1
|
Ren H, Mu C, Wang Y, Cheng Y, Hou Y, Li Y, Liu N, Yin Z, Xiong H, Chen Y, Yang T, Yu Y, Shen Y. Notch2 Inhibition and Kidney Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:781-797. [PMID: 39745791 DOI: 10.1681/asn.0000000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Key Points
Notch2 activation promotes kidney cyst growth.Silencing Notch2 ameliorated cyst growth in mice with autosomal dominant polycystic kidney disease.
Background
Notch signaling, a conserved mechanism of cell-to-cell communication, plays a crucial role in regulating cellular processes, such as proliferation and differentiation, in a context-dependent manner. However, the specific contribution of Notch signaling to the progression of polycystic kidney disease (PKD) remains unclear.
Methods
We investigated the changes in Notch signaling activity (Notch1–4) in the kidneys of patients with autosomal dominant PKD (ADPKD) and two ADPKD mouse models (early and late onset). Multiple genetic and pharmacologic approaches were used to explore Notch2 signaling during kidney cyst formation in PKD.
Results
Notch2 expression was significantly increased in the kidney tissues of patients with ADPKD and ADPKD mice. Targeted expression of Notch2 intracellular domain in renal epithelial cells resulted in cyst formation and kidney failure in neonatal and adult mice. Mechanistically, Notch2/Hey2 signaling promoted renal epithelial cell proliferation by driving the expression of the E26 transformation–specific homologous factor (Ehf). Depletion of Ehf delayed Notch2 intracellular domain overexpression–induced cyst formation and kidney failure in mice. A gain-of-function mutation in exon 34 of NOTCH2 (c.6426dupT), which caused PKD in patients with Hajdu–Cheney syndrome, accelerated cell growth in cultured human renal epithelial cells by activating HEY2/EHF signaling. Finally, ablation of Notch2 or treatment of a kidney-targeting nanoparticle carrying the liposome/Notch2–small interfering RNA complex, significantly suppressed kidney cyst growth in early-onset ADPKD mice.
Conclusions
Notch2 signaling promoted kidney cyst growth, partially by upregulating Ehf expression.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chengsen Mu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhan Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yayan Hou
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yizhe Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Na Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuming Yin
- Department of Breast Oncoplastic Surgery, Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University, Tianjin, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Huang Y, Wang J, Zeng L, Wang S, Zhang X. Case Report: A novel DLL4 variant in a neonate with Adams-Oliver syndrome. Front Pediatr 2025; 13:1532561. [PMID: 40098638 PMCID: PMC11911370 DOI: 10.3389/fped.2025.1532561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Adams-Oliver syndrome is a rare congenital disorder with six subtypes that have been identified. Subtypes 1, 3, 5, and 6 have an autosomal dominant inheritance pattern, whereas subtypes 2 and 4 have an autosomal recessive inheritance pattern. The clinical phenotype of Adams-Oliver syndrome is heterogeneous and can be accompanied by abnormalities in other organs, especially the cardiovascular system, such as cutis marmorata telangiectatica congenita, pulmonary hypertension, vascular abnormalities in other organs, and congenital heart defects. Herein, we report a case of Adams-Oliver syndrome caused by a de novo variant in DLL4. The patient was a neonate with clinical manifestations of skin defects who was diagnosed with Adams-Oliver syndrome on the basis of genetic testing.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Jin Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lingkong Zeng
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Shi Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Xuechen Zhang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Kobia FM, Castro E Almeida L, Paganoni AJ, Carminati F, Andronache A, Lavezzari F, Wade M, Vaccari T. Novel determinants of NOTCH1 trafficking and signaling in breast epithelial cells. Life Sci Alliance 2025; 8:e202403122. [PMID: 39663000 PMCID: PMC11633778 DOI: 10.26508/lsa.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages. We devised assays to follow quantitatively the trafficking and signaling of endogenous human NOTCH1 receptor in breast epithelial cells in culture. Based on such analyses, we executed a high-content screen of 2,749 human genes to identify new regulators of Notch that might be amenable to pharmacologic intervention. We uncovered 39 new NOTCH1 modulators for NOTCH1 trafficking and signaling. Among them, we find that PTPN23 and HCN2 act as positive NOTCH1 regulators by promoting endocytic trafficking and NOTCH1 maturation in the Golgi apparatus, respectively, whereas SGK3 serves as a negative regulator that can be modulated by pharmacologic inhibition. Our findings might be relevant in the search of new strategies to counteract pathologic Notch signaling.
