1
|
Deckwirth V, Hundi S, Hytönen MK, Hannula S, Ellonen P, Björkenheim P, Sukura A, Lohi H. Differential somatic coding variant landscapes between laser microdissected luminal epithelial cells from canine mammary invasive ductal solid carcinoma and comedocarcinoma. BMC Cancer 2024; 24:1524. [PMID: 39696035 DOI: 10.1186/s12885-024-13239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment. However, CMT subtype-specific genomic background is less investigated. Here, we assess the genetic etiology of two histomorphological (HM) subtypes with BC counterparts, the CMT invasive ductal simple solid carcinoma (SC) and comedocarcinoma (CC), and compare the results with BC data. METHODS Groups of 11-13 transformed ductal luminal epithelial cells were laser-capture microdissected from snap-frozen invasive mammary SC and CC subtypes of one intact female dog. HM unaffected lobular luminal epithelial cells were controls. Single-cell whole genome libraries were generated using PicoPLEX and sequenced to compare the subtypes' somatic coding variant landscapes with each other and with BC data available in COSMIC-CGC and KEGG. Furthermore, HM and immunohistochemical (IHC) subtype characteristics were compared with the genomic results. RESULTS The CC had six times more variants than the SC. The SC showed variants in adherens junction genes and genes of the MAPK, mTOR and NF-kappa-B signaling pathways. In the CC, the extracellular matrix (ECM) receptor interaction, cell adhesion, PI3K-Akt and cGMP-PKG pathways were enriched, reflecting the higher cellular malignancy. Affected pathways in both CMT subtypes overlapped with BC pathways in KEGG. Additionally, we identified ATP6V1C2, GLYATL3, CARMIL3, GATAD2B, OBSCN, SIX2, CPEB3 and ZNF521 as potential new subtype-distinct driver genes. Furthermore, our results revealed biomarker alterations in IHC in the basal/myoepithelial cell layer without respective genetic mutations, suggesting changes to their complex signaling pathways, disturbed regulative feedback loops or other silencing mechanisms. CONCLUSIONS This study contributes to understanding the subtype-specific molecular mechanisms in the canine mammary invasive ductal simple SC and CC, and revealed subtype-specific molecular complexity for phenotypically similar characteristics. Several affected genes and signaling pathways overlapped with BC indicating the potential use of CMT as model for BC. Our findings emphasize the need for thorough characterization of cancer specimens with respect to translational cancer research, but also how insight into tumor heterogeneity will be crucial for the development of targeted prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Sari Hannula
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
2
|
KLAAB ZEINAB, HASSAN AZIZA, ALBAQAMI JAWAHER, A. ALMALKI FAIZAH. The effect of natural products combination on MCF-7 cells exceeds tamoxifen therapeutic dose effects in vitro. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
3
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
4
|
Domenici G, Trindade G, Estrada MF, Cartaxo AL, Alves PM, André S, Brito C. Patient-Derived Breast Cancer Tissue Cultures for Anti-Endocrine Drug Assays. Methods Mol Biol 2022; 2535:11-31. [PMID: 35867219 DOI: 10.1007/978-1-0716-2513-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breast cancer is a complex and heterogeneous pathology, characterized by a variety of histological and molecular phenotypes. The majority of the breast cancers express the estrogen receptor alpha (ER), which plays a pivotal role in the pathobiology of the disease and are therefore classified as ER-positive (ER+). In fact, targeting of the ER signaling pathway is the main therapeutic strategy for ER+ breast cancer. Despite the success of endocrine therapy, intrinsic and acquired resistance are reported in 30-50% of the ER+ breast cancers. However, the mechanisms underlying ER heterogeneity and therapeutic resistance are far from being fully disclosed, and efficacious clinical strategies to overcome resistance are still pending. One of the hurdles in studying ER+ breast cancer resistance is related with the scarcity of experimental models that can recapitulate ER heterogeneity and signaling. This is the case of ER+ breast cancer cell models, typically based on cells derived from metastasis, which also fail to recapitulate tumor complexity. Primary cultures of patient-derived breast cancer cells are difficult to establish, and generally characterized by stromal fibroblasts overgrowth and rapid loss of phenotypic and molecular traits of the tumor cells, including ER expression. Ex vivo cultures of breast cancer tissue have been reported to retain the tissue architecture, with preservation of the tumor microenvironment (TME) and ER expression for short periods of time.Given the cumulating evidence on the role of the TME in sustaining ER+ tumor cells, we hypothesized that TME preservation in culture would favor the long-term retention of ER expression and signaling. We employed alginate encapsulation to provide a supporting scaffold to breast cancer tissue microstructures, coupled to dynamic culture to improve the lifespan of the culture by avoiding diffusional limitations. In this chapter, we provide a detailed description of this culture methodology, which has been previously published by our group (Cartaxo et al., J Exp Clin Cancer Res 39:161, 2020), based on electrostatically driven breast cancer tissue encapsulation in alginate, coupled to culture under agitation in a defined culture medium. We also describe challenge of the ex vivo model with an ER activator and inhibitors (anti-endocrine drugs) and a gene expression endpoint of drug response using reverse transcription PCR-based analysis of three distinct genes downstream of ER.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gonçalo Trindade
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Luísa Cartaxo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Saudade André
- IPOLFG, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
5
|
Alamer A, Ali D, Alarifi S, Alkahtane A, Al-Zharani M, Abdel-Daim MM, Albasher G, Almeer R, Al-Sultan NK, Almalik A, Alhasan AH, Stournaras C, Hasnain S, Alkahtani S. Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7379-7389. [PMID: 33030691 DOI: 10.1007/s11356-020-10913-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 05/27/2023]
Abstract
Metal nanomaterials such as bismuth oxide nanoparticles (Bi2O3NPs) have been extensively used in cosmetics, dental materials, pulp capping, and biomedical imaging. There is little knowledge about the health risk of Bi2O3NPs in humans, which warrants a thorough toxicity investigation of Bi2O3NPs at the cellular level. In this experiment, we investigated the cytotoxic effect of Bi2O3NPs on human breast cancer (MCF-7) cells over 24 and 48 h. MCF-7 cells were exposed to Bi2O3NPs at varying doses (0.1, 0.5, 1.0, 5, 10, 20, 40 μg/mL) for 24 and 48 h. We assessed the toxicity of Bi2O3NPs by measuring its effect on the viability and oxidative stress biomarkers, e.g., GSH, SOD, and catalase in MCF-7 cells. The pro-apoptotic effects of Bi2O3NPs on MCF-7 cells were determined via evaluating dysfunction of mitochondrial membrane potential (MMP), caspase-3 activity, externalization of phosphatidylserine, and chromosome condensation. Furthermore, apoptotic cells were evaluated using 7-AAD fluorescence stain and Annexin V-FITC. Bi2O3NPs induced oxidative stress in MCF-7 cells in a time- and dose-dependent manner. Bi2O3NPs increased the rate of both necrotic cells and apoptotic cells. In addition, the blue fluorescence of MCF-7 cells with condensed chromatin was increased in a time- and dose-dependent manner. In conclusion, the present study highlights the potential toxic effects of Bi2O3NPs at the cellular level and suggests further investigation of Bi2O3NPs before any medical purposes.
