1
|
Beltran CGG, Kriel J, Botha SM, Nolan MB, Ciccarelli A, Loos B, Gutierrez MG, Walzl G. Correlative 3D imaging method for analysing lesion architecture in susceptible mice infected with Mycobacterium tuberculosis. Dis Model Mech 2025; 18:dmm052185. [PMID: 40134379 PMCID: PMC11972079 DOI: 10.1242/dmm.052185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Tuberculosis (TB) is characterized by the formation of heterogeneous, immune-rich granulomas in the lungs. Host and pathogen factors contribute to this heterogeneity, but the molecular and cellular drivers of granuloma diversity remain inadequately understood owing to limitations in experimental techniques. In this study, we developed an approach that combines passive CLARITY (PACT)-based clearing with light-sheet fluorescence microscopy to visualize lesion architecture and lung involvement in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. Three-dimensional rendering of post-mortem lungs revealed critical architectural features in lesion development that traditional thin-section imaging could not detect. Wild-type M. tuberculosis infection resulted in organized granulomas, with median sizes increasing to 3.74×108 µm3 and occupying ∼10% of the total lung volume by day 70 post-infection. In contrast, infection with the avirulent ESX-1 deletion mutant strain resulted in diffuse and sparsely organized CD11b recruitment (median size of 8.22×107 µm3), primarily located in the lung periphery and minimally involving the airways (0.23% of the total lung space). Additionally, we present a method for volumetric correlative light and electron microscopy, enabling tracking of individual immune cell populations within granulomas.
Collapse
Affiliation(s)
- Caroline G. G. Beltran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Stefan M. Botha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | - Margaret B. Nolan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | | | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | | | - Gerhard Walzl
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| |
Collapse
|
2
|
Lawrence ALE, Tan S. Building Spatiotemporal Understanding of Mycobacterium tuberculosis-Host Interactions. ACS Infect Dis 2025; 11:277-286. [PMID: 39847659 PMCID: PMC11828672 DOI: 10.1021/acsinfecdis.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Heterogeneity during Mycobacterium tuberculosis (Mtb) infection greatly impacts disease outcome and complicates treatment. This heterogeneity encompasses many facets, spanning local differences in the host immune response to Mtb and the environment experienced by the bacterium, to nonuniformity in Mtb replication state. All of these facets are interlinked and each can affect Mtb susceptibility to antibiotic treatment. In-depth spatiotemporal understanding of Mtb-host interactions is thus critical to both fundamental comprehension of Mtb infection biology and for the development of effective therapeutic regimens. Such spatiotemporal understanding dictates the need for analysis at the single bacterium/cell level in the context of intact tissue architecture, which has been a significant technical challenge. Excitingly, innovations in spatial single cell methodology have opened the door to such studies, beginning to illuminate aspects ranging from intergranuloma differences in cellular composition and phenotype, to sublocation differences in Mtb physiology and replication state. In this perspective, we discuss recent studies that demonstrate the potential of these methodological advancements to reveal critical spatiotemporal insight into Mtb-host interactions, and highlight future avenues of research made possible by these advances.
Collapse
Affiliation(s)
- Anna-Lisa E Lawrence
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| |
Collapse
|
3
|
Rai MR, Li C, Ghashghaei HT, Greenbaum A. Deep learning-based adaptive optics for light sheet fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2905-2919. [PMID: 37342701 PMCID: PMC10278610 DOI: 10.1364/boe.488995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is a high-speed imaging technique that is often used to image intact tissue-cleared specimens with cellular or subcellular resolution. Like other optical imaging systems, LSFM suffers from sample-induced optical aberrations that decrement imaging quality. Optical aberrations become more severe when imaging a few millimeters deep into tissue-cleared specimens, complicating subsequent analyses. Adaptive optics are commonly used to correct sample-induced aberrations using a deformable mirror. However, routinely used sensorless adaptive optics techniques are slow, as they require multiple images of the same region of interest to iteratively estimate the aberrations. In addition to the fading of fluorescent signal, this is a major limitation as thousands of images are required to image a single intact organ even without adaptive optics. Thus, a fast and accurate aberration estimation method is needed. Here, we used deep-learning techniques to estimate sample-induced aberrations from only two images of the same region of interest in cleared tissues. We show that the application of correction using a deformable mirror greatly improves image quality. We also introduce a sampling technique that requires a minimum number of images to train the network. Two conceptually different network architectures are compared; one that shares convolutional features and another that estimates each aberration independently. Overall, we have presented an efficient way to correct aberrations in LSFM and to improve image quality.
