1
|
Master K, El Khalki L, Bayachou M, Sossey‐Alaoui K. Role of WAVE3 as an actin binding protein in the pathology of triple negative breast cancer. Cytoskeleton (Hoboken) 2025; 82:130-144. [PMID: 39021344 PMCID: PMC11904861 DOI: 10.1002/cm.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology. This review delves into the intricate molecular makeup of TNBC, shedding light on actin's fundamental role in cellular processes. Actin, a structural element in the cytoskeleton, regulates various cellular pathways essential for homeostasis. Its dynamic nature enables functions such as cell migration, motility, intracellular transport, cell division, and signal transduction. Actin-binding proteins, including WAVE3, play pivotal roles in these processes. WAVE3, a member of the WASP family, remains the focus of this review due to its potential involvement in TNBC progression. While actin-binding proteins are studied for their roles in healthy cellular cycles, their significance in TNBC remains underexplored. This review aims to discuss WAVE3's impact on TNBC, exploring its molecular makeup, functions, and significance in tumor progression. The intricate structure of WAVE3, featuring elements like the verprolin-cofilin-acidic domain and regulatory elements, plays a crucial role in regulating actin dynamics. Dysregulation of WAVE3 in TNBC has been linked to enhanced cell migration, invasion, extracellular matrix remodeling, epithelial-mesenchymal transition, tumor proliferation, and therapeutic resistance. Understanding the role of actin-binding proteins in cancer biology has potential clinical implications, making them potential prognostic biomarkers and promising therapeutic targets. The review emphasizes the need for further research into actin-binding proteins' clinical applications, diagnostic value, and therapeutic interventions. In conclusion, this comprehensive review explores the complex interplay between actin and actin-binding proteins, with special emphasis on WAVE3, in the context of TNBC. By unraveling the molecular intricacies, structural characteristics, and functional significance, the review paves the way for future research directions, clinical applications, and potential therapeutic strategies in the challenging landscape of TNBC.
Collapse
Affiliation(s)
- Kruyanshi Master
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Lamyae El Khalki
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Mekki Bayachou
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Khalid Sossey‐Alaoui
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| |
Collapse
|
2
|
Nozumi M, Sato Y, Nishiyama-Usuda M, Igarashi M. Identification of z-axis filopodia in growth cones using super-resolution microscopy. J Neurochem 2024; 168:2974-2988. [PMID: 38946488 DOI: 10.1111/jnc.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.
Collapse
Affiliation(s)
- Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Yuta Sato
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Miyako Nishiyama-Usuda
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
4
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
5
|
Ravid Y, Penič S, Mimori-Kiyosue Y, Suetsugu S, Iglič A, Gov NS. Theoretical model of membrane protrusions driven by curved active proteins. Front Mol Biosci 2023; 10:1153420. [PMID: 37228585 PMCID: PMC10203436 DOI: 10.3389/fmolb.2023.1153420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Eukaryotic cells intrinsically change their shape, by changing the composition of their membrane and by restructuring their underlying cytoskeleton. We present here further studies and extensions of a minimal physical model, describing a closed vesicle with mobile curved membrane protein complexes. The cytoskeletal forces describe the protrusive force due to actin polymerization which is recruited to the membrane by the curved protein complexes. We characterize the phase diagrams of this model, as function of the magnitude of the active forces, nearest-neighbor protein interactions and the proteins' spontaneous curvature. It was previously shown that this model can explain the formation of lamellipodia-like flat protrusions, and here we explore the regimes where the model can also give rise to filopodia-like tubular protrusions. We extend the simulation with curved components of both convex and concave species, where we find the formation of complex ruffled clusters, as well as internalized invaginations that resemble the process of endocytosis and macropinocytosis. We alter the force model representing the cytoskeleton to simulate the effects of bundled instead of branched structure, resulting in shapes which resemble filopodia.
Collapse
Affiliation(s)
- Yoav Ravid
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Kobe, Hyogo, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
7
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
8
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Shigene K, Hiasa Y, Otake Y, Soufi M, Janewanthanakul S, Nishimura T, Sato Y, Suetsugu S. Translation of Cellular Protein Localization Using Convolutional Networks. Front Cell Dev Biol 2021; 9:635231. [PMID: 34422790 PMCID: PMC8375474 DOI: 10.3389/fcell.2021.635231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Protein localization in cells has been analyzed by fluorescent labeling using indirect immunofluorescence and fluorescent protein tagging. However, the relationships between the localization of different proteins had not been analyzed using artificial intelligence. Here, we applied convolutional networks for the prediction of localization of the cytoskeletal proteins from the localization of the other proteins. Lamellipodia are one of the actin-dependent subcellular structures involved in cell migration and are mainly generated by the Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 2 (WAVE2) and the membrane remodeling I-BAR domain protein IRSp53. Focal adhesion is another actin-based structure that contains vinculin protein and promotes lamellipodia formation and cell migration. In contrast, microtubules are not directly related to actin filaments. The convolutional network was trained using images of actin filaments paired with WAVE2, IRSp53, vinculin, and microtubules. The generated images of WAVE2, IRSp53, and vinculin were highly similar to their real images. In contrast, the microtubule images generated from actin filament images were inferior without the generation of filamentous structures, suggesting that microscopic images of actin filaments provide more information about actin-related protein localization. Collectively, this study suggests that image translation by the convolutional network can predict the localization of functionally related proteins, and the convolutional network might be used to describe the relationships between the proteins by their localization.
