1
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Tongluan N, Engström P, Jirakanwisal K, Langohr IM, Welch MD, Macaluso KR. Critical roles of Rickettsia parkeri outer membrane protein B (OmpB) in the tick host. Infect Immun 2024; 92:e0051523. [PMID: 38206007 PMCID: PMC10863407 DOI: 10.1128/iai.00515-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Rickettsia parkeri is a pathogen of public health concern and transmitted by the Gulf Coast tick, Amblyomma maculatum. Rickettsiae are obligate intracellular bacteria that enter and replicate in diverse host cells. Rickettsial outer membrane protein B (OmpB) functions in bacterial adhesion, invasion, and avoidance of cell-autonomous immunity in mammalian cell infection, but the function of OmpB in arthropod infection is unknown. In this study, the function of R. parkeri OmpB was evaluated in the tick host. R. parkeri wild-type and R. parkeri ompBSTOP::tn (non-functional OmpB) were capillary fed to naïve A. maculatum ticks to investigate dissemination in the tick and transmission to vertebrates. Ticks exposed to R. parkeri wild-type had greater rickettsial loads in all organs than ticks exposed to R. parkeri ompBSTOP::tn at 12 h post-capillary feeding and after 1 day of feeding on host. In rats that were exposed to R. parkeri ompBSTOP::tn-infected ticks, dermal inflammation at the bite site was less compared to R. parkeri wild-type-infected ticks. In vitro, R. parkeri ompBSTOP::tn cell attachment to tick cells was reduced, and host cell invasion of the mutant was initially reduced but eventually returned to the level of R. parkeri wild-type by 90 min post-infection. R. parkeri ompBSTOP::tn and R. parkeri wild-type had similar growth kinetics in the tick cells, suggesting that OmpB is not essential for R. parkeri replication in tick cells. These results indicate that R. parkeri OmpB functions in rickettsial attachment and internalization to tick cells and pathogenicity during tick infection.
Collapse
Affiliation(s)
- Natthida Tongluan
- Department of Microbiology and Immunology, University of South Alabama, Frederick P. Whiddon College of Medicine, Mobile, Alabama, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Krit Jirakanwisal
- Department of Microbiology and Immunology, University of South Alabama, Frederick P. Whiddon College of Medicine, Mobile, Alabama, USA
| | - Ingeborg M. Langohr
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama, Frederick P. Whiddon College of Medicine, Mobile, Alabama, USA
| |
Collapse
|
3
|
Sahni A, Alsing J, Narra HP, Montini M, Zafar Y, Sahni SK. Endothelial Mechanistic Target of Rapamycin Activation with Different Strains of R. rickettsii: Possible Role in Rickettsial Pathogenesis. Microorganisms 2024; 12:296. [PMID: 38399700 PMCID: PMC10892065 DOI: 10.3390/microorganisms12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that primarily targets endothelial cells (ECs), leading to vascular inflammation and dysfunction. Mechanistic target of rapamycin (mTOR) regulates several cellular processes that directly affect host immune responses to bacterial pathogens. Here, we infected ECs with two R. rickettsii strains, avirulent (Iowa) and highly virulent Sheila Smith (SS) to identify differences in the kinetics and/or intensity of mTOR activation to establish a correlation between mTOR response and bacterial virulence. Endothelial mTOR activation with the highly virulent SS strain was significantly higher than with the avirulent Iowa strain. Similarly, there was increased LC3-II lipidation with the virulent SS strain compared with the avirulent Iowa strain of R. rickettsii. mTOR inhibitors rapamycin and Torin2 significantly increased bacterial growth and replication in the ECs, as evidenced by a more than six-fold increase in rickettsia copy numbers at 48 h post-infection. Further, the knockdown of mTOR with Raptor and Rictor siRNA resulted in a higher rickettsial copy number and the altered expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8. These results are the first to reveal that endothelial mTOR activation and the early induction of autophagy might be governed by bacterial virulence and have established the mTOR pathway as an important regulator of endothelial inflammation, host immunity, and microbial replication.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| |
Collapse
|
4
|
Cossart P. Raising a Bacterium to the Rank of a Model System: The Listeria Paradigm. Annu Rev Microbiol 2023; 77:1-22. [PMID: 37713460 DOI: 10.1146/annurev-micro-110422-112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.
Collapse
Affiliation(s)
- Pascale Cossart
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France;
| |
Collapse
|
5
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Sharafutdinov I, Knorr J, Rottner K, Backert S, Tegtmeyer N. Cortactin: A universal host cytoskeletal target of Gram-negative and Gram-positive bacterial pathogens. Mol Microbiol 2022; 118:623-636. [PMID: 36396951 DOI: 10.1111/mmi.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Jimmy S Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robin M Daugherty
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - David O Wood
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
10
|
Upla PU, Sani B, Hadi NS, Al-Mustapha FY, Shuaibu K. Molecular pathogenesis of Rocky Mountain spotted fever: a brief review. IMC JOURNAL OF MEDICAL SCIENCE 2021. [DOI: 10.55010/imcjms.16.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a bacterial infection caused by Rickettsia, a diverse group of small Gram-negative rod-shaped α-proteobacteria, and obligates intracellular pathogens, which are free-living in hosts' cell cytoplasm and are transmitted to humans by arthropod vectors. It is the most acute rickettsial diseases known to human, with significant death rates of over 20–30%. They are distinguished by a strictly intracellular position which has, for long, delayed their comprehensive study. This article attempts primarily to focus on the mechanisms of Rickettsia-host cell interactions and the underlying molecular pathogenesis of RMSF.
