1
|
Guo D, Lu J, Hong L, Liu H, Huang H. Downregulated expression of dual-specificity phosphatase-1 in multiple myeloma as a predictor of poor survival outcomes. Hematology 2025; 30:2474271. [PMID: 40077895 DOI: 10.1080/16078454.2025.2474271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES Multiple myeloma (MM) is an incurable hematological malignancy, Dual-specificity phosphatase-1 (DUSP1) plays a crucial role in the initiation and progression of various tumors. Here, we aim to elucidate the role of DUSP1 in MM. METHODS DUSP1 mRNA expression was analyzed based on public datasets, and protein expression was determined by immunohistochemistry. The association between DUSP1 and clinicopathological characteristics, as well as its impact on survival, were investigated. Protein-protein interaction and gene set enrichment analysis were performed. RESULTS Low DUSP1 expression was detected in MM and it was associated with elevated β2-microglobulin, C-reactive protein, creatinine, lactate dehydrogenase, plasma cell ratio, and decreased hemoglobin levels. The DUSP1high group exhibited superior outcomes across clinical endpoints. Univariate and multivariate analyses indicated that low DUSP1 expression was an independent prognostic factor for poor OS (hazard ratio = 0.273). The findings suggested that DUSP1 expression was related to proto-oncogene c-Fos (FOS), heat shock protein family member 1a (HSPA1A), several members of the MAPK family, nuclear receptor subfamily 3, group C, member 1 (NR3C1), and zinc finger protein 36 (ZFP36). DUSP1 mRNA levels were positively correlated with ribosomes and were negatively correlated with oocyte meiosis, one carbon pool by folate, homologous recombination, base excision repair, and pyrimidine metabolism pathways. DISCUSSION The potential mechanisms identified through the PPI network analysis could provide insight into how DUSP1 may influence MM. CONCLUSIONS Low expression of DUSP1 may be considered a poor prognostic factor for MM patients.
Collapse
Affiliation(s)
- Dan Guo
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jinfeng Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Lemin Hong
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hong Liu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
2
|
Kong G, Li R, Huang W, Yang Y, Guan T, Liu J, Li W, Hsiang T, Xi P, Li M, Jiang Z. A RACK1 family protein regulates pathogenicity of Peronophythora litchii by acting as a scaffold for MAPK signal modules. Virulence 2025; 16:2503429. [PMID: 40356437 PMCID: PMC12077431 DOI: 10.1080/21505594.2025.2503429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/03/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Litchi downy blight caused by Peronophythora litchii is the most destructive disease of litchi (Litchi chinensis). RACK1 (Receptor for activated C kinase 1) is a group of scaffold proteins, mainly involved in the regulation of various signaling pathways by interacting with signal transduction proteins and affecting the activity of these proteins. In this study, a RACK1 homologue identified in P. litchii, and named PlRACK1. The protein was found to interact with the mitogen-activated protein kinases, PlMAPK1 and PlMAPK2. CRISPR/Cas9-mediated genome editing technology was used to knock out PlRACK1, and we found that it was involved in mycelial growth, cell wall integrity, ROS metabolism, laccase activity, and pathogenicity of P. litchii. PlMAPK1 interacted with RACK1, and they jointly regulated sporangiophore branching of P. litchii. Transcriptome analysis showed that P. litchii MAPK Phosphatase 1 (PlMKP1) and beta-glucoside (PlBglX) were regulated by PlRACK1, both of which were also required for the pathogenicity of P. litchii. As well, PlMKP1 also interacted with PlMAPK1 and PlMAPK2. These results provide insights into the direct interactions between RACK1, MAPKs, and MKP, and their functions in growth, development, and pathogenesis in a plant pathogenic oomycete.
Collapse
Affiliation(s)
- Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Rui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Weixiong Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yaowen Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Tianfang Guan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Jinghan Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Wen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Sedaghat-Rostami E, Carr BV, Yang L, Keep S, Lean FZX, Atkinson I, Fones A, Paudyal B, Kirk J, Vatzia E, Gubbins S, Bickerton E, Briggs E, Núñez A, McNee A, Moffat K, Freimanis G, Rollier C, Muir A, Richard AC, Angelopoulos N, Gerner W, Tchilian E. Porcine respiratory coronavirus as a model for acute respiratory disease: mechanisms of different infection outcomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf066. [PMID: 40304579 DOI: 10.1093/jimmun/vkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Porcine respiratory coronavirus (PRCV) is a naturally occurring pneumotropic coronavirus in the pig, providing a valuable large animal model to study acute respiratory disease. PRCV pathogenesis and the resulting immune response were investigated in pigs, the natural large animal host. We compared 2 strains, ISU-1 and 135, which induced differing levels of pathology in the respiratory tract to elucidate the mechanisms leading to mild or severe disease. The 135 strain induced greater pathology which was associated with higher viral load and stronger spike-specific antibody and T-cell responses. In contrast, the ISU-1 strain triggered mild pathology with a more balanced immune response and greater abundance of T regulatory cells. A higher frequency of putative T follicular helper cells was observed in animals infected with strain 135 at 11 days postinfection. Single-cell RNA-sequencing of bronchoalveolar lavage revealed differential gene expression in B and T cells between animals infected with 135 and ISU-1 at 1 day postinfection. These genes were associated with cell adhesion, migration, and immune regulation. Along with increased IL-6 and IL-12 production, these data indicate that heightened inflammatory responses to the 135 strain may contribute to pronounced pneumonia. Among bronchoalveolar lavage (BAL) immune cell populations, B cells and plasma cells exhibited the most gene expression divergence between pigs infected with different PRCV strains, highlighting their role in maintaining immune homeostasis in the respiratory tract. These findings indicate the potential of the PRCV model for studying coronavirus-induced respiratory disease and identifying mechanisms that determine infection outcomes.
