1
|
Zhao Y, Zhou X, He S, Liu J, Jin M, Li J, Pan L, Zhou L. Oxygen-glucose deprivation induces actin spillover in brain endothelial cells. Tissue Cell 2025; 95:102946. [PMID: 40311323 DOI: 10.1016/j.tice.2025.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Stroke is the leading cause of death and disability worldwide, and the mechanisms of stroke onset have not been fully elucidated. The research investigated how actin remodeling functions within brain microvascular endothelial cells (bEnd.3 cell2) when exposed to glucose-oxygen deprivation (OGD3) circumstances. OGD exposure for 6 h in bEnd.3 cell led to increased F-actin polymerization and actin overflow into the supernatant which demonstrated a disruption of intracellular actin balance. This process is mainly mediated by the cofilin and myosin light chain (MLC4) phosphorylation. Jasplakinolide further enhanced F-actin polymerization, while Latrunculin B inhibited actin polymerization and alleviated cellular damage. In conclusion, our research has revealed the crucial role of actin overflow driven by cofilin and MLC signals in brain endothelial cell injury, providing new insights into the pathophysiology of stroke.
Collapse
Affiliation(s)
- Yiyin Zhao
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China.
| | - Xiaojing Zhou
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China.
| | - Songbin He
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China.
| | - Jingjing Liu
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China.
| | - Meng Jin
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China; Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 316000,China.
| | - Jiaqian Li
- Department of Electromyography, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou 316000, China.
| | - Lulan Pan
- Department of International medical service, the Fourth Affiliated Hospital of School of Medicine, andInternational School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Lin Zhou
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316004, China; Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 316000,China; Department of Electromyography, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou 316000, China; Department of International medical service, the Fourth Affiliated Hospital of School of Medicine, andInternational School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| |
Collapse
|
2
|
McCallinhart PE, Stone KR, Lucchesi PA, Trask AJ. Coronary cytoskeletal modulation of coronary blood flow in the presence and absence of type 2 diabetes: the role of cofilin. Front Physiol 2025; 16:1561867. [PMID: 40171115 PMCID: PMC11959307 DOI: 10.3389/fphys.2025.1561867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Background Coronary resistance microvessels (CRMs) from type 2 diabetic (T2DM) mice and pigs are less stiff compared to normal, a finding that is dictated by less stiff coronary vascular smooth muscle cells (VSMCs). Cofilin is an endogenous actin regulatory protein that depolymerizes filamentous (F)-actin, and portions of F-actin bound to cofilin are less stiff compared to their unbound F-actin counterparts. In this study, we hypothesized that altering the actin cytoskeleton modifies VSMC stiffness, which contributes to changes in coronary blood flow in normal and T2DM conditions. Methods and results Utilizing phalloidin staining, we found that F-actin was significantly reduced in T2DM CRM VSMCs, and we showed cofilin expression was increased in T2DM by proteomics and Western blot analysis. Cofilin knockdown in both human and mouse coronary VSMCs using siRNA significantly increased F/G actin ratio. Cofilin knockdown also caused a significant increase in elastic modulus by atomic force microscopy of coronary VSMCs. Treatment with Latrunculin B, an actin disruptor, significantly decreased VSMC elastic modulus. Acute Latrunculin B infusion into the coronary circulation of ex vivo isolated Langendorff mouse hearts increased peak coronary blood flow. Conclusion Together, we demonstrated that the CRM VSMC actin cytoskeleton is altered in T2DM to favor less stiff cells, and pharmacological manipulation of the actin cytoskeleton alters VSMC biomechanics. This study is also the first to demonstrate that coronary cellular modulation of mechanics can acutely modulate coronary blood flow.
Collapse
Affiliation(s)
- Patricia E. McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathlyene R. Stone
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Pamela A. Lucchesi
- Department of Undergraduate Medical Education, University of Texas Tyler School of Medicine, Tyler, TX, United States
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College ofMedicine, Columbus, OH, United States
| |
Collapse
|
3
|
Ventura Santos C, Rogers SL, Carter AP. CryoET shows cofilactin filaments inside the microtubule lumen. EMBO Rep 2023; 24:e57264. [PMID: 37702953 PMCID: PMC10626427 DOI: 10.15252/embr.202357264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Cytoplasmic microtubules are tubular polymers that can harbor small proteins or filaments inside their lumen. The identities of these objects and mechanisms for their accumulation have not been conclusively established. Here, we used cryogenic electron tomography of Drosophila S2 cell protrusions and found filaments inside the microtubule lumen, which resemble those reported recently in human HAP1 cells. The frequency of these filaments increased upon inhibition of the sarco/endoplasmic reticulum Ca2+ ATPase with the small molecule drug thapsigargin. Subtomogram averaging showed that the luminal filaments adopt a helical structure reminiscent of cofilin-bound actin (cofilactin). Consistent with this, we observed cofilin dephosphorylation, an activating modification, in cells under the same conditions that increased luminal filament occurrence. Furthermore, RNA interference knock-down of cofilin reduced the frequency of luminal filaments with cofilactin morphology. These results suggest that cofilin activation stimulates its accumulation on actin filaments inside the microtubule lumen.
Collapse
Affiliation(s)
| | - Stephen L Rogers
- Department of Biology and Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
4
|
Luo J, Zheng H, Wang S, Li D, Ma W, Wang L, Crabbe MJC. ABL1 and Cofilin1 promote T-cell acute lymphoblastic leukemia cell migration. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1321-1332. [PMID: 34508625 DOI: 10.1093/abbs/gmab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Huiguang Zheng
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Sen Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyun Li
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wenli Ma
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - M James C Crabbe
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
- Wolfson College, University of Oxford, Oxford, Oxfordshire OX2 6UD, UK
- Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| |
Collapse
|
5
|
Wang S, Li X, Zhang Q, Chai X, Wang Y, Förster E, Zhu X, Zhao S. Nyap1 Regulates Multipolar-Bipolar Transition and Morphology of Migrating Neurons by Fyn Phosphorylation during Corticogenesis. Cereb Cortex 2021; 30:929-941. [PMID: 31609430 DOI: 10.1093/cercor/bhz137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
The coordination of cytoskeletal regulation is a prerequisite for proper neuronal migration during mammalian corticogenesis. Neuronal tyrosine-phosphorylated adaptor for the phosphoinositide 3-kinase 1 (Nyap1) is a member of the Nyap family of phosphoproteins, which has been studied in neuronal morphogenesis and is involved in remodeling of the actin cytoskeleton. However, the precise role of Nyap1 in neuronal migration remains unknown. Here, overexpression and knockdown of Nyap1 in the embryonic neocortex of mouse by in utero electroporation-induced abnormal morphologies and multipolar-bipolar transitions of migrating neurons. The level of phosphorylated Nyap1 was crucial for neuronal migration and morphogenesis in neurons. Furthermore, Nyap1 regulated neuronal migration as a downstream target of Fyn, a nonreceptor protein-tyrosine kinase that is a member of the Src family of kinases. Importantly, Nyap1 mediated the role of Fyn in the multipolar-bipolar transition of migrating neurons. Taken together, these results suggest that cortical radial migration is regulated by a molecular hierarchy of Fyn via Nyap1.