Collapse
Affiliation(s)
- Ali Alamer
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf K Al-Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Pharmaceuticals, Life science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H Alhasan
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Pharmaceuticals, Life science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, Gajraula, Amroha, UP, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
7
|
Anlaş AA, Nelson CM. Soft Microenvironments Induce Chemoresistance by Increasing Autophagy Downstream of Integrin-Linked Kinase. Cancer Res 2020; 80:4103-4113. [PMID: 33008805 PMCID: PMC7534696 DOI: 10.1158/0008-5472.can-19-4021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/28/2020] [Accepted: 07/22/2020] [Indexed: 01/03/2023]
Abstract
Breast cancer relapse can develop over the course of years as a result of dormant cancer cells that disseminate to secondary sites. These dormant cells are often resistant to conventional hormone and chemotherapy. Although recurrence is the main cause of death from cancer, microenvironmental factors that may influence resistance to therapy and duration of dormancy are largely unknown. Breast cancer relapse is often detected in tissues that are softer than the normal mammary gland or the primary breast tumor, such as bone marrow, brain, and lung. We therefore explored how stiffness of the microenvironment at secondary sites regulates tumor dormancy and the response of breast cancer cells to hormone and chemotherapy. In soft microenvironments reminiscent of metastatic sites, breast cancer cells were more resistant to the estrogen receptor modulator tamoxifen as a result of increased autophagy and decreased expression of estrogen receptor-α. Consistently, pharmacologic inhibition or genetic downregulation of autophagy increased the response of breast cancer cells to tamoxifen on soft substrata. In addition, autophagy was decreased downstream of integrin-linked kinase on stiff substrata. Altogether, our data show that tissue mechanics regulates therapeutic outcome and long-term survival of breast cancer cells by influencing autophagy. SIGNIFICANCE: These findings characterize the persistence of dormant cells at metastatic sites, where soft microenvironments downregulate estrogen receptor expression and upregulate autophagy, thereby promoting therapy resistance in breast cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4103/F1.large.jpg.
Collapse
Affiliation(s)
- Alişya A Anlaş
- Department of Chemical and Biological Engineering, Princeton, New Jersey
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton, New Jersey.
- Department of Molecular Biology Princeton University, Princeton, New Jersey
| |
Collapse
|
8
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
9
|
Genomic Identification, Evolution, and Expression Analysis of Collagen Genes Family in Water Buffalo during Lactation. Genes (Basel) 2020; 11:genes11050515. [PMID: 32384775 PMCID: PMC7288458 DOI: 10.3390/genes11050515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Collagens, as extracellular matrix proteins, support cells for structural integrity and contribute to support mammary basic structure and development. This study aims to perform the genomic identification, evolution, and expression analyses of the collagen gene family in water buffalo (Bubalus bubalis) during lactation. A total of 128 buffalo collagen protein sequences were deduced from the 45 collagen genes identified in silico from buffalo genome, which classified into six groups based on their phylogenetic relationships, conserved motifs, and gene structure analyses. The identified collagen sequences were unequally distributed on 16 chromosomes. The tandem duplicated genes were found within three chromosomes, while only one segmental event occurred between Chr3 and Chr8. Collinearity analysis revealed that a total of 36 collagen gene pairs were orthologous between buffalo and cattle genomes despite having different chromosome numbers. Comparative transcription analyses revealed that a total of 23 orthologous collagen genes were detected in the milk samples at different lactation periods between the two species. Notably, the duplicated gene pair of COL4A1-COL4A2 during lactation had a higher mRNA expression level than that of cattle, while a higher expression level of COL6A1-COL6A2 pair was found in cattle compared with that of buffalo. The present study provides useful information for investigating the potential functions of the collagen family in buffalo during lactation and helps in the functional characterization of collagen genes in additional research.
Collapse
|
10
|
Basree MM, Shinde N, Koivisto C, Cuitino M, Kladney R, Zhang J, Stephens J, Palettas M, Zhang A, Kim HK, Acero-Bedoya S, Trimboli A, Stover DG, Ludwig T, Ganju R, Weng D, Shields P, Freudenheim J, Leone GW, Sizemore GM, Majumder S, Ramaswamy B. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res 2019; 21:80. [PMID: 31315645 PMCID: PMC6637535 DOI: 10.1186/s13058-019-1163-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background A large collaborative analysis of data from 47 epidemiological studies concluded that longer duration of breastfeeding reduces the risk of developing breast cancer. Despite the strong epidemiological evidence, the molecular mechanisms linking prolonged breastfeeding to decreased risk of breast cancer remain poorly understood. Methods We modeled two types of breastfeeding behaviors in wild type FVB/N mice: (1) normal or gradual involution of breast tissue following prolonged breastfeeding and (2) forced or abrupt involution following short-term breastfeeding. To accomplish this, pups were gradually weaned between 28 and 31 days (gradual involution) or abruptly at 7 days postpartum (abrupt involution). Mammary glands were examined for histological changes, proliferation, and inflammatory markers by immunohistochemistry. Fluorescence-activated cell sorting was used to quantify mammary epithelial subpopulations. Gene set enrichment analysis was used to analyze gene expression data from mouse mammary luminal progenitor cells. Similar analysis was done using gene expression data generated from human breast samples obtained from parous women enrolled on a tissue collection study, OSU-2011C0094, and were undergoing reduction mammoplasty without history of breast cancer. Results Mammary glands from mice that underwent abrupt involution exhibited denser stroma, altered collagen composition, higher inflammation and proliferation, increased estrogen receptor α and progesterone receptor expression compared to those that underwent gradual involution. Importantly, when aged to 4 months postpartum, mice that were in the abrupt involution cohort developed ductal hyperplasia and squamous metaplasia. Abrupt involution also resulted in a significant expansion of the luminal progenitor cell compartment associated with enrichment of Notch and estrogen signaling pathway genes. Breast tissues obtained from healthy women who breastfed for < 6 months vs ≥ 6 months showed significant enrichment of Notch signaling pathway genes, along with a trend for enrichment for luminal progenitor gene signature similar to what is observed in BRCA1 mutation carriers and basal-like breast tumors. Conclusions We report here for the first time that forced or abrupt involution of the mammary glands following pregnancy and lack of breastfeeding results in expansion of luminal progenitor cells, higher inflammation, proliferation, and ductal hyperplasia, a known risk factor for developing breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1163-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mustafa M Basree
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Neelam Shinde
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Christopher Koivisto
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Cuitino
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Raleigh Kladney
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jianying Zhang
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Julie Stephens
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Marilly Palettas
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Allen Zhang
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Hee Kyung Kim
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Santiago Acero-Bedoya
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Anthony Trimboli
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel G Stover
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Thomas Ludwig
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ramesh Ganju
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Daniel Weng
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Peter Shields
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Jo Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, USA
| | - Gustavo W Leone
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gina M Sizemore
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Sarmila Majumder
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Bhuvaneswari Ramaswamy
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA. .,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Vitamin D3 constrains estrogen's effects and influences mammary epithelial organization in 3D cultures. Sci Rep 2019; 9:7423. [PMID: 31092845 PMCID: PMC6520380 DOI: 10.1038/s41598-019-43308-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin D3 (vitD3) and its active metabolite, calcitriol (1,25-(OH)2D3), affect multiple tissue types by interacting with the vitamin D receptor (VDR). Although vitD3 deficiency has been correlated with increased incidence of breast cancer and less favorable outcomes, randomized clinical trials have yet to provide conclusive evidence on the efficacy of vitD3 in preventing or treating breast cancer. Additionally, experimental studies are needed to assess the biological plausibility of these outcomes. The mammary gland of VDR KO mice shows a florid phenotype revealing alterations of developmental processes that are largely regulated by mammotropic hormones. However, most research conducted on vitD3's effects used 2D cell cultures and supra-physiological doses of vitD3, conditions that spare the microenvironment in which morphogenesis takes place. We investigated the role of vitD3 in mammary epithelial morphogenesis using two 3D culture models. VitD3 interfered with estrogen's actions on T47D human breast cancer cells in 3D differently at different doses, and recapitulated what is observed in vivo. Also, vitD3 can act autonomously and affected the organization of estrogen-insensitive MCF10A cells in 3D collagen matrix by influencing collagen fiber organization. Thus, vitD3 modulates mammary tissue organization independent of its effects on cell proliferation.