Collapse
Affiliation(s)
- Kei Shigene
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuta Hiasa
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshito Otake
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mazen Soufi
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Suphamon Janewanthanakul
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinobu Sato
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan.,Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan.,Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
10
|
Dobramysl U, Jarsch IK, Inoue Y, Shimo H, Richier B, Gadsby JR, Mason J, Szałapak A, Ioannou PS, Correia GP, Walrant A, Butler R, Hannezo E, Simons BD, Gallop JL. Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation. J Cell Biol 2021; 220:e202003052. [PMID: 33740033 PMCID: PMC7980258 DOI: 10.1083/jcb.202003052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways.
Collapse
Affiliation(s)
- Ulrich Dobramysl
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Iris Katharina Jarsch
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Yoshiko Inoue
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hanae Shimo
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Benjamin Richier
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan R. Gadsby
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Julia Mason
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alicja Szałapak
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pantelis Savvas Ioannou
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Astrid Walrant
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Edouard Hannezo
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Benjamin D. Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Jennifer L. Gallop
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
12
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
13
|
Kansakar U, Wang W, Markovic V, Sossey-Alaoui K. Elucidating the molecular signaling pathways of WAVE3. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:900. [PMID: 32793744 DOI: 10.21037/atm.2020.02.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is a complex, multistep process that requires tumor cells to evade from the original site and form new tumors at a distant site or a different organ, often via bloodstream or the lymphatic system. Metastasis is responsible for more than 90% of cancer-related deaths. WAVE3 belongs to the Wiskott-Aldrich syndrome protein (WASP) family, which regulate actin cytoskeleton remodeling as well as several aspects of cell migration, invasion, and metastasis. In fact, WAVE3 has been established as a driver of tumor progression and metastasis in cancers from several origins, including triple negative breast cancers (TNBCs), which are classified as the most lethal subtype of breast cancer, due to their resistance to standard of care therapy and highly metastatic behavior. In this review, we will attempt to summarize the recent advances that have been made to understand how WAVE3 contributes to the molecular mechanisms that control cancer progression and metastasis. We will also review the signaling pathways that are involved in the regulation of WAVE3 expression and function to identify potential therapeutic options targeted against WAVE3 for the treatment of patients with metastatic tumors.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rammelkamp Center for Research, MetroHealth, Cleveland, OH, USA
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rammelkamp Center for Research, MetroHealth, Cleveland, OH, USA
| | - Vesna Markovic
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rammelkamp Center for Research, MetroHealth, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rammelkamp Center for Research, MetroHealth, Cleveland, OH, USA
| |
Collapse
|
14
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
15
|
Takahashi Y, Zhou Y, Miyamoto T, Higashi H, Nakamichi N, Takeda Y, Kato Y, Korchev Y, Fukuma T. High-Speed SICM for the Visualization of Nanoscale Dynamic Structural Changes in Hippocampal Neurons. Anal Chem 2019; 92:2159-2167. [PMID: 31840491 DOI: 10.1021/acs.analchem.9b04775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dynamic reassembly of the cytoskeleton and structural changes represented by dendritic spines, cargo transport, and synapse formation are closely related to memory. However, the visualization of the nanoscale topography is challenging because of the diffraction limit of optical microscopy. Scanning ion conductance microscopy (SICM) is an effective tool for visualizing the nanoscale topography changes of the cell surface without labeling. The temporal resolution of SICM is a critical issue of live-cell time-lapse imaging. Here, we developed a new scanning method, automation region of interest (AR)-mode SICM, to select the next imaging region by predicting the location of a cell, thus improving the scanning speed of time-lapse imaging. The newly developed algorithm reduced the scanning time by half. The time-lapse images provided not only novel information about nanoscale structural changes but also quantitative information on the dendritic spine and synaptic bouton volume changes and formation process of the neural network that are closely related to memory. Furthermore, translocation of plasmalemmal precursor vesicles (ppvs), for which fluorescent labeling has not been established, were also visualized along with the rearrangement of the cytoskeleton at the growth cone.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- WPI Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kanazawa 920-1192 , Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , Saitama 332-0012 , Japan
| | - Yuanshu Zhou
- WPI Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Takafumi Miyamoto
- Department Division of Electrical Engineering and Computer Science , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Hiroki Higashi
- Department Division of Electrical Engineering and Computer Science , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Yuka Takeda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Yuri Korchev
- WPI Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kanazawa 920-1192 , Japan.,Department of Medicine , Imperial College London , London W12 0NN , United Kingdom.,National University of Science and Technology (MISiS) , Leninskiy prospect 4 , Moscow 119049 , Russia
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kanazawa 920-1192 , Japan
| |
Collapse
|
16
|
Cioni JM, Wong HHW, Bressan D, Kodama L, Harris WA, Holt CE. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function. Neuron 2019. [PMID: 29518358 PMCID: PMC5855093 DOI: 10.1016/j.neuron.2018.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2’s function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. CYFIP1 and CYFIP2 serve non-redundant functions in retinal axon growth and guidance CYFIP2 regulates growth cone filopodial dynamics and axon-axon responses CYFIP2 interacts with RNPs and the WRC in distinct cellular compartments Axon sorting is mediated by CYFIP2’s interaction with the WRC
