 binding site. Gene expression analysis revealed that ZmOrphan94 is preferentially expressed in the BS cells, suggesting that ZmOrphan94 is part of a transcriptional regulatory network downregulating ZmPEPC1 transcript level in the BS cells. Based on both this and our previous work, we propose a model underpinning the importance of a regulatory mechanism within BS cells that contributes to the M-specific ZmPEPC1 gene expression.
Collapse
Affiliation(s)
- Alicja M. Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Rita Borba
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Anna Zimmermann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Institut für Botanik, Leibniz Universität Hannover, Hannover, Germany
| | - Tânia S. Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Pedro Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
17
|
Noh M, Shin JS, Hong JC, Kim SY, Shin JS. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression. PLANT CELL REPORTS 2021; 40:677-689. [PMID: 33492497 DOI: 10.1007/s00299-021-02663-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
TCX8 localizes to nucleus and has transcriptional repression activity. TCX8 binds to the promoter region of LOX2 encoding lipoxygenase, causing JA biosynthesis suppression, and thereby delays plant senescence. Conserved CXC domain-containing proteins are found in most eukaryotes. Eight TCX proteins, which are homologs of animal CXC-Hinge-CXC (CHC) proteins, were identified in Arabidopsis, and three of them, TSO1, TCX2/SOL2 and TCX3/SOL1, have been reported to affect cell-cycle control. TCX8, one of the TCX family proteins, was believed to be a TF but its precise function has not been reported. Yeast two-hybrid screening revealed TCP20, a TF that binds to the promoter of LOX2 encoding lipoxygenase, as a strong candidate for interaction with TCX8. We confirmed that TCX8 directly interacts with TCP20 using in vitro pull-down assay and in vivo BiFC and observed that TCX8, as a TF, localizes to nucleus. Using EMSA and by analyzing phenotypes of TCX8-overexpression lines, we demonstrated that TCX8 regulates the expression of LOX2 by binding to either cis-element of LOX2 promoter to which TCP20 or TCP4 binds, affecting JA biosynthesis, and thereby delaying plant senescence. Our study provides new information about the role of TCX8 in modulating plant senescence through regulating LOX2 expression.
Collapse
Affiliation(s)
- Minsoo Noh
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Seok Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Soo Youn Kim
- Bionics Corporation, Seoul, 04778, Republic of Korea.
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Ni J, Ma X, Feng Y, Tian Q, Wang Y, Xu N, Tang J, Wang G. Updating and interaction of polycomb repressive complex 2 components in maize (Zea mays). PLANTA 2019; 250:573-588. [PMID: 31127375 DOI: 10.1007/s00425-019-03193-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
The information on core components in maize polycomb repressive complex 2 (PRC2) are updated at a genome-wide scale, and the protein-protein interaction networks of PRC2 components are further provided in maize. The evolutionarily conserved polycomb group (PcG) proteins form multi-subunits polycomb repressive complexes (PRCs) that repress gene expression via chromatin condensation. In Arabidopsis, three distinct PRC2s have been identified, each determining a specific developmental program with partly functional redundancy. However, the core components and biological functions of PRC2 in cereals remain obscure. Here, we updated the information on maize PRC2 components at a genome-wide scale. Maize PRC2 subunits are highly duplicated, with five MSI1, three E(z), two ESC and two Su(z)12 homologs. ZmFIE1 is preferentially expressed in the endosperm, whereas the remaining are broadly expressed in many tissues. ZmCLF/MEZ1 and ZmFIE1 are maternally expressed imprinted genes, in contrast to the paternal-dominantly expression of ZmFIE2 in the endosperm. In maize, E(z) members likely provide a scaffold for assembling PRC2 complexes, whereas Su(z)12 and p55/MSI1-like proteins together reinforce the complex; ESC members probably determine its specificity: FIE1-PRC2 regulates endosperm cell development, whereas FIE2-PRC2 controls other cell types. The duplicated Brassicaceae-specific MEA and FIS2 also directly interact with maize PRC2 members. Together, this study establishes a roadmap for protein-protein interactions of maize PRC2 components, providing new insights into their functions in the growth and development of cereals.
Collapse
Affiliation(s)
- Jiacheng Ni
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuexia Ma
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Feng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qiuzhen Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyan Wang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ningkun Xu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
20
|
Cia MC, de Carvalho G, Azevedo RA, Monteiro-Vitorello CB, Souza GM, Nishiyama-Junior MY, Lembke CG, Antunes de Faria RSDC, Marques JPR, Melotto M, Camargo LEA. Novel Insights Into the Early Stages of Ratoon Stunting Disease of Sugarcane Inferred from Transcript and Protein Analysis. PHYTOPATHOLOGY 2018; 108:1455-1466. [PMID: 29969065 DOI: 10.1094/phyto-04-18-0120-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite of the importance of ratoon stunting disease, little is known on the responses of sugarcane to its causal agent, the vascular bacterial endophyte Leifsonia xyli subsp. xyli. The transcriptome and proteome of young plants of a susceptible cultivar with no symptoms of stunting but with relative low and high bacterial titers were compared at 30 and 60 days after inoculation. Increased bacterial titers were associated with alterations in the expression of 267 cDNAs and in the abundance of 150 proteins involved in plant growth, hormone metabolism, signal transduction and defense responses. Some alterations are predicted to benefit the pathogen, such as the up-regulation of genes involved in the synthesis of methionine. Also, genes and proteins of the cell division cycle were all down-regulated in plants with higher titers at both times. It is hypothesized that the negative effects on cell division related to increased bacterial titers is cumulative over time and its modulation by other host and environmental factors results in the stunting symptom.