Collapse
Affiliation(s)
- Francis M Kobia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Alyssa Jj Paganoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | | | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Garg A, Xing C, Agarwal AK, Westfall AK, Tomchick DR, Zhang X, Xing M, Brown RJ. Gain of Function NOTCH3 Variants Cause Familial Partial Lipodystrophy Due to Activation of Senescence Pathways. Diabetes 2025; 74:427-438. [PMID: 39652711 PMCID: PMC11842598 DOI: 10.2337/db24-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Despite elucidation of the molecular genetic basis of several lipodystrophy syndromes, molecular defects in some ultra-rare subtypes of familial lipodystrophies remain unidentified. We analyzed whole-exome sequencing (WES) data of four affected and two unaffected females from an undiagnosed autosomal dominant familial partial lipodystrophy (FPL) pedigree and identified only one novel heterozygous variant, p.Ala1603Tyr, in NOTCH3 meeting the filtering criteria. Further analysis of WES data of 222 patients with unexplained FPL identified two unrelated patients with FPL with novel heterozygous (p.Cys1600Tyr and p.Gln1552Pro) NOTCH3 variants. All variants were clustered in the heterodimerization domain of the negative regulatory region of NOTCH3. RNA sequencing and proteomics analysis of skin fibroblasts revealed significantly higher RNA and protein expression of NOTCH3 and activation of widespread senescence pathways in the patients with FPL versus control study participants. NOTCH3 is highly expressed in adipose tissue and plays many crucial roles in developmental patterning, cell fate decisions, regulation of cell survival, and proliferation. We conclude that gain-of-function missense variants in the negative regulatory region of NOTCH3 cause a novel subtype of FPL by activation of senescence pathways. This novel variety of FPL should be considered for patients without obesity but with early- or childhood-onset diabetes. ARTICLE HIGHLIGHTS Molecular genetic defects in some ultra-rare subtypes of familial partial lipodystrophies (FPLs) remain unidentified. We investigated whether novel gene variants explain FPL in some undiagnosed patients. We found novel heterozygous gain-of-function missense variants clustered in the heterodimerization domain of the negative regulatory region of NOTCH3 in three unrelated families with FPL. Our study suggests that gain-of-function missense variants in the heterodimerization domain of NOTCH3 cause a novel subtype of FPL by activation of senescence pathways.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
- O’Donnell School of Public Health, UT Southwestern Medical Center, Dallas, TX
| | - Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Aundrea K. Westfall
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX
| | - Diana R. Tomchick
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX
| | - Xunzhi Zhang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX
| | - Michelle Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX
| | - Rebecca J. Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
6
|
Zhang B, He P, Lawrence JEG, Wang S, Tuck E, Williams BA, Roberts K, Kleshchevnikov V, Mamanova L, Bolt L, Polanski K, Li T, Elmentaite R, Fasouli ES, Prete M, He X, Yayon N, Fu Y, Yang H, Liang C, Zhang H, Blain R, Chedotal A, FitzPatrick DR, Firth H, Dean A, Bayraktar OA, Marioni JC, Barker RA, Storer MA, Wold BJ, Zhang H, Teichmann SA. A human embryonic limb cell atlas resolved in space and time. Nature 2024; 635:668-678. [PMID: 38057666 PMCID: PMC7616500 DOI: 10.1038/s41586-023-06806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.
Collapse
Affiliation(s)
- Bao Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peng He
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Shuaiyu Wang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Genomics England, London, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nadav Yayon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yixi Fu
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Chedotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Dean
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | | | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongbo Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Dofash L, Lyengar K, Pereira N, Parmar J, Folland C, Laing N, Kang PB, Cairns A, Lynch M, Davis M, Ravenscroft G. Three novel missense variants in two families with JAG2-associated limb-girdle muscular dystrophy. Neuromuscul Disord 2024; 42:36-42. [PMID: 39121631 DOI: 10.1016/j.nmd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.
Collapse
Affiliation(s)
- Lein Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Krishnan Lyengar
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Nolette Pereira
- Department of Medical Imaging and Nuclear Medicine, Queensland Childrens Hospital, Brisbane, Queensland, Australia
| | - Jevin Parmar
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Matthew Lynch
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest, Nedlands, WA, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia.
| |
Collapse
|
8
|
Gilbert MA, Keefer-Jacques E, Jadhav T, Antfolk D, Ming Q, Valente N, Shaw GTW, Sottolano CJ, Matwijec G, Luca VC, Loomes KM, Rajagopalan R, Hayeck TJ, Spinner NB. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am J Hum Genet 2024; 111:1656-1672. [PMID: 39043182 PMCID: PMC11339624 DOI: 10.1016/j.ajhg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Antfolk
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Sottolano
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Stanley KJ, Kalbfleisch KJ, Moran OM, Chaturvedi RR, Roifman M, Chen X, Manshaei R, Martin N, McDermott S, McNiven V, Myles-Reid D, Nield LE, Reuter MS, Schwartz MLB, Shannon P, Silver R, Somerville C, Teitelbaum R, Zahavich L, Bassett AS, Kim RH, Mital S, Chitayat D, Jobling RK. Expanding the phenotypic spectrum of NOTCH1 variants: clinical manifestations in families with congenital heart disease. Eur J Hum Genet 2024; 32:795-803. [PMID: 38778082 PMCID: PMC11219983 DOI: 10.1038/s41431-024-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.
Collapse
Affiliation(s)
- Kaitlin J Stanley
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey J Kalbfleisch
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia M Moran
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Xin Chen
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roozbeh Manshaei
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Simina McDermott
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Diane Myles-Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marci L B Schwartz
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel Silver
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cherith Somerville
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Laura Zahavich
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne S Bassett
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rebekah K Jobling
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
10
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
11
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
12
|
Shimizu H, Hosseini-Alghaderi S, Woodcock SA, Baron M. Alternative mechanisms of Notch activation by partitioning into distinct endosomal domains. J Cell Biol 2024; 223:e202211041. [PMID: 38358349 PMCID: PMC10868400 DOI: 10.1083/jcb.202211041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Samira Hosseini-Alghaderi
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Simon A. Woodcock
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Martin Baron
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
14
|
Zhang Q, Zhang P, Yang M, Tian Y, Feng C, Wei W. Identifications of three novel alleles of Serrate in Drosophila. Cells Dev 2024; 177:203908. [PMID: 38403117 DOI: 10.1016/j.cdev.2024.203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.