Collapse
Affiliation(s)
- Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lay Kodama
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
17
|
Yi J, Balagopalan L, Nguyen T, McIntire KM, Samelson LE. TCR microclusters form spatially segregated domains and sequentially assemble in calcium-dependent kinetic steps. Nat Commun 2019; 10:277. [PMID: 30655520 PMCID: PMC6336795 DOI: 10.1038/s41467-018-08064-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/08/2018] [Indexed: 01/21/2023] Open
Abstract
Engagement of the T cell receptor (TCR) by stimulatory ligand results in the rapid formation of microclusters at sites of T cell activation. Whereas microclusters have been studied extensively using confocal microscopy, the spatial and kinetic relationships of their signaling components have not been well characterized due to limits in image resolution and acquisition speed. Here we show, using TIRF-SIM to examine the organization of microclusters at sub-diffraction resolution, the presence of two spatially distinct domains composed of ZAP70-bound TCR and LAT-associated signaling complex. Kinetic analysis of microcluster assembly reveal surprising delays between the stepwise recruitment of ZAP70 and signaling proteins to the TCR, as well as distinct patterns in their disassociation. These delays are regulated by intracellular calcium flux downstream of T cell activation. Our results reveal novel insights into the spatial and kinetic regulation of TCR microcluster formation and T cell activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Calcium/immunology
- Calcium/metabolism
- Feedback, Physiological
- Gene Knockout Techniques
- Humans
- Image Processing, Computer-Assisted
- Intravital Microscopy/methods
- Jurkat Cells
- Kinetics
- Leukocytes, Mononuclear
- Lymphocyte Activation/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Primary Cell Culture
- Protein Domains/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tiffany Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine M McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Abe T, La TM, Miyagaki Y, Oya E, Wei FY, Sumida K, Fujise K, Takeda T, Tomizawa K, Takei K, Yamada H. Phosphorylation of cortactin by cyclin-dependent kinase 5 modulates actin bundling by the dynamin 1-cortactin ring-like complex and formation of filopodia and lamellipodia in NG108-15 glioma-derived cells. Int J Oncol 2018; 54:550-558. [PMID: 30570111 PMCID: PMC6317663 DOI: 10.3892/ijo.2018.4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamin copolymerizes with cortactin to form a ring-like complex that bundles and stabilizes actin filaments. Actin bundle formation is crucial for generation of filopodia and lamellipodia, which guide migration, invasion, and metastasis of cancer cells. However, it is unknown how the dynamin-cortactin complex regulates actin bundle formation. The present study investigated phosphorylation of cortactin by cyclin-dependent kinase 5 (CDK5) and its effect on actin bundle formation by the dynamin-cortactin complex. CDK5 directly phosphorylated cortactin at T145/T219 in vitro. Phosphomimetic mutants in which one or both of these threonine residues was substituted by aspartate were used. The three phosphomimetic mutants (T145D, T219D and T145DT219D) had a decreased affinity for F-actin. Furthermore, electron microscopy demonstrated that these phosphomimetic mutants could not form a ring-like complex with dynamin 1. Consistently, the dynamin 1-phosphomimetic cortactin complexes exhibited decreased actin-bundling activity. Expression of the phosphomimetic mutants resulted in not only aberrant lamellipodia and short filopodia but also cell migration in NG108-15 glioma-derived cells. These results indicate that phosphorylation of cortactin by CDK5 regulates formation of lamellipodia and filopodia by modulating dynamin 1/cortactin-dependent actin bundling. Taken together, these findings suggest that CDK5 is a potential molecular target for anticancer therapy.
Collapse
Affiliation(s)
- Tadashi Abe
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - The Mon La
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuuzi Miyagaki
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eri Oya
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kento Sumida
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenshiro Fujise
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tetsuya Takeda
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
19
|
Vesicular movements in the growth cone. Neurochem Int 2018; 119:71-76. [DOI: 10.1016/j.neuint.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
|
20
|
Xu C, Fu X, Zhu S, Liu JJ. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol Biol Cell 2016; 27:3342-3356. [PMID: 27605705 PMCID: PMC5170866 DOI: 10.1091/mbc.e16-05-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Retrolinkin, a neuronal membrane protein, coordinates with endophilin A1 and mediates early endocytic trafficking and signal transduction of the ligand-receptor complex formed between brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), in dendrites of CNS neurons. Here we report that retrolinkin interacts with the CYFIP1/2 subunit of the WAVE1 complex, a member of the WASP/WAVE family of nucleation-promoting factors that binds and activates the Arp2/3 complex to promote branched actin polymerization. WAVE1, not N-WASP, is required for BDNF-induced TrkB endocytosis and dendrite outgrowth. Disruption of the interaction between retrolinkin and CYFIP1/2 impairs recruitment of WAVE1 to neuronal plasma membrane upon BDNF addition and blocks internalization of activated TrkB. We also show that WAVE1-mediated endocytosis of BDNF-activated TrkB is actin dependent and clathrin independent. These results not only reveal the mechanistic role of retrolinkin in BDNF-TrkB endocytosis, but also indicate that WASP/WAVE-dependent actin polymerization during endocytosis is regulated by cell type-specific and cargo-specific modulators.
Collapse
Affiliation(s)
- Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiuping Fu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shaoxia Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Biondini M, Sadou-Dubourgnoux A, Paul-Gilloteaux P, Zago G, Arslanhan MD, Waharte F, Formstecher E, Hertzog M, Yu J, Guerois R, Gautreau A, Scita G, Camonis J, Parrini MC. Direct interaction between exocyst and Wave complexes promotes cell protrusions and motility. J Cell Sci 2016; 129:3756-3769. [PMID: 27591259 DOI: 10.1242/jcs.187336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022] Open
Abstract
Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.