Collapse
Affiliation(s)
- Shuzhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuzhao Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Qianru Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, 710021, PR China
| | - Yi Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, PR China
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum 44801, Germany
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
6
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu YJ, Zhang T, Cheng D, Yang J, Chen S, Wang X, Li X, Duan D, Lou H, Zhu L, Luo J, Ho MS, Wang XD, Duan S. Late endosomes promote microglia migration via cytosolic translocation of immature protease cathD. SCIENCE ADVANCES 2020; 6:6/50/eaba5783. [PMID: 33298434 PMCID: PMC7725477 DOI: 10.1126/sciadv.aba5783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Organelle transport requires dynamic cytoskeleton remodeling, but whether cytoskeletal dynamics are, in turn, regulated by organelles remains elusive. Here, we demonstrate that late endosomes, a type of prelysosomal organelles, facilitate actin-cytoskeleton remodeling via cytosolic translocation of immature protease cathepsin D (cathD) during microglia migration. After cytosolic translocation, late endosome-derived cathD juxtaposes actin filaments at the leading edge of lamellipodia. Suppressing cathD expression or blocking its cytosolic translocation impairs the maintenance but not the initiation of lamellipodial extension. Moreover, immature cathD balances the activity of the actin-severing protein cofilin to maintain globular-actin (G-actin) monomer pool for local actin recycling. Our study identifies cathD as a key lysosomal molecule that unconventionally contributes to actin cytoskeleton remodeling via cytosolic translocation during adenosine triphosphate-evoked microglia migration.
Collapse
Affiliation(s)
- Yi-Jun Liu
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Ting Zhang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Daxiao Cheng
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junhua Yang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sicong Chen
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xingyue Wang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Li
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Duo Duan
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huifang Lou
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liya Zhu
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianhong Luo
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Xiao-Dong Wang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shumin Duan
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Baum B, Dey G. Moving simply: Naegleria crawls and feeds using an ancient Arp2/3-dependent mechanism. J Cell Biol 2020; 219:e202009031. [PMID: 33064835 PMCID: PMC7577051 DOI: 10.1083/jcb.202009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arp2/3-nucleated actin filaments drive crawling motility and phagocytosis in animal cells and slime molds. In this issue, Velle and Fritz-Laylin (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202007158) now show that Naegleria gruberi, belonging to a lineage that diverged from opisthokonts around a billion years ago, uses similar mechanisms to crawl and phagocytose bacteria.
Collapse
Affiliation(s)
- Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gautam Dey
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
9
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Wang J, Wu Y, Zhang X, Zhang F, Lü D, Shangguan B, Gao Y, Long M. Flow-enhanced priming of hESCs through H2B acetylation and chromatin decondensation. Stem Cell Res Ther 2019; 10:349. [PMID: 31775893 PMCID: PMC6880446 DOI: 10.1186/s13287-019-1454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Distinct mechanical stimuli are known to manipulate the behaviors of embryonic stem cells (ESCs). Fundamental rationale of how ESCs respond to mechanical forces and the potential biological effects remain elusive. Here we conducted the mechanobiological study for hESCs upon mechanomics analysis to unravel typical mechanosensitive processes on hESC-specific fluid shear. METHODS hESC line H1 was subjected to systematically varied shear flow, and mechanosensitive proteins were obtained by mass spectrometry (MS) analysis. Then, function enrichment analysis was performed to identify the enriched gene sets. Under a steady shear flow of 1.1 Pa for 24 h, protein expressions were further detected using western blotting (WB), quantitative real-time PCR (qPCR), and immunofluorescence (IF) staining. Meanwhile, the cells were treated with 200 nM trichostatin (TSA) for 1 h as positive control to test chromatin decondensation. Actin, DNA, and RNA were then visualized with TRITC-labeled phalloidin, Hoechst 33342, and SYTO® RNASelect™ green fluorescent cell stain (Life Technologies), respectively. In addition, cell stiffness was determined with atomic force microscopy (AFM) and annexin V-PE was used to determine the apoptosis with a flow cytometer (FCM). RESULTS Typical mechanosensitive proteins were unraveled upon mechanomics analysis under fluid shear related to hESCs in vivo. Functional analyses revealed significant alterations in histone acetylation, nuclear size, and cytoskeleton for hESC under shear flow. Shear flow was able to induce H2B acetylation and nuclear spreading by CFL2/F-actin cytoskeletal reorganization. The resulting chromatin decondensation and a larger nucleus readily accommodate signaling molecules and transcription factors. CONCLUSIONS Shear flow regulated chromatin dynamics in hESCs via cytoskeleton and nucleus alterations and consolidated their primed state.
Collapse
Affiliation(s)
- Jiawen Wang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shangguan
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Li G, Yin Y, Chen J, Fan Y, Ma J, Huang Y, Chen C, Dai P, Chen S, Zhao S. Coactosin-like protein 1 inhibits neuronal migration during mouse corticogenesis. J Vet Sci 2018; 19:21-26. [PMID: 28385010 PMCID: PMC5799395 DOI: 10.4142/jvs.2018.19.1.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Coactosin-like protein 1 (Cotl1), a member of the actin-depolymerizing factor (ADF)/cofilin family, was first purified from a soluble fraction of Dictyostelium discoideum cells. Neuronal migration requires cytoskeletal remodeling and actin regulation. Although Cotl1 strongly binds to F-actin, the role of Cotl1 in neuronal migration remains undescribed. In this study, we revealed that Cotl1 overexpression impaired migrationof both early- and late-born neurons during mouse corticogenesis. Moreover, Cotl1 overexpression delayed, rather than blocked, neuronal migration in late-born neurons. Cotl1 expression disturbed the morphology of migrating neurons, lengthening the leading processes. This study is the first to investigate the function of Cotl1, and the results indicate that Cotl1 is involved in the regulation of neuronal migration and morphogenesis.