IMC J Med Sci 2022; 16(1): 004
*Correspondence: Bashiru Sani, Department of Microbiology, Federal University of Lafia, Nasarawa State, Nigeria. Email: bashmodulus@gmail.com
Collapse
Affiliation(s)
- Peter Uteh Upla
- Department of Microbiology, Federal University of Lafia, Nasarawa State, Nigeria
| | - Bashiru Sani
- Department of Microbiology, Federal University of Lafia, Nasarawa State, Nigeria
| | - Naja’atu Shehu Hadi
- Department of Microbiology, Federal University of Lafia, Nasarawa State, Nigeria
| | | | - Kabiru Shuaibu
- Department of Microbiology, Federal University of Lafia, Nasarawa State, Nigeria
| |
Collapse
|
11
|
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop Med Infect Dis 2021; 6:172. [PMID: 34698275 PMCID: PMC8544691 DOI: 10.3390/tropicalmed6040172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar ("tache noire"). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.
Collapse
Affiliation(s)
- Nikolaos Spernovasilis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Ioulia Markaki
- “Trifyllio” General Hospital of Kythira, 80200 Kythira, Greece;
| | - Michail Papadakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Nikolaos Mazonakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Despo Ierodiakonou
- Department of Social Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2417, Cyprus
| |
Collapse
|
12
|
Allen PE, Noland RC, Martinez JJ. Rickettsia conorii survival in THP-1 macrophages involves host lipid droplet alterations and active rickettsial protein production. Cell Microbiol 2021; 23:e13390. [PMID: 34464019 DOI: 10.1111/cmi.13390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Rickettsia conorii is a Gram-negative, cytosolic intracellular bacterium that has classically been investigated in terms of endothelial cell infection. However, R. conorii and other human pathogenic Rickettsia species have evolved mechanisms to grow in various cell types, including macrophages, during mammalian infection. During infection of these phagocytes, R. conorii shifts the host cell's overall metabolism towards an anti-inflammatory M2 response, metabolically defined by an increase in host lipid metabolism and oxidative phosphorylation. Lipid metabolism has more recently been identified as a key regulator of host homeostasis through modulation of immune signalling and metabolism. Intracellular pathogens have adapted mechanisms of hijacking host metabolic pathways including host lipid catabolic pathways for various functions required for growth and survival. In the present study, we hypothesised that alterations of host lipid droplets initiated by lipid catabolic pathways during R. conorii infection is important for bacterial survival in macrophages. Herein, we determined that host lipid droplet modulation is initiated early during R. conorii infection, and these alterations rely on active bacteria and lipid catabolic pathways. We also find that these lipid catabolic pathways are essential for efficient bacterial survival. Unlike the mechanisms used by other intracellular pathogens, the catabolism of lipid droplets induced by R. conorii infection is independent of upstream host peroxisome proliferator-activated receptor-alpha (PPARα) signalling. Inhibition of PPARɣ signalling and lipid droplet accumulation in host cells cause a significant decrease in R. conorii survival suggesting a negative correlation with lipid droplet production and R. conorii survival. Together, these results strongly suggest that the modulation of lipid droplets in macrophage cells infected by R. conorii is an important and underappreciated aspect of the infection process. TAKE AWAYS: Host lipid droplets are differentially altered in early and replicative stages of THP-1 macrophage infection with R. conorii. Lipid droplet alterations are initiated in a bacterial-dependent manner and do not require host peroxisome proliferator-activated receptors α or ɣ activation. Pharmacological inhibition of host lipid catabolic processes during R. conorii infection indicates a requirement of lipid catabolism for bacterial survival and initiation of lipid droplet modulation. A significant increase in host lipid droplets during infection has a negative impact on R. conorii survival in THP-1 macrophages.
Collapse
Affiliation(s)
- Paige E Allen
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan J Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathog Dis 2021; 79:ftab019. [PMID: 33784388 PMCID: PMC8035066 DOI: 10.1093/femspd/ftab019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.
