1
|
Lv LX, Gao J, Wang H, Zhao XF, Wang JX. Infection and intracellular transport of white spot syndrome virus require the ESCRT machinery in shrimp. J Virol 2024; 98:e0043324. [PMID: 38888346 PMCID: PMC11265458 DOI: 10.1128/jvi.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.
Collapse
Affiliation(s)
- Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hao Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Mayoral J, Guevara RB, Rivera-Cuevas Y, Tu V, Tomita T, Romano JD, Gunther-Cummins L, Sidoli S, Coppens I, Carruthers VB, Weiss LM. Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Toxoplasma gondii Infection. mBio 2022; 13:e0144222. [PMID: 35730903 PMCID: PMC9426488 DOI: 10.1128/mbio.01442-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii adapts to diverse host cell environments within a replicative compartment that is heavily decorated by secreted proteins. In an attempt to identify novel parasite secreted proteins that influence host cell activity, we identified and characterized a transmembrane dense granule protein dubbed GRA64 (TGME49_202620). We found that GRA64 is on the parasitophorous vacuolar membrane (PVM) and is partially exposed to the host cell cytoplasm in both tachyzoite and bradyzoite parasitophorous vacuoles. Using co-immunoprecipitation and proximity-based biotinylation approaches, we demonstrated that GRA64 appears to interact with components of the host endosomal sorting complexes required for transport (ESCRT). Genetic disruption of GRA64 does not affect acute Toxoplasma virulence or encystation in mice, as observed via tissue cyst burdens in mice during chronic infection. However, ultrastructural analysis of Δgra64 tissue cysts using electron tomography revealed enlarged vesicular structures underneath the cyst membrane, suggesting a role for GRA64 in organizing the recruitment of ESCRT proteins and subsequent intracystic vesicle formation. This study uncovers a novel host-parasite interaction that contributes to an emerging paradigm in which specific host ESCRT proteins are recruited to the limiting membranes (PVMs) of tachyzoite and bradyzoite vacuoles formed during acute and chronic Toxoplasma infection. IMPORTANCE Toxoplasma gondii is a widespread foodborne parasite that causes congenital disease and life-threatening complications in immunocompromised individuals. Part of this parasite's success lies in its ability to infect diverse organisms and host cells and to persist as a latent infection within parasite-constructed structures called tissue cysts. In this study, we characterized a protein that is secreted by T. gondii into its parasitophorous vacuole during intracellular infection, which we dub GRA64. On the vacuolar membrane, this protein is exposed to the host cell cytosol and interacts with specific host ESCRT proteins. Parasites lacking the GRA64 protein exhibit ultrastructural changes in tissue cysts during chronic infection. This study lays the foundation for future studies on the mechanics and consequences of host ESCRT-parasite protein interactions.
Collapse
Affiliation(s)
- Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leslie Gunther-Cummins
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Shefer A, Yalovaya A, Tamkovich S. Exosomes in Breast Cancer: Involvement in Tumor Dissemination and Prospects for Liquid Biopsy. Int J Mol Sci 2022; 23:8845. [PMID: 36012109 PMCID: PMC9408748 DOI: 10.3390/ijms23168845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
In women, breast cancer (BC) is the most commonly diagnosed cancer (24.5%) and the leading cause of cancer death (15.5%). Understanding how this heterogeneous disease develops and the confirm mechanisms behind tumor progression is of utmost importance. Exosomes are long-range message vesicles that mediate communication between cells in physiological conditions but also in pathology, such as breast cancer. In recent years, there has been an exponential rise in the scientific studies reporting the change in morphology and cargo of tumor-derived exosomes. Due to the transfer of biologically active molecules, such as RNA (microRNA, long non-coding RNA, mRNA, etc.) and proteins (transcription factors, enzymes, etc.) into recipient cells, these lipid bilayer 30-150 nm vesicles activate numerous signaling pathways that promote tumor development. In this review, we attempt to shed light on exosomes' involvement in breast cancer pathogenesis (including epithelial-to-mesenchymal transition (EMT), tumor cell proliferation and motility, metastatic processes, angiogenesis stimulation, and immune system repression). Moreover, the potential use of exosomes as promising diagnostic biomarkers for liquid biopsy of breast cancer is also discussed.
Collapse
Affiliation(s)
- Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat Commun 2021; 12:5671. [PMID: 34580290 PMCID: PMC8476602 DOI: 10.1038/s41467-021-25929-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Primary cilia are microtubule based sensory organelles important for receiving and processing cellular signals. Recent studies have shown that cilia also release extracellular vesicles (EVs). Because EVs have been shown to exert various physiological functions, these findings have the potential to alter our understanding of how primary cilia regulate specific signalling pathways. So far the focus has been on lgEVs budding directly from the ciliary membrane. An association between cilia and MVB-derived smEVs has not yet been described. We show that ciliary mutant mammalian cells demonstrate increased secretion of small EVs (smEVs) and a change in EV composition. Characterisation of smEV cargo identified signalling molecules that are differentially loaded upon ciliary dysfunction. Furthermore, we show that these smEVs are biologically active and modulate the WNT response in recipient cells. These results provide us with insights into smEV-dependent ciliary signalling mechanisms which might underly ciliopathy disease pathogenesis. Extracellular vesicles (EV) are known to be released from the primary cilium, but the role ciliary proteins play in EV biogenesis remains unexplored. Here, the authors demonstrate increased secretion of small EVs with altered cargo composition from cells with known ciliarelated mutations. Wnt related molecules made up a majority of altered cargo
Collapse
|
9
|
Sun LX, Qian H, Liu MY, Wu MH, Wei YY, Zhu XM, Lu JP, Lin FC, Liu XH. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae. Environ Microbiol 2021; 24:1076-1092. [PMID: 34472190 DOI: 10.1111/1462-2920.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Magnaporthe oryzae is an important plant pathogen that causes rice blast. Hse1 and Vps27 are components of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway and biogenesis. To date, the biological functions of ESCRT-0 in M. oryzae have not been determined. In this study, we identified and characterized Hse1 and Vps27 in M. oryzae. Disruption of MoHse1 and MoVps27 caused pleiotropic defects in growth, conidiation, sexual development and pathogenicity, thereby resulting in loss of virulence in rice and barley leaves. Disruption of MoHse1 and MoVps27 triggered increased lipidation of MoAtg8 and degradation of GFP-MoAtg8, indicating that ESCRT-0 is involved in the regulation of autophagy. ESCRT-0 was determined to interact with coat protein complex II (COPII), a regulator functioning in homeostasis of the endoplasmic reticulum (ER homeostasis), and disruption of MoHse1 and MoVps27 also blocked activation of the unfolded protein response (UPR) and autophagy of the endoplasmic reticulum (ER-phagy). Overall, our results indicate that ESCRT-0 plays critical roles in regulating fungal development, virulence, autophagy and ER-phagy in M. oryzae.