Collapse
Affiliation(s)
- Qinghai Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Research Center for Basic Sciences of Medicine, Guizhou Medical University, Guiyang 550025, China.
| | - Pei Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Min Yang
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yingxue Tian
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxia Feng
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Wei Wei
- Multimedia Laboratory of Morphology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
15
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
16
|
Torres HM, Hinojosa L, VanCleave AM, Rodezno T, Westendorf JJ, Tao J. Hdac1 and Hdac2 positively regulate Notch1 gain-of-function pathogenic signaling in committed osteoblasts of male mice. Birth Defects Res 2024; 116:e2266. [PMID: 37921375 PMCID: PMC10842522 DOI: 10.1002/bdr2.2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Skeletal development requires precise extrinsic and intrinsic signals to regulate processes that form and maintain bone and cartilage. Notch1 is a highly conserved signaling receptor that regulates cell fate decisions by controlling the duration of transcriptional bursts. Epigenetic molecular events reversibly modify DNA and histone tails by influencing the spatial organization of chromatin and can fine-tune the outcome of a Notch1 transcriptional response. Histone deacetylase 1 and 2 (HDAC1 and HDAC2) are chromatin modifying enzymes that mediate osteoblast differentiation. While an HDAC1-Notch interaction has been studied in vitro and in Drosophila, its role in mammalian skeletal development and disorders is unclear. Osteosclerosis is a bone disorder with an abnormal increase in the number of osteoblasts and excessive bone formation. METHODS Here, we tested whether Hdac1/2 contribute to the pathogenesis of osteosclerosis in a murine model of the disease owing to conditionally cre-activated expression of the Notch1 intracellular domain in immature osteoblasts. RESULTS Importantly, selective homozygous deletions of Hdac1/2 in osteoblasts partially alleviate osteosclerotic phenotypes (Col2.3kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/flox ; Hdac2flox/flox ) with a 40% decrease in bone volume and a 22% decrease in trabecular thickness in 4 weeks old when compared to male mice with heterozygous deletions of Hdac1/2 (Col2.3 kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/+ ; Hdac2flox/+ ). Osteoblast-specific deletion of Hdac1/2 in male and female mice results in no overt bone phenotype in the absence of the Notch1 gain-of-function (GOF) allele. CONCLUSIONS These results provide evidence that Hdac1/2 contribute to Notch1 pathogenic signaling in the mammalian skeleton. Our study on epigenetic regulation of Notch1 GOF-induced osteosclerosis may facilitate further mechanistic studies of skeletal birth defects caused by Notch-related GOF mutations in human patients, such as Adams-Oliver disease, congenital heart disease, and lateral meningocele syndrome.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Leetoria Hinojosa
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ashley M. VanCleave
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Tania Rodezno
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianning Tao
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- Department of Pediatrics and Biomedical Engineering at the University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
17
|
Ma Z, Zeng Y, Wang M, Liu W, Zhou J, Wu C, Hou L, Yin B, Qiang B, Shu P, Peng X. N4BP1 mediates RAM domain-dependent notch signaling turnover during neocortical development. EMBO J 2023; 42:e113383. [PMID: 37807845 PMCID: PMC10646556 DOI: 10.15252/embj.2022113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.
Collapse
Affiliation(s)
- Zhihua Ma
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yi Zeng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren HospitalCapital Medical University, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of OtolaryngologyBeijingChina
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jiafeng Zhou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chao Wu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lin Hou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Bin Yin
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
18
|
Farleigh K, Ascanio A, Farleigh ME, Schield DR, Card DC, Leal M, Castoe TA, Jezkova T, Rodríguez-Robles JA. Signals of differential introgression in the genome of natural hybrids of Caribbean anoles. Mol Ecol 2023; 32:6000-6017. [PMID: 37861454 DOI: 10.1111/mec.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
19
|
González Del Pozo P, Burger S, Pardo Campo E, Alperi López M, Queiro Silva R, Alonso Castro S. Acroosteolysis and facial dysmorphia: a new case of Hajdu-Cheney syndrome. REUMATOLOGIA CLINICA 2023; 19:527-529. [PMID: 37858457 DOI: 10.1016/j.reumae.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 10/21/2023]
Abstract
Hajdu-Cheney syndrome or acro-dento-osteo-dysplasia syndrome is a rare disease characterized by band osteolysis of distal phalanges and facial dysmorphia, among other manifestations. We present the case of a 45-year-old male who consulted for mechanical joint pain of both hands, facial dysmorphism, cranio-facial alterations, and digital telescoping with acroosteolysis.
Collapse
Affiliation(s)
| | - Stefanie Burger
- Servicio de Reumatología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Rubén Queiro Silva
- Servicio de Reumatología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Sara Alonso Castro
- Servicio de Reumatología, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
20
|
Niknejad N, Fox D, Burwinkel JL, Zarrin-Khameh N, Cho S, Soriano A, Cast AE, Lopez MF, Huppert KA, Rigo F, Huppert SS, Jafar-Nejad P, Jafar-Nejad H. ASO silencing of a glycosyltransferase, Poglut1 , improves the liver phenotypes in mouse models of Alagille syndrome. Hepatology 2023; 78:1337-1351. [PMID: 37021797 PMCID: PMC10558624 DOI: 10.1097/hep.0000000000000380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.