Collapse
|
12
|
Morgan MM, Livingston MK, Warrick JW, Stanek EM, Alarid ET, Beebe DJ, Johnson BP. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model. Sci Rep 2018; 8:7139. [PMID: 29740030 PMCID: PMC5940820 DOI: 10.1038/s41598-018-25461-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The estrogen receptor (ER) regulates the survival and growth of breast cancer cells, but it is less clear how components of the tissue microenvironment affect ER-mediated responses. We set out to test how human mammary fibroblasts (HMFs) modulate ER signaling and downstream cellular responses. We exposed an organotypic mammary model consisting of a collagen-embedded duct structure lined with MCF7 cells to 17-β estradiol (E2), with and without HMFs in the surrounding matrix. MCF7 cells grown as ductal structures were polarized and proliferated at rates comparable to in vivo breast tissue. In both culture platforms, exposure to E2 increased ER transactivation, increased proliferation, and induced ductal hyperplasia. When the surrounding matrix contained HMFs, the onset and severity of E2-induced ductal hyperplasia was increased due to decreased apoptosis. The reduced apoptosis may be due to fibroblasts modulating ER signaling in MCF7 cells, as suggested by the increased ER transactivation and reduced ER protein in MCF7 cells grown in co-culture. These findings demonstrate the utility of organotypic platforms when studying stromal:epithelial interactions, and add to existing literature that implicate the mammary microenvironment in ER + breast cancer progression.
Collapse
Affiliation(s)
- Molly M Morgan
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Megan K Livingston
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Eli M Stanek
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.
| | - Brian P Johnson
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.
| |
Collapse
|
13
|
Girnius N, Edwards YJK, Davis RJ. The cJUN NH 2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution. Cell Death Differ 2018; 25:1702-1715. [PMID: 29511338 PMCID: PMC6143629 DOI: 10.1038/s41418-018-0081-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation.
Collapse
Affiliation(s)
- Nomeda Girnius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 2017; 9:11503-11514. [PMID: 29545915 PMCID: PMC5837767 DOI: 10.18632/oncotarget.23817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. Results We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. Materials and Methods We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. Conclusions The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro. We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.
Collapse
|
15
|
Tajima S, Tabata Y. Preparation of epithelial cell aggregates incorporating matrigel microspheres to enhance proliferation and differentiation of epithelial cells. Regen Ther 2017; 7:34-44. [PMID: 30271850 PMCID: PMC6134895 DOI: 10.1016/j.reth.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/10/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
The objective of this study is to investigate the effect of matrigel microspheres (MM), gelatin hydrogel microspheres (GM), and matrigel-coated GM on the proliferated and biological functions of epithelial cells in cell aggregates incorporating the microspheres. The MM were prepared by a coacelvation method. When mammary epithelial EpH4 cells were cultured with the MM, GM, and matrigel-coated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to suppress the cell adhesion, EpH4 cell aggregates with each microspheres homogeneously incorporated were formed. Higher EpH4 cells proliferation was observed for cell aggregates incorporating MM, GM, and matrigel-coated GM compared with the conventional 3-dimensional (3D) culture method. When examined to evaluate the epithelial differentiation of EpH4 cells, the β-casein expression was significantly higher for the cell aggregates incorporating MM than that of aggregates incorporating GM and matrigel-coated GM or the conventional 3D culture method. It is concluded that the proliferation and differentiation of mammary epithelial EpH4 cells were promoted by the incorporation of MM.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
16
|
Tajima S, Tabata Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther 2017; 6:90-99. [PMID: 30271843 PMCID: PMC6134911 DOI: 10.1016/j.reth.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare three dimensional (3D) of mouse mammary epithelial EpH4 and mouse preadipocyte 3T3L1 cells in the presence of gelatin hydrogel microspheres (GM) and evaluate the effect of GM presence on the survival and functions of cells in the 3D cell aggregates. Gelatin was dehydrothermally crosslinked at 140 °C for 48 h in a water-in-oil emulsion state to obtain the GM with average diameters of 50 and 200 μm, followed by treatment with fibronectin (FN). EpH4 and/or 3T3L1 cells were cultured with or without the FN-treated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to allow the cells to form their aggregates. On the other hand, EpH4 cells were precultured with the FN-treated GM, and then continued to culture with 3T3L1 cells in the same condition described above. The EpH4 cells attached onto the GM in the cell number dependent manner, irrespective of their size. When 3T3L1 cells were incubated with the original and GM-preincubated EpH4 cells in the presence of both the FN-treated GM, the number of alive cells in the aggregates was significantly high compared with that for the absence of FN-treated GM. In addition, higher β-casein expression level of EpH4 cells in EpH4/3T3L1 cells aggregates in the presence of FN-treated GM was observed than that of cells in the absence of FN-treated GM. Laminin secretion was also promoted for the cells aggregates cultured with FN-treated GM. It is concluded that the presence of FN-treated GM in the EpH4/3T3L1 cells aggregates gave a better condition to cells, resulting in an enhanced generation of β-casein from EpH4 cells in the aggregates.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D, Xiong Q, Ullah R, Khan S, Basnet BB, Kumar B, Islam R, Adnan M. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31:202-264. [DOI: 10.1002/ptr.5751] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Sehrish Sadia
- College of life sciences; Beijing Normal University; Beijing China
| | - Kaiwen Pan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Ihteram Ullah
- Center for Agricultural Resources Research, Chinese Academy of Sciences; Shijiazhuang; Hebei China
| | - Sakina Mussarat
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| | - Feng Sun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Olatunji Olusanya Abiodun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
- Department of Botany; Obafemi Awolowo University; Ile-Ife Osun State Nigeria
| | | | - Zilong Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Dagang Song
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Qinli Xiong
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Riaz Ullah
- Department of Chemistry; Government College Ara Khel; Frontier Region Kohat Pakistan
| | - Suliman Khan
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
| | - Buddha Bahadur Basnet
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Central Department of Biotechnology; Tribhuvan University; Kathmandu Nepal
| | - Brawin Kumar
- Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - Rabiul Islam
- Department of Crop Physiology and Ecology; Hajee Mohammad Danesh Science and Technology University; Dinajpur Bangladesh
- Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan China
| | - Muhammad Adnan
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| |
Collapse
|
18
|
Berardi DE, Raffo D, Todaro LB, Simian M. Laminin Modulates the Stem Cell Population in LM05-E Murine Breast Cancer Cells through the Activation of the MAPK/ERK Pathway. Cancer Res Treat 2016; 49:869-879. [PMID: 28052658 PMCID: PMC5654159 DOI: 10.4143/crt.2016.378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose We investigated the effects of laminin on the fraction of cells with self-renewing capacity in the estrogen-dependent, tamoxifen-sensitive LM05-E breast cancer cell line. We also determined whether laminin affected the response to tamoxifen. Materials and Methods The LM05-E breast cancer cell line was used as a model for all experiments. Aldehyde dehydrogenase (ALDH) activity, clonogenic and mammosphere assays were performed to measure the effects of laminin on modulation of the stem cell subpopulation. Pluripotent gene expression was analyzed by reverse transcriptase–polymerase chain reaction. The involvement of the mitogen-activated protein kinase (MAPK)/ERK pathway was determined using specific inhibitors. The effects of laminin on the response to tamoxifenwere determined and the involvement of α6 integrin was investigated. Results We found that pretreatment with laminin leads to a decrease in cells with the ability to form mammospheres that was accompanied by a decrease in ALDH activity. Moreover, exposure of mammospheres to laminin reduced the capacity to form secondary mammospheres and decreased the expression of Sox-2, Nanog, and Oct-4. We previously reported that 4-OH-tamoxifen leads to an increase in the expression of these genes in LM05-E cells. Treatment with signaling pathway inhibitors revealed that the MAPK/ERK pathway mediates the effects of laminin. Finally, laminin induced tamoxifen resistance in LM05-E cells through α6 integrin. Conclusion Our results suggest that the final number of cells with self-renewing capacity in estrogen-dependent breast tumors may result from the combined effects of endocrine treatment and microenvironmental cues.