Collapse
Affiliation(s)
- Mani Ratnam Rai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Chen Li
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - H. Troy Ghashghaei
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Wang K, Yu Y, Xu Y, Yue Y, Zhao F, Feng W, Duan Y, Duan W, Yue J, Liao Z, Fei P, Sun H, Xiong B. TSA-PACT: a method for tissue clearing and immunofluorescence staining on zebrafish brain with improved sensitivity, specificity and stability. Cell Biosci 2023; 13:97. [PMID: 37237300 DOI: 10.1186/s13578-023-01043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
For comprehensive studies of the brain structure and function, fluorescence imaging of the whole brain is essential. It requires large-scale volumetric imaging in cellular or molecular resolution, which could be quite challenging. Recent advances in tissue clearing technology (e.g. CLARITY, PACT) provide new solutions by homogenizing the refractive index of the samples to create transparency. However, it has been difficult to acquire high quality results through immunofluorescence (IF) staining on the cleared samples. To address this issue, we developed TSA-PACT, a method combining tyramide signal amplification (TSA) and PACT, to transform samples into hydrogel polymerization frameworks with covalent fluorescent biomarkers assembled. We show that TSA-PACT is able to reduce the opacity of the zebrafish brain by more than 90% with well-preserved structure. Compared to traditional method, TSA-PACT achieves approximately tenfold signal amplification and twofold improvement in signal-to-noise ratio (SNR). Moreover, both the structure and the fluorescent signal persist for at least 16 months with excellent signal retention ratio. Overall, this method improves immunofluorescence signal sensitivity, specificity and stability in the whole brain of juvenile and adult zebrafish, which is applicable for fine structural analysis, neural circuit mapping and three-dimensional cell counting.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yinhui Xu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingzi Yue
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zhao
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenyang Feng
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Yue
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Fei
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Rai MR, Li C, Greenbaum A. Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2960-2974. [PMID: 35774332 PMCID: PMC9203118 DOI: 10.1364/boe.454561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/15/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) is a high-speed, high-resolution and minimally phototoxic technique for 3D imaging of in vivo and in vitro specimens. LSFM exhibits optical sectioning and when combined with tissue clearing techniques, it facilitates imaging of centimeter scale specimens with micrometer resolution. Although LSFM is ubiquitous, it still faces two main challenges that effect image quality especially when imaging large volumes with high-resolution. First, the light-sheet illumination plane and detection lens focal plane need to be coplanar, however sample-induced aberrations can violate this requirement and degrade image quality. Second, introduction of sample-induced optical aberrations in the detection path. These challenges intensify when imaging whole organisms or structurally complex specimens like cochleae and bones that exhibit many transitions from soft to hard tissue or when imaging deep (> 2 mm). To resolve these challenges, various illumination and aberration correction methods have been developed, yet no adaptive correction in both the illumination and the detection path have been applied to improve LSFM imaging. Here, we bridge this gap, by implementing the two correction techniques on a custom built adaptive LSFM. The illumination beam angular properties are controlled by two galvanometer scanners, while a deformable mirror is positioned in the detection path to correct for aberrations. By imaging whole porcine cochlea, we compare and contrast these correction methods and their influence on the image quality. This knowledge will greatly contribute to the field of adaptive LSFM, and imaging of large volumes of tissue cleared specimens.
Collapse
Affiliation(s)
- Mani Ratnam Rai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Chen Li
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Zhao J, He D, Lai HM, Xu Y, Luo Y, Li T, Liang J, Yang X, Guo L, Ke Y, Zhou H, Wu W, Guo H, Sun H. Comprehensive histological imaging of native microbiota in human glioma. JOURNAL OF BIOPHOTONICS 2022; 15:e202100351. [PMID: 34936211 DOI: 10.1002/jbio.202100351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mounting evidence suggests that distinct microbial communities reside in tumors and play important roles in tumor physiology. Recently, a previous study profiled the composition and localization of intratumoral bacteria using 16S ribosomal DNA (rDNA) sequencing and histological visualization methods across seven tumor types, including human glioblastoma. However, their results based on traditional histological examinations should be further validated considering potential sources of contamination originating from sample collection and processing. Here, we aim to propose a three-dimensional (3D) in situ intratumoral microbiota visualization and quantification protocol avoiding surface contamination and provide a comprehensive histological investigation on local bacteria within human glioma samples. We develop a 3D quantitative in situ intratumoral microbiota imaging strategy, combining tissue clearing, immunofluorescent labeling, optical sectioning microscopy, and image processing, to visualize bacterial lipopolysaccharide (LPS) within gliomas in a direct, contaminant-free, and unambiguous manner. Through an automated statistical algorithm, reliable signals can be distinguished for further analysis of their sizes, distribution, and fluorescence intensities. In tandem, we also combined 2D images obtained from thin-section histological methods, including immunohistochemistry and fluorescence in situ hybridization, to provide comprehensive histological imaging for local bacterial components within human glioma samples. We have, for the first time, achieved 3D quantitative imaging of bacterial LPS colonized in gliomas in a contamination-free manner within human glioma samples. We also built the multiple histological evidence chain demonstrating the irregular shapes and sparse distribution of bacterial components within human glioma samples, mostly localized near nuclear membranes or in the intercellular space. This study provides favorable evidence for the presence of microbiota in human gliomas and provides information on the feature and distribution of bacterial components. The results, along with the integrated 3D quantitative intratumoral microbiota imaging method, are promising to provide insightful information into the direct interactions between the microbial community and the host in the tumor microenvironment.
Collapse
Affiliation(s)
- Jiajia Zhao
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Clinical Biobank Centre, Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dian He
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yingying Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Clinical Biobank Centre, Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodu Yang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Clinical Biobank Centre, Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Re-Stem Biotechnology Co., Ltd, Suzhou, China
| | - Hongbo Guo
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Centre, The National Key Clinical Specialty, The Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Clinical Biobank Centre, Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Lavin RC, Tan S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog 2022; 18:e1010459. [PMID: 35344572 PMCID: PMC8989358 DOI: 10.1371/journal.ppat.1010459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
A hallmark of Mycobacterium tuberculosis (Mtb) infection is the marked heterogeneity that exists, spanning lesion type differences to microenvironment changes as infection progresses. A mechanistic understanding of how this heterogeneity affects Mtb growth and treatment efficacy necessitates single bacterium level studies in the context of intact host tissue architecture; however, such an evaluation has been technically challenging. Here, we exploit fluorescent reporter Mtb strains and the C3HeB/FeJ murine model in an integrated imaging approach to study microenvironment heterogeneity within a single lesion in situ, and analyze how these differences relate to non-uniformity in Mtb replication state, activity, and drug efficacy. We show that the pH and chloride environments differ spatially even within a single caseous necrotic lesion, with increased acidity and chloride levels in the lesion cuff versus core. Strikingly, a higher percentage of Mtb in the lesion core versus cuff were in an actively replicating state, and correspondingly active in transcription/translation. Finally, examination of three first-line anti-tubercular drugs showed that isoniazid efficacy was conspicuously poor against Mtb in the lesion cuff. Our study reveals spatial relationships of intra-lesion heterogeneity, sheds light on important considerations in anti-tubercular treatment strategies, and establishes a foundational framework for Mtb infection heterogeneity analysis at the single bacterium level in situ.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Skaar EP. Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annu Rev Microbiol 2021; 75:407-426. [PMID: 34343016 DOI: 10.1146/annurev-micro-041521-121457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
9
|
Cronan MR, Hughes EJ, Brewer WJ, Viswanathan G, Hunt EG, Singh B, Mehra S, Oehlers SH, Gregory SG, Kaushal D, Tobin DM. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell 2021; 184:1757-1774.e14. [PMID: 33761328 PMCID: PMC8055144 DOI: 10.1016/j.cell.2021.02.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Disease Models, Animal
- Epithelioid Cells/cytology
- Epithelioid Cells/immunology
- Epithelioid Cells/metabolism
- Granuloma/immunology
- Granuloma/metabolism
- Granuloma/pathology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Immunity/physiology
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mycobacterium Infections, Nontuberculous/immunology
- Mycobacterium Infections, Nontuberculous/pathology
- Mycobacterium marinum/isolation & purification
- Mycobacterium marinum/physiology
- Necrosis
- Receptors, Interleukin-4/antagonists & inhibitors
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/metabolism
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Zebrafish/growth & development
- Zebrafish/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily G Hunt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Clark EM, Link BA. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol Biol Cell 2021; 32:391-401. [PMID: 33439675 PMCID: PMC8098853 DOI: 10.1091/mbc.e20-11-0745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Coat protein complex II (COPII) factors mediate cargo export from the endoplasmic reticulum (ER), but bulky collagens and lipoproteins are too large for traditional COPII vesicles. Mammalian CTAGE5 and TANGO1 have been well characterized individually as specialized cargo receptors at the ER that function with COPII coats to facilitate trafficking of bulky cargoes. Here, we present a genetic interaction study in zebrafish of deletions in ctage5, tango1, or both to investigate their distinct and complementary potential functions. We found that Ctage5 and Tango1 have different roles related to organogenesis, collagen versus lipoprotein trafficking, stress-pathway activation, and survival. While disruption of both ctage5 and tango1 compounded phenotype severity, mutation of either factor alone revealed novel tissue-specific defects in the building of heart, muscle, lens, and intestine, in addition to previously described roles in the development of neural and cartilage tissues. Together, our results demonstrate that Ctage5 and Tango1 have overlapping functions, but also suggest divergent roles in tissue development and homeostasis.