Collapse
Affiliation(s)
- Mariana Cicarelli Cia
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Giselle de Carvalho
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Ricardo Antunes Azevedo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Claudia Barros Monteiro-Vitorello
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Glaucia Mendes Souza
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Milton Yutaka Nishiyama-Junior
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Carolina Gimiliani Lembke
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Raphael Severo da Cunha Antunes de Faria
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - João Paulo Rodrigues Marques
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Maeli Melotto
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Luis Eduardo Aranha Camargo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| |
Collapse
|
21
|
Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0049-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root. Proc Natl Acad Sci U S A 2018. [PMID: 29535223 DOI: 10.1073/pnas.1715903115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fundamental to plant and animal development is the regulated balance between cell proliferation and differentiation, a process intimately tied to cell cycle regulation. In Arabidopsis, mutations in TSO1, whose animal homolog is LIN54, resulted in severe developmental abnormalities both in shoot and root, including shoot meristem fasciation and reduced root meristematic zone. The molecular mechanism that could explain the tso1 mutant phenotype is absent. Through a genetic screen, we identified 32 suppressors that map to the MYB3R1 gene, encoding a conserved cell cycle regulator. Further analysis indicates that TSO1 transcriptionally represses MYB3R1, and the ectopic MYB3R1 activity mediates the tso1 mutant phenotype. Since animal homologs of TSO1 and MYB3R1 are components of a cell cycle regulatory complex, the DREAM complex, we tested and showed that TSO1 and MYB3R1 coimmunoprecipitated in tobacco leaf cells. Our work reveals a conserved cell cycle regulatory module, consisting of TSO1 and MYB3R1, for proper plant development.
Collapse
|
23
|
Yang F, Li W, Jiang N, Yu H, Morohashi K, Ouma WZ, Morales-Mantilla DE, Gomez-Cano FA, Mukundi E, Prada-Salcedo LD, Velazquez RA, Valentin J, Mejía-Guerra MK, Gray J, Doseff AI, Grotewold E. A Maize Gene Regulatory Network for Phenolic Metabolism. MOLECULAR PLANT 2017; 10:498-515. [PMID: 27871810 DOI: 10.1016/j.molp.2016.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
The translation of the genotype into phenotype, represented for example by the expression of genes encoding enzymes required for the biosynthesis of phytochemicals that are important for interaction of plants with the environment, is largely carried out by transcription factors (TFs) that recognize specific cis-regulatory elements in the genes that they control. TFs and their target genes are organized in gene regulatory networks (GRNs), and thus uncovering GRN architecture presents an important biological challenge necessary to explain gene regulation. Linking TFs to the genes they control, central to understanding GRNs, can be carried out using gene- or TF-centered approaches. In this study, we employed a gene-centered approach utilizing the yeast one-hybrid assay to generate a network of protein-DNA interactions that participate in the transcriptional control of genes involved in the biosynthesis of maize phenolic compounds including general phenylpropanoids, lignins, and flavonoids. We identified 1100 protein-DNA interactions involving 54 phenolic gene promoters and 568 TFs. A set of 11 TFs recognized 10 or more promoters, suggesting a role in coordinating pathway gene expression. The integration of the gene-centered network with information derived from TF-centered approaches provides a foundation for a phenolics GRN characterized by interlaced feed-forward loops that link developmental regulators with biosynthetic genes.
Collapse
Affiliation(s)
- Fan Yang
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Jiang
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haidong Yu
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kengo Morohashi
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Wilberforce Zachary Ouma
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel E Morales-Mantilla
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fabio Andres Gomez-Cano
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Mukundi
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Luis Daniel Prada-Salcedo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Roberto Alers Velazquez
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jasmin Valentin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Katherine Mejía-Guerra
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH 43560, USA
| | - Andrea I Doseff
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. PLANT MOLECULAR BIOLOGY 2017; 93:61-77. [PMID: 27766460 DOI: 10.1007/s11103-016-0547-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K+-Na+/H+ antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Glenn B Gregorio
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- East-West Seed Company (EWS), Km. 54 Cagayan Valley Road, San Rafael, 3008, Bulacan, Philippines
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
25
|
Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size. Sci Rep 2016; 6:36304. [PMID: 27824099 PMCID: PMC5099886 DOI: 10.1038/srep36304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022] Open
Abstract
Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.