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Instituto de Oncología "Angel H. Roffo", Ciudad de Buenos Aires, Argentina
| | - Diego Raffo
- Research Area, Instituto de Oncología "Angel H. Roffo", Ciudad de Buenos Aires, Argentina
| | - Laura B Todaro
- Research Area, Instituto de Oncología "Angel H. Roffo", Ciudad de Buenos Aires, Argentina.,Members of the Research Career, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Marina Simian
- Members of the Research Career, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina.,Instituto de Nanosistemas, Universidad Nacional de San Martín, Campus Miguelete, San Martín, Argentina
| |
Collapse
|
19
|
Jardé T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 2016; 7:13207. [PMID: 27782124 PMCID: PMC5095178 DOI: 10.1038/ncomms13207] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
The development of in vitro culture systems quantitatively and qualitatively recapitulating normal breast biology is key to the understanding of mammary gland biology. Current three-dimensional mammary culture systems have not demonstrated concurrent proliferation and functional differentiation ex vivo in any system for longer than 2 weeks. Here, we identify conditions including Neuregulin1 and R-spondin 1, allowing maintenance and expansion of mammary organoids for 2.5 months in culture. The organoids comprise distinct basal and luminal compartments complete with functional steroid receptors and stem/progenitor cells able to reconstitute a complete mammary gland in vivo. Alternative conditions are also described that promote enrichment of basal cells organized into multiple layers surrounding a keratinous core, reminiscent of structures observed in MMTV-Wnt1 tumours. These conditions comprise a unique tool that should further understanding of normal mammary gland development, the molecular mechanism of hormone action and signalling events whose deregulation leads to breast tumourigenesis.
Collapse
Affiliation(s)
- Thierry Jardé
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Cancer Program, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Bethan Lloyd-Lewis
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Mairian Thomas
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- Division of Breast Cancer Research, Breast Cancer Now, Institute of Cancer Research, London SW3 6JB, UK
| | - Lauriane Bougaret
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter D. Watson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth Ewan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor C. Dale
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
20
|
Morgan MM, Johnson BP, Livingston MK, Schuler LA, Alarid ET, Sung KE, Beebe DJ. Personalized in vitro cancer models to predict therapeutic response: Challenges and a framework for improvement. Pharmacol Ther 2016; 165:79-92. [PMID: 27218886 PMCID: PMC5439438 DOI: 10.1016/j.pharmthera.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Personalized cancer therapy focuses on characterizing the relevant phenotypes of the patient, as well as the patient's tumor, to predict the most effective cancer therapy. Historically, these methods have not proven predictive in regards to predicting therapeutic response. Emerging culture platforms are designed to better recapitulate the in vivo environment, thus, there is renewed interest in integrating patient samples into in vitro cancer models to assess therapeutic response. Successful examples of translating in vitro response to clinical relevance are limited due to issues with patient sample acquisition, variability and culture. We will review traditional and emerging in vitro models for personalized medicine, focusing on the technologies, microenvironmental components, and readouts utilized. We will then offer our perspective on how to apply a framework derived from toxicology and ecology towards designing improved personalized in vitro models of cancer. The framework serves as a tool for identifying optimal readouts and culture conditions, thus maximizing the information gained from each patient sample.
Collapse
Affiliation(s)
- Molly M Morgan
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P Johnson
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan K Livingston
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kyung E Sung
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.
| | - David J Beebe
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
21
|
Alamri AM, Kang K, Groeneveld S, Wang W, Zhong X, Kallakury B, Hennighausen L, Liu X, Furth PA. Primary cancer cell culture: mammary-optimized vs conditional reprogramming. Endocr Relat Cancer 2016; 23:535-54. [PMID: 27267121 PMCID: PMC4962879 DOI: 10.1530/erc-16-0071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
The impact of different culture conditions on biology of primary cancer cells is not always addressed. Here, conditional reprogramming (CRC) was compared with mammary-optimized EpiCult-B (EpiC) for primary mammary epithelial cell isolation and propagation, allograft generation, and genome-wide transcriptional consequences using cancer and non-cancer mammary tissue from mice with different dosages of Brca1 and p53 Selective comparison to DMEM was included. Primary cultures were established with all three media, but CRC was most efficient for initial isolation (P<0.05). Allograft development was faster using cells grown in EpiC compared with CRC (P<0.05). Transcriptome comparison of paired CRC and EpiC cultures revealed 1700 differentially expressed genes by passage 20. CRC promoted Trp53 gene family upregulation and increased expression of epithelial differentiation genes, whereas EpiC elevated expression of epithelial-mesenchymal transition genes. Differences did not persist in allografts where both methods yielded allografts with relatively similar transcriptomes. Restricting passage (<7) reduced numbers of differentially expressed genes below 50. In conclusion, CRC was most efficient for initial cell isolation but EpiC was quicker for allograft generation. The extensive culture-specific gene expression patterns that emerged with longer passage could be limited by reducing passage number when both culture transcriptomes were equally similar to that of the primary tissue. Defining impact of culture condition and passage on the transcriptome of primary cells could assist experimental design and interpretation. For example, differences that appear with passage and culture condition are potentially exploitable for comparative studies targeting specific biological networks in different transcriptional environments.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Keunsoo Kang
- Laboratory of Genetics and PhysiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland, USA Department of MicrobiologyDankook University, Cheonan, Republic of Korea
| | - Svenja Groeneveld
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department PharmazieLudwig-Maximilians-Universität München, Munich, Germany
| | - Weisheng Wang
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Xiaogang Zhong
- Department of BiostatisticsBioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, USA
| | - Bhaskar Kallakury
- Department of PathologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and PhysiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland, USA
| | - Xuefeng Liu
- Department of PathologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Priscilla A Furth
- Department of OncologyLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA Department of MedicineLombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
22
|
The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking. Exp Cell Res 2015; 343:73-81. [PMID: 26597760 DOI: 10.1016/j.yexcr.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022]
Abstract
The extracellular matrix in the healthy breast has an important tumor suppressive role, whereas the abnormal ECM in tumors can promote aggressiveness, and has been linked to breast cancer relapse, survival and resistance to chemotherapy. This review article gives an overview of the elements of the ECM which have been linked to prognosis of breast cancers, including changes in ECM protein composition, splicing, and microstructure.
Collapse
|
23
|
Berryhill GE, Trott JF, Hovey RC. Mammary gland development--It's not just about estrogen. J Dairy Sci 2015; 99:875-83. [PMID: 26506542 DOI: 10.3168/jds.2015-10105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
The mammary gland (MG) is one of a few organs that undergoes most of its growth after birth. Much of this development occurs concurrently with specific reproductive states, such that the ultimate goal of milk synthesis and secretion is coordinated with the nutritional requirements of the neonate. Central to the reproductive-MG axis is its endocrine regulation, and pivotal to this regulation is the ovarian secretion of estrogen (E). Indeed, it is widely accepted that estrogens are essential for growth of the MG to occur, both for ductal elongation during puberty and for alveolar development during gestation. As the factors regulating MG development continually come to light from the fields of developmental biology, lactation physiology, and breast cancer research, a growing body of evidence serves as a reminder that the MG are not as exclusively dependent on estrogens as might have been thought. The objective of this review is to summarize the state of information regarding our understanding of how estrogen (E) has been implicated as the key regulator of MG development, and to highlight some of the alternative E-independent mechanisms that have been discovered. In particular, we review our findings that dietary trans-10,cis-12 conjugated linoleic acid promotes ductal elongation and that the combination of progesterone (P) and prolactin (PRL) can stimulate branching morphogenesis in the absence of E. Ultimately, these examples stand as a healthy challenge to the question of just how important estrogens are for MG development. Answers to this question, in turn, increase our understanding of MG development across all mammals and the ways in which it can affect milk production.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Josephine F Trott
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Russell C Hovey
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618.
| |
Collapse
|
24
|
Developing in vitro models of human ductal carcinoma in situ from primary tissue explants. Breast Cancer Res Treat 2015; 153:311-21. [PMID: 26283301 DOI: 10.1007/s10549-015-3551-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022]
Abstract
Because there are currently no reliable predictors for progression of ductal carcinoma in situ (DCIS) to invasive disease, nearly all patients receive comprehensive therapy, leading to over-treatment in many cases. Few in vitro models for studying DCIS progression have been developed. We report here the successful culture and expansion of primary DCIS from surgical specimens using a conditional reprogramming protocol. Patients with percutaneous core-needle biopsy demonstrating DCIS were enrolled in a tissue banking protocol after informed consent was received. Fresh tissue was taken from lumpectomy or mastectomy specimens, mechanically and enzymatically dissociated, cultured in medium conditioned by irradiated mouse fibroblasts and supplemented with rho-associated protein kinase (ROCK) inhibitor, and characterized by immunocytochemistry. Out of 33 DCIS cases, 58% (19) were expanded for up to 2 months in culture, and 42% (14) were frozen immediately after mechanical dissociation for future growth. The cultures are almost exclusively composed of cytokeratin 8- and EpCAM-positive luminal and cytokeratin 14-, cytokeratin 5-, and p63-positive basal mammary epithelial cells, suggesting maintenance of heterogeneity in vitro. Furthermore, as assessed by luminal and basal marker expression, these cells retain their cellular identities both in the "conditionally reprogrammed" proliferative state and after conditioned media and ROCK inhibitor withdrawal. When grown to 100 % confluency, the cultures organize into luminal and basal layers as well as luminal compartments surrounded by basal cells. Primary cultures of DCIS derived directly from patient tissues can be generated and may serve as in vitro models for the study of DCIS.