Collapse
Affiliation(s)
- Li-Xiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Hadpech S, Moonmuang S, Chupradit K, Yasamut U, Tayapiwatana C. Updating on Roles of HIV Intrinsic Factors: A Review of Their Antiviral Mechanisms and Emerging Functions. Intervirology 2021; 65:67-79. [PMID: 34464956 DOI: 10.1159/000519241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Host restriction factors are cellular proteins that inhibit specific steps of the viral life cycle. Since the 1970s, several new factors have been identified, including human immunodeficiency virus-1 (HIV-1) replication restriction. Evidence accumulated in the last decade has substantially broadened our understanding of the molecular mechanisms utilized to abrogate the HIV-1 life cycle. SUMMARY In this review, we focus on the interaction between host restriction factors participating in the early phase of HIV-1 infection, particularly CA-targeting proteins. Host factors involved in the late phase of the replication cycle, such as viral assembly and egress factors, are also described. Additionally, current reports on well-known antiviral intrinsic factors, as well as other viral restriction factors with their emerging roles, are included. CONCLUSION A comprehensive understanding of the interactions between viruses and hosts is expected to provide insight into the design of novel HIV-1 therapeutic interventions.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Pharmacology and Biopharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Sutpirat Moonmuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating Methods for Isolation and Quantification of Exosomes: A Review. Mol Biotechnol 2021; 63:249-266. [PMID: 33492613 PMCID: PMC7940341 DOI: 10.1007/s12033-021-00300-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are the smallest extracellular vesicles present in most of the biological fluids. They are found to play an important role in cell signaling, immune response, tumor metastasis, etc. Studies have shown that these vesicles also have diagnostic and therapeutic roles for which their accurate detection and quantification is essential. Due to the complexity in size and structure of exosomes, even the gold standard methods face challenges. This comprehensive review discusses the various standard methods such as ultracentrifugation, ultrafiltration, size-exclusion chromatography, precipitation, immunoaffinity, and microfluidic technologies for the isolation of exosomes. The principle of isolation of each method is described, as well as their specific advantages and disadvantages. Quantification of exosomes by nanoparticle tracking analysis, flow cytometry, tunable resistive pulse sensing, electron microscopy, dynamic light scattering, and microfluidic devices are also described, along with the applications of exosomes in various biomedical domains.
Collapse
Affiliation(s)
- Talitha Keren Kurian
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| |
Collapse
|
13
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
14
|
McGovern OL, Rivera-Cuevas Y, Carruthers VB. Emerging Mechanisms of Endocytosis in Toxoplasma gondii. Life (Basel) 2021; 11:life11020084. [PMID: 33503859 PMCID: PMC7911406 DOI: 10.3390/life11020084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Eukaryotes critically rely on endocytosis of autologous and heterologous material to maintain homeostasis and to proliferate. Although mechanisms of endocytosis have been extensively identified in mammalian and plant systems along with model systems including budding yeast, relatively little is known about endocytosis in protozoan parasites including those belonging to the phylum Apicomplexa. Whereas it has been long established that the apicomplexan agents of malaria (Plasmodium spp.) internalize and degrade hemoglobin from infected red blood cells to acquire amino acids for growth, that the related and pervasive parasite Toxoplasma gondii has a functional and active endocytic system was only recently discovered. Here we discuss emerging and hypothesized mechanisms of endocytosis in Toxoplasma gondii with reference to model systems and malaria parasites. Establishing a framework for potential mechanisms of endocytosis in Toxoplasma gondii will help guide future research aimed at defining the molecular basis and biological relevance of endocytosis in this tractable and versatile parasite.
Collapse
|
15
|
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde. Life (Basel) 2021; 11:life11010045. [PMID: 33450847 PMCID: PMC7828316 DOI: 10.3390/life11010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines.