Collapse
|
26
|
Lora J, Hormaza JI, Herrero M. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). THE NEW PHYTOLOGIST 2015; 208:584-95. [PMID: 25991552 DOI: 10.1111/nph.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/15/2015] [Indexed: 05/05/2023]
Abstract
While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| | - Maria Herrero
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| |
Collapse
|
27
|
Li YH, Zhang W, Li Y. Transcriptomic Analysis of Flower Blooming in Jasminum sambac through De Novo RNA Sequencing. Molecules 2015; 20:10734-47. [PMID: 26065837 PMCID: PMC6272439 DOI: 10.3390/molecules200610734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
Flower blooming is a critical and complicated plant developmental process in flowering plants. However, insufficient information is available about the complex network that regulates flower blooming in Jasminum sambac. In this study, we used the RNA-Seq platform to analyze the molecular regulation of flower blooming in J. sambac by comparing the transcript profiles at two flower developmental stages: budding and blooming. A total of 4577 differentially-expressed genes (DEGs) were identified between the two floral stages. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DEGs in the “oxidation-reduction process”, “extracellular region”, “steroid biosynthesis”, “glycosphingolipid biosynthesis”, “plant hormone signal transduction” and “pentose and glucuronate interconversions” might be associated with flower development. A total of 103 and 92 unigenes exhibited sequence similarities to the known flower development and floral scent genes from other plants. Among these unigenes, five flower development and 19 floral scent unigenes exhibited at least four-fold differences in expression between the two stages. Our results provide abundant genetic resources for studying the flower blooming mechanisms and molecular breeding of J. sambac.
Collapse
Affiliation(s)
- Yong-Hua Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Yong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
28
|
Pan BZ, Chen MS, Ni J, Xu ZF. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics 2014; 15:974. [PMID: 25400171 PMCID: PMC4246439 DOI: 10.1186/1471-2164-15-974] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Background Jatropha curcas, whose seed content is approximately 30–40% oil, is an ideal feedstock for producing biodiesel and bio-jet fuels. However, Jatropha plants have a low number of female flowers, which results in low seed yield that cannot meet the needs of the biofuel industry. Thus, increasing the number of female flowers is critical for the improvement of Jatropha seed yield. Our previous findings showed that cytokinin treatment can increase the flower number and female to male ratio and also induce bisexual flowers in Jatropha. The mechanisms underlying the influence of cytokinin on Jatropha flower development and sex determination, however, have not been clarified. Results This study examined the transcriptional levels of genes involved in the response to cytokinin in Jatropha inflorescence meristems at different time points after cytokinin treatment by 454 sequencing, which gave rise to a total of 294.6 Mb of transcript sequences. Up-regulated and down-regulated annotated and novel genes were identified, and the expression levels of the genes of interest were confirmed by qRT-PCR. The identified transcripts include those encoding genes involved in the biosynthesis, metabolism, and signaling of cytokinin and other plant hormones, flower development and cell division, which may be related to phenotypic changes of Jatropha in response to cytokinin treatment. Our analysis indicated that Jatropha orthologs of the floral organ identity genes known as ABCE model genes, JcAP1,2, JcPI, JcAG, and JcSEP1,2,3, were all significantly repressed, with an exception of one B-function gene JcAP3 that was shown to be up-regulated by BA treatment, indicating different mechanisms to be involved in the floral organ development of unisexual flowers of Jatropha and bisexual flowers of Arabidopsis. Several cell division-related genes, including JcCycA3;2, JcCycD3;1, JcCycD3;2 and JcTSO1, were up-regulated, which may contribute to the increased flower number after cytokinin treatment. Conclusions This study presents the first report of global expression patterns of cytokinin-regulated transcripts in Jatropha inflorescence meristems. This report laid the foundation for further mechanistic studies on Jatropha and other non-model plants responding to cytokinin. Moreover, the identification of functional candidate genes will be useful for generating superior varieties of high-yielding transgenic Jatropha. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-974) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, Menglun 666303, People's Republic of China.
| |
Collapse
|
29
|
|
30
|
The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 2014; 111:15833-8. [PMID: 25313078 DOI: 10.1073/pnas.1414567111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microalgae are prolific photosynthetic organisms that have the potential to sustainably produce high-value chemical feedstocks. However, an industry based on microalgal biomass still is faced with challenges. For example, microalgae tend to accumulate valuable compounds, such as triacylglycerols, only under stress conditions that limit growth. To investigate the fundamental mechanisms at the base of this conundrum--the inverse relationship between biomass production and storage compound accumulation-we applied a combination of cell biological and genetic approaches. Conceptually, nutrient deprivation, which commonly is used to induce the accumulation of triacylglycerol in microalgae, leads to a state of cellular quiescence defined by a halt of cell divisions that is reversible upon nutrient resupply. To identify factors that govern cellular quiescence, we screened for mutants of the model alga Chlamydomonas reinhardtii that, in contrast to wild-type cells placed under conditions of nitrogen deprivation, were unable to degrade triacylglycerols following nitrogen resupply. One of the mutants described here in detail, compromised hydrolysis of triacylglycerols 7 (cht7), was severely impaired in regrowth following removal of different conditions inducing cellular quiescence. The mutant carries a deletion affecting four genes, only one of which rescued the quiescence phenotype when reintroduced. It encodes a protein with similarity to mammalian and plant DNA binding proteins. Comparison of transcriptomes indicated a partial derepression of quiescence-related transcriptional programs in the mutant under conditions favorable to growth. Thus, CHT7 likely is a repressor of cellular quiescence and provides a possible target for the engineering of high-biomass/high-triacylglycerol microalgae.