Collapse
Affiliation(s)
- Jon McGinn
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
14
|
Voss OH, Rahman MS. Rickettsia-host interaction: strategies of intracytosolic host colonization. Pathog Dis 2021; 79:ftab015. [PMID: 33705517 PMCID: PMC8023194 DOI: 10.1093/femspd/ftab015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
16
|
Activation of Mechanistic Target of Rapamycin (mTOR) in Human Endothelial Cells Infected with Pathogenic Spotted Fever Group Rickettsiae. Int J Mol Sci 2020; 21:ijms21197179. [PMID: 33003310 PMCID: PMC7582468 DOI: 10.3390/ijms21197179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/19/2022] Open
Abstract
Attributed to the tropism for host microvascular endothelium lining the blood vessels, vascular inflammation and dysfunction represent salient features of rickettsial pathogenesis, yet the details of fundamentally important pathogen interactions with host endothelial cells (ECs) as the primary targets of infection remain poorly appreciated. Mechanistic target of rapamycin (mTOR), a serine/threonine protein kinase of the phosphatidylinositol kinase-related kinase family, assembles into two functionally distinct complexes, namely mTORC1 (Raptor) and mTORC2 (Rictor), implicated in the determination of innate immune responses to intracellular pathogens via transcriptional regulation. In the present study, we investigated activation status of mTOR and its potential contributions to host EC responses during Rickettsia rickettsii and R. conorii infection. Protein lysates from infected ECs were analyzed for threonine 421/serine 424 phosphorylation of p70 S6 kinase (p70 S6K) and that of serine 2448 on mTOR itself as established markers of mTORC1 activation. For mTORC2, we assessed phosphorylation of protein kinase B (PKB or Akt) and protein kinase C (PKC), respectively, on serine 473 and serine 657. The results suggest increased phosphorylation of p70 S6K and mTOR during Rickettsia infection of ECs as early as 3 h and persisting for up to 24 h post-infection. The steady-state levels of phospho-Akt and phospho-PKC were also increased. Infection with pathogenic rickettsiae also resulted in the formation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II) puncta and increased lipidation of LC3-II, a response significantly inhibited by introduction of siRNA targeting mTORC1 into ECs. These findings thus yield first evidence for the activation of both mTORC1 and mTORC2 during EC infection in vitro with Rickettsia species and suggest that early induction of autophagy in response to intracellular infection might be regulated by this important pathway known to function as a central integrator of cellular immunity and inflammation.
Collapse
|
17
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Abstract
Rickettsia species are Gram-negative obligate intracellular bacteria that infect a wide range of eukaryotes and vertebrates. In particular, human body louse-borne Rickettsia prowazekii and flea-borne Rickettsia typhi have historically plagued humankind and continue to reemerge globally. The unavailability of vaccines and limited effectiveness of antibiotics late in infection place lethality rates up to 30%, highlighting the need to elucidate the mechanisms of Rickettsia pathogenicity in greater detail. Here, we characterize a new effector, Risk1, as a secreted phosphatidylinositol 3-kinase (PI3K) with unique dual class I and class III activities. Risk1 is required for host colonization, and its vacuolar phosphatidylinositol 3-phosphate generation modulates endosomal trafficking to arrest autophagosomal maturation. Collectively, Risk1 facilitates R. typhi growth by altering phosphoinositide metabolism and subverting intracellular trafficking. To establish a habitable intracellular niche, various pathogenic bacteria secrete effectors that target intracellular trafficking and modulate phosphoinositide (PI) metabolism. Murine typhus, caused by the obligate intracellular bacterium Rickettsia typhi, remains a severe disease in humans. However, the mechanisms by which R. typhi effector molecules contribute to internalization by induced phagocytosis and subsequent phagosomal escape into the cytosol to facilitate the intracellular growth of the bacteria remain ill-defined. Here, we characterize a new molecule, Risk1, as a phosphatidylinositol 3-kinase (PI3K) secreted effector and the first bacterial secretory kinase with both class I and III PI3K activities. Inactivation of Risk1 PI3K activities reduced the phosphorylation of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate within the host, which consequently diminished host colonization by R. typhi. During infection, Risk1 targets the Rab5-EEA1-phosphatidylinositol 3-phosphate [PI(3)P] signaling axis to promote bacterial phagosomal escape. Subsequently, R. typhi undergoes ubiquitination and induces host autophagy; however, maturation to autolysosomes is subverted to support intracellular growth. Intriguingly, only enzymatically active Risk1 binds the Beclin-1 core complex and contributes to R. typhi-induced autophagosome formation. In sum, our data suggest that Risk1, with dual class I and class III PI3K activities, alters host PI metabolism and consequently subverts intracellular trafficking to facilitate intracellular growth of R. typhi.