Collapse
|
16
|
Neggers JE, Paolella BR, Asfaw A, Rothberg MV, Skipper TA, Yang A, Kalekar RL, Krill-Burger JM, Dharia NV, Kugener G, Kalfon J, Yuan C, Dumont N, Gonzalez A, Abdusamad M, Li YY, Spurr LF, Wu WW, Durbin AD, Wolpin BM, Piccioni F, Root DE, Boehm JS, Cherniack AD, Tsherniak A, Hong AL, Hahn WC, Stegmaier K, Golub TR, Vazquez F, Aguirre AJ. Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. Cell Rep 2020; 33:108493. [PMID: 33326793 PMCID: PMC8374858 DOI: 10.1016/j.celrep.2020.108493] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Few therapies target the loss of tumor suppressor genes in cancer. We examine CRISPR-SpCas9 and RNA-interference loss-of-function screens to identify new therapeutic targets associated with genomic loss of tumor suppressor genes. The endosomal sorting complexes required for transport (ESCRT) ATPases VPS4A and VPS4B score as strong synthetic lethal dependencies. VPS4A is essential in cancers harboring loss of VPS4B adjacent to SMAD4 on chromosome 18q and VPS4B is required in tumors with co-deletion of VPS4A and CDH1 (E-cadherin) on chromosome 16q. We demonstrate that more than 30% of cancers selectively require VPS4A or VPS4B. VPS4A suppression in VPS4B-deficient cells selectively leads to ESCRT-III filament accumulation, cytokinesis defects, nuclear deformation, G2/M arrest, apoptosis, and potent tumor regression. CRISPR-SpCas9 screening and integrative genomic analysis reveal other ESCRT members, regulators of abscission, and interferon signaling as modifiers of VPS4A dependency. We describe a compendium of synthetic lethal vulnerabilities and nominate VPS4A and VPS4B as high-priority therapeutic targets for cancers with 18q or 16q loss. Neggers, Paolella, and colleagues identify the ATPases VPS4A and VPS4B as selective vulnerabilities and potential therapeutic targets in cancers harboring loss of chromosome 18q or 16q. In VPS4B-deficient cancers, VPS4A suppression leads to ESCRT-III dysfunction, nuclear deformation, and abscission defects. Moreover, ESCRT proteins and interferons can modulate dependency on VPS4A.
Collapse
Affiliation(s)
- Jasper E Neggers
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Brenton R Paolella
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Adhana Asfaw
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael V Rothberg
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas A Skipper
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Radha L Kalekar
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - John M Krill-Burger
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Neekesh V Dharia
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Guillaume Kugener
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jérémie Kalfon
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nancy Dumont
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alfredo Gonzalez
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mai Abdusamad
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yvonne Y Li
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Liam F Spurr
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Westley W Wu
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Adam D Durbin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse S Boehm
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Aviad Tsherniak
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew L Hong
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - William C Hahn
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly Stegmaier
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Todd R Golub
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Francisca Vazquez
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Andrew J Aguirre
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Lavado-García J, Jorge I, Cervera L, Vázquez J, Gòdia F. Multiplexed Quantitative Proteomic Analysis of HEK293 Provides Insights into Molecular Changes Associated with the Cell Density Effect, Transient Transfection, and Virus-Like Particle Production. J Proteome Res 2020; 19:1085-1099. [DOI: 10.1021/acs.jproteome.9b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jesús Lavado-García
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Laura Cervera
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
18
|
O'Doherty C, Keenan J, Henry M, Meleady P, Sinkunaite I, Clynes M, O'Sullivan F, Horgan K, Murphy R. Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line. Toxicol In Vitro 2020; 65:104773. [PMID: 31981602 DOI: 10.1016/j.tiv.2020.104773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Studies in hepatic systems identify multiple factors involved in the generation of copper resistance. As the intestine is the route of exposure to dietary copper, we wanted to understand how intestinal cells overcome the toxic effects of high copper and what mechanisms of resistance develop. Using the intestinal cell line Caco-2, resistance was developed by serial subculture in 50 μM copper in inorganic (CuSO4) or organic (Cu proteinate) forms. Caco-2 variants exhibited resistance to copper and retained the non-monotonic dose response while displaying stable phenotypes following repeated subculture in the absence of copper. Phenotypic changes on exposure to copper in parental Caco-2 cells included significantly increased total protein yield, ROS, SOD, metallothionein expression, GSH and total glutathione. These phenotypic changes were not replicated in resistant variants on a per cell basis. Quantitative label-free LC-MS/MS proteomic analysis identified 1113 differentially expressed proteins (DEPs) between parental Caco-2 and resistant cells. With some exceptions, most of the DEPs were overexpressed to a low level around 2-fold suggesting resistance was supported by multiple small changes in protein expression. These variants may be a useful tool in studying the toxicity of stress responses in further Cu-related studies.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Indre Sinkunaite
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
19
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
20
|
A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae). mBio 2019; 10:mBio.01691-19. [PMID: 31481383 PMCID: PMC6722415 DOI: 10.1128/mbio.01691-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells share a basic scheme of internal organization featuring membrane-based organelles. The use of fluorescent proteins (FPs) greatly facilitated live-cell imaging of organelle dynamics and protein trafficking. One major limitation of this approach is that the fusion of an FP to a target protein can and often does compromise the function of the target protein and alter its subcellular localization. The optimization process to obtain a desirable fusion construct can be time-consuming or even unsuccessful. In this work, we set out to provide a validated set of FP-based markers for major organelles in the budding yeast (Saccharomyces cerevisiae). Out of over 160 plasmids constructed, we present a final set of 42 plasmids, the recommendations for which are backed up by meticulous evaluations. The tool set includes three colors (green, red, and blue) and covers the endoplasmic reticulum (ER), nucleus, Golgi apparatus, endosomes, vacuoles, mitochondria, peroxisomes, and lipid droplets. The fidelity of the markers was established by systematic cross-comparison and quantification. Functional assays were performed to examine the impact of marker expression on the secretory pathway, endocytic pathway, and metabolic activities of mitochondria and peroxisomes. Concomitantly, our work constitutes a reassessment of organelle identities in this model organism. Our data support the recognition that "late Golgi" and "early endosomes," two seemingly distinct terms, denote the same compartment in yeast. Conversely, all other organelles can be visually separated from each other at the resolution of conventional light microscopy, and quantification results justify their classification as distinct entities.IMPORTANCE Cells contain elaborate internal structures. For eukaryotic cells, like those in our bodies, the internal space is compartmentalized into membrane-bound organelles, each tasked with specialized functions. Oftentimes, one needs to visualize organelles to understand a complex cellular process. Here, we provide a validated set of fluorescent protein-based markers for major organelles in budding yeast. Yeast is a commonly used model when investigating basic mechanisms shared among eukaryotes. Fluorescent proteins are produced by cells themselves, avoiding the need for expensive chemical dyes. Through extensive cross-comparison, we make sure that each of our markers labels and only labels the intended organelle. We also carefully examined if the presence of our markers has any negative impact on the functionality of the cells and found none. Our work also helps answer a related question: are the structures we see really what we think they are?