Collapse
Affiliation(s)
- Marco Biondini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Amel Sadou-Dubourgnoux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Perrine Paul-Gilloteaux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | - Giulia Zago
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Melis D Arslanhan
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - François Waharte
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | | | - Maud Hertzog
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS UMR 5100, Université Paul Sabatier, Toulouse 31062, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Alexis Gautreau
- Laboratoire de Biochimie Ecole Polytechnique, CNRS UMR7654, Palaiseau Cedex 91128, France
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan 20139, Italy
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| |
Collapse
|
22
|
Abstract
The myelin sheath can be compared to the neuronal growth cone in that the unfurled sheath looks like a giant lamellum. The authors recently tested this hypothesis by examining the importance of WAVE1, a regulator of lamellipodia formation in neurons and other cells, in myelinogenesis. They found that WAVE1 is critical for formation of oligodendrocyte lamellae and myelin sheaths. They review the regulation of WAVE1 and how WAVE1 is transported and localized to lamellipodia. Because they found that some but not all myelination was impaired by knockout of WAVE1 function, they hypothesize that other regulators of actin nucleation help oligodendrocytes produce myelin in parallel with WAVE1 function. Interestingly, they found that oligodendrocyte maturation also is disturbed with WAVE1 knockout and propose that proper localization and transport of signaling molecules relevant to the integrin signaling cascade are disrupted by loss of WAVE1 function. NEUROSCIENTIST 13(5):486—491, 2007. DOI: 10.1177/1073858407299423
Collapse
Affiliation(s)
- Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
23
|
Chen KW, Chang YJ, Chen L. SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Commun Integr Biol 2015; 8:e1044189. [PMID: 26479731 PMCID: PMC4594490 DOI: 10.1080/19420889.2015.1044189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 10/26/2022] Open
Abstract
Morphogenesis during development is fundamental to the differentiation of several cell types. As neurite outgrowth marks neuritogenesis, formation of filopodia precede the formation of dendrites and axons. While the structure of filopodia is well-known, the initiation of filopodia during neurite outgrowth is not clear. SH2B1 is known to promote neurite outgrowth of PC12 cells, hippocampal and cortical neurons. As a signaling adaptor protein, SH2B1 interacts with several neurotrophin receptors, and regulates signaling as well as gene expression. Our recent findings suggest that SH2B1 can be recruited to the plasma membrane and F-actin fractions by IRSp53. IRSp53 bends plasma membrane and facilitates actin bundling to set the stage for filopodium formation. We further demonstrate that SH2B1-IRSp53 complexes enhance the formation of filopodia, dendrites and dendritic branches of hippocampal and cortical neurons. While the molecular mechanism underlying filopodium initiation is not clear, we propose that SH2B1-neurotrophin interacting sites may mark the putative sites of filopodium initiation.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Chang
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| | - Linyi Chen
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China ; Brain Research Center; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China ; Department of Medical Science; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| |
Collapse
|
24
|
Sweeney MO, Collins A, Padrick SB, Goode BL. A novel role for WAVE1 in controlling actin network growth rate and architecture. Mol Biol Cell 2014; 26:495-505. [PMID: 25473116 PMCID: PMC4310740 DOI: 10.1091/mbc.e14-10-1477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel functional role for WAVE1 is found that is lacking in N-WASP and WAVE2. Through its unique WH2 domain, WAVE1 dramatically reduces the rate of actin filament elongation independently of its interactions with the Arp2/3 complex. These findings help explain how cells build actin networks with distinct geometries and growth rates. Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.
Collapse
Affiliation(s)
- Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Agnieszka Collins
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Shae B Padrick
- Howard Hughes Medical Institute and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454;
| |
Collapse
|
25
|
Hazai D, Szudoczki R, Ding J, Soderling SH, Weinberg RJ, Sótonyi P, Rácz B. Ultrastructural abnormalities in CA1 hippocampus caused by deletion of the actin regulator WAVE-1. PLoS One 2013; 8:e75248. [PMID: 24086480 PMCID: PMC3783472 DOI: 10.1371/journal.pone.0075248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
By conveying signals from the small GTPase family of proteins to the Arp2/3 complex, proteins of the WAVE family facilitate actin remodeling. The WAVE-1 isoform is expressed at high levels in brain, where it plays a role in normal synaptic processing, and is implicated in hippocampus-dependent memory retention. We used electron microscopy to determine whether synaptic structure is modified in the hippocampus of WAVE-1 knockout mice, focusing on the neuropil of CA1 stratum radiatum. Mice lacking WAVE-1 exhibited alterations in the morphology of both axon terminals and dendritic spines; the relationship between the synaptic partners was also modified. The abnormal synaptic morphology we observed suggests that signaling through WAVE-1 plays a critical role in establishing normal synaptic architecture in the rodent hippocampus.
Collapse
Affiliation(s)
- Diána Hazai
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Róbert Szudoczki
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Jindong Ding
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States of America
| | - Scott H. Soderling
- Departments of Cell Biology and Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Richard J. Weinberg
- Department of Cell Biology & Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Péter Sótonyi
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
26
|
Heckman CA, Plummer HK. Filopodia as sensors. Cell Signal 2013; 25:2298-311. [PMID: 23876793 DOI: 10.1016/j.cellsig.2013.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Filopodia are sensors on both excitable and non-excitable cells. The sensing function is well documented in neurons and blood vessels of adult animals and is obvious during dorsal closure in embryonic development. Nerve cells extend neurites in a bidirectional fashion with growth cones at the tips where filopodia are concentrated. Their sensing of environmental cues underpins the axon's ability to "guide," bypassing non-target cells and moving toward the target to be innervated. This review focuses on the role of filopodia structure and dynamics in the detection of environmental cues, including both the extracellular matrix (ECM) and the surfaces of neighboring cells. Other protrusions including the stereocilia of the inner ear and epididymus, the invertebrate Type I mechanosensors, and the elongated processes connecting osteocytes, share certain principles of organization with the filopodia. Actin bundles, which may be inside or outside of the excitable cell, function to transduce stress from physical perturbations into ion signals. There are different ways of detecting such perturbations. Osteocyte processes contain an actin core and are physically anchored on an extracellular structure by integrins. Some Type I mechanosensors have bridge proteins that anchor microtubules to the membrane, but bundles of actin in accessory cells exert stress on this complex. Hair cells of the inner ear rely on attachments between the actin-based protrusions to activate ion channels, which then transduce signals to afferent neurons. In adherent filopodia, the focal contacts (FCs) integrated with ECM proteins through integrins may regulate integrin-coupled ion channels to achieve signal transduction. Issues that are not understood include the role of Ca(2+) influx in filopodia dynamics and how integrins coordinate or gate signals arising from perturbation of channels by environmental cues.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0212, USA.
| | | |
Collapse
|
27
|
Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW. CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 2013; 126:2411-23. [PMID: 23572514 DOI: 10.1242/jcs.117473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.