Collapse
Affiliation(s)
- Ehsan Sedaghat-Rostami
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | | | - Liu Yang
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Sarah Keep
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Isabella Atkinson
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Albert Fones
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Basudev Paudyal
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - James Kirk
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Eleni Vatzia
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Simon Gubbins
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Erica Bickerton
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Emily Briggs
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Adam McNee
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Katy Moffat
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Graham Freimanis
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Christine Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | - Andrew Muir
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Nicos Angelopoulos
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Wilhelm Gerner
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Elma Tchilian
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| |
Collapse
|
4
|
Dai W, Zhu M, Sun Y, Xu B, Ma G, Shi H, Li P. NELFCD Promotes Colon Cancer Progression by Regulating the DUSP2-p38 Axis. FRONT BIOSCI-LANDMRK 2025; 30:25221. [PMID: 40302325 DOI: 10.31083/fbl25221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND To investigate the significance of the negative elongation factor complex member C/D (NELFCD) in colon cancer progression. METHODS Immunohistochemistry staining, Western blot analysis, and real-time quantitative polymerase chain reaction (RT-qPCR) were used to quantify the protein/gene levels. NELFCD-protein arginine methyltransferase 5 (PRMT5) interaction was determined by co-immunoprecipitation assay. A chromatin immunoprecipitation (ChIP) assay was performed to determine the interaction between the promoter region of dual specificity phosphatase 2 (DUSP2), NELFCD, and PRMT5. Cell growth and cell cycle progression were assessed using the cell counting kit-8 proliferation assay, colony formation assay, and/or flow cytometry. RESULTS NELFCD was upregulated in colon cancer and promoted cancer cell growth. In colon cancer cells, the expression of NELFCD was negatively correlated with DUSP2 expression. The RNA sequencing results indicated that genes in the mitogen-activated protein kinase (MAPK) signaling pathway as well as DUSP2 were affected by NELFCD. The ChIP sequencing results revealed that DUSP2 and genes in the MAPK signaling pathway are direct targets of NELFCD. ChIP assay verified that PRMT5 is enriched at the promoter region of DUSP2 and that NELFCD overexpression promoted this enrichment. A co-immunoprecipitation assay demonstrated that NELFCD was bound to PRMT5, functioning as a macromolecular complex. CONCLUSIONS This study suggests that NELFCD promotes the progression of colon cancer by recruiting PRMT5 to inhibit DUSP2 expression, which subsequently activates the p38 signaling pathway. Targeting the NELFCD-DUSP2-p38 signaling axis may be a promising therapeutic intervention for patients suffering from NELFCD-amplified tumors.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, 100000, Beijing, China
| | - Min Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, 100000, Beijing, China
| | - Yujing Sun
- Department of Laboratory, Peking University International Hospital, 100000, Beijing, China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, 100000, Beijing, China
| | - Guorong Ma
- Department of Pathology, Beijing Luhe Hospital Affiliated to Capital Medical University, 100000, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, 100000, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, 100000, Beijing, China
| |
Collapse
|
5
|
Xu L, Zhu A, Xu S, Zhao J, Song S, Zhu H, Huang Y. Hippocampal cannabinoid type 2 receptor alleviates chronic neuropathic pain-induced cognitive impairment via microglial DUSP6 pathway in rats. FASEB J 2024; 38:e70152. [PMID: 39498753 DOI: 10.1096/fj.202401481r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
Approximately 50% of patients with chronic neuropathic pain experience cognitive impairment, which negatively impacts their quality of life. The cannabinoid type 2 receptor (CB2R) may be involved in hippocampal cognitive processes. However, its role in chronic neuropathic pain-induced cognitive impairment remains elusive. Spared nerve injury (SNI) was used to induce chronic neuropathic pain in rats, while the novel-object recognition test and the Y-maze test were employed to assess cognitive function. Immunofluorescence, western blotting, and stereotaxic hippocampal microinjection were utilized to elucidate the potential mechanisms. We observed a reduction in mechanical pain threshold and cognitive impairment in SNI rats. This was accompanied by a tendency for hippocampal microglia to adopt pro-inflammatory functions. Notably, no changes were detected in CB2R expression. However, downregulation of the endogenous ligands AEA and 2-AG was evident. Hippocampal microinjection of a CB2R agonist mitigated cognitive impairment in SNI rats, which correlated with a tendency for microglia to adopt anti-inflammatory functions. Additionally, SNI-induced activation of the p-ERK/NFκB pathway in the hippocampus. Activation of CB2R reversed this process by upregulating DUSP6 expression in microglia. The effects elicited by CB2R activation could be inhibited through the downregulation of microglial DUSP6 via hippocampal adeno-associated virus (AAV) microinjection. Conversely, overexpression of hippocampal DUSP6 using AAV ameliorated the cognitive deficits observed in SNI rats, which remained unaffected by the administration of a CB2R antagonist. Our findings demonstrate that activation of hippocampal CB2R can mitigate chronic neuropathic pain-induced cognitive impairment through the modulation of the DUSP6/ERK/NFκB pathway.