Collapse
|
19
|
Quantitative Proteomics of the Endothelial Secretome Identifies RC0497 as Diagnostic of Acute Rickettsial Spotted Fever Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:306-322. [PMID: 31955791 DOI: 10.1016/j.ajpath.2019.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022]
Abstract
Mediterranean spotted fever is a reemerging acute tick-borne infection produced by the α-proteobacterium, Rickettsia conorii. Rickettsia conorii infects vascular endothelial cells producing disseminated plasma leakage, manifesting as nonspecific fever, headache, and maculopapular rash. Because there are no available tests of early infection, Mediterranean spotted fever is often undiagnosed and untreated, resulting in significant mortality. To address this critical need, we have applied a quantitative proteomics pipeline for analyzing the secretome of primary human umbilical vein endothelial cells. Of the 104 proteins whose abundance changed significantly in the R. conorii-infected human umbilical vein endothelial cells' secretome, 46 proteins were up-regulated: 45 were host secreted proteins (including cytokines), and 1 was a rickettsial protein, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Proteins with sequence highly homologous to RC0497 were found to be shared by many species of the spotted fever group rickettsiae, but not typhus group rickettsiae. Quantitative targeted proteomics studies of plasma from a mouse model of sublethal and lethal R. conorii identified RC0497 in the blood, and its circulating levels were proportionally associated with infection outcome. Finally, the presence of RC0497 in the serum samples from a cohort of humans presenting with acute rickettsioses was confirmed. The detection of RC0497 has the potential to be a sensitive and specific marker for acute rickettsial spotted rickettsioses.
Collapse
|
20
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Obino D, Duménil G. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0010-2019. [PMID: 30848239 PMCID: PMC11588304 DOI: 10.1128/microbiolspec.bai-0010-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.
Collapse
Affiliation(s)
- Dorian Obino
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
22
|
Spier A, Stavru F, Cossart P. Interaction between Intracellular Bacterial Pathogens and Host Cell Mitochondria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0016-2019. [PMID: 30848238 PMCID: PMC11590420 DOI: 10.1128/microbiolspec.bai-0016-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are essential and highly dynamic organelles whose morphology is determined by a steady-state balance between fusion and fission. Mitochondrial morphology and function are tightly connected. Because they are involved in many important cellular processes, including energy production, cell-autonomous immunity, and apoptosis, mitochondria present an attractive target for pathogens. Here, we explore the relationship between host cell mitochondria and intracellular bacteria, with a focus on mitochondrial morphology and function, as well as apoptosis. Modulation of apoptosis can allow bacteria to establish their replicative niche or support bacterial dissemination. Furthermore, bacteria can manipulate mitochondrial morphology and function through secreted effector proteins and can also contribute to the establishment of a successful infection, e.g., by favoring access to nutrients and/or evasion of the immune system.
Collapse
Affiliation(s)
- Anna Spier
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
- Bio Sorbonne Paris Cité, Université Paris Diderot, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
| | - Fabrizia Stavru
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
- Centre National de la Recherche Scientifique, SNC 5101, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| |
Collapse
|
23
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
24
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
25
|
Mardosaitė-Busaitienė D, Radzijevskaja J, Balčiauskas L, Paulauskas A. First detection of Rickettsia helvetica in small mammals in Lithuania. New Microbes New Infect 2018; 22:19-23. [PMID: 29556404 PMCID: PMC5857161 DOI: 10.1016/j.nmni.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022] Open
Abstract
A total of 489 small mammals belonging to seven species captured in Lithuania during 2013–2014 were investigated for Rickettsia pathogens. The overall prevalence of Rickettsia spp. was 27.6%, with a higher prevalence detected in Micromys minutus (45.9%), followed by Apodemus flavicollis (29.4%), Sorex araneus (25%) and Myodes glareolus (23.7%). Sequence analysis of the gltA gene and the 17 kDa protein coding gene revealed the presence Rickettsia helvetica. This study demonstrates not only the first reported presence of R. helvetica in small mammals in Lithuania but also the first report of R. helvetica in M. minutus more generally.
Collapse
Affiliation(s)
| | - J Radzijevskaja
- Vytautas Magnus University, Department of Biology, Kaunas, Lithuania
| | - L Balčiauskas
- Nature Research Centre, Laboratory of Mammalian Ecology, Vilnius, Lithuania
| | - A Paulauskas
- Vytautas Magnus University, Department of Biology, Kaunas, Lithuania
| |
Collapse
|
26
|
MicroRNA Signature of Human Microvascular Endothelium Infected with Rickettsia rickettsii. Int J Mol Sci 2017; 18:ijms18071471. [PMID: 28698491 PMCID: PMC5535962 DOI: 10.3390/ijms18071471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsiarickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R.rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01) and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01). Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs). Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.
Collapse
|
27
|
Garza DA, Riley SP, Martinez JJ. Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS One 2017; 12:e0179544. [PMID: 28662039 PMCID: PMC5491016 DOI: 10.1371/journal.pone.0179544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bacteria exposed to host serum are subject to the antibacterial effects to the complement system. However, pathogenic microorganisms have evolved mechanisms of evading this immune attack. We have previously demonstrated that at least two R. conorii antigens, RC1281/Adr1 and OmpB β-peptide, contribute to the evasion of complement-mediated killing by binding the complement regulatory proteins vitronectin and factor H. RC1282/Adr2, a protein related to Adr1, is predicted to share similar structural features, suggesting that this protein may also contribute to evasion of complement-mediated killing. Interestingly, the R. prowazekii Adr1 and Adr2(RP828) proteins were originally found to interact with host cell surface proteins, suggesting their putative roles as adhesins in this pathogenic rickettsial species. In this study, we expressed both R. conorii and R. prowazekii Adr2 on the surface of a non-adherent, serum-sensitive strain of E. coli to examine the potential role of this protein to mediate evasion of complement-mediated killing and adherence to host cells. We demonstrate that, similar to R. conorii Adr1, R. conorii and R. prowazekii Adr2 are sufficient to mediate serum resistance and to promote interaction with the host complement regulator vitronectin. Furthermore, we demonstrate that expression of Adr2 in a non-adherent strain of E. coli is insufficient to mediate adherence to cultured mammalian endothelial cells. Together, our data demonstrate that the R. conorii and R. prowazekii Adr2 protein does not participate in the interactions with mammalian cells, but rather, participates in the evasion of killing by complement.