Collapse
|
31
|
Wang YY, Hecker AG, Hauser BA. The APX4 locus regulates seed vigor and seedling growth in Arabidopsis thaliana. PLANTA 2014; 239:909-19. [PMID: 24407512 DOI: 10.1007/s00425-014-2025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/31/2013] [Indexed: 05/24/2023]
Abstract
The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H₂O₂ accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.
Collapse
Affiliation(s)
- Ya-Ying Wang
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, 32611, USA
| | | | | |
Collapse
|
32
|
Lu T, Dou Y, Zhang C. Fuzzy clustering of CPP family in plants with evolution and interaction analyses. BMC Bioinformatics 2013; 14 Suppl 13:S10. [PMID: 24268301 PMCID: PMC3849782 DOI: 10.1186/1471-2105-14-s13-s10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Transcription factors have been studied intensively because they play an important role in gene expression regulation. However, the transcription factors in the CPP family (cystein-rich polycomb-like protein), compared with other transcription factor families, have not received sufficient attention, despite their wide prevalence in a broad spectrum of species, from plants to animals. The total number of known CPP transcription factors in plants is 111 from 16 plants, but only 2 of them have been studied so far, namely TSO1 and CPP1 in Arabidopsis thaliana and soybean, respectively. Methods In this work, to study their functions, we applied the fuzzy clustering method to all plant CPP transcription factors. The feature vector of each protein sequence for the fuzzy clustering method is encoded by the short length peptides and the combination of functional domain models. Results and conclusions With the fuzzy clustering method, all plant CPP transcription factors are grouped into two subfamilies. A systems approach, including Expressed Sequence Tag analysis, evolutionary analysis, protein-protein interaction network analysis and co-expression analysis, is employed to validate the clustering results, the results of which also indicates that the transcription factors from different subfamilies show uncorrelated responses.
Collapse
|
33
|
Jiang WB, Lin WH. Brassinosteroid functions in Arabidopsis seed development. PLANT SIGNALING & BEHAVIOR 2013; 8:25928. [PMID: 24270689 PMCID: PMC4091071 DOI: 10.4161/psb.25928] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/27/2013] [Indexed: 05/21/2023]
Abstract
Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differences between monocot and eudicot. Total seed number depends on sillique number and seed number per sillique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per sillique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production.
Collapse
Affiliation(s)
- Wen-Bo Jiang
- Key Laboratory of Plant Resources; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Wen-Hui Lin
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
- Correspondence to: Wen-Hui Lin,
| |
Collapse
|
34
|
Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. MOLECULAR PLANT 2013; 6:456-69. [PMID: 22914576 DOI: 10.1093/mp/sss070] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule initiation and development. Ovule and seed numbers are significantly different when comparing BR-related mutants to wild-type controls. Detailed observation indicates that BR regulates the expression level of genes related to ovule development, including HLL, ANT, and AP2, either directly by targeting the promoter sequences or indirectly via regulation by BR-induced transcription factor BZR1. Also, Western blot demonstrates that the dephosphorylation level of BZR1 is consistent with ovule and seed number. The intragenic bzr1-1D suppressors bzs247 and bzs248 have much fewer ovules and seeds than bzr1-1D, which are similar to wild-type, suggesting that the phenotype can be rescued. The molecular and genetic experiments confirm that BZR1 and AP2 probably affect Arabidopsis ovule number determination antagonistically.
Collapse
Affiliation(s)
- Hui-Ya Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Matsuo T, Kuramoto H, Kumazaki T, Mitsui Y, Takahashi T. LIN54 harboring a mutation in CHC domain is localized to the cytoplasm and inhibits cell cycle progression. Cell Cycle 2012; 11:3227-36. [PMID: 22895175 DOI: 10.4161/cc.21569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian LIN complex (LINC) plays important roles in regulation of cell cycle genes. LIN54 is an essential core subunit of the LINC and has a DNA binding region (CHC domain), which consists of two cysteine-rich (CXC) domains separated by a short spacer. We generated various LIN54 mutants, such as CHC deletion mutant, and investigated their subcellular localizations and effects on cell cycle. Wild-type LIN54 was predominantly localized in the nucleus. We identified two nuclear localization signals (NLSs), both of which were required for nuclear localization of LIN54. Interestingly, deletion of one CXC domain resulted in an increased cytoplasmic localization. The cytoplasmic LIN54 mutant accumulated in the nucleus after leptomycin B treatment, suggesting CRM1-mediated nuclear export of LIN54. Point mutations (C525Y and C611Y) in conserved cysteine residues of CXC domain that abolish DNA binding activity also increased cytoplasmic localization. These data suggest that DNA binding activity of LIN54 is required for its nuclear retention. We also found that LIN54 (C525Y) and LIN54 (C611Y) inhibited cell cycle progression and led to abnormal nuclear morphology. Other CXC mutants also induced similar abnormalities in cell cycle progression. LIN54 (C525Y) led to a decreased expression of some G2/M genes, whose expressions are regulated by LINC. This cell cycle inhibition was partially restored by overexpression of wild-type LIN54. These results suggest that abnormal cellular localization of LIN54 may have effects on LINC activity.