Collapse
Affiliation(s)
- Lichi Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuxiang Xu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiale Zhao
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shujia Song
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Xu N, Dao FT, Shi ZY, Sun K, Qin YZ. WT1 together with RUNX1::RUNX1T1 targets DUSP6 to dampen ERK activity in acute myeloid leukaemia. Br J Haematol 2024; 205:1848-1859. [PMID: 39191510 DOI: 10.1111/bjh.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Wilms' tumour 1 (WT1) can function as an oncogene or a tumour suppressor. Our previous clinical cohort studies showed that low WT1 expression at diagnosis independently predicted poor outcomes in acute myeloid leukaemia (AML) with RUNX1::RUNX1T1, whereas it had an opposite role in AML with non-favourable cytogenetic risk (RUNX1::RUNX1T1-deficient). The molecular mechanism by which RUNX1::RUNX1T1 affects the prognostic significance of WT1 in AML remains unknown. In the present study, first we validated the prognostic significance of WT1 expression in AML. Then by using the established transfected cell lines and xenograft tumour model, we found that WT1 suppresses proliferation and enhances effect of cytarabine in RUNX1::RUNX1T1(+) AML but has opposite functions in AML cells without RUNX1::RUNX1T1. Furthermore, as a transcription factor, WT1 physically interacts with RUNX1::RUNX1T1 and acts as a co-factor together with RUNX1::RUNX1T1 to activate the expression of its target gene DUSP6 to dampen extracellular signal-regulated kinase (ERK) activity. When RUNX1::RUNX1T1-deficient, WT1 can activate the mitogen-activated extracellular signal-regulated kinase/ERK axis but not through targeting DUSP6. These results provide a mechanism by which WT1 together with RUNX1::RUNX1T1 suppresses cell proliferation through WT1/DUSP6/ERK axis in AML. The current study provides an explanation for the controversial prognostic significance of WT1 expression in AML patients.
Collapse
Affiliation(s)
- Nan Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
7
|
Skeens E, Maschietto F, Manjula R, Shillingford S, Lolis EJ, Batista VS, Bennett AM, Lisi GP. Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611520. [PMID: 39282375 PMCID: PMC11398491 DOI: 10.1101/2024.09.05.611520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanelle Shillingford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Mandal J, Yu ZC, Shih IM, Wang TL. ARID1A loss activates MAPK signaling via DUSP4 downregulation. J Biomed Sci 2023; 30:94. [PMID: 38071325 PMCID: PMC10709884 DOI: 10.1186/s12929-023-00985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Andersen LL, Huang Y, Urban C, Oubraham L, Winheim E, Stafford C, Nagl D, O'Duill F, Ebert T, Engleitner T, Paludan SR, Krug A, Rad R, Hornung V, Pichlmair A. Systematic P2Y receptor survey identifies P2Y11 as modulator of immune responses and virus replication in macrophages. EMBO J 2023; 42:e113279. [PMID: 37881155 PMCID: PMC10690470 DOI: 10.15252/embj.2022113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Yiqi Huang
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Christian Urban
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Lila Oubraham
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Elena Winheim
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Che Stafford
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Dennis Nagl
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Fionan O'Duill
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Ebert
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Søren Riis Paludan
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
| | - Anne Krug
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Veit Hornung
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Pichlmair
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
- German Center for Infection Research (DZIF), Munich Partner SiteMunichGermany
| |
Collapse
|
10
|
Liu N, Li C, Shang Q, Qi J, Li Q, Deng J, Dan H, Xie L, Chen Q. Angelicin inhibits cell growth and promotes apoptosis in oral squamous cell carcinoma by negatively regulating DUSP6/cMYC signaling pathway. Exp Cell Res 2023; 432:113793. [PMID: 37741490 DOI: 10.1016/j.yexcr.2023.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Angelicin has been reported to have antitumor effects on many types of cancer. However, few studies on angelicin in oral squamous cell carcinoma (OSCC) have been performed. We performed cell cycle and apoptosis analyses to assess the effect of angelicin on OSCC cells. We conducted RNA-seq studies to reveal differentially expressed genes (DEGs). Dual-specificity phosphatase 6 (DUSP6) and c-MYC were strongly down-regulated differential genes. Silencing RNA (siRNA) was used to knockdown DUSP6. The mouse xenograft model was used to mimic OSCC. Angelicin inhibited OSCC in vitro. We found that DUSP6 interacted with c-MYC. DUSP6 knockdown group and DUSP6 knockdown + angelicin group had similar effects of OSCC cells. Angelicin could reduce tumor formation, DUSP6, and c-MYC expression in vivo. Compared with paclitaxel, the tumor inhibition effect of the two drugs was similar. However, angelicin did not cause weight loss and had lower toxicity. In sum, Angelicin has antitumor effects on OSCC in vitro and vivo by negatively regulating the DUSP6 mediated c-MYC signaling pathway.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Chunyu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianhui Shang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiajia Qi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qionghua Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Deng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Lopez-Yus M, Frendo-Cumbo S, Del Moral-Bergos R, Garcia-Sobreviela MP, Bernal-Monterde V, Rydén M, Lorente-Cebrian S, Arbones-Mainar JM. CRISPR/Cas9-mediated deletion of adipocyte genes associated with NAFLD alters adipocyte lipid handling and reduces steatosis in hepatocytes in vitro. Am J Physiol Cell Physiol 2023; 325:C1178-C1189. [PMID: 37721003 DOI: 10.1152/ajpcell.