Collapse
Affiliation(s)
- Eric M. Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
11
|
New Look at RSV Infection: Tissue Clearing and 3D Imaging of the Entire Mouse Lung at Cellular Resolution. Viruses 2021; 13:v13020201. [PMID: 33525646 PMCID: PMC7912480 DOI: 10.3390/v13020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.
Collapse
|
12
|
Giacalone D, Huang L, Tan S. Exploiting Fluorescent Proteins to Understand Mycobacterium tuberculosis Biology. Methods Mol Biol 2021; 2314:365-383. [PMID: 34235663 PMCID: PMC8381720 DOI: 10.1007/978-1-0716-1460-0_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The utility of fluorescent proteins in bacterial research has long been appreciated, with extensive use in the Mycobacterium tuberculosis field. In more recent years, a new generation of fluorescent tools has been developed for use in M. tuberculosis research. These new fluorescent reporters exploit the immense genetic and transcriptional knowledge now available, and enable the use of the bacteria as direct reporters of the local environment during infection, as well as provide insight into bacterial replication status in situ. Here we describe methods for the construction of such fluorescent reporter M. tuberculosis strains, and their use in combination with confocal microscopy and flow cytometry approaches for single bacterium-level analyses of M. tuberculosis physiology and M. tuberculosis-host interactions.
Collapse
Affiliation(s)
- David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
13
|
Three-dimensional in situ morphometrics of Mycobacterium tuberculosis infection within lesions by optical mesoscopy and novel acid-fast staining. Sci Rep 2020; 10:21774. [PMID: 33311596 PMCID: PMC7733456 DOI: 10.1038/s41598-020-78640-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) preclinical testing relies on in vivo models including the mouse aerosol challenge model. The only method of determining colony morphometrics of TB infection in a tissue in situ is two-dimensional (2D) histopathology. 2D measurements consider heterogeneity within a single observable section but not above and below, which could contain critical information. Here we describe a novel approach, using optical clearing and a novel staining procedure with confocal microscopy and mesoscopy, for three-dimensional (3D) measurement of TB infection within lesions at sub-cellular resolution over a large field of view. We show TB morphometrics can be determined within lesion pathology, and differences in infection with different strains of Mycobacterium tuberculosis. Mesoscopy combined with the novel CUBIC Acid-Fast (CAF) staining procedure enables a quantitative approach to measure TB infection and allows 3D analysis of infection, providing a framework which could be used in the analysis of TB infection in situ.
Collapse
|
14
|
Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. iScience 2020; 23:101432. [PMID: 32805648 PMCID: PMC7452225 DOI: 10.1016/j.isci.2020.101432] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Three-dimensional (3D) optical imaging techniques can expand our knowledge about physiological and pathological processes that cannot be fully understood with 2D approaches. Standard diagnostic tests frequently are not sufficient to unequivocally determine the presence of a pathological condition. Whole-organ optical imaging requires tissue transparency, which can be achieved by using tissue clearing procedures enabling deeper image acquisition and therefore making possible the analysis of large-scale biological tissue samples. Here, we review currently available clearing agents, methods, and their application in imaging of physiological or pathological conditions in different animal and human organs. We also compare different optical tissue clearing methods discussing their advantages and disadvantages and review the use of different 3D imaging techniques for the visualization and image acquisition of cleared tissues. The use of optical tissue clearing resources for large-scale biological tissues 3D imaging paves the way for future applications in translational and clinical research.
Collapse
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Jorge Ripoll
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Arms L, Robson AL, Woldu A, Martin A, Palmer W, Flynn J, Hua S. Considerations for using optical clearing techniques for 3D imaging of nanoparticle biodistribution. Int J Pharm 2020; 588:119739. [PMID: 32783979 DOI: 10.1016/j.ijpharm.2020.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
A key consideration in the clinical translation of nanomedicines is determining their in vivo biodistribution in preclinical studies, which is important for predicting and correlating therapeutic efficacy and safety. There are a number of techniques available for analyzing the in vivo biodistribution of nanoparticles, with each having its own advantages and limitations. However, conventional techniques are limited by their inability to image the three-dimensional (3D) association of nanoparticles with cells, vasculature and other biological structures in whole organs at a subcellular level. Recently, optical clearing techniques have been used to evaluate the biodistribution of nanoparticles by 3D organ imaging. Optical clearing is a procedure that is increasingly being used to improve the imaging of biological tissues, whereby light scattering substances are removed to better match the refractive indices of different tissue layers. The use of optical clearing techniques has the potential to transform the way we evaluate the biodistribution of new and existing nanomedicines, as it allows the visualization of the interaction of nanoparticles with the biological environment in intact tissues. This review will compare the main optical clearing techniques and will address the considerations for the use of these techniques to evaluate nanoparticle biodistribution.