Collapse
Affiliation(s)
- Daniel A. Garza
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Sean P. Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Juan J. Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
RalF-Mediated Activation of Arf6 Controls Rickettsia typhi Invasion by Co-Opting Phosphoinositol Metabolism. Infect Immun 2016; 84:3496-3506. [PMID: 27698019 PMCID: PMC5116726 DOI: 10.1128/iai.00638-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular pathogens that induce their uptake into nonphagocytic cells; however, the events instigating this process are incompletely understood. Importantly, diverse Rickettsia species are predicted to utilize divergent mechanisms to colonize host cells, as nearly all adhesins and effectors involved in host cell entry are differentially encoded in diverse Rickettsia species. One particular effector, RalF, a Sec7 domain-containing protein that functions as a guanine nucleotide exchange factor of ADP-ribosylation factors (Arfs), is critical for Rickettsia typhi (typhus group rickettsiae) entry but pseudogenized or absent from spotted fever group rickettsiae. Secreted early during R. typhi infection, RalF localizes to the host plasma membrane and interacts with host ADP-ribosylation factor 6 (Arf6). Herein, we demonstrate that RalF activates Arf6, a process reliant on a conserved Glu within the RalF Sec7 domain. Furthermore, Arf6 is activated early during infection, with GTP-bound Arf6 localized to the R. typhi entry foci. The regulation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K), which generates PI(4,5)P2, by activated Arf6 is instrumental for bacterial entry, corresponding to the requirement of PI(4,5)P2 for R. typhi entry. PI(3,4,5)P3 is then synthesized at the entry foci, followed by the accumulation of PI(3)P on the short-lived vacuole. Inhibition of phosphoinositide 3-kinases, responsible for the synthesis of PI(3,4,5)P3 and PI(3)P, negatively affects R. typhi infection. Collectively, these results identify RalF as the first bacterial effector to directly activate Arf6, a process that initiates alterations in phosphoinositol metabolism critical for a lineage-specific Rickettsia entry mechanism.
Collapse
|
29
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
30
|
Pizarro-Cerdá J, Chorev DS, Geiger B, Cossart P. The Diverse Family of Arp2/3 Complexes. Trends Cell Biol 2016; 27:93-100. [PMID: 27595492 DOI: 10.1016/j.tcb.2016.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
The Arp2/3 complex has so far been considered to be a single seven-subunit protein complex required for actin nucleation and actin filament polymerization in diverse critical cellular functions including phagocytosis, vesicular trafficking and lamellipodia extension. The Arp2/3 complex is also exploited by bacterial pathogens and viruses during cellular infectious processes. Recent studies suggest that some subunits of the complex are dispensable in specific cellular contexts, pointing to the existence of alternative 'hybrid Arp2/3 complexes' containing other components such as vinculin or α-actinin, as well as different isoforms or phosphorylation variants of canonical Arp2/3 subunits. Therefore, this diversity should be now considered when assigning specific Arp2/3 assemblies to different actin-dependent cellular processes.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| | - Dror Shlomo Chorev
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel; Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, UK
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| |
Collapse
|
31
|
Curto P, Simões I, Riley SP, Martinez JJ. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells. Front Cell Infect Microbiol 2016; 6:80. [PMID: 27525249 PMCID: PMC4965480 DOI: 10.3389/fcimb.2016.00080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with disease in mammals.