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Obesity is a major risk factor for the development of nonalcoholic fatty liver disease (NAFLD), and the subcutaneous white adipose tissue (scWAT) is the primary lipid storage depot and regulates lipid fluxes to other organs. Our previous work identified genes upregulated in scWAT of patients with NAFLD: SOCS3, DUSP1, and SIK1. Herein, we knocked down (KD) their expression in human adipose-derived mesenchymal stem cells (hADMSCs) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and characterized their phenotype. We found that SOCS3, DUSP1, and SIK1 expression in hADMSC-derived adipocytes was not critical for adipogenesis. However, the metabolic characterization of the cells suggested that the genes played important roles in lipid metabolism. Reduction of SIK1 expression significantly increased both de novo lipogenesis (DNL) and palmitate-induced lipogenesis (PIL). Editing out SOCS3 reduced DNL while increasing isoproterenol-induced lipolysis and insulin-induced palmitate accumulation. Conversely, DUSP1 reduced PIL and DNL. Moreover, RNA-sequencing analysis of edited cells showed that these genes not only altered lipid metabolism but also other biological pathways related to inflammatory processes, in the case of DUSP1, extracellular matrix remodeling for SOCS3, or cellular transport for SIK1. Finally, to evaluate a possible adipocyte-hepatocyte axis, human hepatoma HepG2 cells were cocultured with edited hADMSCs-derived adipocytes in the presence of [3H]-palmitate. All HepG2 cells cultured with DUSP1-, SIK1-, or SOCS3-KD adipocytes decreased [3H]-palmitate accumulation compared with control adipocytes. These results support our hypotheses that SOCS3, DUSP1, and SIK1 regulate multiple aspects of adipocyte function, which may play a role in the progression of obesity-associated comorbidities, such as NAFLD.NEW & NOTEWORTHY Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology successfully edited genomic DNA of human adipose-derived mesenchymal stem cells (hADMSC). SOCS3, SIK1, and DUSP1 regulate adipocyte lipid handling. Silencing SOCS3, SIK1, and DUSP1 expression in hADMSC-derived adipocytes reduces hepatocyte lipid storage in vitro.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Smailys J, Jiang F, Prioleau T, Kelley K, Mitchell O, Nour S, Ali L, Buchser W, Zavada L, Hinton SD. The DUSP domain of pseudophosphatase MK-STYX interacts with G3BP1 to decrease stress granules. Arch Biochem Biophys 2023; 744:109702. [PMID: 37516290 PMCID: PMC10500436 DOI: 10.1016/j.abb.2023.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Mitogen activated protein kinase phosphoserine/threonine/tyrosine-binding protein (MK-STYX) is a dual specificity (DUSP) member of the protein tyrosine phosphatase family. It is a pseudophosphatase, which lacks the essential amino acids histidine and cysteine in the catalytic active signature motif (HCX5R). We previously reported that MK-STYX interacts with G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding-1] and reduces stress granules, stalled mRNA. To determine how MK-STYX reduces stress granules, truncated domains, CH2 (cell division cycle 25 phosphatase homology 2) and DUSP, of MK-STYX were used. Wild-type MK-STYX and the DUSP domain significantly decreased stressed granules that were induced by sodium arsenite, in which G3BP1 (a stress granule nucleator) was used as the marker. In addition, HEK/293 and HeLa cells co-expressing G3BP1-GFP and mCherry-MK-STYX, mCherry-MK-STYX-CH2, mCherry-MK-STYX-DUSP or mCherry showed that stress granules were significantly decreased in the presence of wild-type MK-STYX and the DUSP domain of MK-STYX. Further characterization of these dynamics in HeLa cells showed that the CH2 domain increased the number of stress granules within a cell, relative to wild-type and DUSP domain of MK-STYX. To further analyze the interaction of G3BP1 and the domains of MK-STYX, coimmunoprecipitation experiments were performed. Cells co-expressing G3BP1-GFP and mCherry, mCherry-MK-STYX, mCherry-MK-STYX-CH2, or mCherry-MK-STYX-DUSP demonstrated that the DUSP domain of MK-STYX interacts with both G3BP1-GFP and endogenous G3BP1, whereas the CH2 domain of MK-STYX did not coimmunoprecipitate with G3BP1. In addition, G3BP1 tyrosine phosphorylation, which is required for stress granule formation, was decreased in the presence of wild-type MK-STYX or the DUSP domain but increased in the presence of CH2. These data highlight a model for how MK-STYX decreases G3BP1-induced stress granules. The DUSP domain of MK-STYX interacts with G3BP1 and negatively alters its tyrosine phosphorylation- decreasing stress granule formation.
Collapse
Affiliation(s)
- Jonathan Smailys
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Fei Jiang
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Tatiana Prioleau
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Kylan Kelley
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA; Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Olivia Mitchell
- Department of Biology, Hampton University, Hampton, VA, 23666, USA
| | - Samah Nour
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lina Ali
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - William Buchser
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lynn Zavada
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Shantá D Hinton
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
13
|
Guo M, Wei J, Zhou Y, Qin Q. Antiviral immunity of grouper MAP kinase phosphatase 1 to Singapore grouper iridovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104674. [PMID: 36889370 DOI: 10.1016/j.dci.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singapore grouper iridovirus (SGIV), with various mechanisms for evading and modulating host, has inflicted heavy economic losses in the grouper aquaculture. MAP kinase phosphatase 1 (MKP-1) regulates mitogen-activated protein kinases (MAPKs) to mediate the innate immune response. Here, we cloned EcMKP-1, an MKP-1 homolog from the orange-spotted grouper Epinephelus coioides, and investigated its role in the infection of SGIV. In juvenile grouper, EcMKP-1 was highly upregulated and peaked at different times after injection with lipopolysaccharide, polyriboinosinic polyribocytidylic acid and SGIV. EcMKP-1 expression in heterologous fathead minnow cells was able to suppress SGIV infection and replication. Furthermore, EcMKP-1 was a negative regulator of c-Jun N-terminal kinase (JNK) phosphorylation early in SGIV infection. EcMKP-1 decreased the apoptotic percentage and caspase-3 activity during the late stage of SGIV replication. Our results demonstrate critical functions of EcMKP-1 in antiviral immunity, JNK dephosphorylation and anti-apoptosis during SGIV infection.