Collapse
Affiliation(s)
- Nima Niknejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Duncan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Jennifer L. Burwinkel
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Neda Zarrin-Khameh
- Department of Pathology & Immunology, Baylor College of Medicine and Ben Taub Hospital, Houston, TX
| | - Soomin Cho
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| | | | - Ashley E. Cast
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mario F. Lopez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Kari A. Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stacey S. Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| |
Collapse
|
21
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
22
|
Lv S, Wu Y, Liu F, Jiao B. A novel homozygous HES7 splicing variant causing spondylocostal dysostosis 4: a case report. Front Pediatr 2023; 11:1201999. [PMID: 37691774 PMCID: PMC10485611 DOI: 10.3389/fped.2023.1201999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background Spondylocostal dysostosis 4 (SCDO4) is characterized by short stature (mainly short trunk), dyspnea, brain meningocele, and spina bifida occulta, which is caused by homozygous or compound heterozygous HES7 (HES family bHLH transcription factor 7) variants. The incidence of SCDO4 remains unknown due to the extremely low number of cases. This study reveals a novel homozygous HES7 splicing variant causing SCDO4 and reviews all the previously reported HES7 variants and corresponding symptoms, providing a comprehensive overview of the phenotypes and genotypes of HES7 variants. Case presentation This case report focuses on a Chinese neonate who was first hospitalized for tachypnea, cleft palate, and short trunk. After a series of auxiliary examinations, the patient was also found to have deformities of vertebrae and rib, left hydronephrosis, and patent foramen ovale. He underwent surgery for congenital hydronephrosis at 5 months old and underwent cleft palate repair when he was 1 year old. After two and half years of follow-up, the boy developed normally. A novel homozygous HES7 splicing variant (c.226+1G>A, NM_001165967.2) was identified in the proband by whole-exome sequencing and verified by Sanger sequencing. The variant was inherited from both parents and minigene assays demonstrated that this variant resulted in the retention of intron3 in the HES7 transcript. Including this case, a total of six HES7 variants and 13 patients with SCDO4 have been reported. Conclusions Our findings expand the genotype-phenotype knowledge of SCDO4 and provide new evidence for genetic counseling.
Collapse
Affiliation(s)
- Shaoguang Lv
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yuanyuan Wu
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Fang Liu
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Baoquan Jiao
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
23
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
24
|
Tien PC, Chen X, Elzey BD, Pollock RE, Kuang S. Notch signaling regulates a metabolic switch through inhibiting PGC-1α and mitochondrial biogenesis in dedifferentiated liposarcoma. Oncogene 2023; 42:2521-2535. [PMID: 37433985 PMCID: PMC10575759 DOI: 10.1038/s41388-023-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Zhang Y, Wang T, Wu S, Tang L, Wang J, Yang J, Yao S, Zhang Y. Notch signaling pathway: a new target for neuropathic pain therapy. J Headache Pain 2023; 24:87. [PMID: 37454050 PMCID: PMC10349482 DOI: 10.1186/s10194-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Notch gene, a highly evolutionarily conserved gene, was discovered approximately 110 years ago and has been found to play a crucial role in the development of multicellular organisms. Notch receptors and their ligands are single-pass transmembrane proteins that typically require cellular interactions and proteolytic processing to facilitate signal transduction. Recently, mounting evidence has shown that aberrant activation of the Notch is correlated with neuropathic pain. The activation of the Notch signaling pathway can cause the activation of neuroglia and the release of pro-inflammatory factors, a key mechanism in the development of neuropathic pain. Moreover, the Notch signaling pathway may contribute to the persistence of neuropathic pain by enhancing synaptic transmission and calcium inward flow. This paper reviews the structure and activation of the Notch signaling pathway, as well as its potential mechanisms of action, to provide novel insights for future treatments of neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Tang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Research Center for Brain-Inspired Intelligence, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation En-Gineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P. R. China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Jinghan Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
26
|
Chen D, Forghany Z, Liu X, Wang H, Merks RMH, Baker DA. A new model of Notch signalling: Control of Notch receptor cis-inhibition via Notch ligand dimers. PLoS Comput Biol 2023; 19:e1010169. [PMID: 36668673 PMCID: PMC9891537 DOI: 10.1371/journal.pcbi.1010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/01/2023] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
All tissue development and replenishment relies upon the breaking of symmetries leading to the morphological and operational differentiation of progenitor cells into more specialized cells. One of the main engines driving this process is the Notch signal transduction pathway, a ubiquitous signalling system found in the vast majority of metazoan cell types characterized to date. Broadly speaking, Notch receptor activity is governed by a balance between two processes: 1) intercellular Notch transactivation triggered via interactions between receptors and ligands expressed in neighbouring cells; 2) intracellular cis inhibition caused by ligands binding to receptors within the same cell. Additionally, recent reports have also unveiled evidence of cis activation. Whilst context-dependent Notch receptor clustering has been hypothesized, to date, Notch signalling has been assumed to involve an interplay between receptor and ligand monomers. In this study, we demonstrate biochemically, through a mutational analysis of DLL4, both in vitro and in tissue culture cells, that Notch ligands can efficiently self-associate. We found that the membrane proximal EGF-like repeat of DLL4 was necessary and sufficient to promote oligomerization/dimerization. Mechanistically, our experimental evidence supports the view that DLL4 ligand dimerization is specifically required for cis-inhibition of Notch receptor activity. To further substantiate these findings, we have adapted and extended existing ordinary differential equation-based models of Notch signalling to take account of the ligand dimerization-dependent cis-inhibition reported here. Our new model faithfully recapitulates our experimental data and improves predictions based upon published data. Collectively, our work favours a model in which net output following Notch receptor/ligand binding results from ligand monomer-driven Notch receptor transactivation (and cis activation) counterposed by ligand dimer-mediated cis-inhibition.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Zary Forghany
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Xinxin Liu
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Haijiang Wang
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M. H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| | - David A. Baker
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| |
Collapse
|
27
|
Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, Kunitomi C, Azhary JMK, Takahashi N, Urata Y, Osuga Y. Roles of endoplasmic reticulum stress in the pathophysiology of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1124405. [PMID: 36875481 PMCID: PMC9975510 DOI: 10.3389/fendo.2023.1124405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Miyuki Harada,
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsurugi Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nanoka Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jerilee M. K. Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
29
|
Mukhopadhyay P, Smolenkova I, Seelan RS, Pisano MM, Greene RM. Spatiotemporal Expression and Functional Analysis of miRNA-22 in the Developing Secondary Palate. Cleft Palate Craniofac J 2023; 60:27-38. [PMID: 34730446 DOI: 10.1177/10556656211054004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Irina Smolenkova
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| |
Collapse
|
30
|
Hankeova S, Van Hul N, Laznovsky J, Verboven E, Mangold K, Hensens N, Adori C, Verhoef E, Zikmund T, Dawit F, Kavkova M, Salplachta J, Sjöqvist M, Johansson BR, Hassan MG, Fredriksson L, Baumgärtel K, Bryja V, Lendahl U, Jheon A, Alten F, Fahnehjelm KT, Fischler B, Kaiser J, Andersson ER. Sex differences and risk factors for bleeding in Alagille syndrome. EMBO Mol Med 2022; 14:e15809. [PMID: 36345711 PMCID: PMC9728057 DOI: 10.15252/emmm.202215809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.