Collapse
Affiliation(s)
- Witchuda Saengsawang
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie MJ, Yagi H, Kuroda K, Wang CC, Komada M, Zhao H, Sakakibara A, Miyata T, Nagata KI, Oka Y, Iguchi T, Sato M. WAVE2–Abi2 Complex Controls Growth Cone Activity and Regulates the Multipolar–Bipolar Transition as well as the Initiation of Glia-Guided Migration. Cereb Cortex 2012; 23:1410-23. [DOI: 10.1093/cercor/bhs123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S. mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 2011; 287:4702-14. [PMID: 22179776 DOI: 10.1074/jbc.m111.305102] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Filopodia are dynamic actin-rich cell surface protrusions involved in cell migration, axon guidance, and wound healing. The RhoGTPase Cdc42 generates filopodia via IRSp53, a multidomain protein that links the processes of plasma membrane deformation and actin dynamics required for their formation in mammalian cells. The Src homology 3 domain of IRSp53 binds to the actin regulators Mena, Eps8, WAVE1, WAVE2, mDia1, and mDia2. We show that mDia1 and WAVE2 synergize with IRSp53 to form filopodia. IRSp53 also interacts directly with these two proteins within filopodia, as observed in acceptor photobleaching FRET studies. Measurement of filopodium formation by time-lapse imaging of live cells also revealed that depleting neuronal cells of either mDia1 or WAVE2 protein decreases the ability of IRSp53 to induce filopodia. In contrast, IRSp53 does not appear to partner WAVE1 or mDia2 to give rise to these structures. In addition, although all three isoforms of mDia are capable of inducing filopodia, IRSp53 requires only mDia1 to do so. These findings suggest that mDia1 and WAVE2 are important Src homology 3 domain partners of IRSp53 in forming filopodia.
Collapse
Affiliation(s)
- Wah Ing Goh
- Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138655
| | | | | | | | | | | | | |
Collapse
|
30
|
Actin-independent behavior and membrane deformation exhibited by the four-transmembrane protein M6a. PLoS One 2011; 6:e26702. [PMID: 22162747 PMCID: PMC3230579 DOI: 10.1371/journal.pone.0026702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/30/2011] [Indexed: 12/27/2022] Open
Abstract
M6a is a four-transmembrane protein that is abundantly expressed in the nervous system. Previous studies have shown that over-expression of this protein induces various cellular protrusions, such as neurites, filopodia, and dendritic spines. In this detailed characterization of M6a-induced structures, we found their varied and peculiar characteristics. Notably, the M6a-induced protrusions were mostly devoid of actin filaments or microtubules and exhibited free random vibrating motion. Moreover, when an antibody bound to M6a, the membrane-wrapped protrusions were suddenly disrupted, leading to perturbation of the surrounding membrane dynamics involving phosphoinositide signaling. During single-molecule analysis, M6a exhibited cytoskeleton-independent movement and became selectively entrapped along the cell perimeter in an actin-independent manner. These observations highlight the unusual characteristics of M6a, which may have a significant yet unappreciated role in biological systems.
Collapse
|
31
|
Stephan R, Gohl C, Fleige A, Klämbt C, Bogdan S. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila. Mol Biol Cell 2011; 22:4079-92. [PMID: 21900504 PMCID: PMC3204070 DOI: 10.1091/mbc.e11-02-0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE.
Collapse
Affiliation(s)
- Raiko Stephan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
32
|
Pan SH, Chao YC, Hung PF, Chen HY, Yang SC, Chang YL, Wu CT, Chang CC, Wang WL, Chan WK, Wu YY, Che TF, Wang LK, Lin CY, Lee YC, Kuo ML, Lee CH, Chen JJW, Hong TM, Yang PC. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest 2011; 121:3189-205. [PMID: 21747164 DOI: 10.1172/jci42975] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/18/2011] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a predominant cause of death in patients with cancer. It is a complex multistep process that needs to be better understood if we are to develop new approaches to managing tumor metastasis. Tumor cell invasion of the local stroma is suppressed by collapsin response mediator protein-1 (CRMP-1). Recently, we identified a long isoform of CRMP-1 (LCRMP-1), expression of which correlates with cancer cell invasiveness and poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). Here, we report that LCRMP-1 overexpression in noninvasive human cell lines enhanced filopodia formation, cancer cell migration, and invasion via stabilization of actin. This effect required a highly conserved N-terminal region of LCRMP-1 as well as the WASP family verprolin-homologous protein-1/actin nucleation pathway (WAVE-1/actin nucleation pathway). Furthermore, LCRMP-1 appeared to act downstream of Cdc42, a Rho family protein known to be involved in actin rearrangement. In addition, LCRMP-1 associated with CRMP-1, which downregulated cancer cell metastasis by interrupting the association of LCRMP-1 and WAVE-1. Finally, we found that high-level expression of LCRMP-1 and low-level expression of CRMP-1 were associated with lymph node metastasis and poor survival in patients with NSCLC. In sum, we show that LCRMP-1 and CRMP-1 have opposing functions in regulating cancer cell invasion and metastasis and propose that this pathway may serve as a potential anticancer target.