Collapse
|
25
|
Simonova OA, Kuznetsova EB, Poddubskaya EV, Kekeeva TV, Kerimov RA, Trotsenko ID, Tanas AS, Rudenko VV, Alekseeva EA, Zaletayev DV, Strelnikov VV. DNA methylation in the promoter regions of the laminin family genes in normal and breast carcinoma tissues. Mol Biol 2015. [DOI: 10.1134/s0026893315040160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 2015; 20:9-25. [PMID: 26188694 PMCID: PMC4596764 DOI: 10.1007/s10911-015-9337-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammary gland undergoes dramatic post-natal growth beginning at puberty, followed by full development occurring during pregnancy and lactation. Following lactation, the alveoli undergo apoptosis, and the mammary gland reverses back to resemble the nonparous gland. This process of growth and regression occurs for multiple pregnancies, suggesting the presence of a hierarchy of stem and progenitor cells that are able to regenerate specialized populations of mammary epithelial cells. Expansion of epithelial cell populations in the mammary gland is regulated by ovarian steroids, in particular estrogen acting through its receptor estrogen receptor alpha (ERα) and progesterone signaling through progesterone receptor (PR). A diverse number of stem and progenitor cells have been identified based on expression of cell surface markers and functional assays. Here we review the current understanding of how estrogen and progesterone act together and separately to regulate stem and progenitor cells within the human and mouse mammary tissues. Better understanding of the hierarchal organization of epithelial cell populations in the mammary gland and how the hormonal milieu affects its regulation may provide important insights into the origins of different subtypes of breast cancer.
Collapse
Affiliation(s)
- Lisa M Arendt
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Charlotte Kuperwasser
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA.
- Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 800 Washington St, Box 5609, Boston, MA, 02111, USA.
| |
Collapse
|
27
|
Lee AV, Oesterreich S, Davidson NE. MCF-7 cells--changing the course of breast cancer research and care for 45 years. J Natl Cancer Inst 2015; 107:djv073. [PMID: 25828948 DOI: 10.1093/jnci/djv073] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is 45 years since a pleural effusion from a patient with metastatic breast cancer led to the generation of the MCF-7 breast cancer cell line. MCF-7 is the most studied human breast cancer cell line in the world, and results from this cell line have had a fundamental impact upon breast cancer research and patient outcomes. But of the authors for the nearly 25000 scientific publications that used this cell line, how many know the unique story of its isolation and development? In this commentary we will review the past, present, and future of research using MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Adrian V Lee
- Departments of Pharmacology and Chemical Biology, Human Genetics, and Medicine, Women's Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA (AVL, SO, NED); University of Pittsburgh Cancer Institute and UPMC Cancer Center, 5150 Center Avenue, Pittsburgh, PA (NED)
| | - Steffi Oesterreich
- Departments of Pharmacology and Chemical Biology, Human Genetics, and Medicine, Women's Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA (AVL, SO, NED); University of Pittsburgh Cancer Institute and UPMC Cancer Center, 5150 Center Avenue, Pittsburgh, PA (NED)
| | - Nancy E Davidson
- Departments of Pharmacology and Chemical Biology, Human Genetics, and Medicine, Women's Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA (AVL, SO, NED); University of Pittsburgh Cancer Institute and UPMC Cancer Center, 5150 Center Avenue, Pittsburgh, PA (NED).
| |
Collapse
|
28
|
Gomes LR, Vessoni AT, Menck CFM. Three-dimensional microenvironment confers enhanced sensitivity to doxorubicin by reducing p53-dependent induction of autophagy. Oncogene 2015; 34:5329-40. [PMID: 25619836 DOI: 10.1038/onc.2014.461] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Preclinical studies of anticancer drugs are typically performed using cancer cell lines maintained in two-dimensional (2D) cultures, ignoring the influences of the extracellular matrix (ECM) and three-dimensional (3D) microenvironment. In this study, we evaluated the microenvironmental control of human breast cancer cells responses to doxorubicin (DOXO) using the 3D laminin-rich ECM (3D lrECM) cell culture model. Under 3D culture conditions, MCF-7 cells displayed drastic morphological alterations, a decrease in proliferation and elevated sensitivity to DOXO. Interestingly, the chemotherapy-mediated activation of autophagy was compromised in the 3D matrix, suggesting an association between the increased cytotoxicity of DOXO and hindered autophagy induction. Indeed, while chloroquine or ATG5 knockdown potentiated DOXO-induced cell death under the 2D culture conditions, the autophagy inducer rapamycin improved the resistance of 3D-cultured cells to this drug. Moreover, in the monolayer-cultured cells, DOXO treatment led to increases in p53 and DRAM-1 expression, which is a p53-dependent activator of autophagy that functions in response to DNA damage. Conversely, p53 and DRAM-1 expression was impaired in 3D-cultured cells. The knockdown of p53 by shRNA blocked DRAM-1 activation, impaired autophagy induction and sensitized only those cells maintained under 2D conditions to DOXO. In addition, 2D-cultured MDA-MB-231 cells (a p53-mutated breast cancer cell line) not only showed increased sensitivity to DOXO compared with MCF-7 cells but also failed to induce DRAM-1 expression or autophagy. Similar to p53 silencing, DRAM-1 knockdown potentiated DOXO cytotoxicity only in 2D-cultured cells. These results suggest that the 3D tissue microenvironment controls tumor cell sensitivity to DOXO treatment by preventing p53-DRAM-autophagy axis activation.