Collapse
Affiliation(s)
- Guohong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiong Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yanle Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Juhong Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yingxue Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chen Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Wille C, Eiseler T, Langenberger ST, Richter J, Mizuno K, Radermacher P, Knippschild U, Huber-Lang M, Seufferlein T, Paschke S. PKD regulates actin polymerization, neutrophil deformability, and transendothelial migration in response to fMLP and trauma. J Leukoc Biol 2018; 104:615-630. [PMID: 29656400 DOI: 10.1002/jlb.4a0617-251rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are important mediators of the innate immune defense and of the host response to a physical trauma. Because aberrant infiltration of injured sites by neutrophils was shown to cause adverse effects after trauma, we investigated how neutrophil infiltration could be modulated at the cellular level. Our data indicate that protein kinase D (PKD) is a vital regulator of neutrophil transmigration. PKD phosphorylates the Cofilin-phosphatase Slingshot-2L (SSH-2L). SSH-2L in turn dynamically regulates Cofilin activity and actin polymerization in response to a chemotactic stimulus for neutrophils, for example, fMLP. Here, we show that inhibition of PKD by two specific small molecule inhibitors results in broad, unrestricted activation of Cofilin and strongly increases the F-actin content of neutrophils even under basal conditions. This phenotype correlates with a significantly impaired neutrophil deformability as determined by optical stretcher analysis. Consequently, inhibition of PKD impaired chemotaxis as shown by reduced extravasation of neutrophils. Consequently, we demonstrate that transendothelial passage of both, neutrophil-like NB4 cells and primary PMNs recovered from a hemorrhagic shock trauma model was significantly reduced. Thus, inhibition of PKD may represent a promising modulator of the neutrophil response to trauma.
Collapse
Affiliation(s)
- Christoph Wille
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Julia Richter
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | | | - Stephan Paschke
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| |
Collapse
|
13
|
Tiwari R, Sahu I, Soni BL, Sathe GJ, Thapa P, Patel P, Sinha S, Vadivel CK, Patel S, Jamghare SN, Oak S, Thorat R, Gowda H, Vaidya MM. Depletion of keratin 8/18 modulates oncogenic potential by governing multiple signaling pathways. FEBS J 2018; 285:1251-1276. [DOI: 10.1111/febs.14401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Richa Tiwari
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
- Department of Biology Technion – Israel Institute of Technology Haifa Israel
| | - Bihari Lal Soni
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | | | - Pankaj Thapa
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Pavan Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Shruti Sinha
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Shweta Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Sayli Nitin Jamghare
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Swapnil Oak
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Rahul Thorat
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Milind M. Vaidya
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
14
|
Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells. Front Cell Neurosci 2018; 11:417. [PMID: 29354032 PMCID: PMC5758595 DOI: 10.3389/fncel.2017.00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Carsten Schulte
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| |
Collapse
|
15
|
Liu T, Wang F, LePochat P, Woo JAA, Bukhari MZ, Hong KW, Trotter C, Kang DE. Cofilin-mediated Neuronal Apoptosis via p53 Translocation and PLD1 Regulation. Sci Rep 2017; 7:11532. [PMID: 28912445 PMCID: PMC5599510 DOI: 10.1038/s41598-017-09996-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Amyloid β (Aβ) accumulation is an early event in the pathogenesis of Alzheimer’s disease (AD), leading to mitochondrial and synaptic dysfunction, tau accumulation, and eventual neuronal death. While the p53 apoptotic pathway has clearly been associated with Aβ deposits and neuronal apoptosis, the critical upstream factors contributing to p53 activation in AD are not well understood. We have previously shown that cofilin activation plays a pivotal role in Aβ-induced mitochondrial and synaptic dysfunction. In this study, we show that activated cofilin (S3A) preferentially forms a complex with p53 and promotes its mitochondrial and nuclear localization, resulting in transcription of p53-responsive genes and promotion of apoptosis. Conversely, reduction of endogenous cofilin by knockdown or genetic deficiency inhibits mitochondrial and nuclear translocation of p53 in cultured cells and in APP/PS1 mice. This cofilin-p53 pro-apoptotic pathway is subject to negative regulation by PLD1 thorough cofilin inactivation and inhibition of cofilin/p53 complex formation. Finally, activated cofilin is unable to induce apoptosis in cells genetically lacking p53. These findings taken together indicate that cofilin coopts and requires the nuclear and mitochondrial pro-apoptotic p53 program to induce and execute apoptosis, while PLD1 functions in a regulatory multi-brake capacity in this pathway.
Collapse
Affiliation(s)
- Tian Liu
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Fang Wang
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Patrick LePochat
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Kyung Woo Hong
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Courtney Trotter
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - David E Kang
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA. .,James A. Haley Veteran's Administration Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Cruzen SM, Baumgard LH, Gabler NK, Pearce SC, Lonergan SM. Temporal proteomic response to acute heat stress in the porcine muscle sarcoplasm1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Xie J, Li X, Zhang W, Chai X, Huang Y, Li K, Cheng X, Zhao S. Aberrant expression of LIMK1 impairs neuronal migration during neocortex development. Histochem Cell Biol 2016; 147:471-479. [PMID: 27844143 DOI: 10.1007/s00418-016-1514-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2016] [Indexed: 12/25/2022]
Abstract
Neuronal migration is essential for the formation of cortical layers, and proper neuronal migration requires the coordination of cytoskeletal regulation. LIMK1 is a serine/threonine protein kinase that mediates actin dynamics by regulating actin depolymerization factor/cofilin. However, the role of LIMK1 in neuronal migration and its potential mechanism remains elusive. Here, we found that using the in utero electroporation to overexpress LIMK1 and its mutants, constitutively active LIMK1 (LIMK1-CA) and dominant-negative LIMK1 (LIMK1-DN), impaired neuronal migration in the embryonic mouse brain. In addition, the aberrant expression of LIMK1-WT and LIMK1-CA induced abnormal branching and increased the length of the leading process, while LIMK1-DN-transfected neurons gave rise to two leading processes. Furthermore, the co-transfection of LIMK1-CA and cofilin-S3A partially rescued the migration deficiency and fully rescued the morphological changes in migrating neurons induced by LIMK1-CA. Our results indicated that LIMK1 negatively regulated neuronal migration by affecting the neuronal cytoskeleton and that its effects were partly mediated by cofilin phosphorylation.