Collapse
Affiliation(s)
- Taira Matsuo
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
36
|
Sijacic P, Wang W, Liu Z. Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems. PLoS Genet 2011; 7:e1002352. [PMID: 22072982 PMCID: PMC3207858 DOI: 10.1371/journal.pgen.1002352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 09/01/2011] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis TSO1 encodes a protein with conserved CXC domains known to bind DNA and is homologous to animal proteins that function in chromatin complexes. tso1 mutants fall into two classes due to their distinct phenotypes. Class I, represented by two different missense mutations in the CXC domain, leads to failure in floral organ development, sterility, and fasciated inflorescence meristems. Class II, represented by a nonsense mutation and a T-DNA insertion line, develops wild-type–like flowers and inflorescences but shows severely reduced fertility. The phenotypic variability of tso1 alleles presents challenges in determining the true function of TSO1. In this study, we use artificial microRNA, double mutant analysis, and bimolecular fluorescence complementation assay to investigate the molecular basis underlying these two distinct classes of phenotypes. We show that the class I mutants could be converted into class II by artificial microRNA knockdown of the tso1 mutant transcript, suggesting that class I alleles produce antimorphic mutant proteins that interfere with functionally redundant loci. We identified one such redundant factor coded by the closely related TSO1 homolog SOL2. We show that the class I phenotype can be mimicked by knocking out both TSO1 and its homolog SOL2 in double mutants. Such antimorphic alleles targeting redundant factors are likely prevalent in Arabidopsis and maybe common in organisms with many sets of paralogous genes such as human. Our data challenge the conventional view that recessive alleles are always hypomorphic or null and that antimorphic alleles are always dominant. This study shows that recessive alleles can also be antimorphic and can produce a phenotype more severe than null by interfering with the function of related loci. This finding adds a new paradigm to classical genetic concepts, with important implications for future genetic studies both in basic research as well as in agriculture and medicine. Much of our current genetic concepts and terms came from early pioneering work in Drosophila melanogaster, which has a relatively simple genome with reduced gene sets. One noted example is the term antimorph or dominant-negative, which describes mutant proteins that antagonize the corresponding wild-type proteins in a dominant fashion. In the process of characterizing Arabidopsis thaliana tso1 mutants, we discovered a novel genetic phenomenon “recessive antimorphism,” where certain recessive and missense mutations interfere with functionally redundant genes in the genome to reveal a broader range of phenotypes than the corresponding loss-of-function or null alleles. Our work indicates a rarely noted strength of Arabidopsis as a genetic model for studying species with complex genome architecture, including humans that possess significant chromosome segmental or genome duplications and increased gene copy numbers. It adds a new paradigm to classical genetic concepts with important implications for modern genetics in both medicine and agriculture.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
37
|
Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY. Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. PLANT MOLECULAR BIOLOGY 2010; 73:191-205. [PMID: 20151315 DOI: 10.1007/s11103-010-9611-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/26/2010] [Indexed: 05/20/2023]
Abstract
Daylength is an important environmental cue for synchronizing growth, flowering, and dormancy with seasonality. As many floral development genes are photoperiod regulated, it has been suggested that they could have a regulatory role in bud endodormancy. Therefore, the influence of photoperiod was studied on inflorescence primordia differentiation and floral pathway related gene expression during the development of overwintering buds in Vitis riparia and V. spp. 'Seyval'. Photoperiod treatments were imposed 35 days after budbreak, and histological and transcriptomic analyses were conducted during the subsequent 42 days of bud development. Long day (LD, 15 h) and short day (SD, 13 h) buds were floral competent by 21 days of photoperiod treatment (56 days after budbreak); however, the floral meristem developed faster in LD than in SD buds. Analysis of 132 floral pathway related genes represented on the Affymetrix Grape Genome array indicated 60 were significantly differentially expressed between photoperiod treatments. Genes predominantly related to floral transition or floral meristem development were identified by their association with distinct grape floral meristem development and an expression pattern in LD consistent with their previously identified roles in flowering literature. Genes with a potential dual role in floral development and dormancy transitioning were identified using photoperiod induced differences in floral development between LD and SD buds and uncharacteristic gene expression trends in relation to floral development. Candidate genes with the potential to play a dual role in SD dormancy induction include circadian rhythm or flowering transition related genes: AP2, BT1, COL-13, EIN3, ELF4, DDTR, GAI and HY5.