Collapse
|
21
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Yamawaki M, Akiba M, Matsumoto N, Watanabe N, Hattori K, Takeuchi Y, Morimoto T, Oizumi H, Ohbuchi K, Miyamoto Y, Yamauchi J. Defective neuronal and oligodendroglial differentiation by FTD3- and ALS17-associated Ile29-to-Val mutation of CHMP2B. Mol Genet Metab Rep 2019; 19:100458. [PMID: 30766798 PMCID: PMC6360253 DOI: 10.1016/j.ymgmr.2019.100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Minami Yamawaki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Masumi Akiba
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
23
|
Johnson TB, Mach C, Grove R, Kelly R, Van Cott K, Blum P. Secretion and fusion of biogeochemically active archaeal membrane vesicles. GEOBIOLOGY 2018; 16:659-673. [PMID: 30019522 DOI: 10.1111/gbi.12306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Microbes belonging to the genus Metallosphaera oxidize sulfidic minerals. These organisms thrive at temperature extremes and are members of the archaeal phylum Crenarchaeota. Because they can employ a lithoautotrophic metabolism, energy availability likely limits their activity raising questions about how they conduct biogeochemical activity. Vesicles are membrane encapsulated structures produced by all biological lineages but using very different mechanisms. Across the Crenarchaeota, it has been proposed that a eukaryotic-like Endosomal Sorting Complex Required for Transport system promotes formation of these structures but in response to unknown signals and for undefined purposes. To address such questions, Metallosphaera sedula vesicle formation and function were studied under lithoautotrophic conditions. Energy deprivation was evaluated and found to stimulate vesicle synthesis while energy excess repressed vesicle formation. Purified vesicles adhered rapidly to the primary copper ore, chalcopyrite, and formed compact monolayers. These vesicle monolayers catalyzed iron oxidation and solubilization of mineralized copper in a time-dependent process. As these activities were membrane associated, their potential transfer by vesicle fusion to M. sedula cells was examined. Fluorophore-loaded vesicles rapidly transferred fluorescence under environmentally relevant conditions. Vesicles from a related archaeal species were also capable of fusion; however, this process was species-specific as vesicles from different species were incapable of fusion. In addition, vesicles produced by a copper-resistant M. sedula cell line transferred copper extrusion capacity along with improved viability over mutant M. sedula cells lacking copper transport proteins. Membrane vesicles may therefore play a role in modulating energy-related traits in geochemical environments by fusion-mediated protein delivery.
Collapse
Affiliation(s)
- Tyler B Johnson
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Collin Mach
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Ryan Grove
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Robert Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Kevin Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Paul Blum
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| |
Collapse
|
24
|
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res 2018; 208:12-24. [DOI: 10.1016/j.micres.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
25
|
EGF Uptake and Degradation Assay to Determine the Effect of HTLV Regulatory Proteins on the ESCRT-Dependent MVB Pathway. Methods Mol Biol 2018. [PMID: 28357665 DOI: 10.1007/978-1-4939-6872-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The endosomal sorting complex required for transport (ESCRT) pathway plays key roles in multivesicular bodies (MVBs) formation and lysosomal degradation of membrane receptors, viral budding, and midbody abscission during cytokinesis. The epidermal growth factor receptor (EGFR) is regarded as a prototypical cargo of the MVB/ESCRT pathway and following stimulation by epidermal growth factor (EGF) EGFR/EGF complexes are internalized, sorted into MVBs, and degraded by lysosomes or recycled back to the cell membrane. Here, we describe an assay to analyze the effect of human T-cell leukemia (HTLV) regulatory proteins on the functionality of ESCRT-dependent MVB/lysosomal trafficking of EGFR/EGF complexes. This is performed by direct visualization and quantification of the rate of EGF-Alexa595/EGFR internalization and degradation in HeLa cells expressing HTLV regulatory proteins by immunofluorescence and western blot.
Collapse
|
26
|
Caldieri G, Malabarba MG, Di Fiore PP, Sigismund S. EGFR Trafficking in Physiology and Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:235-272. [PMID: 30097778 DOI: 10.1007/978-3-319-96704-2_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer.
Collapse
Affiliation(s)
- Giusi Caldieri
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Maria Grazia Malabarba
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Pier Paolo Di Fiore
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Sara Sigismund
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy.