Collapse
Affiliation(s)
- Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuzhao Li
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Chai
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yingxue Huang
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kaikai Li
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinran Cheng
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Chai X, Zhao S, Fan L, Zhang W, Lu X, Shao H, Wang S, Song L, Failla AV, Zobiak B, Mannherz HG, Frotscher M. Reelin and cofilin cooperate during the migration of cortical neurons: a quantitative morphological analysis. Development 2016; 143:1029-40. [PMID: 26893343 DOI: 10.1242/dev.134163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
Abstract
In reeler mutant mice, which are deficient in reelin (Reln), the lamination of the cerebral cortex is disrupted. Reelin signaling induces phosphorylation of LIM kinase 1, which phosphorylates the actin-depolymerizing protein cofilin in migrating neurons. Conditional cofilin mutants show neuronal migration defects. Thus, both reelin and cofilin are indispensable during cortical development. To analyze the effects of cofilin phosphorylation on neuronal migration we used in utero electroporation to transfect E14.5 wild-type cortical neurons with pCAG-EGFP plasmids encoding either a nonphosphorylatable form of cofilin 1 (cofilin(S3A)), a pseudophosphorylated form (cofilin(S3E)) or wild-type cofilin 1 (cofilin(WT)). Wild-type controls and reeler neurons were transfected with pCAG-EGFP. Real-time microscopy and histological analyses revealed that overexpression of cofilin(WT) and both phosphomutants induced migration defects and morphological abnormalities of cortical neurons. Of note, reeler neurons and cofilin(S3A)- and cofilin(S3E)-transfected neurons showed aberrant backward migration towards the ventricular zone. Overexpression of cofilin(S3E), the pseudophosphorylated form, partially rescued the migration defect of reeler neurons, as did overexpression of Limk1. Collectively, the results indicate that reelin and cofilin cooperate in controlling cytoskeletal dynamics during neuronal migration.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany College of Veterinary Medicine, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Li Fan
- Institute of Zoology, School of Life Science, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Xi Lu
- College of Veterinary Medicine, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Hong Shao
- Institute of Zoology, School of Life Science, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Shaobo Wang
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bernd Zobiak
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hans G Mannherz
- Institute of Anatomy and Molecular Embryology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
19
|
Cruzen S, Pearce S, Baumgard L, Gabler N, Huff-Lonergan E, Lonergan S. Proteomic changes to the sarcoplasmic fraction of predominantly red or white muscle following acute heat stress. J Proteomics 2015; 128:141-53. [DOI: 10.1016/j.jprot.2015.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
20
|
Gillbro JM, Lundahl M, Westman M, Baral R, Al-Bader T, Mavon A. Structural activity relationship analysis (SAR) andin vitrotesting reveal the anti-ageing potential activity of acetyl aspartic acid. Int J Cosmet Sci 2015; 37 Suppl 1:15-20. [DOI: 10.1111/ics.12253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022]
Affiliation(s)
- J. M. Gillbro
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| | - M. Lundahl
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| | - M. Westman
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| | - R. Baral
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| | - T. Al-Bader
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| | - A. Mavon
- Oriflame Skin Research Institute; Mäster Samuelsgatan 56 Stockholm 11121 Sweden
| |
Collapse
|
21
|
Wang JT, Song LZ, Li LL, Zhang W, Chai XJ, An L, Chen SL, Frotscher M, Zhao ST. Src controls neuronal migration by regulating the activity of FAK and cofilin. Neuroscience 2015; 292:90-100. [PMID: 25711940 DOI: 10.1016/j.neuroscience.2015.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/30/2023]
Abstract
Migration of postmitotic neurons in the developing cortex along radial glial fiber is essential for the formation of cortical layers. Several neurological diseases are caused by defects in neuronal migration, underlining the importance of this process for brain function. Multiple molecules are involved in this process. However, the precise mechanisms are largely unknown. In the present study, we examined the expression of Src in the developing cortex and investigated the role of Src in neuronal migration and its cellular and molecular mechanisms. Our results showed that Src was strongly expressed in the cerebral cortex during corticogenesis and mainly targeted to the leading processes of migrating neurons. Overexpression of wildtype Src (Src-WT) and its mutants, constitutively active Src (Src-CA) and dominant negative Src (Src-DN) in the mouse brain by in utero electroporation perturbed neuronal migration through affecting the adhesion properties and cytoskeletal dynamics of migrating neurons. Overexpression of Src-WT and Src-CA induced aggregation and branching of migrating neurons, whereas overexpression of Src-DN led to abnormal elongation of the leading processes of migrating neurons. Furthermore, we showed that Src activates the focal adhesion kinase (FAK) and cofilin by regulating their phosphorylation levels. We conclude that Src controls neuronal migration by regulating adhesion properties and F-actin dynamics of migrating neurons.
Collapse
Affiliation(s)
- J T Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - L Z Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - L L Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - W Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - X J Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L An
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - S L Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S T Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
22
|
Chang CY, Leu JD, Lee YJ. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 2015; 16:4095-120. [PMID: 25689427 PMCID: PMC4346946 DOI: 10.3390/ijms16024095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch, Taipei 106, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
23
|
Chou AM, Sem KP, Wright GD, Sudhaharan T, Ahmed S. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J Biol Chem 2014; 289:24383-96. [PMID: 25031323 DOI: 10.1074/jbc.m114.553883] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filopodia are dynamic actin-based structures that play roles in processes such as cell migration, wound healing, and axonal guidance. Cdc42 induces filopodial formation through IRSp53, an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain protein. Previous work from a number of laboratories has shown that IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics through its Src homology 3 domain binding partners. Here, we show that dynamin1 (Dyn1), the large guanosine triphosphatase, is an interacting partner of IRSp53 through pulldown and Förster resonance energy transfer analysis, and we explore its role in filopodial formation. In neuroblastoma cells, Dyn1 localizes to filopodia, associated tip complexes, and the leading edge just behind the anti-capping protein mammalian enabled (Mena). Dyn1 knockdown reduces filopodial formation, which can be rescued by overexpressing wild-type Dyn1 but not the GTPase mutant Dyn1-K44A and the loss-of-function actin binding domain mutant Dyn1-K/E. Interestingly, dynasore, an inhibitor of Dyn GTPase, also reduced filopodial number and increased their lifetime. Using rapid time-lapse total internal reflection fluorescence microscopy, we show that Dyn1 and Mena localize to filopodia only during initiation and assembly. Dyn1 actin binding domain mutant inhibits filopodial formation, suggesting a role in actin elongation. In contrast, Eps8, an actin capping protein, is seen most strongly at filopodial tips during disassembly. Taken together, the results suggest IRSp53 partners with Dyn1, Mena, and Eps8 to regulate filopodial dynamics.