Collapse
Affiliation(s)
- Pedro Curto
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell BiologyCoimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary MedicineBaton Rouge, LA, USA
| | - Isaura Simões
- Center for Neuroscience and Cell BiologyCoimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary MedicineBaton Rouge, LA, USA
- Biocant, Biotechnology Innovation CenterCantanhede, Portugal
| | - Sean P. Riley
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary MedicineBaton Rouge, LA, USA
| | - Juan J. Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary MedicineBaton Rouge, LA, USA
| |
Collapse
|
32
|
Yang A, Narechania A, Kim E. Rickettsial endosymbiont in the "early-diverging" streptophyte green alga Mesostigma viride. JOURNAL OF PHYCOLOGY 2016; 52:219-229. [PMID: 27037587 DOI: 10.1111/jpy.12385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
A bacterial endosymbiont was unexpectedly found in the "axenic" culture strain of the streptophyte green alga Mesostigma viride (NIES-995). Phylogenetic analyses based on 16S rRNA gene sequences showed that the symbiont belongs to the order Rickettsiales, specifically to the recently designated clade "Candidatus Megaira," which is closely related to the well-known Rickettsia clade. Rickettsiales bacteria of the "Ca. Megaira" clade are found in a taxonomically diverse array of eukaryotic hosts, including chlorophycean green algae, several ciliate species, and invertebrates such as Hydra. Transmission electron microscopy, fluorescence in situ hybridi-zation, and SYBR Green I staining experiments revealed that the endosymbiont of M. viride NIES-995 is rod shaped, typically occurs in clusters, and is surrounded by a halo-like structure, presumably formed by secretory substances from the bacterium. Two additional M. viride strains (NIES-296 and NIES-475), but not SAG50-1, were found to house the rickettsial endosymbiont. Analyses of strain NIES-995 transcriptome data indicated the presence of at least 91 transcriptionally active genes of symbiont origins. These include genes for surface proteins (e.g., rOmpB) that are known to play key roles in bacterial attachment onto host eukaryotes in related Rickettsia species. The assembled M. viride transcriptome includes transcripts that code for a suite of predicted algal-derived proteins, such as Ku70, WASH, SCAR, and CDC42, which may be important in the formation of the algal-rickettsial association.
Collapse
Affiliation(s)
- Ashley Yang
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| |
Collapse
|
33
|
Zhao Y, Valbuena G, Walker DH, Gazi M, Hidalgo M, DeSousa R, Oteo JA, Goez Y, Brasier AR. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling. Mol Cell Proteomics 2015; 15:289-304. [PMID: 26560068 DOI: 10.1074/mcp.m115.054361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections.
Collapse
Affiliation(s)
- Yingxin Zhao
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060
| | | | | | | | - Marylin Hidalgo
- the **Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rita DeSousa
- the ‡‡Centre for the Study of Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Dr. Ricardo Jorge, Águas de Moura, Av. Padre Cruz, Lisbon, 1649-016, Portugal, and
| | - Jose Antonio Oteo
- the §§Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-Centro de Investigation Biomedical de la Rioja (CIBIR), Logroño, La Rioja, 26006, Spain
| | | | - Allan R Brasier
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060,
| |
Collapse
|
34
|
Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog 2015; 11:e1005115. [PMID: 26291822 PMCID: PMC4546372 DOI: 10.1371/journal.ppat.1005115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. Phylogenomics analysis indicates divergent mechanisms for host cell invasion across diverse species of obligate intracellular Rickettsia. For instance, only some Rickettsia species carry RalF, the rare bacterial Arf-GEF effector utilized by Legionella pneumophila to facilitate fusion of ER-derived membranes with its host-derived vacuole. For R. prowazekii (Typhus Group, TG), prior in vitro studies suggested the Arf-GEF activity of RalF, which is absent from Spotted Fever Group species, might be spatially regulated at the host plasma membrane. Herein, we demonstrate RalF of R. typhi (TG) and R. felis (Transitional Group) localizes to the host plasma membrane, yet R. bellii (Ancestral Group) RalF shows perinuclear localization reminiscent of RalF-mediated recruitment of Arf1 by L. pneumophila to its vacuole. For R. typhi, RalF expression occurs early during infection, with RalF inactivation significantly reducing host cell invasion. Furthermore, RalF co-localization with Arf6 and the phosphoinositide PI(4,5)P2 at the host plasma membrane was determined to be critical for R. typhi invasion. Thus, our work illustrates that different intracellular lifestyles across species of Rickettsia and Legionella have driven divergent roles for RalF during host cell infection. Collectively, we identify lineage-specific Arf-GEF utilization across diverse rickettsial species, previously unappreciated mechanisms for host cell invasion and infection.
Collapse
Affiliation(s)
- Kristen E. Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark L. Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J. Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie S. Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. mBio 2015; 6:mBio.00323-15. [PMID: 25827414 PMCID: PMC4453529 DOI: 10.1128/mbio.00323-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains of R. rickettsii but is not produced in the only documented avirulent strain, Iowa, due to a premature stop codon. Here we report the creation of an isogenic ompA mutant in the highly virulent strain Sheila Smith by insertion of intronic RNA to create a premature stop codon 312 bp downstream of the 6,747-bp open reading frame initiation site (int312). Targeted insertion was accomplished using an LtrA group II intron retrohoming system. Growth and entry rates of Sheila Smith ompA::int312 in Vero cells remained comparable to those of the wild type. Virulence was assessed in a guinea pig model by challenge with 100 PFU of either ompA::int312 Sheila Smith or the wild type, but no significant difference in either fever peak (40.5°C) or duration (8 days) were shown between the wild type and the knockout. The ability to disrupt genes in a site-specific manner using an LtrA group II intron system provides an important new tool for evaluation of potential virulence determinants in rickettsial disease research. R. rickettsii rOmpA is an immunodominant outer membrane autotransporter conserved in the spotted fever group. Previous studies and genomic comparisons suggest that rOmpA is involved in adhesion and may be critical for virulence. Little information is available for rickettsial virulence factors in an isogenic background, as limited systems for targeted gene disruption are currently available. Here we describe the creation of an rOmpA knockout by insertion of a premature stop codon into the 5′ end of the open reading frame using a group II intron system. An isogenic rOmpA knockout mutation in the highly virulent Sheila Smith strain did not cause attenuation in a guinea pig model of infection, and no altered phenotype was observed in cell culture. We conclude that rOmpA is not critical for virulence in a guinea pig model but may play a role in survival or transmission from the tick vector.