Collapse
Affiliation(s)
- Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, 572000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, PR China.
| |
Collapse
|
14
|
Chen S, Guan X, Xie L, Liu C, Li C, He M, Hu J, Fan H, Li Q, Xie L, Yang M, Zhang X, Xiao S, Tang J. Aloe-emodin targets multiple signaling pathways by blocking ubiquitin-mediated degradation of DUSP1 in nasopharyngeal carcinoma cells. Phytother Res 2023. [PMID: 36866539 DOI: 10.1002/ptr.7793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aloe-emodin (AE) has been shown to inhibit the proliferation of several cancer cell lines, including human nasopharyngeal carcinoma (NPC) cell lines. In this study, we confirmed that AE inhibited malignant biological behaviors, including cell viability, abnormal proliferation, apoptosis, and migration of NPC cells. Western blotting analysis revealed that AE upregulated the expression of DUSP1, an endogenous inhibitor of multiple cancer-associated signaling pathways, resulting in blockage of the extracellular signal-regulated kinase (ERK)-1/2, protein kinase B (AKT), and p38-mitogen activated protein kinase(p38-MAPK) signaling pathways in NPC cell lines. Moreover, the selective inhibitor of DUSP1, BCI-hydrochloride, partially reversed the AE-induced cytotoxicity and blocked the aforementioned signaling pathways in NPC cells. In addition, the binding between AE and DUSP1 was predicted via molecular docking analysis using AutoDock-Vina software and further verified via a microscale thermophoresis assay. The binding amino acid residues were adjacent to the predicted ubiquitination site (Lys192) of DUSP1. Immunoprecipitation with the ubiquitin antibody, ubiquitinated DUSP1 was shown to be upregulated by AE. Our findings revealed that AE can stabilize DUSP1 by blocking its ubiquitin-proteasome-mediated degradation and proposed an underlying mechanism by which AE-upregulated DUSP1 may potentially target multiple pathways in NPC cells.
Collapse
Affiliation(s)
- Shanlin Chen
- Department of Pharmacy, The Second Affiliated Hospital, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xiaoxue Guan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.,Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Lei Xie
- Department of Pharmacy, The Second Affiliated Hospital, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Chuanyu Liu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunhong Li
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min He
- Department of Pharmacy, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Jiahua Hu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Hui Fan
- Department of Otolaryngology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Quanwen Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Liuping Xie
- Department of Pharmacy, The Second Affiliated Hospital, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Mingqing Yang
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, Guilin, China
| | - Shengjun Xiao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.,Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Jianhong Tang
- Department of Pharmacy, The Second Affiliated Hospital, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
15
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Aughton K, Sabat-Pośpiech D, Barlow S, Coupland SE, Kalirai H. Investigating the Role of DUSP4 in Uveal Melanoma. Transl Vis Sci Technol 2022; 11:13. [PMID: 36576731 PMCID: PMC9804032 DOI: 10.1167/tvst.11.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Dual-specificity phosphatase 4 (DUSP4) inactivates factors in the mitogen-activated protein kinase (MAPK) signaling cascade, activated in uveal melanoma (UM) by mutations in upstream G-protein α subunits GNAQ/11 in >90% cases. This study examined whether DUSP4 (1) protein expression in primary UM (pUM) was a biomarker of metastatic risk and (2) knockdown sensitized UM cells to therapeutic agents, selumetinib or doxorubicin. Methods DUSP4 mRNA data from The Cancer Genome Atlas and DUSP4 protein expression examined using immunohistochemistry in 28 cases of pUM were evaluated for association with clinical, genetic, and histological features. In vitro cytotoxic drug assays tested the efficacy of selumetinib and doxorubicin in UM cell lines with/without small interfering RNA DUSP4 gene silencing. Results DUSP4 protein expression was observed in 93% of cases, with strong nuclear positivity in 79%. Despite higher DUSP4 messenger RNA levels in disomy 3/wild-type BAP1 UM, there was no significant association of nDUSP4 protein with these metastatic risk predictors or outcome. DUSP4 expression in UM cell lines varied. DUSP4 silencing in Mel202, MP46, and MP41 cells did not affect ERK1/2 or phospho-ERK levels. Despite increased phospho-ERK levels in Mel285, no cell line showed enhanced sensitivity to selumetinib/doxorubicin. Conclusions DUSP4 protein expression is not a biomarker of UM metastatic risk. DUSP4 plays a complex role in oncogenesis, as reported in other cancers, and further work is required to fully understand its functional role in the MAPK pathway. Translational Relevance Understanding the role of phosphatases, such as DUSP4, in the control of intracellular signaling cascades will facilitate our ability to identify successful treatment options.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Barlow
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
18
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
19
|
Cheng Y, Yang C, Li Z, Li X, Zou X, Li L, Cui M, Tian A, Li X, He W, Zhao Z, Ding Y. Anti-influenza virus activity of the REV-ERBα agonist SR9009 and related analogues. Antiviral Res 2022; 207:105418. [PMID: 36122620 DOI: 10.1016/j.antiviral.2022.105418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