Collapse
Affiliation(s)
- Ai Mei Chou
- From the Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Kai Ping Sem
- From the Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Graham Daniel Wright
- From the Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Thankiah Sudhaharan
- From the Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sohail Ahmed
- From the Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore
| |
Collapse
|
24
|
Xi X, Tatei K, Kihara Y, Izumi T. Expression pattern of class I phosphoinositide 3-kinase and distribution of its product, phosphatidylinositol-3,4,5-trisphosphate, during Drosophila embryogenesis. Gene Expr Patterns 2014; 15:88-95. [PMID: 24928809 DOI: 10.1016/j.gep.2014.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022]
Abstract
The class I phosphoinositide 3-kinase (PI3K) can be activated by a large variety of extracellular stimuli and is responsible for generating phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P(3)) from phosphatidylinositol-4,5-bisphosphate at the plasma membrane. The expression pattern of the class I PI3K and distribution of PI(3,4,5)P(3), visualized by its specific binding protein, GRP1-PH, were examined during Drosophila embryogenesis. We found that the RNA of Pi3K21B, encoding the Drosophila p60 regulatory subunit of the class I PI3Ks, was expressed maternally and expressed primarily in pole cells after cellularization until completion of germ band elongation. The RNA of Pi3K92E, encoding the Drosophila p110 catalytic subunit of the class I PI3Ks, was also expressed maternally. During gastrulation, its transcript level became lower and was slightly enriched in invaginating cells. Both Pi3K21B and Pi3K92E were expressed ubiquitously after germ band elongation and persisted during germ band shortening. PI(3,4,5)P(3) was distributed at the apical region of the invaginating cells during gastrulation. These findings suggest a possible involvement of class I PI3K and PI(3,4,5)P(3) in the regulation of invagination during gastrulation.
Collapse
Affiliation(s)
- Xin Xi
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazuaki Tatei
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yumiko Kihara
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
25
|
Apicidin-Resistant HA22T Hepatocellular Carcinoma Cells strongly activated the Wnt/β-Catenin Signaling Pathway and MMP-2 Expression via the IGF-IR/PI3K/Akt Signaling Pathway Enhancing Cell Metastatic Effect. Biosci Biotechnol Biochem 2014; 77:2397-404. [DOI: 10.1271/bbb.130503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig. PLoS One 2014; 9:e89847. [PMID: 24587072 PMCID: PMC3934941 DOI: 10.1371/journal.pone.0089847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Collapse
Affiliation(s)
- Mandy Cook
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Bonnie J. Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ambriz-Peña X, García-Zepeda EA, Meza I, Soldevila G. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation. PLoS One 2014; 9:e88014. [PMID: 24498424 PMCID: PMC3912156 DOI: 10.1371/journal.pone.0088014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/03/2014] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.
Collapse
Affiliation(s)
- Xochitl Ambriz-Peña
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Eduardo Alberto García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Isaura Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV IPN), Departamento de Biomedicina Molecular, México, Distrito Federal, México
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
28
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
29
|
Leu JD, Chiu YW, Lo CC, Chiang PH, Chiu SJ, Tsai CH, Hwang JJ, Chen RC, Gorbunova V, Lee YJ. Enhanced cellular radiosensitivity induced by cofilin-1 over-expression is associated with reduced DNA repair capacity. Int J Radiat Biol 2013; 89:433-44. [PMID: 23362981 DOI: 10.3109/09553002.2013.767992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A previous report has indicated that over-expression of cofilin-1 (CFL-1), a member of the actin depolymerizing factor (ADF)/cofilin protein family, enhances cellular radiosensitivity. This study explores the involvement of various DNA damage responses and repair systems in the enhanced cellular radiosensitivity as well as assessing the role of CFL-1 phosphorylation in radiosensitivity. MATERIALS AND METHODS Human non-small lung cancer H1299 cells harboring a tet-on gene expression system were used to induce exogenous expression of wild-type CFL-1. Colony formation assays were used to determine cell survival after γ-ray exposure. DNA damage levels were determined by Comet assay. DNA repair capacity was assessed by fluorescence-based DNA repair analysis and antibody detection of various repair proteins. The effects of CFL-1 phosphorylation on radiation responses were explored using two mutant CFL-1 proteins, S3D and S3A. Finally, endogenous CFL-1 phosphorylation levels were investigated using latrunculin A (LA), cytochalasin B (CB) and Y27632. RESULTS When phosphorylatable CFL-1 was expressed, radiosensitivity was enhanced after exposure to γ-rays and this was accompanied by DNA damage. Phosphorylated histone H2AX (γ-H2AX) and p53-binding protein-1 (53BP1) foci, as well as Chk1/2 phosphorylation, were apparently suppressed, although ataxia telangiectasia mutated (ATM) kinase activation was apparently unaffected. In addition, two radiation-induced double-strand break (DSB) repair systems, namely homologous recombination repair (HRR) and non-homologous end joining (NHEJ), were suppressed. Moreover, over-expression of CFL-1 S3D and CFL-1 S3A both enhanced radiosensitivity. However, enhanced radiosensitivity and reduced γ-H2AX expression were only detected in cells treated with LA which increased endogenous phospho-CFL-1, and not in cells treated with Y27632, which dephosphorylates CFL-1. CONCLUSION CFL-1 over-expression enhances radiosensitivity and this is associated with reduced DNA repair capacity. Although phosphorylated CFL-1 seems to be involved in radiosensitivity, further studies are required to address the importance of CFL-1 activity to the regulation of radiosensitivity.