Collapse
Affiliation(s)
- Lekha Sreekantan
- Horticulture, Forestry, Landscape and Parks Department, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
38
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
39
|
Doyle MR, Amasino RM. A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1688-97. [PMID: 19755537 PMCID: PMC2773100 DOI: 10.1104/pp.109.145581] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/08/2009] [Indexed: 05/17/2023]
Abstract
Many strains of Arabidopsis (Arabidopsis thaliana) require exposure to prolonged cold for rapid flowering, a process known as vernalization. Vernalization in Arabidopsis results in the suppression of FLOWERING LOCUS C (FLC), a repressor of flowering. In a screen for mutants that no longer require vernalization for rapid flowering, we identified a dominant allele of the Enhancer of Zeste E(z) ortholog CURLY LEAF (CLF), clf-59. CLF is a Polycomb Group gene, and the clf-59 mutant protein contains a proline-to-serine transition in a cysteine-rich region that precedes the SET domain. Mutant plants are early flowering and have reduced FLC expression, but, unlike clf loss-of-function mutants, clf-59 mutants do not display additional pleiotropic phenotypes. clf-59 mutants have elevated levels of trimethylation on lysine 27 of histone H3 (H3K27me3) at FLC. Thus, clf-59 appears to be a gain-of-function allele, and this allele represses FLC without some of the components required for vernalization-mediated repression. In the course of this work, we also identified a marked difference in H3K27me3 levels at FLC between plants that contain and those that lack the FRIGIDA (FRI) gene. Furthermore, FRI appears to affect CLF occupancy at FLC; thus, our work provides insight into the molecular role that FRI plays in delaying the onset of flowering.
Collapse
|
40
|
Schmit F, Cremer S, Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J 2009; 276:5703-16. [PMID: 19725879 DOI: 10.1111/j.1742-4658.2009.07261.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, the conserved human LINC/DREAM complex has been described as an important regulator of cell cycle genes. LINC consists of a core module that dynamically associates with E2F transcription factors, p130 and the B-MYB transcription factor in a cell cycle-dependent manner. In this study, we analyzed the evolutionary conserved LIN54 subunit of LINC. We found that LIN54 is required for cell cycle progression. Protein interaction studies demonstrated that a predicted helix-coil-helix motif is required for the interaction of LIN54 with p130 and B-MYB. In addition, we found that the cysteine-rich CXC domain of LIN54 is a novel DNA-binding domain that binds to the cdc2 promoter in a sequence-specific manner. We identified two binding sites for LIN54 in the cdc2 promoter, one of which overlaps with the cell cycle homology region at the transcriptional start site. Gel shift assays suggested that, in quiescent cells, the binding of LIN54 at the cell cycle homology region is stabilized by the binding of E2F4 to the adjacent cell cycle-dependent element. Our data demonstrate that LIN54 is an important and integral subunit of LINC.
Collapse
Affiliation(s)
- Fabienne Schmit
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Germany
| | | | | |
Collapse
|
41
|
Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ. Autophagy regulated by day length determines the number of fertile florets in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1010-24. [PMID: 18547393 DOI: 10.1111/j.1365-313x.2008.03570.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development.
Collapse
Affiliation(s)
- Hernán O Ghiglione
- Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, 1417 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 2008; 67:266-77. [PMID: 18696028 DOI: 10.1007/s00239-008-9143-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 05/23/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
CPP-like genes are members of a small family which features the existence of two similar Cys-rich domains termed CXC domains in their protein products and are distributed widely in plants and animals but do not exist in yeast. The members of this family in plants play an important role in development of reproductive tissue and control of cell division. To gain insights into how CPP-like genes evolved in plants, we conducted a comparative phylogenetic and molecular evolutionary analysis of the CPP-like gene family in Arabidopsis and rice. The results of phylogeny revealed that both gene loss and species-specific expansion contributed to the evolution of this family in Arabidopsis and rice. Both intron gain and intron loss were observed through intron/exon structure analysis for duplicated genes. Our results also suggested that positive selection was a major force during the evolution of CPP-like genes in plants, and most amino acid residues under positive selection were disproportionately located in the region outside the CXC domains. Further analysis revealed that two CXC domains and sequences connecting them might have coevolved during the long evolutionary period.
Collapse
|
43
|
Castellano MM, Sablowski R. Phosducin-Like Protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. THE PLANT CELL 2008; 20:969-81. [PMID: 18390592 PMCID: PMC2390725 DOI: 10.1105/tpc.107.057737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/21/2008] [Accepted: 03/14/2008] [Indexed: 05/02/2023]
Abstract
Given the central role of cell division in meristems, one might expect meristem growth to be regulated by mitotic checkpoints, including checkpoints for correct microtubule function. Here, we studied the role of two close Phosducin-Like Protein 3 homologs from Arabidopsis thaliana (PLP3a and PLP3b) in the microtubule assembly pathway and determined the consequences of inhibiting PLP3a and PLP3b expression in the meristem. PLP3 function is essential in Arabidopsis: impairing PLP3a and PLP3b expression disrupted microtubule arrays and caused polyploidy, aneuploidy, defective cytokinesis, and disoriented cell growth. Consistent with a role in microtubule formation, PLP3a interacted with beta-tubulin in the yeast two-hybrid assay and, when overexpressed, increased resistance to drugs that inhibit tubulin polymerization. Inhibition of PLP3 function targeted to the meristem caused severe mitotic defects, but the cells carried on cycling through DNA replication and abortive cytokinesis. Thus, we showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division.