Collapse
Affiliation(s)
- Lauren Arms
- Therapeutic Targeting Research Group, University of Newcastle, Callaghan, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Annie-Louise Robson
- Therapeutic Targeting Research Group, University of Newcastle, Callaghan, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ameha Woldu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Antony Martin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - William Palmer
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jamie Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, University of Newcastle, Callaghan, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
16
|
Ariyasinghe NR, Santoso JW, Gupta D, Pincus MJ, August PR, McCain ML. Optical Clearing of Skeletal Muscle Bundles Engineered in 3-D Printed Templates. Ann Biomed Eng 2020; 49:523-535. [PMID: 32748107 DOI: 10.1007/s10439-020-02583-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/22/2020] [Indexed: 01/23/2023]
Abstract
Many techniques for engineering and interrogating three-dimensional (3-D) muscle bundles from animal- or patient-derived myoblasts have recently been developed to overcome the limitations of existing in vitro and in vivo model systems. However, many approaches for engineering 3-D muscle bundles rely on specialized and time-consuming techniques, such as photolithography for fabrication and cryosectioning for histology. Cryosectioning also limits visualization to a single plane instead of the entire 3-D structure. To address these challenges, we first implemented a consumer-grade 3-D-printer to rapidly prototype multiple templates for engineering muscle bundles. We then employed our templates to engineer 3D muscle bundles and identify template geometries that promoted bundle survival over three weeks. Subsequently, we implemented tissue clearing, immunostaining, and confocal imaging to acquire z-stacks of intact muscle bundles labelled for myogenic markers. With this approach, we could select the imaging plane on-demand and visualize the intact 3-D structure of bundles. However, tissue clearing did cause some tissue degradation that should be considered. Together, these advances in muscle tissue engineering and imaging will accelerate the use of these 3-D tissue platforms for disease modeling and therapeutic discovery.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 San Vicente Blvd, AHSP A9228, Los Angeles, CA, 90048, USA.,Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA, 90089, USA.,Icagen, 2090 E. Innovation Park Dr, Oro Valley, AZ, 85755, USA
| | - Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA, 90089, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA, 90089, USA
| | - Mark J Pincus
- Icagen, 2090 E. Innovation Park Dr, Oro Valley, AZ, 85755, USA.,Department of Science & CTE, Ironwood Ridge High School, 2475 W Naranja Dr, Oro Valley, AZ, 85742, USA
| | - Paul R August
- Icagen, 2090 E. Innovation Park Dr, Oro Valley, AZ, 85755, USA.,Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA, 90089, USA. .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Kang GY, Rhyu HJ, Choi HH, Shin SJ, Hyun YM. 3D Imaging of the Transparent Mycobacterium tuberculosis-Infected Lung Verifies the Localization of Innate Immune Cells With Granuloma. Front Cell Infect Microbiol 2020; 10:226. [PMID: 32500041 PMCID: PMC7243706 DOI: 10.3389/fcimb.2020.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Using a novel tissue-clearing method, we aimed to visualize the three-dimensional (3D) distribution of immune cells within Mycobacterium tuberculosis (Mtb)-infected mice lungs. Ethyl cinnamate-based tissue clearing of Mtb-infected mice lungs was performed to obtain transparent lung samples, which were then imaged using a light sheet fluorescence microscope. Using the 3D images, we performed quantitative analysis of the immune cell population within multiple granulomas. In addition, to compare the data from the tissue clearing method, we performed histopathological and immunofluorescence analyses, and flow cytometry. We then created 3D images of the Mtb-infected lung that successfully demonstrated the distribution of blood vessels, immune cells, and granulomas. Since the immune cells within a granuloma could be separately selected and counted, the immune cell population within a specific lesion could be quantified. In addition, macroscopic analysis, e.g., the size or shape of a granuloma, as well as microscopic analysis could be performed as intact lung samples were used. The use of the tissue clearing method in infected lungs could be a novel modality for understanding the role of the immune system in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Gyeong-Yi Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeong-Jun Rhyu
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Function, Innervation, and Neurotransmitter Signaling in Mice Lacking Type-II Taste Cells. eNeuro 2020; 7:ENEURO.0339-19.2020. [PMID: 31988217 PMCID: PMC7004487 DOI: 10.1523/eneuro.0339-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
The Skn-1a transcription factor (Pou2f3) is required for Type II taste cell differentiation in taste buds. Taste buds in Skn-1a-/- mice lack Type II taste cells but have a concomitant expansion of Type III cells, providing an ideal model to determine the relative role of taste cell types in response specificity. We confirmed that chorda tympani responses to sweet, bitter, and umami stimuli were greatly reduced in the knock-outs (KOs) compared with wild-type (WT) littermates. Skn-1a-/- mice also had reductions to NaCl that were partially amiloride-insensitive, suggesting that both Type II and Type III cells contribute to amiloride-insensitive salt detection in anterior tongue. We also confirmed that responses to sour stimuli are equivalent in the KOs, despite the large increase in the number of Type III taste cells. To examine their innervation, we crossed the Htr3a-GFP (5-HT3A-GFP) reporter mouse with the Skn-1a-/- mice and examined geniculate ganglion neurons for GFP expression and responses to 5-HT. We found no change in the number of 5-HT3A-expressing neurons with KO of Skn-1a. Calcium imaging showed that only 5-HT3A-expressing neurons respond to exogenous 5-HT, while most neurons respond to ATP, similar to WT mice. Interestingly, despite loss of all Type II cells, the P2X3 antagonist AF353 blocked all chorda tympani responses. These data collectively raise questions pertaining the source of ATP signaling in the absence of Type II taste cells and whether the additional Type III cells are innervated by fibers that would have normally innervated Type II cells.