Collapse
Affiliation(s)
- L R Gomes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - A T Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
29
|
Chang YL, Hsu YK, Wu TF, Huang CM, Liou LY, Chiu YW, Hsiao YH, Luo FJ, Yuan TC. Regulation of estrogen receptor α function in oral squamous cell carcinoma cells by FAK signaling. Endocr Relat Cancer 2014; 21:555-65. [PMID: 24825747 DOI: 10.1530/erc-14-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Estrogen receptor α (ERA) is a DNA-binding transcription factor that plays an important role in the regulation of cell growth. Previous studies indicated that the expression of ERα in cell lines and tumors derived from oral squamous cell carcinoma (OSCC). The aim of this study was to examine the activity and function of ERα in OSCC cells and the mechanism underlying ERα activation. Immunochemical analyses in benign (n=11) and malignant (n=21) lesions of the oral cavity showed that ERα immunoreactivity was observed in 43% (9/21) of malignant lesions, whereas none of benign lesions showed ERα immunoreactivity. The ERα expression was also found in three OSCC cell lines and its transcriptional activity was correlated with cell growth. Addition of estradiol stimulated cell growth, whereas treatment of tamoxifen or knockdown of ERα expression caused reduced cell growth. Interestingly, the expression and activity of focal adhesion kinase (FAK) were associated with the phosphorylation of ERα at serine 118 in OSCC cells. Elevated expression of FAK in the slow-growing SCC25 cells caused increases in ERα phosphorylation, transcriptional activity, and cell growth rate, whereas knockdown of FAK expression in the rapid-growing OECM-1 cells led to reduced ERα phosphorylation and activity and retarded cell growth. Inhibition of the activity of protein kinase B (AKT), but not ERK, abolished FAK-promoted ERα phosphorylation. These results suggest that OSCC cells expressed functional ERα, whose activity can be enhanced by FAK/AKT signaling, and this was critical for promoting cell growth. Thus, FAK and ERα can serve as the therapeutic targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Yi-Lin Chang
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Yu-Kan Hsu
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Tsung-Fan Wu
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Chieh-Ming Huang
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of ChinaDepartment of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Li-Yin Liou
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Ya-Wen Chiu
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Yu-Hsuan Hsiao
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Fuh-Jinn Luo
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| | - Ta-Chun Yuan
- Department of Life ScienceInstitute of Biotechnology, National Dong Hwa University, Hualien 97401, TaiwanDepartment of PathologyDepartment of DentistryMennonite Hospital, Hualien 970, Taiwan, Republic of China
| |
Collapse
|
30
|
Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med 2014; 7:173-91. [PMID: 25114582 PMCID: PMC4126202 DOI: 10.2147/pgpm.s61693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression. They have been implicated in a broad range of biological processes, and miRNA-related genetic alterations probably underlie several human diseases. Single nucleotide polymorphisms of transcripts may modulate the posttranscriptional regulation of gene expression by miRNAs and explain interindividual variability in cancer risk and in chemotherapy response. On the basis of recent association studies published in the literature, the present review mainly summarizes the potential role of miRNAs as molecular biomarkers for disease susceptibility, diagnosis, prognosis, and drug-response prediction in tumors. Many clues suggest a role for polymorphisms within the 3' untranslated regions of KRAS rs61764370, SET8 rs16917496, and MDM4 rs4245739 as SNPs in miRNA binding sites highly promising in the biology of human cancer. However, more studies are needed to better characterize the composite spectrum of genetic determinants for future use of markers in risk prediction and clinical management of diseases, heading toward personalized medicine.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
31
|
Honeth G, Lombardi S, Ginestier C, Hur M, Marlow R, Buchupalli B, Shinomiya I, Gazinska P, Bombelli S, Ramalingam V, Purushotham AD, Pinder SE, Dontu G. Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Res 2014; 16:R52. [PMID: 24887554 PMCID: PMC4095680 DOI: 10.1186/bcr3663] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/29/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Although estrogen and progesterone play a key role in normal mammary development and in breast cancer, the potential for proliferation and lineage differentiation as well as origin of cells that express the estrogen receptor (ER) in normal breast epithelium are not known. Some evidence suggests that normal human mammary stem/progenitor cells are ER-, but the identity of these cells and the cellular hierarchy of breast epithelium are still subjects of controversy. It is likely that elucidation of these aspects will bring insight into the cellular origin of breast cancer subtypes. METHODS We used fluorescence-activated cell sorting of primary human mammary epithelial cells along with in vitro and in vivo functional assays to examine the hierarchic relation between cells with aldehyde dehydrogenase enzymatic activity (ALDH+ cells) and ER+ cells in the normal human breast epithelium. We assessed the proliferation and lineage differentiation potential of these cells in vitro and in vivo. A gene reporter assay was used to separate live ER+ and ER- mammary epithelial cells. With shRNA-mediated knockdown, we investigated the role of ALDH isoforms in the functionality of mammary epithelial progenitor cells. RESULTS We describe a cellular hierarchy in the normal human mammary gland in which ER-/ALDH+ cells with functional properties of stem/progenitor cells generate ER+ progenitor cells, which in turn give rise to cells of luminal lineage. We show that the ALDH1A1 isoform, through its function in the retinoic acid metabolism, affects the proliferation and/or early differentiation of stem/progenitor cells and is important for branching morphogenesis. CONCLUSIONS This study presents direct evidence that ER+ cells are generated by ER-/ALDH+ stem/progenitor cells. We also show that ER+ cells are able to generate cell progeny of luminal lineage in vitro and in vivo. Loss of ALDH1A1 function impairs this process, as well as branching morphogenesis and clonogenicity in suspension culture. This latter effect is reversed by treatment with retinoic acid.
Collapse
|
32
|
Zhu J, Xiong G, Trinkle C, Xu R. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol 2014; 29:1083-92. [PMID: 24682974 DOI: 10.14670/hh-29.1083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.
Collapse
Affiliation(s)
- Jieqing Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Ren Xu
- Markey Cancer Center, and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
33
|
Obr AE, Grimm SL, Bishop KA, Pike JW, Lydon JP, Edwards DP. Progesterone receptor and Stat5 signaling cross talk through RANKL in mammary epithelial cells. Mol Endocrinol 2013; 27:1808-24. [PMID: 24014651 PMCID: PMC3805851 DOI: 10.1210/me.2013-1077] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/21/2013] [Indexed: 02/08/2023] Open
Abstract
Progesterone (P4) stimulates proliferation of the mammary epithelium by a mechanism that involves paracrine signaling mediated from progesterone receptor (PR)-positive to neighboring PR-negative cells. Here we used a primary mouse mammary epithelial cell (MEC) culture system to define the molecular mechanism by which P4 regulates the expression of target gene effectors of proliferation including the paracrine factor receptor and activator of nuclear factor κB ligand (RANKL). MECs from adult virgin mice grown and embedded in three-dimensional basement-membrane medium resemble mammary ducts in vivo structurally and with respect to other properties including a heterogeneous pattern of PR expression, P4 induction of RANKL and other target genes in a PR-dependent manner, and a proliferative response to progestin. RANKL was demonstrated to have multiple functional P4-responsive enhancers that bind PR in a hormone-dependent manner as detected by chromatin immunoprecipitation assay. P4 also stimulated recruitment of signal transducer and activator of transcription (Stat)5a to RANKL enhancers through an apparent tethering with PR. Analysis of primary MECs from Stat5a knockout mice revealed that P4 induction of RANKL and a broad range of other PR target genes required Stat5a, as did P4-stimulated cell proliferation. In the absence of Stat5a, PR binding was lost at selective RANKL enhancers but was retained with others, suggesting that Stat5a acts to facilitate PR DNA binding at selective sites and to function as a coactivator with DNA-bound PR at others. These results show that RANKL is a direct PR target gene and that Stat5a has a novel role as a cofactor in PR-mediated transcriptional signaling in the mammary gland.
Collapse
Affiliation(s)
- Alison E Obr
- PhD, Department of Molecular & Cellular Biology, Baylor College of Medicine, BCM Box 130, One Baylor Plaza, Houston, Texas 77030.
| | | | | | | | | | | |
Collapse
|
34
|
Speroni L, Whitt GS, Xylas J, Quinn KP, Jondeau-Cabaton A, Barnes C, Georgakoudi I, Sonnenschein C, Soto AM. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model. Tissue Eng Part C Methods 2013; 20:42-51. [PMID: 23675751 DOI: 10.1089/ten.tec.2013.0054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.