Collapse
Affiliation(s)
- M Mar Castellano
- Department of Cell and Developmental Biology, John Ines Centre, Norwich, NR4 7UH, United Kingdom
| | | |
Collapse
|
44
|
Genome-scale RNAi profiling of cell division in human tissue culture cells. Nat Cell Biol 2007; 9:1401-12. [PMID: 17994010 DOI: 10.1038/ncb1659] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.
Collapse
|
45
|
Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 2007; 38:1-31. [PMID: 17949725 DOI: 10.1016/j.ijpara.2007.07.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/18/2022]
Abstract
Comparative genomics of parasitic protists and their free-living relatives are profoundly impacting our understanding of the regulatory systems involved in transcription and chromatin dynamics. While some parts of these systems are highly conserved, other parts are rapidly evolving, thereby providing the molecular basis for the variety in the regulatory adaptations of eukaryotes. The gross number of specific transcription factors and chromatin proteins are positively correlated with proteome size in eukaryotes. However, the individual types of specific transcription factors show an enormous variety across different eukaryotic lineages. The dominant families of specific transcription factors even differ between sister lineages, and have been shaped by gene loss and lineage-specific expansions. Recognition of this principle has helped in identifying the hitherto unknown, major specific transcription factors of several parasites, such as apicomplexans, Entamoeba histolytica, Trichomonas vaginalis, Phytophthora and ciliates. Comparative analysis of predicted chromatin proteins from protists allows reconstruction of the early evolutionary history of histone and DNA modification, nucleosome assembly and chromatin-remodeling systems. Many key catalytic, peptide-binding and DNA-binding domains in these systems ultimately had bacterial precursors, but were put together into distinctive regulatory complexes that are unique to the eukaryotes. In the case of histone methylases, histone demethylases and SWI2/SNF2 ATPases, proliferation of paralogous families followed by acquisition of novel domain architectures, seem to have played a major role in producing a diverse set of enzymes that create and respond to an epigenetic code of modified histones. The diversification of histone acetylases and DNA methylases appears to have proceeded via repeated emergence of new versions, most probably via transfers from bacteria to different eukaryotic lineages, again resulting in lineage-specific diversity in epigenetic signals. Even though the key histone modifications are universal to eukaryotes, domain architectures of proteins binding post-translationally modified-histones vary considerably across eukaryotes. This indicates that the histone code might be "interpreted" differently from model organisms in parasitic protists and their relatives. The complexity of domain architectures of chromatin proteins appears to have increased during eukaryotic evolution. Thus, Trichomonas, Giardia, Naegleria and kinetoplastids have relatively simple domain architectures, whereas apicomplexans and oomycetes have more complex architectures. RNA-dependent post-transcriptional silencing systems, which interact with chromatin-level regulatory systems, show considerable variability across parasitic protists, with complete loss in many apicomplexans and partial loss in Trichomonas vaginalis. This evolutionary synthesis offers a robust scaffold for future investigation of transcription and chromatin structure in parasitic protists.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
46
|
Andersen SU, Algreen-Petersen RG, Hoedl M, Jurkiewicz A, Cvitanich C, Braunschweig U, Schauser L, Oh SA, Twell D, Jensen EØ. The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3657-3670. [PMID: 18057042 DOI: 10.1093/jxb/erm215] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Development of reproductive tissue and control of cell division are common challenges to all sexually reproducing eukaryotes. The Arabidopsis thaliana TSO1 gene is involved in both these processes. Mild tso1 mutant alleles influence only ovule development, whereas strong alleles have an effect on all floral tissues and cause cell division defects. The tso1 mutants described so far carry point mutations in a conserved cysteine-rich domain, the CRC domain, but the reason for the range of phenotypes observed is poorly understood. In the present study, the tesmin/TSO1-like CXC (TCX) proteins are characterized at the biochemical, genomic, transcriptomic, and functional level to address this question. It is shown that the CRC domain binds zinc, offering an explanation for the severity of tso1 alleles where cysteine residues are affected. In addition, the phylogenetic and expression analysis of the TCX genes suggested an overlap in function between AtTSO1 and the related gene AtTCX2. Their expression ratios indicated that pollen, in addition to ovules, would be sensitive to loss of TSO1 function. This was confirmed by analysis of novel tso1 T-DNA insertion alleles where the development of both pollen and ovules was affected.