Collapse
Affiliation(s)
- Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch , Taipei
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas CA, Frotscher M. Epilepsy-induced motility of differentiated neurons. ACTA ACUST UNITED AC 2013; 24:2130-40. [PMID: 23505288 DOI: 10.1093/cercor/bht067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gert Münzner
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Janina Kowalski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Young
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilágyi N, Matkó J, Sármay G. B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 2013; 93:537-47. [PMID: 23362305 DOI: 10.1189/jlb.0312169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
B cells acquire membrane-bound cognate antigens from the surface of the APCs by forming an IS, similar to that seen in T cells. Recognition of membrane-bound antigens on the APCs initiates adhesion of B lymphocytes to the antigen-tethered surface, which is followed by the formation of radial lamellipodia-like structures, a process known as B cell spreading. The spreading response requires the rearrangement of the submembrane actin cytoskeleton and is regulated mainly via signals transmitted by the BCR. Here, we show that cytoplasmic calcium is a regulator of actin cytoskeleton dynamics in B lymphocytes. We find that BCR-induced calcium mobilization is indispensible for adhesion and spreading of B cells and that PLCγ and CRAC-mediated calcium mobilization are critical regulators of these processes. Measuring calcium and actin dynamics in live cells, we found that a generation of actin-based membrane protrusion is strongly linked to the dynamics of a cytoplasmic-free calcium level. Finally, we demonstrate that PLCγ and CRAC channels regulate the activity of actin-severing protein cofilin, linking BCR-induced calcium signaling to the actin dynamics.
Collapse
Affiliation(s)
- Máté Maus
- Eötvös Lóránd University, Pázmány Péter sétány 1/c, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu M, Chen G, Wang S, Liao M, Frank JA, Bower KA, Zhang Z, Shi X, Luo J. Double-stranded RNA-dependent protein kinase regulates the motility of breast cancer cells. PLoS One 2012; 7:e47721. [PMID: 23112838 PMCID: PMC3480402 DOI: 10.1371/journal.pone.0047721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.
Collapse
Affiliation(s)
- Mei Xu
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Gang Chen
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Siying Wang
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Pathophysiological Department, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Liao
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jacqueline A. Frank
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kimberly A. Bower
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hamill KJ, Hopkinson SB, Skalli O, Jones JCR. Actinin-4 in keratinocytes regulates motility via an effect on lamellipodia stability and matrix adhesions. FASEB J 2012; 27:546-56. [PMID: 23085994 DOI: 10.1096/fj.12-217406] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During wound repair, epidermal cells at the edge of an injury establish front-rear polarity through orchestrated changes in their cytoskeleton and adhesion structures. The polarity and directed migration of such cells is determined by the assembly, extension, and stabilization of a lamellipodium. Actinin-4 associates with lamellipodia and has been implicated in regulating lamellipodial structure, function and assembly. To study the functions of actinin-4 in human keratinocytes, we used shRNA to generate knockdown cells and compared their motility behavior and matrix adhesion assembly to scrambled shRNA treated control keratinocytes. Actinin-4 knockdown keratinocytes lack polarity, assemble multiple lamellipodia with a 2× increased area over controls, display reduced activity of the actin remodeling protein cofilin, and fail to migrate in a directional manner. This motility defect is rescued by plating knockdown cells on preformed laminin-332 matrix. In actinin-4-knockdown keratinocytes, focal contact area is increased by 25%, and hemidesmosome proteins are mislocalized. Specifically, α6β4 integrin localizes to large lamellipodial extensions, displays reduced dynamics, and fails to recruit its bullous pemphigoid antigen binding partners. Together, our data indicate a role for actinin-4 in regulating the steering mechanism of keratinocytes via profound effects on their matrix adhesion sites.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
34
|
Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y. Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1414-25. [PMID: 22863953 PMCID: PMC3463628 DOI: 10.1016/j.ajpath.2012.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK) 3β has been identified as a regulator of immune responses. We demonstrated previously that GSK3β inhibition in human brain microvascular endothelial cells (BMVECs) reduced monocyte adhesion/migration across BMVEC monolayers. Herein, we tested the idea that GSK3β inhibition in monocytes can diminish their ability to engage the brain endothelium and migrate across the blood-brain barrier. Pretreatment of primary monocytes with GSK3β inhibitors resulted in a decrease in adhesion (60%) and migration (85%), with similar results in U937 monocytic cells. Monocyte-BMVEC interactions resulted in diminished barrier integrity that was reversed by GSK3β suppression in monocytic cells. Because integrins mediate monocyte rolling/adhesion, we detected the active conformational form of very late antigen 4 after stimulation with a peptide mimicking monocyte engagement by vascular cell adhesion molecule-1. Peptide stimulation resulted in a 14- to 20-fold up-regulation of the active form of integrin in monocytes that was suppressed by GSK3β inhibitors (40% to 60%). Because small GTPases, such as Rac1, control leukocyte movement, we measured active Rac1 after monocyte activation with relevant stimuli. Stimulation enhanced the level of active Rac1 that was diminished by GSK3β inhibitors. Monocytes treated with GSK3β inhibitors showed increased levels of inhibitory sites of the actin-binding protein, cofilin, and vasodilator-stimulated phosphoprotein-regulating conformational changes of integrins. These results indicate that GSK3β inhibition in monocytes affects active integrin expression, cytoskeleton rearrangement, and adhesion via suppression of Rac1-diminishing inflammatory leukocyte responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Siudeja K, Grzeschik NA, Rana A, de Jong J, Sibon OCM. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism. PLoS One 2012; 7:e43145. [PMID: 22912811 PMCID: PMC3422318 DOI: 10.1371/journal.pone.0043145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A (CoA) is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK), which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.
Collapse
Affiliation(s)
| | | | | | | | - Ody C. M. Sibon
- Department of Cell Biology, Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 2012; 86:8440-51. [PMID: 22623803 DOI: 10.1128/jvi.00609-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis.