Collapse
Affiliation(s)
- Szu-Hua Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Samuel F, Hynds DL. RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol 2010; 42:133-42. [PMID: 20878268 DOI: 10.1007/s12035-010-8144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/12/2010] [Indexed: 12/27/2022]
Abstract
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.
Collapse
Affiliation(s)
- Filsy Samuel
- Department of Biology, Texas Woman's University, PO Box 425799, Denton, TX 46204-5799, USA
| | | |
Collapse
|
34
|
Ceglia I, Kim Y, Nairn AC, Greengard P. Signaling pathways controlling the phosphorylation state of WAVE1, a regulator of actin polymerization. J Neurochem 2010; 114:182-90. [PMID: 20403076 PMCID: PMC2945298 DOI: 10.1111/j.1471-4159.2010.06743.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 1 (WAVE1) is a key regulator of Arp (actin-related protein) 2/3 complex-mediated actin polymerization. We have established previously that the state of phosphorylation of WAVE1 at three distinct residues controls its ability to regulate actin polymerization and spine morphology. Cyclin-dependent kinase 5 phosphorylates WAVE1 at Ser310, Ser397 and Ser441 to a high basal stoichiometry, resulting in inhibition of WAVE1 activity. Our previous and current studies show that WAVE1 can be dephosphorylated at all three sites and thereby activated upon stimulation of the D1 subclass of dopamine receptors and of the NMDA subclass of glutamate receptors, acting through cAMP and Ca(2+) signaling pathways, respectively. Specifically, we have identified protein phosphatase-2A and protein phosphatase-2B as the effectors for these second messengers. These phosphatases act on different sites to mediate receptor-induced signaling pathways, which would lead to activation of WAVE1.
Collapse
Affiliation(s)
- Ilaria Ceglia
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Angus C. Nairn
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
35
|
Brooks SP, Coccia M, Tang HR, Kanuga N, Machesky LM, Bailly M, Cheetham ME, Hardcastle AJ. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Hum Mol Genet 2010; 19:2421-32. [PMID: 20332100 PMCID: PMC2876887 DOI: 10.1093/hmg/ddq125] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/20/2010] [Indexed: 01/01/2023] Open
Abstract
Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.
Collapse
Affiliation(s)
- Simon P. Brooks
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK and
| | - Margherita Coccia
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK and
| | - Hao R. Tang
- The CRUK Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK and
| | | | - Maryse Bailly
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK and
| | | | | |
Collapse
|
36
|
Takenawa T. Phosphoinositide-binding interface proteins involved in shaping cell membranes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:509-23. [PMID: 20467216 PMCID: PMC3108299 DOI: 10.2183/pjab.86.509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes.
Collapse
Affiliation(s)
- Tadaomi Takenawa
- Laboratory of Lipid Biochemistry, Graduate School of Medicine, Kobe University, Hyogo, Japan.
| |
Collapse
|
37
|
Nakagawa H, Suzuki H, Machida S, Suzuki J, Ohashi K, Jin M, Miyamoto S, Terasaki AG. Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions. PLoS One 2009; 4:e7530. [PMID: 19851499 PMCID: PMC2761545 DOI: 10.1371/journal.pone.0007530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Division of Biology, Faculty of Science, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A review of the cytoskeleton-organizing WASP and WAVE family proteins. All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.
Collapse
Affiliation(s)
- Shusaku Kurisu
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | |
Collapse
|
39
|
Sanchez AM, Flamini MI, Fu XD, Mannella P, Giretti MS, Goglia L, Genazzani AR, Simoncini T. Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Mol Endocrinol 2009; 23:1193-202. [PMID: 19460862 DOI: 10.1210/me.2008-0408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Estrogens are important regulators of neuronal cell morphology, and this is thought to be critical for gender-specific differences in brain function and dysfunction. Dendritic spine formation is dependent on actin remodeling by the WASP-family verprolin homologous (WAVE1) protein, which controls actin polymerization through the actin-related protein (Arp)-2/3 complex. Emerging evidence indicates that estrogens are effective regulators of the actin cytoskeleton in various cell types via rapid, extranuclear signaling mechanisms. We here show that 17beta-estradiol (E2) administration to rat cortical neurons leads to phosphorylation of WAVE1 on the serine residues 310, 397, and 441 and to WAVE1 redistribution toward the cell membrane at sites of dendritic spine formation. WAVE1 phosphorylation is found to be triggered by a Galpha(i)/Gbeta protein-dependent, rapid extranuclear signaling of estrogen receptor alpha to c-Src and to the small GTPase Rac1. Rac1 recruits the cyclin-dependent kinase (Cdk5) that directly phosphorylates WAVE1 on the three serine residues. After WAVE1 phosphorylation by E2, the Arp-2/3 complex concentrates at sites of spine formation, where it triggers the local reorganization of actin fibers. In parallel, E2 recruits a Galpha(13)-dependent pathway to RhoA and ROCK-2, leading to activation of actin remodeling via the actin-binding protein, moesin. Silencing of WAVE1 or of moesin abrogates the increase in dendritic spines induced by E2 in cortical neurons. In conclusion, our findings indicate that the control of actin polymerization and branching via moesin or WAVE1 is a key function of estrogen receptor alpha in neurons, which may be particularly relevant for the regulation of dendritic spines.