Collapse
Affiliation(s)
- Stig Uggerhøj Andersen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hill TA, Broadhvest J, Kuzoff RK, Gasser CS. Arabidopsis SHORT INTEGUMENTS 2 is a mitochondrial DAR GTPase. Genetics 2006; 174:707-18. [PMID: 16849600 PMCID: PMC1602101 DOI: 10.1534/genetics.106.060657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis short integuments 2-1 (sin2-1) mutant produces ovules with short integuments due to early cessation of cell division in these structures. SIN2 was isolated and encodes a putative GTPase sharing features found in the novel DAR GTPase family. DAR proteins share a signature DAR motif and a unique arrangement of the four conserved GTPase G motifs. We found that DAR GTPases are present in all examined prokaryotes and eukaryotes and that they have diversified into four paralogous lineages in higher eukaryotes. Eukaryotic members of the SIN2 clade of DAR GTPases have been found to localize to mitochondria and are related to eubacterial proteins that facilitate essential steps in biogenesis of the large ribosomal subunit. We propose a similar role for SIN2 in mitochondria. A sin2 insertional allele has ovule effects similar to sin2-1, but more pronounced pleiotropic effects on vegetative and floral development. The diverse developmental effects of the mitochondrial SIN2 GTPase support a mitochondrial role in the regulation of multiple developmental pathways.
Collapse
Affiliation(s)
- Theresa A Hill
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
48
|
Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 2004; 168:971-82. [PMID: 15514068 PMCID: PMC1448849 DOI: 10.1534/genetics.104.029447] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/17/2004] [Indexed: 11/18/2022] Open
Abstract
In flowering plants, the egg develops within a haploid embryo sac (female gametophyte) that is encased within the pistil. The haploid pollen grain (male gametophyte) extends a pollen tube that carries two sperm cells within its cytoplasm to the embryo sac. This feat requires rapid, precisely guided, and highly polarized growth through, between, and on the surface of the cells of the stigma, style, and ovary. Pollen tube migration depends on a series of long-range signals from diploid female cells as well as a short-range attractant emitted by the embryo sac that guides the final stage of tube growth. We developed a genetic screen in Arabidopsis thaliana that tags mutant pollen with a cell-autonomous marker carried on an insertion element. We found 32 haploid-disrupting (hapless) mutations that define genes required for pollen grain development, pollen tube growth in the stigma and style, or pollen tube growth and guidance in the ovary. We also identified genomic DNA flanking the insertion element for eleven hap mutants and showed that hap1 disrupts AtMago, a gene whose ortholog is important for Drosophila cell polarity.
Collapse
Affiliation(s)
- Mark A Johnson
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Owen AB, Stuart J, Mach K, Villeneuve AM, Kim S. A gene recommender algorithm to identify coexpressed genes in C. elegans. Genome Res 2003; 13:1828-37. [PMID: 12902378 PMCID: PMC403774 DOI: 10.1101/gr.1125403] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most important uses of whole-genome expression data is for the discovery of new genes with similar function to a given list of genes (the query) already known to have closely related function. We have developed an algorithm, called the gene recommender, that ranks genes according to how strongly they correlate with a set of query genes in those experiments for which the query genes are most strongly coregulated. We used the gene recommender to find other genes coexpressed with several sets of query genes, including genes known to function in the retinoblastoma complex. Genetic experiments confirmed that one gene (JC8.6) identified by the gene recommender acts with lin-35 Rb to regulate vulval cell fates, and that another gene (wrm-1) acts antagonistically. We find that the gene recommender returns lists of genes with better precision, for fixed levels of recall, than lists generated using the C. elegans expression topomap.
Collapse
Affiliation(s)
- Art B Owen
- Department of Statistics, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
50
|
Sutou S, Miwa K, Matsuura T, Kawasaki Y, Ohinata Y, Mitsui Y. Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice. Biol Reprod 2003; 68:1861-9. [PMID: 12606435 DOI: 10.1095/biolreprod.102.005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tesmin is a testis-specific protein. Four mouse tesmin cDNAs so far reported encode a testis-specific, metallothionein-like, 30-kDa protein (tesmin-30). An antibody against tesmin-30, however, detected a protein of 60 kDa (tesmin-60) from the mouse testis. To resolve the relationship between the two, the immunoprecipitated native tesmin-60 was sequenced. The result indicated that tesmin-30 is not full-length but is part of the C-terminal half of tesmin-60. The full-length cDNA (2.2 kilobases [kb]) encoding tesmin-60 (475 amino acid residues) and its genomic DNA (23 kb) were cloned and sequenced. A search of databases indicated that tesmin is a member of the CXC-hinge-CXC family. Immunohistochemistry indicated that tesmin exhibits dynamic subcellular localization changes during spermatogenesis. Before meiosis, it was localized in the cytoplasm of early to late spermatocytes and then translocated into the nucleus just before meiotic division. After meiosis, it appeared in spermatids, starting from the acrosomal vesicles, moving to the nuclear membrane and then to the caudal end as the spermatids elongated, and finally relocating into the cytoplasm. Oxidative stress by cobalt chloride, as well as by diethylmaleate, induced both premature translocation of tesmin from the cytoplasm to the nucleus and apoptotic signals in spermatocytes. The persistent existence of tesmin and its temporally and spatially dynamic localization suggest that tesmin is involved in multiple stages of spermatogenesis and spermiogenesis, possibly during sperm maturation and/or morphogenesis.
Collapse
Affiliation(s)
- Shizuyo Sutou
- Institute of Molecular & Cell Biology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|