REV-ERBα is a member of the nuclear receptor superfamily of transcription factors that aids in the regulation of many diseases. However, the prospect of using REV-ERBα for anti-influenza virus treatment remains poorly described, and there is an urgent need to develop effective anti-influenza agents due to the emergence of drug-resistant influenza viruses. In this study, eight SR9009 analogues were designed, synthesized, and evaluated for their biological activities against multiple influenza virus strains (H1N1, H3N2, adamantane- and oseltamivir-resistant H1N1 and influenza B virus), using ribavirin as the positive control. SR9009 and its analogues showed low micromolar or submicromolar EC50 values and exhibited modestly improved antiviral potency compared to that of ribavirin. In particular, compound 5a possessed the most potent inhibitory activity (EC50 = 0.471, 0.644, 1.644, 0.712 and 0.661 μM for A/PR/8/34, A/WSN/33, A/Wisconsin/67/2005, B/Yamagata/16/88 and Hebei/SWL1/2006, respectively). Cotransfection assays showed that all synthesized derivatives efficaciously suppressed transcription driven by the Bmal1 promoter. Mechanistic study results indicated that 5a efficiently inhibited IAV replication and interfered with the ealry stage of influenza virus life cycle. In addition, we found that 5a upregulated the key antiviral interferon-stimulated genes MxA, OAS2 and CH25H. Further in-depth transcriptome analysis revealed a series of upregulated genes that may contribute to the antiviral activities of 5a. These findings may provide an important direction for the development of new host-targeted broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Yunyun Cheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaofu Yang
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| | - Zhan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiheng Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaocui Zou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Menghan Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Airong Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhongpeng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Suppression of EZH2 inhibits TGF-β1-induced EMT in human retinal pigment epithelial cells. Exp Eye Res 2022; 222:109158. [PMID: 35780904 DOI: 10.1016/j.exer.2022.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-β1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-β1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-β1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.
Collapse
|
21
|
Gutierrez-Prat N, Zuberer HL, Mangano L, Karimaddini Z, Wolf L, Tyanova S, Wellinger LC, Marbach D, Griesser V, Pettazzoni P, Bischoff JR, Rohle D, Palladino C, Vivanco I. DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF. Life Sci Alliance 2022; 5:5/9/e202101235. [PMID: 35580987 PMCID: PMC9113946 DOI: 10.26508/lsa.202101235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.
Collapse
Affiliation(s)
- Nuria Gutierrez-Prat
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Hedwig L Zuberer
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Mangano
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Zahra Karimaddini
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Luise Wolf
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Stefka Tyanova
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Vera Griesser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Piergiorgio Pettazzoni
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - James R Bischoff
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Chiara Palladino
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Igor Vivanco
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
22
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
23
|
Evolutionary genomic relationships and coupling in MK-STYX and STYX pseudophosphatases. Sci Rep 2022; 12:4139. [PMID: 35264672 PMCID: PMC8907265 DOI: 10.1038/s41598-022-07943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The dual specificity phosphatase (DUSP) family has catalytically inactive members, called pseudophosphatases. They have mutations in their catalytic motifs that render them enzymatically inactive. This study analyzes the significance of two pseudophosphatases, MK-STYX [MAPK (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein]) and STYX (serine/threonine/tyrosine-interacting protein), throughout their evolution and provides measurements and comparison of their evolutionary conservation. Phylogenetic trees were constructed to show any deviation from various species evolutionary paths. Data was collected on a large set of proteins that have either one of the two domains of MK-STYX, the DUSP domain or the cdc-25 homology (CH2) /rhodanese-like domain. The distance between species pairs for MK-STYX or STYX and Ka/Ks ratio were calculated. In addition, both pseudophosphatases were ranked among a large set of related proteins, including the active homologs of MK-STYX, MKP (MAPK phosphatase)-1 and MKP-3. MK-STYX had one of the highest species-species protein distances and was under weaker purifying selection pressure than most proteins with its domains. In contrast, the protein distances of STYX were lower than 82% of the DUSP-containing proteins and was under one of the strongest purifying selection pressures. However, there was similar selection pressure on the N-terminal sequences of MK-STYX, STYX, MKP-1, and MKP-3. We next perform statistical coupling analysis, a process that reveals interconnected regions within the proteins. We find that while MKP-1,-3, and STYX all have 2 functional units (sectors), MK-STYX only has one, and that MK-STYX is similar to MKP-3 in the evolutionary coupling of the active site and KIM domain. Within those two domains, the mean coupling is also most similar for MK-STYX and MKP-3. This study reveals striking distinctions between the evolutionary patterns of MK-STYX and STYX, suggesting a very specific role for each pseudophosphatase, further highlighting the relevance of these atypical members of DUSP as signaling regulators. Therefore, our study provides computational evidence and evolutionary reasons to further explore the properties of pseudophosphatases, in particular MK-STYX and STYX.