Collapse
Affiliation(s)
- Angel Matias Sanchez
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, 56100 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. MOLECULAR PLANT 2008; 1:990-1006. [PMID: 19825598 DOI: 10.1093/mp/ssn059] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We demonstrate that putative SCAR complex subunits BRK1 and SCAR1 are localized to the plasma membrane at sites of cell growth and wall deposition in expanding cells of leaves and roots. BRK1 localization is SCAR-dependent, providing further evidence of an association between these proteins in vivo. Consistent with plasma membrane localization of SCAR complex subunits, cortical F-actin accumulation in root tip cells is reduced in brk1 mutants. Moreover, mutations disrupting the SCAR or ARP2/3 complex reduce the growth rate of roots and their ability to penetrate semi-solid medium, suggesting reduced rigidity. Cell walls of mutant roots exhibit abnormal structure and composition at intercellular junctions where BRK1 and SCAR1 are enriched in the adjacent plasma membrane. Taken together, our results suggest that SCAR and ARP2/3 complex-dependent actin polymerization promotes processes at the plasma membrane that are important for normal growth and wall assembly.
Collapse
Affiliation(s)
- Julia Dyachok
- University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki M, Miura K, Tanaka T. The virus-like particles of a braconid endoparasitoid wasp, Meteorus pulchricornis, inhibit hemocyte spreading in its noctuid host, Pseudaletia separata. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1015-22. [PMID: 18501922 DOI: 10.1016/j.jinsphys.2008.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 05/21/2023]
Abstract
We previously reported that the virus-like particles of Meteorus pulchricornis (MpVLPs) are capable of inducing apoptosis by around 6h in the hemocytes of the host, Pseudaletia separata [Suzuki, M., Tanaka, T., 2006. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. Journal of Insect Physiology 52, 602-611], thereby protecting the oviposited egg. In the present study, we focused on analyses of the earlier events caused by the MpVLPs upon the host immune response, namely their effects on hemocyte spreading. After recognition and attachment on foreign substance, the granulocytes and plasmatocytes assemble focal complexes and focal adhesions and spread by protruding filopodia/lamellipodia. The well-spread, cultured hemocytes were subjected to MpVLPs exposure, and the morphological changes were observed. The granulocytes lost the focal complexes/adhesions visualized as phosphotyrosine clusters and retracted the filopodia/lamellipodia within 30min after exposure, while the plasmatocytes exhibited similar but distinct responses. The two hemocyte species prepared from either parasitized or MpVLP-injected hosts lost the ability to form both filopodia/lamellipodia and phosphotyrosine clusters. A caspase inhibitor, Z-VAD-FMK, did not affect these MpVLP-induced morphological changes, indicating that these earlier changes found in the hemocytes precede apoptosis. The present study together with our previous data has established that the attenuation of host immune defense by the MpVLPs comprises at least two temporally distinguishable phases: immediate and early inhibition of hemocyte spreading and the eventual induction of hemocyte apoptosis.
Collapse
Affiliation(s)
- M Suzuki
- Applied Entomology, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | |
Collapse
|
42
|
WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci U S A 2008; 105:3112-6. [PMID: 18287015 DOI: 10.1073/pnas.0712180105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial fission and trafficking to dendritic protrusions have been implicated in dendritic spine development. Here, we show that Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 1 (WAVE1) controls depolarization-induced mitochondrial movement into dendritic spines and filopodia and regulates spine morphogenesis. Depolarization-induced degradation of the p35 regulatory subunit of cyclin-dependent kinase 5 (Cdk5), with the resultant decreased inhibitory phosphorylation on WAVE1, depend on NMDA receptor activation. Thus, WAVE1 dephosphorylation and activation are likely associated with mitochondrial redistribution and spine morphogenesis.
Collapse
|
43
|
Yang C, Czech L, Gerboth S, Kojima SI, Scita G, Svitkina T. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 2007; 5:e317. [PMID: 18044991 PMCID: PMC2229861 DOI: 10.1371/journal.pbio.0050317] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 09/27/2007] [Indexed: 12/26/2022] Open
Abstract
Actin polymerization-driven protrusion of the leading edge is a key element of cell motility. The important actin nucleators formins and the Arp2/3 complex are believed to have nonoverlapping functions in inducing actin filament bundles in filopodia and dendritic networks in lamellipodia, respectively. We tested this idea by investigating the role of mDia2 formin in leading-edge protrusion by loss-of-function and gain-of-function approaches. Unexpectedly, mDia2 depletion by short interfering RNA (siRNA) severely inhibited lamellipodia. Structural analysis of the actin network in the few remaining lamellipodia suggested an mDia2 role in generation of long filaments. Consistently, constitutively active mDia2 (DeltaGBD-mDia2) induced accumulation of long actin filaments in lamellipodia and increased persistence of lamellipodial protrusion. Depletion of mDia2 also inhibited filopodia, whereas expression of DeltaGBD-mDia2 promoted their formation. Correlative light and electron microscopy showed that DeltaGBD-mDia2-induced filopodia were formed from lamellipodial network through gradual convergence of long lamellipodial filaments into bundles. Efficient filopodia induction required mDia2 targeting to the membrane, likely through a scaffolding protein Abi1. Furthermore, mDia2 and Abi1 interacted through the N-terminal regulatory sequences of mDia2 and the SH3-containing Abi1 sequences. We propose that mDia2 plays an important role in formation of lamellipodia by nucleating and/or protecting from capping lamellipodial actin filaments, which subsequently exhibit high tendency to converge into filopodia.