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy.
| |
Collapse
|
27
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 989] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
28
|
Jupin I, Ayach M, Jomat L, Fieulaine S, Bressanelli S. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase. PLoS Pathog 2017; 13:e1006714. [PMID: 29117247 PMCID: PMC5695851 DOI: 10.1371/journal.ppat.1006714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/20/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection. Viruses have much smaller genomes than their hosts. Consequently, they often encode proteins which are multifunctional. For instance, some viral proteases have a dual function, being also deubiquitinases, i.e. enzymes capable of removing ubiquitin tags grafted onto proteins and that often target them for destruction. The protease and deubiquitinase activities share a single active site that is used alternately for one function or the other, but how this switch between activities may be regulated is presently unknown. To answer this question, we studied a simple plant virus that is a useful model system for these complex molecular biology phenomena, and that encodes a simplified protease/deubiquitinase. Here, thanks to a combination of structural and functional analyses, we managed to decouple the two activities, killing the deubiquitinase activity while preserving the protease one. This successful decoupling relies on our discovery that a loop inserted next to the active site is mobile, and can thus act as a switch between the two activities. This result allowed us to demonstrate the importance of the specific deubiquinase activity in viral multiplication. In addition, viral symptoms were also severely affected by mutations affecting the loop mobility. Our data provide powerful tools for further studies, that may also be relevant for more complex or medically relevant viruses.
Collapse
Affiliation(s)
- Isabelle Jupin
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
- * E-mail: (IJ); (SB)
| | - Maya Ayach
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Lucile Jomat
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
- * E-mail: (IJ); (SB)
| |
Collapse
|
29
|
Gulluni F, Martini M, Hirsch E. Cytokinetic Abscission: Phosphoinositides and ESCRTs Direct the Final Cut. J Cell Biochem 2017; 118:3561-3568. [PMID: 28419521 DOI: 10.1002/jcb.26066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
Abstract
Cytokinetic abscission involves the fine and regulated recruitment of membrane remodeling proteins that participate in the abscission of the intracellular bridge that connects the two dividing cells. This essential process is mediated by the concomitant activity of the endosomal sorting complex required for transport (ESCRT) and the vesicular trafficking directed to the midbody. Phosphoinositides (PtdIns), produced at plasma membrane, and endosomes, act as molecular intermediates by recruiting effector proteins involved in multiple cellular processes, such as intracellular signaling, endo- and exo-cytosis, and membrane remodeling events. Emerging evidences suggest that PtdIns have an active role in recruiting key elements that control the stability and the remodeling of the cytoskeleton from the furrow ingression to the abscission, at the end of cytokinesis. Accordingly, a possible concomitant and coordinated activity between PtdIns production and ESCRT machinery assembly could also exist and recent findings are pointing the attention on poorly understood ESCRT subunits potentially able to associate with PtdIns rich membranes. Although further studies are required to link PtdIns to ESCRT machinery during abscission, this might represent a promising field of study. J. Cell. Biochem. 118: 3561-3568, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Wang S, Sun H, Tanowitz M, Liang XH, Crooke ST. Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2017; 45:5309-5322. [PMID: 28379543 PMCID: PMC5605259 DOI: 10.1093/nar/gkx231] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages are broadly used as research tools and therapeutic agents. Chemically modified PS-ASOs can mediate efficient target reduction by site-specific cleavage of RNA through RNase H1. PS-ASOs are known to be internalized via a number of endocytotic pathways and are released from membrane-enclosed endocytotic organelles, mainly late endosomes (LEs). This study was focused on the details of PS-ASO trafficking through endocytic pathways. It was found that lysobisphosphatidic acid (LBPA) is required for release of PS-ASOs from LEs. PS-ASOs exited early endosomes (EEs) rapidly after internalization and became co-localized with LBPA by 2 hours in LEs. Inside LEs, PS-ASOs and LBPA were co-localized in punctate, dot-like structures, likely intraluminal vesicles (ILVs). Deactivation of LBPA using anti-LBPA antibody significantly decreased PS-ASO activities without affecting total PS-ASO uptake. Reduction of Alix also substantially decreased PS-ASO activities without affecting total PS-ASO uptake. Furthermore, Alix reduction decreased LBPA levels and limited co-localization of LBPA with PS-ASOs at ILVs inside LEs. Thus, the fusion properties of ILVs, which are supported by LBPA, contribute to PS-ASO intracellular release from LEs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
31
|
Herpes Simplex Virus Capsid Localization to ESCRT-VPS4 Complexes in the Presence and Absence of the Large Tegument Protein UL36p. J Virol 2016; 90:7257-7267. [PMID: 27252536 PMCID: PMC4984650 DOI: 10.1128/jvi.00857-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of tegument, the complex protein layer between the capsid and envelope. UL36p performs multiple functions in the HSV life cycle, including a critical but unknown role in capsid cytoplasmic envelopment. We tested whether UL36p is essential for envelopment because it is required to engage capsids with the cellular ESCRT/Vps4 apparatus. A green fluorescent protein (GFP)-fused form of the dominant negative ATPase Vps4-EQ was used to irreversibly tag ESCRT envelopment sites during infection by UL36p-expressing and UL36-null HSV strains. Using fluorescence microscopy and scanning electron microscopy, we quantitated capsid/Vps4-EQ colocalization and examined the ultrastructure of the corresponding viral assembly intermediates. We found that loss of UL36p resulted in a two-thirds reduction in the efficiency of capsid/Vps4-EQ association but that the remaining UL36p-null capsids were still able to engage the ESCRT envelopment apparatus. It appears that although UL36p helps to couple HSV capsids to the ESCRT pathway, this is likely not the sole reason for its absolute requirement for envelopment. IMPORTANCE Envelopment of the HSV capsid is essential for the assembly of an infectious virion and requires the complex interplay of a large number of viral and cellular proteins. Critical to envelope assembly is the virally encoded protein UL36p, whose function is unknown. Here we test the hypothesis that UL36p is essential for the recruitment of cellular ESCRT complexes, which are also known to be required for envelopment.