Collapse
|
19
|
Abstract
The Skn-1a transcription factor (Pou2f3) is required for Type II taste cell differentiation in taste buds. Taste buds in Skn-1a -/- mice lack Type II taste cells but have a concomitant expansion of Type III cells, providing an ideal model to determine the relative role of taste cell types in response specificity. We confirmed that chorda tympani responses to sweet, bitter, and umami stimuli were greatly reduced in the knock-outs (KOs) compared with wild-type (WT) littermates. Skn-1a -/- mice also had reductions to NaCl that were partially amiloride-insensitive, suggesting that both Type II and Type III cells contribute to amiloride-insensitive salt detection in anterior tongue. We also confirmed that responses to sour stimuli are equivalent in the KOs, despite the large increase in the number of Type III taste cells. To examine their innervation, we crossed the Htr3a-GFP (5-HT3A-GFP) reporter mouse with the Skn-1a -/- mice and examined geniculate ganglion neurons for GFP expression and responses to 5-HT. We found no change in the number of 5-HT3A-expressing neurons with KO of Skn-1a Calcium imaging showed that only 5-HT3A-expressing neurons respond to exogenous 5-HT, while most neurons respond to ATP, similar to WT mice. Interestingly, despite loss of all Type II cells, the P2X3 antagonist AF353 blocked all chorda tympani responses. These data collectively raise questions pertaining the source of ATP signaling in the absence of Type II taste cells and whether the additional Type III cells are innervated by fibers that would have normally innervated Type II cells.
Collapse
|
20
|
Ortega-Gil A, Vaquero JJ, Gonzalez-Arjona M, Rullas J, Muñoz-Barrutia A. X-ray-based virtual slicing of TB-infected lungs. Sci Rep 2019; 9:19404. [PMID: 31852973 PMCID: PMC6920455 DOI: 10.1038/s41598-019-55986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/03/2019] [Indexed: 11/14/2022] Open
Abstract
Hollow organs such as the lungs pose a considerable challenge for post-mortem imaging in preclinical research owing to their extremely low contrast and high structural complexity. The aim of our study was to enhance the contrast of tuberculosis lesions for their stratification by 3D x-ray-based virtual slicing. Organ samples were taken from five control and five tuberculosis-infected mice. Micro-Computed Tomography (CT) scans of the subjects were acquired in vivo (without contrast agent) and post-mortem (with contrast agent). The proposed contrast-enhancing technique consists of x-ray contrast agent uptake (silver nitrate and iodine) by immersion. To create the histology ground-truth, the CT scan of the paraffin block guided the sectioning towards specific planes of interest. The digitalized histological slides reveal the presence, extent, and appearance of the contrast agents in lung structures and organized aggregates of immune cells. These findings correlate with the contrast-enhanced micro-CT slice. The abnormal densities in the lungs due to tuberculosis disease are concentrated in the right tail of the lung intensity histograms. The increase in the width of the right tail (~376%) indicates a contrast enhancement of the details of the abnormal densities. Postmortem contrast agents enhance the x-ray attenuation in tuberculosis lesions to allow 3D visualization by polychromatic x-ray CT, providing an advantageous tool for virtual slicing of whole lungs. The proposed contrast-enhancing technique combined with computational methods and the diverse micro-CT modalities will open the doors to the stratification of lesion types associated with infectious diseases.
Collapse
Affiliation(s)
- Ana Ortega-Gil
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Madrid, Spain
| | - Juan José Vaquero
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Joaquín Rullas
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
21
|
Cheng T, Kam JY, Johansen MD, Oehlers SH. High content analysis of granuloma histology and neutrophilic inflammation in adult zebrafish infected with Mycobacterium marinum. Micron 2019; 129:102782. [PMID: 31775097 DOI: 10.1016/j.micron.2019.102782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Infection of zebrafish with natural pathogen Mycobacterium marinum is a useful surrogate for studying the human granulomatous inflammatory response to infection by Mycobacterium tuberculosis. The adaptive immune system of the adult stage zebrafish offers an advance on the commonly used embryo infection model as adult zebrafish form granulomas with striking similarities to human-M. tuberculosis granulomas. Here, we present workflows to perform high content analyses of granulomas in adult zebrafish infected with M. marinum by cryosectioning to take advantage of strong endogenous transgenic fluorescence adapted from common zebrafish embryo infection tools. Specific guides to classifying granuloma necrosis and organisation, quantifying bacterial burden and leukocyte infiltration of granulomas, visualizing foam cell formation, analysing extracellular matrix remodelling and granuloma fibrosis are also provided. We use these methods to characterize neutrophil recruitment to M. marinum granulomas across time and find an inverse relation to granuloma necrosis suggesting granuloma necrosis is not a marker of immunopathology in the natural infection system of the adult zebrafish-M. marinum pairing. The methods can be easily translated to studying the zebrafish adaptive immune response to other chronic and granuloma-forming pathogens.
Collapse
Affiliation(s)
- Tina Cheng
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Julia Y Kam
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Matt D Johansen
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia; The University of Sydney, Discipline of Infectious Diseases & Immunology and Marie Bashir Institute, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
22
|
Bumann D, Fanous J, Li J, Goormaghtigh F. Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Res 2019; 8. [PMID: 31737252 PMCID: PMC6807158 DOI: 10.12688/f1000research.19441.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.