Collapse
|
24
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
25
|
Zhang C, Zhao S, Tan Y, Pan S, An W, Chen Q, Wang X, Xu H. The SKA3-DUSP2 Axis Promotes Gastric Cancer Tumorigenesis and Epithelial-Mesenchymal Transition by Activating the MAPK/ERK Pathway. Front Pharmacol 2022; 13:777612. [PMID: 35295342 PMCID: PMC8918524 DOI: 10.3389/fphar.2022.777612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Spindle and kinetochore-related complex subunit 3 (SKA3), a member of the SKA family of proteins, is associated with the progression of multiple cancers. However, the role of SKA3 in gastric cancer has not been studied.Methods: The expression levels of SKA3 and dual-specificity phosphatase 2 (DUSP2) proteins were detected by immunohistochemistry. The effects of SKA3 and DUSP2 on the proliferation, migration, invasion, adhesion, and epithelial-mesenchymal transition of gastric cancer were studied in vitro and in vivo.Results: Immunohistochemical analysis of 164 cases of gastric cancer revealed that high expression of SKA3 was negatively correlated with DUSP2 expression and related to N stage, peritoneal metastasis, and poor prognosis. In vitro studies showed that silencing SKA3 expression inhibited the proliferation, migration, invasion, adhesion and epithelial-mesenchymal transition of gastric cancer. In vivo experiments showed that silencing SKA3 inhibited tumor growth and peritoneal metastasis. Mechanistically, SKA3 negative regulates the tumor suppressor DUSP2 and activates the MAPK/ERK pathway to promote gastric cancer.Conclusion: Our results indicate that the SKA3-DUSP2-ERK1/2 axis is involved in the regulation of gastric cancer progression, and SKA3 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shutao Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuen Tan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Wen An
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Qingchuan Chen
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| |
Collapse
|
26
|
Pseudophosphatases as Regulators of MAPK Signaling. Int J Mol Sci 2021; 22:ijms222212595. [PMID: 34830476 PMCID: PMC8622459 DOI: 10.3390/ijms222212595] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Collapse
|
27
|
Greco F, Anastasi F, Pardini LF, Dilillo M, Vannini E, Baroncelli L, Caleo M, McDonnell LA. Longitudinal Bottom-Up Proteomics of Serum, Serum Extracellular Vesicles, and Cerebrospinal Fluid Reveals Candidate Biomarkers for Early Detection of Glioblastoma in a Murine Model. Molecules 2021; 26:5992. [PMID: 34641541 PMCID: PMC8512455 DOI: 10.3390/molecules26195992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- NEST Laboratories, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Luca Fidia Pardini
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Eleonora Vannini
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Fondazione Umberto Veronesi, 20122 Milano, Italy
| | - Laura Baroncelli
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- IRCCS Fondazione Stella Maris, 56018 Calambrone, Italy
| | - Matteo Caleo
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| |
Collapse
|
28
|
Wilczek MP, Armstrong FJ, Geohegan RP, Mayberry CL, DuShane JK, King BL, Maginnis MS. The MAPK/ERK Pathway and the Role of DUSP1 in JCPyV Infection of Primary Astrocytes. Viruses 2021; 13:v13091834. [PMID: 34578413 PMCID: PMC8473072 DOI: 10.3390/v13091834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) is a neuroinvasive pathogen causing a fatal, demyelinating disease of the central nervous system (CNS) known as progressive multifocal leukoencephalopathy (PML). Within the CNS, JCPyV predominately targets two cell types: oligodendrocytes and astrocytes. The underlying mechanisms of astrocytic infection are poorly understood, yet recent findings suggest critical differences in JCPyV infection of primary astrocytes compared to a widely studied immortalized cell model. RNA sequencing was performed in primary normal human astrocytes (NHAs) to analyze the transcriptomic profile that emerges during JCPyV infection. Through a comparative analysis, it was validated that JCPyV requires the mitogen-activated protein kinase, extracellular signal-regulated kinase (MAPK/ERK) pathway, and additionally requires the expression of dual-specificity phosphatases (DUSPs). Specifically, the expression of DUSP1 is needed to establish a successful infection in NHAs, yet this was not observed in an immortalized cell model of JCPyV infection. Additional analyses demonstrated immune activation uniquely observed in NHAs. These results support the hypothesis that DUSPs within the MAPK/ERK pathway impact viral infection and influence potential downstream targets and cellular pathways. Collectively, this research implicates DUSP1 in JCPyV infection of primary human astrocytes, and most importantly, further resolves the signaling events that lead to successful JCPyV infection in the CNS.
Collapse
Affiliation(s)
- Michael P. Wilczek
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Francesca J. Armstrong
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Remi P. Geohegan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Jeanne K. DuShane
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
- Graduate School in Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
- Graduate School in Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
29
|
Ferguson BS, Wennersten SA, Demos-Davies KM, Rubino M, Robinson EL, Cavasin MA, Stratton MS, Kidger AM, Hu T, Keyse SM, McKnight RA, Lane RH, Nozik ES, Weiser-Evans MCM, McKinsey TA. DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2021; 321:H382-H389. [PMID: 34142888 PMCID: PMC8410116 DOI: 10.1152/ajpheart.00115.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly M Demos-Davies
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew M Kidger
- Stress Response Laboratory, Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tianjing Hu
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephen M Keyse
- Stress Response Laboratory, Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | | | | - Eva S Nozik
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary C M Weiser-Evans
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
30
|
Li J, Kim SY, Lainez NM, Coss D, Nair MG. Macrophage-Regulatory T Cell Interactions Promote Type 2 Immune Homeostasis Through Resistin-Like Molecule α. Front Immunol 2021; 12:710406. [PMID: 34349768 PMCID: PMC8327085 DOI: 10.3389/fimmu.2021.710406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