Collapse
|
32
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Kovalev N, de Castro Martín IF, Pogany J, Barajas D, Pathak K, Risco C, Nagy PD. Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase. J Virol 2016; 90:3611-26. [PMID: 26792735 PMCID: PMC4794697 DOI: 10.1128/jvi.02775-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Plus-stranded RNA viruses induce membrane deformations in infected cells in order to build viral replication complexes (VRCs). Tomato bushy stunt virus (TBSV) co-opts cellular ESCRT (endosomal sorting complexes required for transport) proteins to induce the formation of vesicle (spherule)-like structures in the peroxisomal membrane with tight openings toward the cytosol. In this study, using a yeast (Saccharomyces cerevisiae) vps23Δ bro1Δ double-deletion mutant, we showed that the Vps23p ESCRT-I protein (Tsg101 in mammals) and Bro1p (ALIX) ESCRT-associated protein, both of which bind to the viral p33 replication protein, play partially complementary roles in TBSV replication in cells and in cell extracts. Dual expression of dominant-negative versions of Arabidopsis homologs of Vps23p and Bro1p inhibited tombusvirus replication to greater extent than individual expression in Nicotiana benthamiana leaves. We also demonstrated the critical role of Snf7p (CHMP4), Vps20p, and Vps24p ESCRT-III proteins in tombusvirus replication in yeast and in vitro. Electron microscopic imaging of vps23Δ yeast revealed the lack of tombusvirus-induced spherule-like structures, while crescent-like structures are formed in ESCRT-III deletion yeasts replicating TBSV RNA. In addition, we also showed that the length of the viral RNA affects the sizes of spherules formed in N. benthamiana cells. The 4.8-kb genomic RNA is needed for the formation of spherules 66 nm in diameter, while spherules formed during the replication of the ∼600-nucleotide (nt)-long defective interfering RNA in the presence of p33 and p92 replication proteins are 42 nm. We propose that the viral RNA serves as a "measuring string" during VRC assembly and spherule formation. IMPORTANCE Plant positive-strand RNA viruses, similarly to animal positive-strand RNA viruses, replicate in membrane-bound viral replicase complexes in the cytoplasm of infected cells. Identification of cellular and viral factors affecting the formation of the membrane-bound viral replication complex is a major frontier in current virology research. In this study, we dissected the functions of co-opted cellular ESCRT-I (endosomal sorting complexes required for transport I) and ESCRT-III proteins and the viral RNA in tombusvirus replicase complex formation using in vitro, yeast-based, and plant-based approaches. Electron microscopic imaging revealed the lack of tombusvirus-induced spherule-like structures in ESCRT-I or ESCRT-III deletion yeasts replicating TBSV RNA, demonstrating the requirement for these co-opted cellular factors in tombusvirus replicase formation. The work could be of broad interest in virology and beyond.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kunj Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, Madrid, Spain
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Spencer B, Kim C, Gonzalez T, Bisquertt A, Patrick C, Rockenstein E, Adame A, Lee SJ, Desplats P, Masliah E. α-Synuclein interferes with the ESCRT-III complex contributing to the pathogenesis of Lewy body disease. Hum Mol Genet 2016; 25:1100-15. [PMID: 26740557 DOI: 10.1093/hmg/ddv633] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
α-Synuclein (α-syn) has been implicated in neurological disorders with parkinsonism, including Parkinson's disease and Dementia with Lewy body. Recent studies have shown α-syn oligomers released from neurons can propagate from cell-to-cell in a prion-like fashion exacerbating neurodegeneration. In this study, we examined the role of the endosomal sorting complex required for transport (ESCRT) pathway on the propagation of α-syn. α-syn, which is transported via the ESCRT pathway through multivesicular bodies for degradation, can also target the degradation of the ESCRT protein-charged multivesicular body protein (CHMP2B), thus generating a roadblock of endocytosed α-syn. Disruption of the ESCRT transport system also resulted in increased exocytosis of α-syn thus potentially increasing cell-to-cell propagation of synuclein. Conversely, delivery of a lentiviral vector overexpressing CHMP2B rescued the neurodegeneration in α-syn transgenic mice. Better understanding of the mechanisms of intracellular trafficking of α-syn might be important for understanding the pathogenesis and developing new treatments for synucleinopathies.
Collapse
Affiliation(s)
| | - Changyoun Kim
- Department of Neuroscience and Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | | | | | | | | | - Seung-Jae Lee
- Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | - Eliezer Masliah
- Department of Neuroscience and Department of Pathology, University of California, San Diego, San Diego, CA 92103, USA and
| |
Collapse
|
35
|
Chapter Six - The Ubiquitin Network in the Control of EGFR Endocytosis and Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:225-76. [DOI: 10.1016/bs.pmbts.2016.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
36
|
Zhang Y, Li W, Chu M, Chen H, Yu H, Fang C, Sun N, Wang Q, Luo T, Luo K, She X, Zhang M, Yang D. The AAA ATPase Vps4 Plays Important Roles in Candida albicans Hyphal Formation and is Inhibited by DBeQ. Mycopathologia 2015; 181:329-39. [PMID: 26700222 DOI: 10.1007/s11046-015-9979-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Candida albicans is an opportunistic human pathogen, and its pathogenicity is associated with hyphal formation. Previous studies have shown that at neutral-to-alkaline pH, hyphal growth is dependent on the Rim101 pathway whose activation requires Snf7, a member of the ESCRT system. In this work, we described the purification and characterization of the C. albicans Vps4, an AAA ATPase required for recycling of the ESCRTs. Its role on hyphal growth has been investigated. Our data suggest deletion of Vps4 decreases overall hyphal growth at pH 7 and increases the growth of multiple hyphae induced by serum, which indicates that the ESCRTs may make a Rim101-independent contribution to hyphal growth. Furthermore, DBeQ, an inhibitor of the AAA ATPase p97, was shown to inhibit the ATPase activity of Vps4 with an IC50 of about 11.5 μM. To a less degree, it also inhibits hyphal growth. Our work may provide a new strategy to control C. albicans infection.