Collapse
Affiliation(s)
- Dirk Bumann
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Joseph Fanous
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Jiagui Li
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Frédéric Goormaghtigh
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| |
Collapse
|
23
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Mortazavi F, Stankiewicz AJ, Zhdanova IV. Looking through Brains with Fast Passive CLARITY: Zebrafish, Rodents, Non-human Primates and Humans. Bio Protoc 2019; 9:e3321. [PMID: 33654828 DOI: 10.21769/bioprotoc.3321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/24/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Recently developed CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ-hybridization-compatible Tis-sue-hYdrogel) technique renders the tissue transparent by removing lipids in the tissue, while preserving and stabilizing the cellular and subcellular structures. This provides effective penetration of diverse labeling probes, from primary and secondary antibodies to complementary DNA and RNA strands. Followed by high-resolution 3D imaging of neuronal cells and their projections in thick sections, tissue blocks, whole brains, or whole animals, CLARITY allows for superior quantitative analysis of neuronal tissue. Here, we provide our detailed protocol for PACT (Passive Clarity Technique) in brain tissue of diverse species, including human, non-human primate, rodents, and zebrafish. We describe the six principal steps: (1) Tissue fixation and preparation, (2) Passive lipid removal, (3) Immuno-labeling, (4) Optical clearing, (5) Imaging, (6) 3D visualization and quantification.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexander J Stankiewicz
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA.,Department of Preclinical Research, BioChron LLC, Worcester, Massachusetts 01605, USA
| | - Irina V Zhdanova
- Department of Preclinical Research, BioChron LLC, Worcester, Massachusetts 01605, USA
| |
Collapse
|
25
|
mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions In Vivo. mSphere 2019; 4:4/4/e00308-19. [PMID: 31292229 PMCID: PMC6620373 DOI: 10.1128/msphere.00308-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shumin Tan works in the field of Mycobacterium tuberculosis-host interactions. In this mSphere of Influence article, she reflects on how the paper "Single-cell phenotyping within transparent intact tissue through whole-body clearing" by B. Yang et al. (Cell 158:945-958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted her ideas on approaches to visualize and understand heterogeneous host-pathogen interactions in vivo in 3-dimensional space at the single-cell level, through the tractable and broadly compatible tissue optical clearing methods developed.
Collapse
|
26
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
27
|
Liang H, Dabrowska N, Kapur J, Weller DS. Structure-Based Intensity Propagation for 3-D Brain Reconstruction With Multilayer Section Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1106-1115. [PMID: 30371359 PMCID: PMC6488466 DOI: 10.1109/tmi.2018.2878488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microscopy is widely used for brain research because of its high resolution and ability to stain for many different biomarkers. Since whole brains are usually sectioned for tissue staining and imaging, reconstruction of 3D brain volumes from these sections is important for visualization and analysis. Recently developed tissue clearing techniques and advanced confocal microscopy enable multilayer sections to be imaged without compromising the resolution. However, noticeable structure inconsistence occurs if surface layers are used to align these sections. In this paper, a structure-based intensity propagation method is designed for the robust representation of multilayer sections. The 3D structures in reconstructed brains are more consistent using the proposed methods. Experiments are conducted on 367 multilayer sections from 20 mouse brains. The average reconstruction quality measured by the structure consistence index increases by 45% with the tissue flattening method and 29% further with the structure-based intensity propagation.
Collapse
|
28
|
Fung C, Tan S, Nakajima M, Skoog EC, Camarillo-Guerrero LF, Klein JA, Lawley TD, Solnick JV, Fukami T, Amieva MR. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol 2019; 17:e3000231. [PMID: 31048876 PMCID: PMC6497225 DOI: 10.1371/journal.pbio.3000231] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.
Collapse
Affiliation(s)
- Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mifuyu Nakajima
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emma C Skoog
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
| | | | - Jessica A Klein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jay V Solnick
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California, United States of America
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
29
|
Bumann D. Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0009-2019. [PMID: 30953427 PMCID: PMC11588158 DOI: 10.1128/microbiolspec.bai-0009-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic Salmonella enterica infections are a major cause of mortality worldwide and are becoming increasingly untreatable. Recent single-cell data from a mouse model of typhoid fever show that the host immune system actually eradicates many Salmonella cells, while other Salmonella organisms thrive at the same time in the same tissue, causing lethal disease progression. The surviving Salmonella cells have highly heterogeneous metabolism, growth rates, and exposure to various stresses. Emerging evidence suggests that similarly heterogeneous host-pathogen encounters might be a key feature of many infectious diseases. This heterogeneity offers fascinating opportunities for research and application. If we understand the mechanisms that determine the disparate local outcomes, we might be able to develop entirely novel strategies for infection control by broadening successful host antimicrobial attacks and closing permissive niches in which pathogens can thrive. This review describes suitable technologies, a current working model of heterogeneous host-Salmonella interactions, the impact of diverse Salmonella subsets on antimicrobial chemotherapy, and major open questions and challenges.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Wang H, Khoradmehr A, Tamadon A. FACT or PACT: A Comparison between Free-Acrylamide and Acrylamide-Based Passive Sodium Dodecyl Sulfate Tissue Clearing for whole Tissue Imaging. CELL JOURNAL 2019; 21:103-114. [PMID: 30825283 PMCID: PMC6397597 DOI: 10.22074/cellj.2019.5989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/26/2018] [Indexed: 01/13/2023]
Abstract
Major biological processes rely on the spatial organization of cells in complex, highly orchestrated three-dimensional (3D)
tissues. Until the recent decade, most of information on spatial neural representation primarily came from microscopic imaging
of “2D” (5-50 μm) tissue using traditional immunohistochemical techniques. However, serially sectioned and imaged tissue
sections for tissue visualization can lead to unique non-linear deformations, which dramatically hinders scientists’ insight into
the structural organization of intact organs. An emerging technique known as CLARITY renders large-scale biological tissues
transparent for 3D phenotype mapping and thereby, greatly facilitates structure-function relationships analyses. Since then,
numerous modifications and improvements have been reported to push the boundaries of knowledge on tissue clearing
techniques in research on assembled biological systems. This review aims to outline our current knowledge on next-generation
protocols of fast free-of-acrylamide clearing tissue (FACT) and passive CLARITY (PACT). The most important question is what
method we should select for tissue clearing, FACT or PACT. This review also highlights how FACT differs from PACT on
spanning multiple dimensions of the workflow. We systematically compared a number of factors including hydrogel formation,
clearing solution, and clearing temperatures between free-acrylamide and acrylamide-based passive sodium dodecyl sulfate
(SDS) tissue clearing and discussed negative effects of polyacrylamide on clearing, staining, and imaging in detail. Such
information may help to gain a perspective for interrogating neural circuits spatial interactions between molecules and cells
and provide guidance for developing novel tissue clearing strategies to probe deeply into intact organ.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. Electronic Address:
| |
Collapse
|
31
|
Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, Gürtler M, Estanboulieh RR, Shvartsman D, Gifford DK, Trapnell C, Melton D. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell 2019; 176:790-804.e13. [PMID: 30661759 PMCID: PMC6705176 DOI: 10.1016/j.cell.2018.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing β cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just β cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and β cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.