Collapse
Affiliation(s)
- Lucia Speroni
- 1 Cell, Molecular, and Developmental Biology Program, Department of Anatomy and Cellular Biology, Tufts University School of Medicine , Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cunderlíková B, Peng Q, Mateasík A. Factors implicated in the assessment of aminolevulinic acid-induced protoporphyrin IX fluorescence. Biochim Biophys Acta Gen Subj 2013; 1830:2750-62. [PMID: 23142760 DOI: 10.1016/j.bbagen.2012.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/16/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Photodynamic therapy and photodiagnosis of cancer requires preferential accumulation of fluorescent photosensitizers in tumors. Clinical evidence documents feasibility of ALA-based photodiagnosis for tumor detection. However, false positive results and large variations in fluorescence intensities are also reported. Furthermore, selective accumulation of fluorescent species of photosensitizers in tumor cell lines, as compared to normal ones, when cultured in vitro, is not always observed. To understand this discrepancy we analyzed the impact of various factors on the intensity of detected PpIX fluorescence. METHODS Impacts of cell type, mitochondrial potential, cell-cell interactions and relocalization of PpIX among different cell types in co-cultures of different cell lines were analyzed by confocal microscopy and flow cytometry. Fluorescence spectroscopy was used to estimate absolute amounts of ALA-induced PpIX in individual cell lines. Immunofluorescence staining was applied to evaluate the ability of cell lines to produce collagen. RESULTS Higher ALA-induced PpIX fluorescence in cancer cell lines as compared to normal ones was not detected by all the methods used. Mitochondrial activity was heterogeneous throughout the cell monolayers and could not be clearly correlated with PpIX fluorescence. Positive collagen staining was detected in all cell lines tested. CONCLUSIONS Contrary to in vivo situation, ALA-induced PpIX production by cell lines in vitro may not result in higher PpIX fluorescence signals in tumor cells than in normal ones. We suggest that a combination of several properties of tumor tissue, instead of tumor cells only, is responsible for increased ALA-induced PpIX fluorescence in solid tumors. GENERAL SIGNIFICANCE Understanding the reasons of increased ALA-induced PpIX fluorescence in tumors is necessary for reliable ALA-based photodiagnosis, which is used in various oncological fields.
Collapse
|
36
|
Jahchan NS, Wang D, Bissell MJ, Luo K. SnoN regulates mammary gland alveologenesis and onset of lactation by promoting prolactin/Stat5 signaling. Development 2012; 139:3147-56. [PMID: 22833129 DOI: 10.1242/dev.079616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-β and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-β signaling, coordinates TGF-β and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-β and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN-/- mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
37
|
Issues to be considered when studying cancer in vitro. Crit Rev Oncol Hematol 2012; 85:95-111. [PMID: 22823950 DOI: 10.1016/j.critrevonc.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/31/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Various cancer treatment approaches have shown promising results when tested preclinically. The results of clinical trials, however, are often disappointing. While searching for the reasons responsible for their failures, the relevance of experimental and preclinical models has to be taken into account. Possible factors that should be considered, including cell modifications during in vitro cultivation, lack of both the relevant interactions and the structural context in vitro have been summarized in the present review.
Collapse
|
38
|
Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene 2012; 32:2390-402. [PMID: 22751110 DOI: 10.1038/onc.2012.261] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERα) mediates breast cancer cell proliferation, and expression of ERα is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERβ) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERα and ERβ expression and T47-D human breast cancer cells with recombinant ERβ (T47-DERβ) were used to explore effects exerted in vitro and in vivo by the ERβ agonists 2,3-bis (4-hydroxy-phenyl)-propionitrile (DPN) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY). In vivo, ERβ agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERα agonist 4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17β-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERβ agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation. However, when extracellular signal-regulated kinase 1 and 2 (ERK ½) were activated by co-incubation with basement membrane extract or epidermal growth factor, induction of apoptosis by ERβ agonists was repressed and DPN induced proliferation in a similar way as E2 or PPT. In a context of active ERK ½, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase (AKT) signalling was necessary to allow proliferation stimulated by ER agonists. Inhibition of MEK ½ with UO126 completely restored ERβ growth-inhibitory effects, whereas inhibition of PI3K by LY294002 inhibited ERβ-induced proliferation. These results show that the cellular context modulates ERβ growth-inhibitory effects and should be taken into consideration upon assessment of ERβ as target for endocrine treatment.
Collapse
|
39
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
40
|
Lo AT, Mori H, Mott J, Bissell MJ. Constructing three-dimensional models to study mammary gland branching morphogenesis and functional differentiation. J Mammary Gland Biol Neoplasia 2012; 17:103-10. [PMID: 22573197 DOI: 10.1007/s10911-012-9251-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 11/25/2022] Open
Abstract
Tissue organogenesis is directed by both intercellular interactions and communication with the surrounding microenvironment. When cells are cultured on two-dimensional plastic substrata (2D), important signals controlling programs of cell proliferation, metabolism, differentiation and death responsible for the formation of correct tissue-specific architecture and function are lost. Designing three-dimensional (3D), physiologically relevant culture models, we can recapitulate some crucial aspects of the dynamic and reciprocal signaling necessary for establishing and maintaining tissue specific morphogenic programs. Here we briefly describe the details of robust methods for culturing mouse primary mammary organoids in 3D gels of different extracellular matrices and describe techniques for analyzing the resulting structures. These designer microenvironments are useful for both understanding branching morphogenesis and signaling integrations, but also for analysis of individual susceptibilities and drug testing.
Collapse
Affiliation(s)
- Alvin T Lo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
41
|
Du JY, Chen MC, Hsu TC, Wang JH, Brackenbury L, Lin TH, Wu YY, Yang Z, Streuli CH, Lee YJ. The RhoA-Rok-myosin II pathway is involved in extracellular matrix-mediated regulation of prolactin signaling in mammary epithelial cells. J Cell Physiol 2012; 227:1553-60. [PMID: 21678418 PMCID: PMC3675639 DOI: 10.1002/jcp.22886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell-BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell-matrix interactions.
Collapse
Affiliation(s)
- Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- J M Rosen
- Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| |
Collapse
|
43
|
Lahlou H, Muller WJ. β1-integrins signaling and mammary tumor progression in transgenic mouse models: implications for human breast cancer. Breast Cancer Res 2011; 13:229. [PMID: 22264244 PMCID: PMC3326542 DOI: 10.1186/bcr2905] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consistent with their essential role in cell adhesion to the extracellular matrix, integrins and their associated signaling pathways have been shown to be involved in cell proliferation, migration, invasion and survival, processes required in both tumorigenesis and metastasis. β1-integrins represent the predominantly expressed integrins in mammary epithelial cells and have been proven crucial for mammary gland development and differentiation. Here we provide an overview of the studies that have used transgenic mouse models of mammary tumorigenesis to establish β1-integrin as a critical mediator of breast cancer progression and thereby as a potential therapeutic target for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Hicham Lahlou
- Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec, Canada
| | | |
Collapse
|
44
|
Fedrowitz M, Hass R, Bertram C, Löscher W. Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. J Exp Clin Cancer Res 2011; 30:102. [PMID: 22027017 PMCID: PMC3219703 DOI: 10.1186/1756-9966-30-102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most diagnosed cancers in females, frequently with fatal outcome, so that new strategies for modulating cell proliferation in the mammary tissue are urgently needed. There is some, as yet inconclusive evidence that α-amylase may constitute a novel candidate for affecting cellular growth. METHODS The present investigation aimed to examine if salivary α-amylase, an enzyme well known for the metabolism of starch and recently introduced as a stress marker, is able to exert antiproliferative effects on the growth of mammary gland epithelial cells. For this purpose, primary epithelial cultures of breast tissue from two different inbred rat strains, Fischer 344 (F344) and Lewis, as well as breast tumor cells of human origin were used. Treatment with human salivary α-amylase was performed once daily for 2 days followed by cell counting (trypan blue assay) to determine alterations in cell numbers. Cell senescence after α-amylase treatment was assessed by β-galactosidase assay. Endogenous α-amylase was detected in cells from F344 and Lewis by immunofluorescence. RESULTS Salivary α-amylase treatment in vitro significantly decreased the proliferation of primary cells from F344 and Lewis rats in a concentration-dependent manner. Noticeably, the sensitivity towards α-amylase was significantly higher in Lewis cells with stronger impact on cell growth after 5 and 50 U/ml compared to F344 cells. An antiproliferative effect of α-amylase was also determined in mammary tumor cells of human origin, but this effect varied depending on the donor, age, and type of the cells. CONCLUSIONS The results presented here indicate for the first time that salivary α-amylase affects cell growth in rat mammary epithelial cells and in breast tumor cells of human origin. Thus, α-amylase may be considered a novel, promising target for balancing cellular growth, which may provide an interesting tool for tumor prophylaxis and treatment.