Collapse
Affiliation(s)
- Yahui Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Mi Chu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hengye Chen
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haoyuan Yu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chaoguang Fang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ningze Sun
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiming Wang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tian Luo
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Kaiju Luo
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueping She
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Mengqian Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
37
|
Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25:730-748. [DOI: 10.1016/j.tcb.2015.10.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|
38
|
Quantitative Proteomic Analysis of BHK-21 Cells Infected with Foot-and-Mouth Disease Virus Serotype Asia 1. PLoS One 2015; 10:e0132384. [PMID: 26161868 PMCID: PMC4498813 DOI: 10.1371/journal.pone.0132384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.
Collapse
|
39
|
Diaz A, Zhang J, Ollwerther A, Wang X, Ahlquist P. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLoS Pathog 2015; 11:e1004742. [PMID: 25748299 PMCID: PMC4351987 DOI: 10.1371/journal.ppat.1004742] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance. Positive-strand RNA {(+)RNA} viruses cause numerous human, animal, and plant diseases. (+)RNA viruses reorganize host intracellular membranes to assemble their RNA replication compartments, which are mini-organelles featuring the close association of both viral and host components. To further understand the role of host components in forming such RNA replication compartments, we used brome mosaic virus (BMV), a well characterized model virus, to study some common features of (+)RNA virus RNA replication. We show that knocking out several components of the cellular Endosomal Complex Required for Transport (ESCRT) machinery resulted in parallel defects in BMV RNA replication and replication compartment formation, whereas other ESCRT components affected RNA replication independently of replication compartment formation. Deleting a subset of ESCRT proteins altered the frequency of replication compartment formation but had no effect on the size of these compartments, whereas a second subset affected RNA replication independently of replication compartment formation. Moreover, BMV’s interaction with the ESCRT machinery appears to be distinct from that reported for other viruses and from the ESCRT requirements for forming vesicles in cellular multivesicular bodies. These findings further illuminate the remarkable abilities of positive-strand RNA viruses to integrate viral and host protein functions to remodel membranes, and suggest potentially potent new ways to control such viruses.
Collapse
Affiliation(s)
- Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Abigail Ollwerther
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, Virginia, United States of America
- * E-mail: (XW); (PA)
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (XW); (PA)
| |
Collapse
|
40
|
Fung KYY, Dai L, Trimble WS. Cell and molecular biology of septins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:289-339. [PMID: 24725429 DOI: 10.1016/b978-0-12-800180-6.00007-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Lu Dai
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
41
|
Härtel T, Schwille P. ESCRT-III mediated cell division in Sulfolobus acidocaldarius - a reconstitution perspective. Front Microbiol 2014; 5:257. [PMID: 24926288 PMCID: PMC4045173 DOI: 10.3389/fmicb.2014.00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/11/2014] [Indexed: 11/13/2022] Open
Abstract
In the framework of synthetic biology, it has become an intriguing question what would be the minimal representation of cell division machinery. Thus, it seems appropriate to compare how cell division is realized in different microorganisms. In particular, the cell division system of Crenarchaeota lacks certain proteins found in most bacteria and Euryarchaeota, such as FtsZ, MreB or the Min system. The Sulfolobaceae family encodes functional homologs of the eukaryotic proteins vacuolar protein sorting 4 (Vps4) and endosomal sorting complex required for transport-III (ESCRT-III). ESCRT-III is essential for several eukaryotic pathways, e.g., budding of intraluminal vesicles, or cytokinesis, whereas Vps4 dissociates the ESCRT-III complex from the membrane. Cell Division A (CdvA) is required for the recruitment of crenarchaeal ESCRT-III proteins to the membrane at mid-cell. The proteins polymerize and form a smaller structure during constriction. Thus, ESCRT-III mediated cell division in Sulfolobus acidocaldarius shows functional analogies to the Z ring observed in prokaryotes like Escherichia coli, which has recently begun to be reconstituted in vitro. In this short perspective, we discuss the possibility of building such an in vitro cell division system on basis of archaeal ESCRT-III.
Collapse
Affiliation(s)
- Tobias Härtel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry Martinsried, Germany
| |
Collapse
|
42
|
Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLoS Pathog 2014; 10:e1004087. [PMID: 24763736 PMCID: PMC3999190 DOI: 10.1371/journal.ppat.1004087] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation. Replication of positive-stranded RNA viruses depends on recruitment of host proteins and cellular membranes to assemble the viral replicase complexes. Tombusviruses, small RNA viruses of plants, co-opt the cellular ESCRT (endosomal sorting complexes required for transport) proteins to facilitate replicase assembly on the peroxisomal membranes. The authors show a surprising role for the ESCRT-associated Vps4p AAA+ ATPase during tombusvirus replication. They show that Vps4p is recruited to and becomes a permanent member of the replicase complex through its interaction with the viral replication proteins. Also, EM and immuno-EM studies reveal that Vps4p is required for the formation of single-membrane vesicle-like structures, called spherules, which represent the sites of tombusvirus replication. The authors propose that Vps4p and other ESCRT proteins are required for membrane deformation and replicase assembly.