Collapse
Affiliation(s)
- Nadav Sharon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Raghav Chawla
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonas Mueller
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Jordan Vanderhooft
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Benjamin Rosenthal
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Mads Gürtler
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Dmitry Shvartsman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular & Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| | - Doug Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
An explant technique for high-resolution imaging and manipulation of mycobacterial granulomas. Nat Methods 2018; 15:1098-1107. [PMID: 30504889 PMCID: PMC6312189 DOI: 10.1038/s41592-018-0215-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
A central and critical structure in tuberculosis, the mycobacterial granuloma consists of highly organized immune cells, including macrophages that drive granuloma formation through a characteristic epithelioid transformation. Difficulties in imaging within intact animals as well as the inherent caveats of in vitro assembly models have severely limited the study and experimental manipulation of mature granulomas. Here we describe a new ex vivo granuloma culture technique, wherein mature, fully organized granulomas are microdissected and maintained in three-dimensional culture. This approach, in which granulomas retain key bacterial and host characteristics, enables high-resolution microscopy of granuloma macrophage dynamics, including epithelioid macrophage motility and granuloma consolidation. Through mass spectrometry, we find active production of key phosphotidylinositol species identified previously in human granulomas. We describe a method to transfect isolated granulomas, enabling genetic manipulation. In addition, we provide proof-of-concept for host-directed small molecule screens, identifying PKC signaling as an important regulator of granuloma macrophage organization.
Collapse
|
33
|
Carrillo M, Chuecos M, Gandhi K, Bednov A, Moore DL, Maher J, Ventolini G, Ji G, Schlabritz-Loutsevitch N. Optical tissue clearing in combination with perfusion and immunofluorescence for placental vascular imaging. Medicine (Baltimore) 2018; 97:e12392. [PMID: 30278515 PMCID: PMC6181621 DOI: 10.1097/md.0000000000012392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Imaging of placental tissues is a difficult task, because of specific for this organ complex multicellular and 3D tissue structure. The tissue clearing systems (X-CLARITY) system is a valuable tool for the examining the expression of molecular pathways in whole tissues and organs, originally developed for brain imaging.In the present report, we utilized this technology for the examination of placental vasculature and protein expression in perfused human placental tissue.The placental tissue was sufficiently cleared with preservation of endothelial staining and fluorescent markers, allowing visualization using confocal microscopy. The CLARITY method and X-CLARITY system is a valuable tool in placental imaging.
Collapse
Affiliation(s)
- Maira Carrillo
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
| | - Marcel Chuecos
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
| | - Kushal Gandhi
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
| | - Andrey Bednov
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
- University of Texas of the Permian Basin
| | - David Lee Moore
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
| | - James Maher
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
- University of Texas of the Permian Basin
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa
- University of Texas of the Permian Basin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
34
|
MacGilvary NJ, Tan S. Fluorescent Mycobacterium tuberculosis reporters: illuminating host-pathogen interactions. Pathog Dis 2018; 76:4919729. [PMID: 29718182 PMCID: PMC6086090 DOI: 10.1093/femspd/fty017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of Mycobacterium tuberculosis (Mtb) is intrinsically linked to its intimate and enduring interaction with its host, and understanding Mtb-host interactions at a molecular level is critical to attempts to decrease the significant burden of tuberculosis disease. The marked heterogeneity that exists in lesion progression and outcome during Mtb infection necessitates the development of methods that enable in situ analyses of Mtb biology and host response within the spatial context of tissue structure. Fluorescent reporter Mtb strains have thus come to the forefront as an approach with broad utility for the study of the Mtb-host interface, enabling visualization of the bacteria during infection, and contributing to the discovery of several facets such as non-uniformity in microenvironments and Mtb physiology in vivo, and their relation to the host immune response or therapeutic intervention. We review here the different types of fluorescent reporters and ways in which they have been utilized in Mtb studies, and expand on how they may further be exploited in combination with novel imaging and other methodologies to illuminate key aspects of Mtb-host interactions.
Collapse
Affiliation(s)
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
35
|
Zhang WL, Liu SH, Zhang WC, Hu W, Jiang M, Tamadon A, Feng Y. Skeletal Muscle CLARITY: A Preliminary Study of Imaging The Three-Dimensional Architecture of Blood Vessels and Neurons. CELL JOURNAL 2018; 20:132-137. [PMID: 29633589 PMCID: PMC5893283 DOI: 10.22074/cellj.2018.5266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Abstract
Objective Passive CLARITY is a whole-tissue clearing protocol, based on sodium dodecyl sulfate (SDS) clearing, for imaging
intact tissue containing transgenic or immunolabeled fluorescent proteins. In this study, we present an improved passive
CLARITY protocol with efficient immunolabeling without the need for electrophoresis or complex instrumentation.
Materials and Methods In this experimental study, after perfusion of C57BL/6N mice with phosphate-buffered saline (PBS)
and then with acrylamide-paraformaldehyde (PFA), the quadriceps femoris muscle was removed. The muscle samples
were post-fixed and degassed to initiate polymerization. After removing the excess hydrogel around the muscle, lipids were
washed out with the passive CLARITY technique. The transparent whole intact muscles were labeled for vessel and neuron
markers, and then imaged by confocal microscopy. Three-dimensional images were reconstructed to present the muscle
tissue architecture.
Results We established a simple clearing protocol using wild type mouse muscle and labeling of vasculatures and
neurons. Imaging the fluorescent signal was achieved by protein fixation, adjusting the pH of the SDS solution and
using an optimum temperature (37˚C) for tissue clearing, all of which contributed to the superiority of our protocol.
Conclusion We conclude that this passive CLARITY protocol can be successfully applied to three-dimensional
cellular and whole muscle imaging in mice, and will facilitate structural analyses and connectomics of large assemblies
of muscle cells, vessels and neurons in the context of three-dimensional systems.