Collapse
Affiliation(s)
- Maren Fedrowitz
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Buenteweg 17, Hannover, 30559, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Carl-Neuberg-Str. 1, Medical University, Hannover, 30625, Germany
| | - Catharina Bertram
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Carl-Neuberg-Str. 1, Medical University, Hannover, 30625, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Buenteweg 17, Hannover, 30559, Germany
| |
Collapse
|
45
|
González S, Aguilera S, Urzúa U, Quest AFG, Molina C, Alliende C, Hermoso M, González MJ. Mechanotransduction and epigenetic control in autoimmune diseases. Autoimmun Rev 2010; 10:175-9. [PMID: 20923710 DOI: 10.1016/j.autrev.2010.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/25/2010] [Indexed: 01/06/2023]
Abstract
Differentiation of epithelial cells is required to define tissue architecture and appropriate function of these cells is associated with a specific pattern of gene expression. DNA methylation, post-translational modification of histones and chromatin remodeling are nuclear mechanisms implicated in epigenetic control of gene expression. All factors relevant to tissue differentiation, including cell adhesion and shape, extracellular stimuli and transcriptional control, modulate gene expression and, thus, some of them are likely to impact on nuclear mechanisms of epigenetic control. The epithelial cells of salivary glands from Sjögren's syndrome patients display alterations in cell adhesion and shape. In this review, we summarize how these alterations are thought to lead to chromatin remodeling and, in doing so, bring about changes in transcriptional patterns. Additionally, we discuss how mechanotransduction in cells with impaired structural organization is implicated in modifying gene expression in these patients.
Collapse
|
46
|
Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS One 2010; 5:e10786. [PMID: 20520761 PMCID: PMC2877092 DOI: 10.1371/journal.pone.0010786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/30/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A significant proportion of breast cancer patients face failure of endocrine therapy due to the acquisition of endocrine resistance. We have explored mechanisms involved in such disease progression by using a mouse breast cancer model that is induced by medroxyprogesterone acetate (MPA). These tumors transit through different stages of hormone sensitivity. However, when cells from tumor variants were seeded on plastic, all were stimulated by progestins and inhibited by antiprogestins such as RU486. Furthermore, cells from a RU486-resistant tumor variant recovered antiprogestin sensitivity. HYPOTHESIS A three-dimensional (3D) culture system, by maintaining differential cellular organization that is typical of each tumor variant, may allow for the maintenance of particular hormone responses and thus be appropriate for the study of the effects of specific inhibitors of signaling pathways associated with disease progression. METHOD We compared the behavior of tumors growing in vivo and cancer cells ex vivo (in 3D Matrigel). In this system, we evaluated the effects of kinase inhibitors and hormone antagonists on tumor growth. PRINCIPAL FINDINGS LY294002, a PI3K/AKT pathway inhibitor, decreased both tumor growth in vivo and cell survival in Matrigel in MPA-independent tumors with higher AKT activity. Induction of cell death by anti-hormones such as ICI182780 and ZK230211 was more effective in MPA-dependent tumors with lower AKT activity. Inhibition of MEK with PD98059 did not affect tumor growth in any tested variant. Finally, while Matrigel reproduced differential responsiveness of MPA-dependent and -independent breast cancer cells, it was not sufficient to preserve antiprogestin resistance of RU486-resistant tumors. CONCLUSION We demonstrated that the PI3K/AKT pathway is relevant for MPA-independent tumor growth. Three-dimensional cultures were useful to test the effects of kinase inhibitors on breast cancer growth and highlight the need for in vivo models to validate experimental tools used for selective therapeutic targeting.
Collapse
Affiliation(s)
- Maria Laura Polo
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maria Victoria Arnoni
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Marina Riggio
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Virginia Novaro
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
47
|
Jahchan NS, You YH, Muller WJ, Luo K. Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis. Cancer Res 2010; 70:4204-13. [PMID: 20460516 DOI: 10.1158/0008-5472.can-10-0135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SnoN is an important negative regulator of transforming growth factor-beta (TGF-beta) signaling that was originally identified as a transforming oncogene in chicken embryonic fibroblasts. Both pro-oncogenic and antioncogenic activities of SnoN have been reported, but its function in normal epithelial cells has not been defined. In the mouse mammary gland, SnoN is expressed at relatively low levels, but it is transiently upregulated at late gestation before being downregulated during lactation and early involution. To assess the effects of elevated levels of SnoN, we generated transgenic mice expressing a SnoN fragment under the control of the mouse mammary tumor virus promoter. In this model system, SnoN elevation increased side-branching and lobular-alveolar proliferation in virgin glands, while accelerating involution in postlactation glands. Increased proliferation stimulated by SnoN was insufficient to induce mammary tumorigenesis. In contrast, elevated levels of SnoN cooperated with polyoma middle T antigen to accelerate the formation of aggressive multifocal adenocarcinomas and to increase the formation of pulmonary metastases. Our studies define functions of SnoN in mammary epithelial cell proliferation and involution, and provide the first in vivo evidence of a pro-oncogenic role for SnoN in mammalian tumorigenesis.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
48
|
Kolahi KS, Mofrad MR. Mechanotransduction: a major regulator of homeostasis and development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:625-39. [DOI: 10.1002/wsbm.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Fernandez-Gonzalez R, Illa-Bochaca I, Shelton DN, Welm BE, Barcellos-Hoff MH, Ortiz-de-Solorzano C. In situ analysis of cell populations: long-term label-retaining cells. Methods Mol Biol 2010; 621:1-28. [PMID: 20405356 DOI: 10.1007/978-1-60761-063-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammary gland consists of an epithelial ductal tree embedded in a fat pad. Adult mammary epithelium has been demonstrated to have outstanding regenerative potential, consistent with the presence of resident, adult stem cells. However, there are currently no bona fide markers to identify these cells within their tissue context. Here, we introduce long-term label retention as a method to investigate the location of quiescent cells (a property attributed to adult stem cells) in situ. Long-term label retaining cells divide actively during tissue development and remain quiescent at homeostasis. These two properties have been attributed to adult stem cells. Therefore, label-retaining cells can be used to identify populations that contain stem cells. We describe the materials and methods necessary to identify and image mammary label-retaining cells, to carry out morphometric analysis on these cells and to map their distribution of the mammary epithelium. The morphometric and spatial analyses described here are generally applicable to any mammary cell populations, and will therefore be useful to characterize mammary stem cells once bona fide mammary stem cell markers become available.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Development Biology Program, Sloan-Kettering, Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
50
|
Plachot C, Chaboub LS, Adissu HA, Wang L, Urazaev A, Sturgis J, Asem EK, Lelièvre SA. Factors necessary to produce basoapical polarity in human glandular epithelium formed in conventional and high-throughput three-dimensional culture: example of the breast epithelium. BMC Biol 2009; 7:77. [PMID: 19917093 PMCID: PMC2784453 DOI: 10.1186/1741-7007-7-77] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/16/2009] [Indexed: 12/11/2022] Open
Abstract
Background Basoapical polarity in epithelia is critical for proper tissue function, and control of proliferation and survival. Cell culture models that recapitulate epithelial tissue architecture are invaluable to unravel developmental and disease mechanisms. Although factors important for the establishment of basal polarity have been identified, requirements for the formation of apical polarity in three-dimensional tissue structures have not been thoroughly investigated. Results We demonstrate that the human mammary epithelial cell line-3522 S1, provides a resilient model for studying the formation of basoapical polarity in glandular structures. Testing three-dimensional culture systems that differ in composition and origin of substrata reveals that apical polarity is more sensitive to culture conditions than basal polarity. Using a new high-throughput culture method that produces basoapical polarity in glandular structures without a gel coat, we show that basal polarity-mediated signaling and collagen IV are both necessary for the development of apical polarity. Conclusion These results provide new insights into the role of the basement membrane, and especially collagen IV, in the development of the apical pole, a critical element of the architecture of glandular epithelia. Also, the high-throughput culture method developed in this study should open new avenues for high-content screening of agents that act on mammary tissue homeostasis and thus, on architectural changes involved in cancer development.
Collapse
Affiliation(s)
- Cedric Plachot
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | |
Collapse
|