Collapse
Affiliation(s)
- Simona Hankeova
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Noemi Van Hul
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jakub Laznovsky
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Katrin Mangold
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Naomi Hensens
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Csaba Adori
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Elvira Verhoef
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Tomas Zikmund
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Feven Dawit
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Michaela Kavkova
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Jakub Salplachta
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Marika Sjöqvist
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Bengt R Johansson
- EM Unit, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Mohamed G Hassan
- University of San FranciscoSan FranciscoCAUSA
- Department of OrthodonticsFaculty of DentistryAssiut UniversityAssiutEgypt
| | - Linda Fredriksson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | | | - Vitezslav Bryja
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | | | - Florian Alten
- Department of OphthalmologyUniversity of Muenster Medical CenterMünsterGermany
| | - Kristina Teär Fahnehjelm
- Department of Pediatric Ophthalmology, Strabismus, Electrophysiology and Ocular Oncology, St. Erik Eye HospitalKarolinska InstitutetStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Björn Fischler
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Jozef Kaiser
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Emma R Andersson
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
31
|
The oncogenic JAG1 intracellular domain is a transcriptional cofactor that acts in concert with DDX17/SMAD3/TGIF2. Cell Rep 2022; 41:111626. [DOI: 10.1016/j.celrep.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
|
32
|
Gagliani EK, Gutzwiller LM, Kuang Y, Odaka Y, Hoffmeister P, Hauff S, Turkiewicz A, Harding-Theobald E, Dolph PJ, Borggrefe T, Oswald F, Gebelein B, Kovall RA. A Drosophila Su(H) model of Adams-Oliver Syndrome reveals cofactor titration as a mechanism underlying developmental defects. PLoS Genet 2022; 18:e1010335. [PMID: 35951645 PMCID: PMC9398005 DOI: 10.1371/journal.pgen.1010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation. Adams-Oliver Syndrome (AOS) is a rare disease defined by missing skin/skull tissue, limb malformations, and cardiovascular abnormalities. Human genetic studies have revealed that ~40% of AOS patients inherit dominant mutations within specific genes in the Notch signaling pathway. Notch signaling is a highly conserved cell-to-cell communication pathway found in all metazoans and plays crucial roles during embryogenesis and tissue homeostasis in organisms from Drosophila (fruit-flies) to mammals. The Notch receptor converts cell-to-cell interactions into a Notch signal that enters the nucleus and activates target genes by binding to a highly conserved transcription factor. Here, we took advantage of the unexpected finding that a previously described dominant allele in the Drosophila Notch pathway transcription factor contains a missense variant in an analogous residue found in a family with AOS. Using this novel animal model of AOS along with biochemical DNA binding, protein-protein interaction, and transcriptional reporter assays, we found that this transcription factor variant selectively compromises DNA binding but not binding to the Notch signal nor binding to other proteins in the Notch pathway. Taken together with prior human genetic studies, these data suggest AOS phenotypes associated with variants in the Notch pathway transcription factor are caused by a dominant mechanism that sequesters the Notch signal, leading to Notch target gene dysregulation.
Collapse
Affiliation(s)
- Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Graduate program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Yoshinobu Odaka
- Biology Department, University of Cincinnati Blue Ash College, Cincinnati, Ohio, United States of America
| | - Phillipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Stefanie Hauff
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | | | - Emily Harding-Theobald
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Patrick J. Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| |
Collapse
|
33
|
Dąbrowska J, Biedziak B, Szponar-Żurowska A, Budner M, Jagodziński PP, Płoski R, Mostowska A. Identification of novel susceptibility genes for non-syndromic cleft lip with or without cleft palate using NGS-based multigene panel testing. Mol Genet Genomics 2022; 297:1315-1327. [PMID: 35778651 DOI: 10.1007/s00438-022-01919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/12/2022] [Indexed: 01/02/2023]
Abstract
For non-syndromic cleft lip with or without cleft palate (ns-CL/P), the proportion of heritability explained by the known risk loci is estimated to be about 30% and is captured mainly by common variants identified in genome-wide association studies. To contribute to the explanation of the "missing heritability" problem for orofacial clefts, a candidate gene approach was taken to investigate the potential role of rare and private variants in the ns-CL/P risk. Using the next-generation sequencing technology, the coding sequence of a set of 423 candidate genes was analysed in 135 patients from the Polish population. After stringent multistage filtering, 37 rare coding and splicing variants of 28 genes were identified. 35% of these genetic alternations that may play a role of genetic modifiers influencing an individual's risk were detected in genes not previously associated with the ns-CL/P susceptibility, including COL11A1, COL17A1, DLX1, EFTUD2, FGF4, FGF8, FLNB, JAG1, NOTCH2, SHH, WNT5A and WNT9A. Significant enrichment of rare alleles in ns-CL/P patients compared with controls was also demonstrated for ARHGAP29, CHD7, COL17A1, FGF12, GAD1 and SATB2. In addition, analysis of panoramic radiographs of patients with identified predisposing variants may support the hypothesis of a common genetic link between orofacial clefts and dental abnormalities. In conclusion, our study has confirmed that rare coding variants might contribute to the genetic architecture of ns-CL/P. Since only single predisposing variants were identified in novel cleft susceptibility genes, future research will be required to confirm and fully understand their role in the aetiology of ns-CL/P.