Collapse
|
36
|
Pelc RS, McClure JC, Kaur SJ, Sears KT, Rahman MS, Ceraul SM. Disrupting protein expression with Peptide Nucleic Acids reduces infection by obligate intracellular Rickettsia. PLoS One 2015; 10:e0119283. [PMID: 25781160 PMCID: PMC4363562 DOI: 10.1371/journal.pone.0119283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023] Open
Abstract
Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria’s ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.
Collapse
Affiliation(s)
- Rebecca S Pelc
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer C McClure
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shane M Ceraul
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
37
|
Identification of host proteins involved in rickettsial invasion of tick cells. Infect Immun 2014; 83:1048-55. [PMID: 25547795 DOI: 10.1128/iai.02888-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3'-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases.
Collapse
|
38
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Aigal S, Claudinon J, Römer W. Plasma membrane reorganization: A glycolipid gateway for microbes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:858-71. [PMID: 25450969 DOI: 10.1016/j.bbamcr.2014.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023]
Abstract
Ligand-receptor interactions, which represent the core for cell signaling and internalization processes are largely affected by the spatial configuration of host cell receptors. There is a growing piece of evidence that receptors are not homogeneously distributed within the plasma membrane, but are rather pre-clustered in nanodomains, or clusters are formed upon ligand binding. Pathogens have evolved many strategies to evade the host immune system and to ensure their survival by hijacking plasma membrane receptors that are most often associated with lipid rafts. In this review, we discuss the early stage molecular and physiological events that occur following ligand binding to host cell glycolipids. The ability of various biological ligands (e.g. toxins, lectins, viruses or bacteria) that bind to glycolipids to induce their own uptake into mammalian cells by creating negative membrane curvature and membrane invaginations is explored. We highlight recent trends in understanding nanoscale plasma membrane (re-)organization and present the benefits of using synthetic membrane systems. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Sahaja Aigal
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. mBio 2014; 5:e01534-14. [PMID: 25073644 PMCID: PMC4128363 DOI: 10.1128/mbio.01534-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. Although antibiotic treatment is often successful, it is becoming clear that alternatives to conventional pathogen-directed therapy must be developed in the face of increasing antibiotic resistance. Moreover, the costs and timing associated with the development of novel antimicrobials make repurposed FDA-approved drugs attractive host-targeted therapeutics. This paper describes a novel approach of identifying such host-targeted therapeutics against intracellular bacterial pathogens. We identified several FDA-approved drugs that inhibit the growth of intracellular bacteria, thereby implicating host intracellular pathways presumably utilized by bacteria during infection.
Collapse
|
41
|
Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, Macaluso KR. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS One 2014; 9:e93768. [PMID: 24733187 PMCID: PMC3986078 DOI: 10.1371/journal.pone.0093768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023] Open
Abstract
Tick-borne spotted fever group (SFG) Rickettsia species must be able to infect both vertebrate and arthropod host cells. The host actin-related protein 2/3 (Arp2/3) complex is important in the invasion process and actin-based motility for several intracellular bacteria, including SFG Rickettsia in Drosophila and mammalian cells. To investigate the role of the tick Arp2/3 complex in tick-Rickettsia interactions, open reading frames of all subunits of the protein including Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 were identified from Dermacentor variabilis. Amino acid sequence analysis showed variation (ranging from 25–88%) in percent identity compared to the corresponding subunits of the complex from Drosophila melanogaster, Mus musculus, Homo sapiens, and Saccharomyces cerevisiae. Potential ATP binding sites were identified in D. variabilis (Dv) Arp2 and Arp3 subunits as well as five putative WD (Trp-Asp) motifs which were observed in DvARPC1. Transcriptional profiles of all subunits of the DvArp2/3 complex revealed greater mRNA expression in both Rickettsia-infected and -uninfected ovary compared to midgut and salivary glands. In response to R. montanensis infection of the tick ovary, the mRNA level of only DvARPC4 was significantly upregulated compared to uninfected tissues. Arp2/3 complex inhibition bioassays resulted in a decrease in the ability of R. montanensis to invade tick tissues with a significant difference in the tick ovary, indicating a role for the Arp2/3 complex in rickettsial invasion of tick cells. Characterization of tick-derived molecules associated with rickettsial infection is imperative in order to better comprehend the ecology of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Natthida Petchampai
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Piyanate Sunyakumthorn
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mark L. Guillotte
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Victoria I. Verhoeve
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kaikhushroo H. Banajee
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michael T. Kearney
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
42
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
43
|
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014; 16:1133-45. [PMID: 24612118 DOI: 10.1111/cmi.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.