Collapse
Affiliation(s)
- Wen Li Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Shao Hua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Chen Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine of Fudan University, Shanghai China
| | - Min Jiang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, China
| | - Amin Tamadon
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, China. .,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine of Fudan University, Shanghai China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine of Fudan University, Shanghai China.
| |
Collapse
|
36
|
Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using CLARITY. J Chem Neuroanat 2017; 86:19-34. [DOI: 10.1016/j.jchemneu.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
|
37
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
38
|
Ariel P. A beginner's guide to tissue clearing. Int J Biochem Cell Biol 2017; 84:35-39. [PMID: 28082099 DOI: 10.1016/j.biocel.2016.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 01/18/2023]
Abstract
The last decade has seen a proliferation of tissue clearing methods that render large biological samples transparent and allow unprecedented three-dimensional views of enormous volumes of tissue. For a scientist wondering whether these methods will be useful to address their research problems, it can be bewildering to sort through the ever-increasing number of papers introducing new clearing methods. Here, I provide a concise summary for the novice describing what tissue clearing is, which research problems it can be applied to, how to decide on a clearing method, and where the field is headed in the future.
Collapse
Affiliation(s)
- Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
39
|
Sullivan C, Matty MA, Jurczyszak D, Gabor KA, Millard PJ, Tobin DM, Kim CH. Infectious disease models in zebrafish. Methods Cell Biol 2016; 138:101-136. [PMID: 28129840 DOI: 10.1016/bs.mcb.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the zebrafish (Danio rerio) has developed as an important alternative to mammalian models for the study of hostpathogen interactions. Because they lack a functional adaptive immune response during the first 4-6weeks of development, zebrafish rely upon innate immune responses to protect against injuries and infections. During this early period of development, it is possible to isolate and study mechanisms of infection and inflammation arising from the innate immune response without the complications presented by the adaptive immune response. Zebrafish possess several inherent characteristics that make them an attractive option to study hostpathogen interactions, including extensive sequence and functional conservation with the human genome, optical clarity in larvae that facilitates the high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, robust forward and reverse genetic tools and techniques (e.g., CRISPR-Cas9 and TALENs), and amenability to chemical studies and screens. Here, we describe methods for studying hostpathogen interactions both through systemic infections and through localized infections that allow analysis of host cell response, migration patterns, and behavior. Each of the methods described can be modified for use in downstream applications that include ecotoxicant studies and chemical screens.
Collapse
Affiliation(s)
- C Sullivan
- University of Maine, Orono, ME, United States
| | - M A Matty
- Duke University School of Medicine, Durham, NC, United States
| | | | - K A Gabor
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - P J Millard
- University of Maine, Orono, ME, United States
| | - D M Tobin
- Duke University School of Medicine, Durham, NC, United States
| | - C H Kim
- University of Maine, Orono, ME, United States
| |
Collapse
|
40
|
Wu SY, Wang LD, Li JL, Xu GM, He ML, Li YY, Huang R. Salmonella spv locus suppresses host innate immune responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 58:387-396. [PMID: 27666190 DOI: 10.1016/j.fsi.2016.09.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is globally distributed and causes massive morbidity and mortality in humans and animals. S. typhimurium carries Salmonella plasmid virulence (spv) locus, which is highly conserved and closely related to bacterial pathogenicity, while its exact role in host immune responses during infection remains to be elucidated. To counteract the invaders, the host has evolved numerous strategies, among which the innate immunity and autophagy act as the first defense. Recently, zebrafish has been universally accepted as a valuable and powerful vertebrate model in analyzing bacteria-host interactions. To investigate whether spv locus enhances the virulence of Salmonella by exerting an effect on the host early defense, zebrafish larvae were employed in this study. LD50 of S. typhimurium to zebrafish larvae and bacterial dissemination were analyzed. Sudan black B and neutral red staining were performed to detect the responses of neutrophils and macrophages to Salmonella infection. Autophagy agonist Torin1 and inhibitor Chloroquine were used to interfere in autophagic flux, and the protein level of Lc3 and p62 were measured by western blotting. Results indicated that spv locus could decrease the LD50 of S. typhimurium to zebrafish larvae, accelerate the reproduction and dissemination of bacteria by inhibiting the function of neutrophils and macrophages. Moreover, spv locus restrained the formation of autophagosomes in the earlier stage of autophagy. These findings suggested the virulence of spv locus involving in suppressing host innate immune responses for the first time, which shed new light on the role of spv operon in Salmonella pathogenicity.
Collapse
Affiliation(s)
- Shu-Yan Wu
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Li-Dan Wang
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Jin-Ling Li
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Guang-Mei Xu
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Mei-Ling He
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Yuan-Yuan Li
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Rui Huang
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
41
|
Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, Sisk DM, Jurcic Smith KL, Medvitz NA, Miller SE, Trinh LA, Fraser SE, Madden JF, Turner J, Stout JE, Lee S, Tobin DM. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity 2016; 45:861-876. [PMID: 27760340 PMCID: PMC5268069 DOI: 10.1016/j.immuni.2016.09.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis infection in humans triggers formation of granulomas, which are tightly organized immune cell aggregates that are the central structure of tuberculosis. Infected and uninfected macrophages interdigitate, assuming an altered, flattened appearance. Although pathologists have described these changes for over a century, the molecular and cellular programs underlying this transition are unclear. Here, using the zebrafish-Mycobacterium marinum model, we found that mycobacterial granuloma formation is accompanied by macrophage induction of canonical epithelial molecules and structures. We identified fundamental macrophage reprogramming events that parallel E-cadherin-dependent mesenchymal-epithelial transitions. Macrophage-specific disruption of E-cadherin function resulted in disordered granuloma formation, enhanced immune cell access, decreased bacterial burden, and increased host survival, suggesting that the granuloma can also serve a bacteria-protective role. Granuloma macrophages in humans with tuberculosis were similarly transformed. Thus, during mycobacterial infection, granuloma macrophages are broadly reprogrammed by epithelial modules, and this reprogramming alters the trajectory of infection and the associated immune response.
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca W Beerman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allison F Rosenberg
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew G Johnson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Neil A Medvitz
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sara E Miller
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Le A Trinh
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Fraser
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - John F Madden
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason E Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|