Collapse
Affiliation(s)
- Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Szponar-Żurowska
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Margareta Budner
- Eastern Poland Burn Treatment and Reconstructive Center, Leczna, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
34
|
Burton KA, Mahen E, Konnick EQ, Blau S, Dorschner MO, Ramirez AB, Schmechel SC, Song C, Parulkar R, Parker S, Senecal FM, Pritchard CC, Mecham BH, Szeto C, Spilman P, Zhu J, Gadi VK, Ronen R, Stilwell J, Kaldjian E, Dutkowski J, Benz SC, Rabizadeh S, Soon-Shiong P, Blau CA. Safety, Feasibility, and Merits of Longitudinal Molecular Testing of Multiple Metastatic Sites to Inform mTNBC Patient Treatment in the Intensive Trial of Omics in Cancer. JCO Precis Oncol 2022; 6:e2100280. [PMID: 35294224 PMCID: PMC8939922 DOI: 10.1200/po.21.00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. In the Intensive Trial of Omics in Cancer (ITOMIC), the feasibility and potential efficacy of informing treatment decisions through omics analysis of multiple biopsies of mTNBC deposits over time was assessed. An ITOMIC Tumor Board (ITB) that comprised experts discussed tumor profile findings and made treatment recommendations to each subject's physician. Study-directed omics analysis revealed that of the 31 enrolled subjects, two were found to have lung cancer, one a carcinoma of unknown primary site that and tumor samples from five subjects showed some receptor-positivity. Several subjects survived well beyond what would be expected for this patient group, supporting the merits of further investigation of this approach.![]()
Collapse
Affiliation(s)
- Kimberly A Burton
- Department of Medicine, University of Washington, Seattle, WA.,Center for Cancer Innovation, University of Washington, Seattle, WA.,Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Elisabeth Mahen
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA
| | | | - Sibel Blau
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Northwest Medical Specialties, Puyallup and Tacoma, WA
| | - Michael O Dorschner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Center for Precision Diagnostics, University of Washington, Seattle, WA
| | | | - Stephen C Schmechel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Chaozhong Song
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA
| | | | - Stephanie Parker
- Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Francis Mark Senecal
- Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | | | - Jingchun Zhu
- Computational Genomics Lab, University of California at Santa Cruz, Santa Cruz, CA
| | - Vijayakrishna K Gadi
- Department of Medicine, University of Illinois, Chicago, IL.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | | | - C Anthony Blau
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA.,All4Cure Inc, Seattle, WA
| |
Collapse
|
35
|
Tan EC, Lai AHM, Brett MSY. Novel phenotypic feature in a patient with a recurrent NOTCH2 nonsense mutation. Am J Med Genet A 2022; 188:2135-2138. [PMID: 35289498 DOI: 10.1002/ajmg.a.62724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Pathogenic variants in NOTCH2 which encodes a single-pass transmembrane protein have been identified as a cause of several autosomal dominant congenital disorders. In particular, truncating mutations in exon 34 have been found in patients with skeletal abnormalities and dysmorphic features. We describe a patient with a de novo variant in NOTCH2 who displayed features of both Hajdu-Cheney syndrome (HJCYS) and serpentine fibula-polycystic kidney syndrome (SFPKS). The recurrent nonsense variant in exon 34 has been reported in seven other patients with syndromic presentations, making it the most common pathogenic variant for NOTCH2 in congenital disorders. In addition to the core features of HJCYS and SFPKS, there was a gastrointestinal tract malformation of an imperforate anus which has not been reported in patients with pathogenic variants in NOTCH2.
Collapse
Affiliation(s)
- Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital, Singapore.,SingHealth Duke-NUS Academic Clinical Programme, Singapore
| | - Angeline H M Lai
- SingHealth Duke-NUS Academic Clinical Programme, Singapore.,Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Maggie S Y Brett
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
36
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
37
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
38
|
Yan X, Shang J, Wang R, Wang F, Zhang J. Mechanisms regulating cerebral hypoperfusion in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Biomed Res 2022; 36:353-357. [PMID: 36165325 PMCID: PMC9548441 DOI: 10.7555/jbr.36.20220208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of stroke and dementia. As the most common type of inherited CSVD, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by the NOTCH3 gene mutation which leads to Notch3 ectodomain deposition and extracellular matrix aggregation around the small vessels. It further causes smooth muscle cell degeneration and small vessel arteriopathy in the central nervous system. Compromised cerebral blood flow occurs in the early stage of CADASIL and is associated with white matter hyperintensity, the typical neuroimaging pathology of CADASIL. This suggests that cerebral hypoperfusion may play an important role in the pathogenesis of CADASIL. However, the mechanistic linkage between NOTCH3 mutation and cerebral hypoperfusion remains unknown. Therefore, in this mini-review, it examines the cellular and molecular mechanisms contributing to cerebral hypoperfusion in CADASIL.