Collapse
|
37
|
Irino Y, Tokuda E, Hasegawa J, Itoh T, Takenawa T. Quantification and visualization of phosphoinositides by quantum dot-labeled specific binding-domain probes. J Lipid Res 2012; 53:810-9. [PMID: 22308508 DOI: 10.1194/jlr.d019547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphoinositides (PI) play important regulatory roles in cell physiology. Localization and quantitation of PIs within the cell is necessary to understand their precise function. Currently, ectopic expression of green fluorescent protein (GFP)-fused PI-binding domains is used to visualize PIs localized to the cell membrane. However, ectopically expressed PI-binding domains may compete with endogenous binding proteins, thus altering the physiological functions of the PIs. Here, we establish a novel method for quantification and visualization of PIs in cells and tissue samples using PI-binding domains labeled with quantum dots (Qdot) as specific probes. This method allowed us to simultaneously quantify three distinct PIs, phosphatidylinositol 3,4,5-triphosphatase [PtdIns(3,4,5)P(3)), PtdIns(3,4)P(2), and PtdIns(4,5)P(2), in crude acidic lipids extracted from insulin-stimulated cells. In addition, the method allowed the PIs to be visualized within fixed cells and tissues. Sequential and spatial changes in PI production and distribution were detected in platelet-derived growth factor (PDGF)-stimulated NRK49F cells. We also observed accumulation of PtdIns(3,4)P(2) at the dorsal ruffle in PDGF-stimulated NIH3T3 cells. Finally, we found PtdIns(3,4,5)P(3) was enriched in lung cancer tissues, which also showed high levels of phosphorylated Akt. Our new method to quantify and visualize PIs is expected to provide further insight into the role of lipid signaling in a wide range of cellular events.
Collapse
Affiliation(s)
- Yasuhiro Irino
- Divisions of Lipid Biochemistry and Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
38
|
ADF/cofilin proteins translocate to mitochondria during apoptosis but are not generally required for cell death signaling. Cell Death Differ 2011; 19:958-67. [PMID: 22139132 DOI: 10.1038/cdd.2011.180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Non-muscle cofilin (n-cofilin) is a member of the ADF/cofilin family of actin depolymerizing proteins. Recent studies reported a mitochondrial translocation of n-cofilin during apoptosis. As these studies also revealed impaired cytochrome c release and a block in apoptosis upon small interfering RNA-mediated n-cofilin knockdown, n-cofilin was postulated to be essential for apoptosis induction. To elucidate the general importance of ADF/cofilin activity for apoptosis, we exposed mouse embryonic fibroblasts deficient for n-cofilin, ADF (actin depolymerizing factor), or all ADF/cofilin isoforms to well-characterized apoptosis inducers. Cytochrome c release, caspase-3 activation, and apoptotic chromatin condensation were unchanged in all mutant fibroblasts. Thus, we conclude that ADF/cofilin activity is not generally required for induction or progression of apoptosis in mammalian cells. Interestingly, mitochondrial association of ADF and n-cofilin during apoptosis was preceded by, and dependent on, actin that translocated by a yet unknown mechanism to mitochondria during cell death.
Collapse
|
39
|
Manetti F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med Res Rev 2011; 32:968-98. [PMID: 22886629 DOI: 10.1002/med.20230] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The LIM kinases 1 and 2 (LIMK1 and LIMK2) are dual specificity (serine/threonine and tyrosine) kinases. Although they show significant structural similarity, LIMK1 and LIMK2 show different expression, subcellular localization, and functions. They are involved in many cellular functions, such as migration, cycle, and neuronal differentiation and also have a role in pathological processes, such as cancer cell invasion and metastatis, as well as in neurodevelopmental disorders (namely, the William's syndrome). LIM kinases have a relevant number of known partners that are able to induce or limit the ability of LIMK1 and LIMK2 to phosphorylate and inactivate their major substrate, cofilin. On the contrary, only a limited number of small molecules that interact with the two proteins to modulate their kinase activity have been identified. In this review, the most important partners of LIM kinases and their modulating activity toward LIMKs are described. The small compounds identified as LIMK1 and LIMK2 modulators are also reported, as well as their role as possible therapeutic agents for LIMK-induced diseases.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, I-53100 Siena, Italy.
| |
Collapse
|
40
|
Chiu TT, Patel N, Shaw AE, Bamburg JR, Klip A. Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells. Mol Biol Cell 2010; 21:3529-39. [PMID: 20739464 PMCID: PMC2954118 DOI: 10.1091/mbc.e10-04-0316] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin increases GLUT4 at the muscle cell surface, and this process requires actin remodeling. We show that a dynamic cycle of actin polymerization and severing is induced by insulin, governed by Arp2/3 and dephosphorylation of cofilin, respectively. The cycle is self-perpetuating and is essential for GLUT4 translocation. GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
41
|
Pampaloni F, Stelzer EHK, Leicht S, Marcello M. Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures. Proteomics 2010; 10:3394-413. [DOI: 10.1002/pmic.201000236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
|
43
|
van Rheenen J, Condeelis J, Glogauer M. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 2009; 122:305-11. [PMID: 19158339 DOI: 10.1242/jcs.031146] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In many cell types, the formation of membrane protrusions and directional migration depend on the spatial and temporal regulation of the actin-binding protein cofilin. Cofilin, which is important for the regulation of actin-polymerization initiation, increases the number of actin free barbed ends through three mechanisms: its intrinsic actin-nucleation activity; binding and severing of existing actin filaments; and recycling actin monomers from old filaments to new ones through its actin-depolymerization activity. The increase in free barbed ends that is caused by cofilin initiates new actin polymerization, which can be amplified by the actin-nucleating ARP2/3 complex. Interestingly, different cell systems seem to have different mechanisms of activating cofilin. The initial activation of cofilin in mammary breast tumors is dependent on PLCgamma, whereas cofilin activation in neutrophils is additionally dependent on dephosphorylation, which is promoted through Rac2 signaling. Although the literature seems to be confusing and inconsistent, we propose that all of the data can be explained by a single activity-cycle model. In this Opinion, we give an overview of cofilin activation in both tumor cells and inflammatory cells, and demonstrate how the differences in cofilin activation that are observed in various cell types can be explained by different starting points in this single common activity cycle.