Collapse
|
43
|
Elia N, Ott C, Lippincott-Schwartz J. Incisive imaging and computation for cellular mysteries: lessons from abscission. Cell 2014; 155:1220-31. [PMID: 24315094 DOI: 10.1016/j.cell.2013.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 02/06/2023]
Abstract
The final cleavage event that terminates cell division, abscission of the small, dense intercellular bridge, has been particularly challenging to resolve. Here, we describe imaging innovations that helped answer long-standing questions about the mechanism of abscission. We further explain how computational modeling of high-resolution data was employed to test hypotheses and generate additional insights. We present the model that emerges from application of these complimentary approaches. Similar experimental strategies will undoubtedly reveal exciting details about other underresolved cellular structures.
Collapse
Affiliation(s)
- Natalie Elia
- Department of Life Sciences and the NIBN, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | |
Collapse
|
44
|
Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division. Extremophiles 2014; 18:331-9. [PMID: 24399085 DOI: 10.1007/s00792-013-0618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1-3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.
Collapse
|
45
|
Molecular modeling of the Candida albicans Vps4 and a virtual screening study for novel inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Dobro MJ, Samson RY, Yu Z, McCullough J, Ding HJ, Chong PLG, Bell SD, Jensen GJ. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 2013; 24:2319-27. [PMID: 23761076 PMCID: PMC3727925 DOI: 10.1091/mbc.e12-11-0785] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ESCRT filaments wrap helically around liposomes and assemble into various helical structures in vitro. Dividing Sulfolobus cells further exhibit a thin, dynamic belt coating division furrows. Together these data suggest that spiraling filaments are involved in membrane scission. The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT–CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.
Collapse
Affiliation(s)
- Megan J Dobro
- School of Natural Science, Hampshire College, Amherst, MA 01002, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ubiquitylation is a reversible post-translational modification that has emerged as a key regulator of most complex cellular processes. It may rival phosphorylation in scope and exceed it in complexity. The dynamic nature of ubiquitylation events is important for governing protein stability, maintaining ubiquitin homeostasis and controlling ubiquitin-dependent signalling pathways. The human genome encodes ~80 active deubiquitylating enzymes (DUBs, also referred to as deubiquitinases), which exhibit distinct specificity profiles towards the various ubiquitin chain topologies. As a result of their ability to reverse ubiquitylation, these enzymes control a broad range of key cellular processes. In this Commentary we discuss the cellular functions of DUBs, such as their role in governing membrane traffic and protein quality control. We highlight two key signalling pathways--the Wnt and transforming growth factor β (TGF-β) pathways, for which dynamic ubiquitylation has emerged as a key regulator. We also discuss the roles of DUBs in the nucleus, where they govern transcriptional activity and DNA repair pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK.
| | | | | |
Collapse
|
48
|
IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol 2013; 33:1503-14. [PMID: 23382078 DOI: 10.1128/mcb.01716-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The low-density lipoprotein receptor (LDLR) is a critical determinant of plasma cholesterol levels that internalizes lipoprotein cargo via clathrin-mediated endocytosis. Here, we show that the E3 ubiquitin ligase IDOL stimulates a previously unrecognized, clathrin-independent pathway for LDLR internalization. Real-time single-particle tracking and electron microscopy reveal that IDOL is recruited to the plasma membrane by LDLR, promotes LDLR internalization in the absence of clathrin or caveolae, and facilitates LDLR degradation by shuttling it into the multivesicular body (MVB) protein-sorting pathway. The IDOL-dependent degradation pathway is distinct from that mediated by PCSK9 as only IDOL employs ESCRT (endosomal-sorting complex required for transport) complexes to recognize and traffic LDLR to lysosomes. Small interfering RNA (siRNA)-mediated knockdown of ESCRT-0 (HGS) or ESCRT-I (TSG101) components prevents IDOL-mediated LDLR degradation. We further show that USP8 acts downstream of IDOL to deubiquitinate LDLR and that USP8 is required for LDLR entry into the MVB pathway. These results provide key mechanistic insights into an evolutionarily conserved pathway for the control of lipoprotein receptor expression and cellular lipid uptake.
Collapse
|
49
|
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian CNS and acts on both ionotropic and metabotropic glutamate receptors (mGluRs). The mGluRs are widely distributed in the CNS and modulate a variety of neuronal processes, including neurotransmitter release and ion channel function. In hippocampus and cortex, mGluR5 is highly expressed and plays an important role in the regulation of synaptic plasticity. Calmodulin (CaM) binding dynamically regulates mGluR5 surface expression; however, the mechanisms linking CaM to mGluR5 trafficking are not clear. Recent studies showed that CaM binding to mGluR7 regulates its trafficking in a phosphorylation-dependent manner by disrupting the binding of protein interacting with C kinase 1. The E3 ligase seven in absentia homolog (Siah)-1A binds to mGluR5 and competes with CaM binding, making it an intriguing molecule to regulate phosphorylation-dependent trafficking of mGluR5. In the present study, we find that CaM competes with Siah-1A for mGluR5 binding in a phosphorylation-dependent manner in rat hippocampal neurons. Specifically, phosphorylation of mGluR5 S901 favors Siah-1A binding by displacing CaM. We identified critical residues regulating Siah-1A binding to mGluR5 and showed that binding is essential for the Siah-1A effects on mGluR5 trafficking. Siah-1A binding decreases mGluR5 surface expression and increases endosomal trafficking and lysosomal degradation of mGluR5. Thus CaM-regulated Siah-1A binding to mGluR5 dynamically regulates mGluR5 trafficking. These findings support a conserved role for CaM in regulating mGluR trafficking by PKC-dependent regulation of receptor-binding proteins.
Collapse
|
50
|
Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology 2013; 10:5. [PMID: 23305486 PMCID: PMC3558412 DOI: 10.1186/1742-4690-10-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|