Collapse
Affiliation(s)
- Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Junkui Shang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Runrun Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Fengyu Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
- Jiewen Zhang, Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan 450003, China. Tel: +86-371-65580782, E-mail:
| |
Collapse
|
39
|
Wang R, Zhang J, Shang J, Wang F, Yan X. Effects of different regional cerebral blood flow on white matter hyperintensity in CADASIL patients. J Biomed Res 2022; 36:368-374. [PMID: 36165295 PMCID: PMC9548439 DOI: 10.7555/jbr.36.20220006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an early-onset inherited small vessel disease. Decreased cerebral blood flow (CBF) may contribute to white matter hyperintensity (WMH) severity in CADASIL, but more evidence is needed to support this hypothesis. This study comprised six patients with CADASIL who harbored mutations in the coding sequence of NOTCH3 and twelve age-matched neurologically healthy controls. We collected clinical and imaging data from patients with CADASIL and divided the brain into four regions: WMH, normal-appearing white matter (NAWM), gray matter (GM), and global brain. We analyzed the relationship between CBF of each region and the WMH volume. Compared with the control group, CBF was significantly decreased in all four regions in the CADASIL group. Lower CBF in these regions was correlated with higher WMH volume in CADASIL. CBF in the NAWM, GM and global regions was positively correlated with that in WMH region. However, after correction tests, only CBF in the WMH region but not in NAWM, GM and global regions was associated with WMH volume. Our findings suggest that CBF in the WMH region is an influencing factor of the WMH severity in CADASIL.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Junkui Shang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Fengyu Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
- Xi Yan, Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan 450003, China. Tel: +86-371-65580782, E-mail:
| |
Collapse
|
40
|
Yang SA, Salazar JL, Li-Kroeger D, Yamamoto S. Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. Methods Mol Biol 2022; 2472:235-276. [PMID: 35674905 PMCID: PMC9396741 DOI: 10.1007/978-1-0716-2201-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of "variants of unknown significance" identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these "genes of unknown significance" continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer's disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By "humanizing" the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Nur Villar-Quiles R, Romero NB, Tanya S. [JAG2-related muscular dystrophy: When differential diagnosis matters]. Med Sci (Paris) 2021; 37 Hors série n° 1:40-43. [PMID: 34878394 DOI: 10.1051/medsci/2021191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
JAG2 has recently been involved in autosomal recessive forms of muscular dystrophy as illustrated in this clinical vignette. In many ways, this disease can mimick a COL6-related retractile myopathy including at the imaging level.
Collapse
Affiliation(s)
- Rocio Nur Villar-Quiles
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| | - Norma B Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, APHP, Sorbonne Université, Paris, France
| | - Stojkovic Tanya
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
42
|
Sun L, Zhang J, Su N, Zhang S, Yan F, Lin X, Yu J, Li W, Li X, Xiao S. Analysis of Genotype-Phenotype Correlations in Patients With Degenerative Dementia Through the Whole Exome Sequencing. Front Aging Neurosci 2021; 13:745407. [PMID: 34720994 PMCID: PMC8551445 DOI: 10.3389/fnagi.2021.745407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sporadic dementias generally occur in older age and are highly polygenic, which indicates some patients transmitted in a poly-genes hereditary fashion. Objective: Our study aimed to analyze the correlations of genetic features with clinical symptoms in patients with degenerative dementia. Methods: We recruited a group of 84 dementia patients and conducted the whole exome sequencing (WES). The data were analyzed focusing on 153 dementia-related causing and susceptible genes. Results: According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, we identified four reported pathogenic variants, namely, PSEN1 c.A344G, APP c.G2149A, MAPT c.G1165A, and MAPT c.G742A, one reported likely pathogenic variant, namely, PSEN2 c.G100A, one novel pathogenic variants, SQSTM1 c.C671A, and three novel likely pathogenic variants, namely, ABCA7 c.C4690T, ATP13A2 c.3135delC, and NOS3 c.2897-2A > G. 21 variants with uncertain significance in PSEN2, C9orf72, NOTCH3, ABCA7, ERBB4, GRN, MPO, SETX, SORL1, NEFH, ADCM10, and SORL1, etc., were also detected in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD). Conclusion: The new variants in dementia-related genes indicated heterogeneity in pathogenesis and phenotype of degenerative dementia. WES could serve as an efficient diagnostic tool for detecting intractable dementia.
Collapse
Affiliation(s)
- Lin Sun
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Su
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowei Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yu
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifu Xiao
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Saleh S, Ullah M, Naveed H. Cell fate determination is influenced by Notch heterogeneity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4143-4146. [PMID: 34892138 DOI: 10.1109/embc46164.2021.9629491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Notch signaling (NS) determines the fate of adjacent cells during metazoans development. This intercellular signaling mechanism regulates diverse development processes like cell differentiation, proliferation, survival and is considered responsible for maintaining cellular homeostasis. In this study, we elucidate the role of Notch heterogeneity (NH) in cell fate determination. We studied the role of NH at intercellular, intracellular and the coexistence of Notch variation simultaneously at the intracellular and intercellular level in direct cell-cell signaling on an irregular cell mosaic. In addition, the effect of intracellular Notch receptor diffusion on an irregular cell lattice is also taken into account during Delta-Notch lateral inhibition (LI) process. Through mathematical and computational models, we discovered that the classical checkerboard pattern formation can be reproduced with an accuracy of 70-81% by accounting for NH in a realistic epithelial layer of multicellular organisms.