Collapse
Affiliation(s)
- Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lubov Czech
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Silke Gerboth
- The Italian Foundation for Cancer Research (FIRC) Institute for Molecular Oncology, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Shin-ichiro Kojima
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Giorgio Scita
- The Italian Foundation for Cancer Research (FIRC) Institute for Molecular Oncology, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Nakagawa H, Nishihara E. [Turn-over of actin filament-binding proteins in lamellipodia extended from neural cells]. Nihon Yakurigaku Zasshi 2007; 130:362-366. [PMID: 18000349 DOI: 10.1254/fpj.130.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
45
|
Mongiu AK, Weitzke EL, Chaga OY, Borisy GG. Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci 2007; 120:1113-25. [PMID: 17327278 DOI: 10.1242/jcs.03384] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal growth cone advance was investigated by correlative light and electron microscopy carried out on chick dorsal root ganglion cells. Advance was analyzed in terms of the two principal organelles responsible for protrusive motility in the growth cone – namely, veils and filopodia. Veils alternated between rapid phases of protrusion and retraction. Electron microscopy revealed characteristic structural differences between the phases. Our results provide a significant advance in three respects: first, protruding veils are comprised of a densely branched network of actin filaments that is lamellipodial in appearance and includes the Arp2/3 complex. On the basis of this structural and biomarker evidence, we infer that the dendritic nucleation and/or array-treadmilling mechanism of protrusive motility is conserved in veil protrusion of growth cones as in the motility of fibroblasts; second, retracting veils lack dendritic organization but contain a sparse network of long filaments; and third, growth cone filopodia have the capacity to nucleate dendritic networks along their length, a property consistent with veil formation seen at the light microscopic level but not previously understood in supramolecular terms. These elements of veil and filopodial organization, when taken together, provide a conceptual framework for understanding the structural basis of growth cone advance.
Collapse
Affiliation(s)
- Anne K Mongiu
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Marine Biological Laboratory, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
46
|
Caracino D, Jones C, Compton M, Saxe CL. The N-terminus of Dictyostelium Scar interacts with Abi and HSPC300 and is essential for proper regulation and function. Mol Biol Cell 2007; 18:1609-20. [PMID: 17314411 PMCID: PMC1855017 DOI: 10.1091/mbc.e06-06-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.
Collapse
Affiliation(s)
- Diana Caracino
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| | | | - Mark Compton
- Department of Poultry Science, School of Agriculture, University of Georgia, Athens, GA 30602
| | - Charles L. Saxe
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
47
|
Grzywa EL, Lee AC, Lee GU, Suter DM. High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy. ACTA ACUST UNITED AC 2007; 66:1529-43. [PMID: 17058186 DOI: 10.1002/neu.20318] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.
Collapse
Affiliation(s)
- Emilie L Grzywa
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, USA
| | | | | | | |
Collapse
|
48
|
Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007; 8:37-48. [PMID: 17183359 DOI: 10.1038/nrm2069] [Citation(s) in RCA: 720] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.
Collapse
Affiliation(s)
- Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
49
|
Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 2007; 27:355-65. [PMID: 17215396 PMCID: PMC3740594 DOI: 10.1523/jneurosci.3209-06.2006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The scaffolding protein WAVE-1 (Wiskott-Aldrich syndrome protein family member 1) directs signals from the GTPase Rac through the Arp2/3 complex to facilitate neuronal actin remodeling. The WAVE-associated GTPase activating protein called WRP is implicated in human mental retardation, and WAVE-1 knock-out mice have altered behavior. Neuronal time-lapse imaging, behavioral analyses, and electrophysiological recordings from genetically modified mice were used to show that WAVE-1 signaling complexes control aspects of neuronal morphogenesis and synaptic plasticity. Gene targeting experiments in mice demonstrate that WRP anchoring to WAVE-1 is a homeostatic mechanism that contributes to neuronal development and the fidelity of synaptic connectivity. This implies that signaling through WAVE-1 complexes is essential for neural plasticity and cognitive behavior.
Collapse
Affiliation(s)
| | | | - Stefanie Kaech
- Center for Research on Occupational and Environmental Toxicology, and
| | - Jon White
- Howard Hughes Medical Institute
- Vollum Institute
| | - Fang Zhang
- Howard Hughes Medical Institute
- Vollum Institute
| | | | | | - Gary Banker
- Center for Research on Occupational and Environmental Toxicology, and
| | - Jacob Raber
- Departments of Behavioral Neuroscience and Neurology and Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 97239
| | | |
Collapse
|
50
|
Tsuchiya D, Kitamura Y, Takata K, Sugisaki T, Taniguchi T, Uemura K, Miki H, Takenawa T, Shimohama S. Developmental expression of neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin-homologous protein (WAVE)-related proteins in postnatal rat cerebral cortex and hippocampus. Neurosci Res 2006; 56:459-69. [PMID: 17049400 DOI: 10.1016/j.neures.2006.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/04/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
The actin cytoskeleton plays a critical role in the cellular morphological changes. Its organization is essential for neurite extension and synaptogenesis under the processes of neuronal development. Recently, neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin-homologous protein (WAVE) have been identified as key molecules, which specifically participate in regulation of actin cytoskeleton through small GTPases. The functions of these factors have been investigated using cultured cells; however, in vivo developmental changes in these factors are not fully understood. In this study, we examined the expression levels and distributions of N-WASP, WAVE and their related proteins in the rat cerebral cortex and hippocampus during postnatal development. Protein levels of these factors were progressively increased during development, and actin was accumulated in membranous fractions. Immunoreactivities for these factors were widely but differentially observed in entire brain. In the developing brain, N-WASP and WAVE seemed to exist in the synapse-rich areas, such as stratum radiatum of hippocampal CA1 subfield. A similar tendency in the distributions of these factors was observed in the mature brain. Taken together, N-WASP, WAVE and their related proteins may participate in normal brain development and synaptic plasticity by regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Daiju Tsuchiya
- Department of Neurobiology, 21st Century COE Program, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|