Collapse
Affiliation(s)
- David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hanna J, O'Gorman P, Neill J, Chaudhuri A, Hamilton-Craig C, West M. Rickettsia-related acute myocardial infarction in a patient with angiographically normal coronary arteries. Int J Cardiol 2014; 172:e346-7. [DOI: 10.1016/j.ijcard.2013.12.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
45
|
Frickmann H, Dobler G. Comparison of different media for preservation and transport of viable rickettsiae. Eur J Microbiol Immunol (Bp) 2013; 3:194-7. [PMID: 24265938 DOI: 10.1556/eujmi.3.2013.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
Rickettsiae tend to have a rapid decrease of viability outside living cells. Therefore, the transport of samples containing viable rickettsiae for culturing in cell culture for diagnostic purposes is challenging. The viability of rickettsiae in different transport media (commercially available transport medium COPAN "UTM-RT transport medium for viruses, chlamydia, mycoplasma, and ureaplasma," minimal essential medium (MEM) with and without 10% foetal calf serum) at various time points at 4 °C and at ambient temperature (22 °C) was compared. Rickettsia honei was used as model organism. After 2 weeks of storage at room temperature, no viable rickettsiae were detectable any more while storage at 4 °C kept rickettsiae viable for up to 4 weeks. The commercially available COPAN medium showed similarly good or slightly better stabilizing effects on rickettsiae compared with MEM + 10% foetal calf serum, pure MEM demonstrated the poorest results. It is important to transport and store media with potentially rickettsiae-containing samples at 4 °C to prevent inactivation. MEM + 10% foetal calf serum can be used if no commercial medium is available with similarly good results.
Collapse
|
46
|
Frickmann H, Dobler G. Inactivation of rickettsiae. Eur J Microbiol Immunol (Bp) 2013; 3:188-93. [PMID: 24265937 DOI: 10.1556/eujmi.3.2013.3.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
A reliable and complete inactivation is an indispensable premise for any concentration of rickettsiae or for the development of diagnostic strategies based on their antigens. This study deals with the testing of methods to inactivate rickettsiae. Rickettsia honei was used as a model organism. The inactivating potency of formalin, Qiagen® antiviral lysozyme (AVL) buffer, heating to 56 °C, and β-propiolactone was analyzed in cell culture. The inactivation limits for rickettsiae were 0.1% formalin about 10 min, Qiagen AVL buffer about 5 min, 56 °C about 5 min, 0.125% β-propiolactone about 1 h, and 0.0125% β-propiolactone overnight. The interpretation was limited by cytotoxic effects of the inactivation procedures and by the culturally achievable rickettsial density in the cell culture supernatants that were used for the inactivation experiments. Reliable modes of inactivation were identified, allowing for the secure handling of rickettsial antigens for diagnostic purposes.
Collapse
|
47
|
Exchange protein directly activated by cAMP plays a critical role in bacterial invasion during fatal rickettsioses. Proc Natl Acad Sci U S A 2013; 110:19615-20. [PMID: 24218580 DOI: 10.1073/pnas.1314400110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host-pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.
Collapse
|
48
|
Abstract
Tick-borne diseases are prevalent throughout the world and present a diagnostic challenge owing to their nonspecific clinical symptoms. Many tick-borne diseases involve the central and peripheral nervous systems. Early diagnosis or at least suspicion of a tick-borne cause is necessary to institute early empiric treatment. After a brief review of tick biology, we present the most common tick-borne diseases. A brief discussion of epidemiology, the transmission route, and pathogenesis is followed by a discussion of the clinical manifestations, diagnosis and treatment options when available. The review emphasizes the infectious causes with a significant neurological manifestation.
Collapse
|
49
|
Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proc Natl Acad Sci U S A 2013; 110:E2677-86. [PMID: 23818602 DOI: 10.1073/pnas.1307235110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sca2 (surface cell antigen 2) is the only bacterial protein known to promote both actin filament nucleation and profilin-dependent elongation, mimicking eukaryotic formins to assemble actin comet tails for Rickettsia motility. We show that Sca2's functional mimicry of formins is achieved through a unique mechanism. Unlike formins, Sca2 is monomeric, but has N- and C-terminal repeat domains (NRD and CRD) that interact with each other for processive barbed-end elongation. The crystal structure of NRD reveals a previously undescribed fold, consisting of helix-loop-helix repeats arranged into an overall crescent shape. CRD is predicted to share this fold and might form together with NRD, a doughnut-shaped formin-like structure. In between NRD and CRD, proline-rich sequences mediate the incorporation of profilin-actin for elongation, and WASP-homology 2 (WH2) domains recruit actin monomers for nucleation. Sca2's α-helical fold is unusual among Gram-negative autotransporters, which overwhelmingly fold as β-solenoids. Rickettsia has therefore "rediscovered" formin-like actin nucleation and elongation.
Collapse
|
50
|
Abstract
Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old.
Collapse
|