Collapse
|
44
|
Bott LC, Forouhan M, Lieto M, Sala AJ, Ellerington R, Johnson JO, Speciale AA, Criscuolo C, Filla A, Chitayat D, Alkhunaizi E, Shannon P, Nemeth AH, Angelucci F, Lim WF, Striano P, Zara F, Helbig I, Muona M, Courage C, Lehesjoki AE, Berkovic SF, Fischbeck KH, Brancati F, Morimoto RI, Wood MJA, Rinaldi C. Variants in ATP6V0A1 cause progressive myoclonus epilepsy and developmental and epileptic encephalopathy. Brain Commun 2021; 3:fcab245. [PMID: 34909687 PMCID: PMC8665645 DOI: 10.1093/braincomms/fcab245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
The vacuolar H+-ATPase is a large multi-subunit proton pump, composed of an integral membrane V0 domain, involved in proton translocation, and a peripheral V1 domain, catalysing ATP hydrolysis. This complex is widely distributed on the membrane of various subcellular organelles, such as endosomes and lysosomes, and plays a critical role in cellular processes ranging from autophagy to protein trafficking and endocytosis. Variants in ATP6V0A1, the brain-enriched isoform in the V0 domain, have been recently associated with developmental delay and epilepsy in four individuals. Here, we identified 17 individuals from 14 unrelated families with both with new and previously characterized variants in this gene, representing the largest cohort to date. Five affected subjects with biallelic variants in this gene presented with a phenotype of early-onset progressive myoclonus epilepsy with ataxia, while 12 individuals carried de novo missense variants and showed severe developmental and epileptic encephalopathy. The R740Q mutation, which alone accounts for almost 50% of the mutations identified among our cases, leads to failure of lysosomal hydrolysis by directly impairing acidification of the endolysosomal compartment, causing autophagic dysfunction and severe developmental defect in Caenorhabditis elegans. Altogether, our findings further expand the neurological phenotype associated with variants in this gene and provide a direct link with endolysosomal acidification in the pathophysiology of ATP6V0A1-related conditions.
Collapse
Affiliation(s)
- Laura C Bott
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, UK
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples 80121, Italy
| | - Ambre J Sala
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Ruth Ellerington
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Janel O Johnson
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples 80121, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples 80121, Italy
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Ebba Alkhunaizi
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Pasquale Striano
- Institute for Research, Hospitalization and Health Care (IRCCS) "G. Gaslini" Institute, Genova 16147, Italy
| | - Federico Zara
- Institute for Research, Hospitalization and Health Care (IRCCS) "G. Gaslini" Institute, Genova 16147, Italy
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mikko Muona
- Blueprint Genetics, 02150 Espoo, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - Carolina Courage
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3010, Australia
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, MD 20892, USA
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 Coppito, L'Aquila, Italy
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
- Oxford Harrington Rare Disease Centre, University of Oxford, Oxford OX1 3QX, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
45
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
46
|
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, Chen HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 2021; 13:631-654. [PMID: 34374936 PMCID: PMC9233731 DOI: 10.1007/s13238-021-00863-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Ya-Wen Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. .,HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA. .,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
47
|
Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021; 17:e1009729. [PMID: 34370738 PMCID: PMC8376015 DOI: 10.1371/journal.pgen.1009729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.
Collapse
|
48
|
Martins T, Meng Y, Korona B, Suckling R, Johnson S, Handford PA, Lea SM, Bray SJ. The conserved C2 phospholipid-binding domain in Delta contributes to robust Notch signalling. EMBO Rep 2021; 22:e52729. [PMID: 34347930 PMCID: PMC8490980 DOI: 10.15252/embr.202152729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.
Collapse
Affiliation(s)
- Torcato Martins
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yao Meng
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Richard Suckling
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
Zeronian MR, Klykov O, Portell I de Montserrat J, Konijnenberg MJ, Gaur A, Scheltema RA, Janssen BJC. Notch-Jagged signaling complex defined by an interaction mosaic. Proc Natl Acad Sci U S A 2021; 118:e2102502118. [PMID: 34301900 PMCID: PMC8325348 DOI: 10.1073/pnas.2102502118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Notch signaling system links cellular fate to that of its neighbors, driving proliferation, apoptosis, and cell differentiation in metazoans, whereas dysfunction leads to debilitating developmental disorders and cancers. Other than a five-by-five domain complex, it is unclear how the 40 extracellular domains of the Notch1 receptor collectively engage the 19 domains of its canonical ligand, Jagged1, to activate Notch1 signaling. Here, using cross-linking mass spectrometry (XL-MS), biophysical, and structural techniques on the full extracellular complex and targeted sites, we identify five distinct regions, two on Notch1 and three on Jagged1, that form an interaction network. The Notch1 membrane-proximal regulatory region individually binds to the established Notch1 epidermal growth factor (EGF) 8-EGF13 and Jagged1 C2-EGF3 activation sites as well as to two additional Jagged1 regions, EGF8-EGF11 and cysteine-rich domain. XL-MS and quantitative interaction experiments show that the three Notch1-binding sites on Jagged1 also engage intramolecularly. These interactions, together with Notch1 and Jagged1 ectodomain dimensions and flexibility, determined by small-angle X-ray scattering, support the formation of nonlinear architectures. Combined, the data suggest that critical Notch1 and Jagged1 regions are not distal but engage directly to control Notch1 signaling, thereby redefining the Notch1-Jagged1 activation mechanism and indicating routes for therapeutic applications.
Collapse
Affiliation(s)
- Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Oleg Klykov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Júlia Portell I de Montserrat
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maria J Konijnenberg
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anamika Gaur
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
50
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|