Collapse
Affiliation(s)
- Jacco van Rheenen
- Department of Anatomy and Structural Biology, Gruss Lipper Center for Biophotonics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
44
|
Role of Reelin in the development and maintenance of cortical lamination. J Neural Transm (Vienna) 2009; 116:1451-5. [PMID: 19396394 DOI: 10.1007/s00702-009-0228-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Reelin is a large extracellular matrix molecule, synthesized by early generated Cajal-Retzius cells in the marginal zone of the cortex. It plays an important role in the migration of cortical neurons and the development of cortical lamination. We recently discovered that Reelin is required not only for the formation of cortical layers during development but also for their maintenance in adulthood. Thus, decreased Reelin expression in a mouse model of epilepsy and in epileptic patients was accompanied by a loss of granule cell lamination, called granule cell dispersion, in the dentate gyrus of the hippocampal formation. Moreover, antibody blockade of Reelin in normal, adult mice resulted in granule cell dispersion. Collectively these findings point to a role for Reelin in the formation and maintenance of a laminated cortical structure. How does Reelin act on the cytoskeleton in the migration process of cortical neurons? It has been shown that Reelin signalling involves the lipoprotein receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor, the adapter protein Disabled1, and phosphatidylinositol-3-kinase, but it has remained unclear how activation of the Reelin signalling cascade controls cytoskeletal reorganization. Here, we provide evidence that Reelin signalling leads to serine3 phosphorylation of cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. Phosphorylation of cofilin in the leading processes of migrating neurons anchors them to the marginal zone containing Reelin. Our results indicate that Reelin-induced stabilization of the neuronal cytoskeleton is an important component of Reelin's function in the development and maintenance of cortical architecture.
Collapse
|
45
|
Asano Y, Jiménez-Dalmaroni A, Liverpool TB, Marchetti MC, Giomi L, Kiger A, Duke T, Baum B. Pak3 inhibits local actin filament formation to regulate global cell polarity. HFSP JOURNAL 2009; 3:194-203. [PMID: 19639041 DOI: 10.2976/1.3100548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/27/2009] [Indexed: 12/24/2022]
Abstract
Lamellipodia are broad actin-based structures that define the protruding edge of many motile animal cells. Here we identify a Drosophila homolog of the p21-activated kinases (Paks) as a novel inhibitor of Rac-mediated lamellipodial formation: Pak3 overexpression mimics a loss of Rac activity, while Pak3 RNAi-mediated silencing enhances lamellipodial dynamics. Strikingly, the depletion of Pak3 also polarizes the cellular distribution of actin filaments, is sufficient to induce nonmotile cells to migrate, and, in cells firmly attached to the substrate, gives rise to a wave of high actin filament density that encircles the cell periphery at a steady pace. To better understand these systems level phenomena, we developed a model of the cortical actin network as an active gel whose behavior is dominated by the rate of actin filament bundling and polymer synthesis. In the presence of filament treadmilling, this system generates a propagating density wave of actin filaments like that seen in Pak3 RNAi cells. This analysis reveals an intimate relationship between local regulation of actin filament dynamics and global cytoskeletal polarity, and suggests a role for negative regulators of lamellipodial formation, like Pak3, in the maintenance of a poised state, in which regulated directional cell movement can occur.
Collapse
|
46
|
Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 2009; 29:288-99. [PMID: 19129405 DOI: 10.1523/jneurosci.2934-08.2009] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix protein Reelin, secreted by Cajal-Retzius cells in the marginal zone of the cortex, controls the radial migration of cortical neurons. Reelin signaling involves the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), the adapter protein Disabled1 (Dab1), and phosphatidylinositol-3-kinase (PI3K). Eventually, Reelin signaling acts on the cytoskeleton; however, these effects on cytoskeletal organization have remained elusive. In Reelin-deficient mutant mice, most cortical neurons are unable to migrate to their destinations, suggesting a role for Reelin signaling in the dynamic cytoskeletal reorganization that is required for neurons to migrate. Here, we show that Reelin signaling leads to serine3 phosphorylation of n-cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders n-cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. We provide evidence for ApoER2, Dab1, Src family kinases (SFKs), and PI3K to be involved in n-cofilin serine3 phosphorylation. Phosphorylation of n-cofilin takes place in the leading processes of migrating neurons as they approach the Reelin-containing marginal zone. Immunostaining for phospho-cofilin in dissociated reeler neurons is significantly increased after incubation in Reelin-containing medium compared with control medium. In a stripe choice assay, neuronal processes are stable on Reelin-coated stripes but grow on control stripes by forming lamellipodia. These novel findings suggest that Reelin-induced stabilization of neuronal processes anchors them to the marginal zone which appears to be required for the directional migration process.
Collapse
|
47
|
ZHAN JINHUI, ZHAO XI, HUANG XURI, SUN CHIACHUNG. INTERACTIONS BETWEEN HUMAN SLINGSHOT PHOSPHATASE 2 AND PHOSPHO-COFILIN: A MOLECULAR DYNAMICS STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2009. [DOI: 10.1142/s0219633609004770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human slingshot phosphatase 2 (SSH2) is one of the dual specificity protein tyrosine phosphatases, which can activate cofilin substrate by binding its phosphorylation state. Because the interaction model of SSH2 and phospho-cofilin (P-cofilin) was unknown, we obtained the complex through macromolecular docking method. The molecular dynamics studies were used to investigate the complex dynamics in an aqueous solution. To understand the binding specificity, the free energy was calculated with the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) approach and the interaction mode in active site was analyzed. The results indicated that the interaction of the P-loop of SSH2 with phosphoserine of human P-cofilin was stabilized by molecular mechanics energy and nonpolar solvation energy components, while polar solvation energy and the entropic contributions were unfavorable for the combination of the two proteins. In addition, the electrostatic contributions were negative for the formation of the complex on the whole, but seen from the active local, the Coulomb interaction between the phosphoserine and the P-loop residues could play an important role in determining substrate specificity.
Collapse
Affiliation(s)
- JIN-HUI ZHAN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XI ZHAO
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XU-RI HUANG
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - CHIA-CHUNG SUN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
48
|
|
49
|
Abstract
BACKGROUND In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|
50
|
Sims D, Duchek P, Baum B. PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol 2009; 10:R20. [PMID: 19216764 PMCID: PMC2688285 DOI: 10.1186/gb-2009-10-2-r20] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/12/2009] [Indexed: 01/22/2023] Open
Abstract
Pvr and its ligands, Pvf 2 and 3, which are upstream of Ras and PI3kinase, are identified from a genome-wide screen in Drosophila cells, as regulators of cell growth. Background In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. Results Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. Conclusions This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|