RELMα is a small, secreted protein expressed by type 2 cytokine-activated “M2” macrophages in helminth infection and allergy. At steady state and in response to type 2 cytokines, RELMα is highly expressed by peritoneal macrophages, however, its function in the serosal cavity is unclear. In this study, we generated RELMα TdTomato (Td) reporter/knockout (RαTd) mice and investigated RELMα function in IL-4 complex (IL-4c)-induced peritoneal inflammation. We first validated the RELMαTd/Td transgenic mice and showed that IL-4c injection led to the significant expansion of large peritoneal macrophages that expressed Td but not RELMα protein, while RELMα+/+ mice expressed RELMα and not Td. Functionally, RELMαTd/Td mice had increased IL-4 induced peritoneal macrophage responses and splenomegaly compared to RELMα+/+ mice. Gene expression analysis indicated that RELMαTd/Td peritoneal macrophages were more proliferative and activated than RELMα+/+ macrophages, with increased genes associated with T cell responses, growth factor and cytokine signaling, but decreased genes associated with differentiation and maintenance of myeloid cells. We tested the hypothesis that RαTd/Td macrophages drive aberrant T cell activation using peritoneal macrophage and T cell co-culture. There were no differences in CD4+ T cell effector responses when co-cultured with RELMα+/+ or RELMαTd/Td macrophages, however, RELMαTd/Td macrophages were impaired in their ability to sustain proliferation of FoxP3+ regulatory T cells (Treg). Supportive of the in vitro results, immunofluorescent staining of the spleens revealed significantly decreased FoxP3+ cells in the RELMαTd/Td spleens compared to RELMα+/+ spleens. Taken together, these studies identify a new RELMα regulatory pathway whereby RELMα-expressing macrophages directly sustain Treg proliferation to limit type 2 inflammatory responses.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
31
|
Wide-Ranging Effects on the Brain Proteome in a Transgenic Mouse Model of Alzheimer's Disease Following Treatment with a Brain-Targeting Somatostatin Peptide. ACS Chem Neurosci 2021; 12:2529-2541. [PMID: 34170117 PMCID: PMC8291608 DOI: 10.1021/acschemneuro.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
![]()
Alzheimer’s
disease is the most common neurodegenerative
disorder characterized by the pathological aggregation of amyloid-β
(Aβ) peptide. A potential therapeutic intervention in Alzheimer’s
disease is to enhance Aβ degradation by increasing the activity
of Aβ-degrading enzymes, including neprilysin. The somatostatin
(SST) peptide has been identified as an activator of neprilysin. Recently,
we demonstrated the ability of a brain-penetrating SST peptide (SST-scFv8D3)
to increase neprilysin activity and membrane-bound Aβ42 degradation
in the hippocampus of mice overexpressing the Aβ-precursor protein
with the Swedish mutation (APPswe). Using LC–MS, we further
evaluated the anti-Alzheimer’s disease effects of SST-scFv8D3.
Following a triple intravenous injection of SST-scFv8D3, the LC–MS
analysis of the brain proteome revealed that the majority of downregulated
proteins consisted of mitochondrial proteins regulating fatty acid
oxidation, which are otherwise upregulated in APPswe mice compared
to wild-type mice. Moreover, treatment with SST-scFv8D3 significantly
increased hippocampal levels of synaptic proteins regulating cell
membrane trafficking and neuronal development. Finally, hippocampal
concentrations of growth-regulated α (KC/GRO) chemokine and
degradation of neuropeptide-Y were elevated after SST-scFv8D3 treatment.
In summary, our results demonstrate a multifaceted effect profile
in regulating mitochondrial function and neurogenesis following treatment
with SST-scFv8D3, further suggesting the development of Alzheimer’s
disease therapies based on SST peptides.
Collapse
|
32
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
33
|
Low HB, Wong ZL, Wu B, Kong LR, Png CW, Cho YL, Li CW, Xiao F, Xin X, Yang H, Loo JM, Lee FYX, Tan IBH, DasGupta R, Shen HM, Schwarz H, Gascoigne NRJ, Goh BC, Xu X, Zhang Y. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun 2021; 12:2284. [PMID: 33863904 PMCID: PMC8052345 DOI: 10.1038/s41467-021-22638-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Drug resistance is a major obstacle to the treatment of most human tumors. In this study, we find that dual-specificity phosphatase 16 (DUSP16) regulates resistance to chemotherapy in nasopharyngeal carcinoma, colorectal cancer, gastric and breast cancer. Cancer cells expressing higher DUSP16 are intrinsically more resistant to chemotherapy-induced cell death than cells with lower DUSP16 expression. Overexpression of DUSP16 in cancer cells leads to increased resistance to cell death upon chemotherapy treatment. In contrast, knockdown of DUSP16 in cancer cells increases their sensitivity to treatment. Mechanistically, DUSP16 inhibits JNK and p38 activation, thereby reducing BAX accumulation in mitochondria to reduce apoptosis. Analysis of patient survival in head & neck cancer and breast cancer patient cohorts supports DUSP16 as a marker for sensitivity to chemotherapy and therapeutic outcome. This study therefore identifies DUSP16 as a prognostic marker for the efficacy of chemotherapy, and as a therapeutic target for overcoming chemoresistance in cancer.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Zhen Lim Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Bangyuan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun-Wei Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengchun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Xin
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Fiona Yi Xin Lee
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Herbert Schwarz
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaohong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Okochi Y, Okamura Y. Regulation of Neutrophil Functions by Hv1/VSOP Voltage-Gated Proton Channels. Int J Mol Sci 2021; 22:ijms22052620. [PMID: 33807711 PMCID: PMC7961965 DOI: 10.3390/ijms22052620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan;
- Correspondence:
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan;
- Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan
| |
Collapse
|
35
|
Zhao J, Jiang X, Liu J, Ye P, Jiang L, Chen M, Xia J. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. J Am Heart Assoc 2021; 10:e014311. [PMID: 33522247 PMCID: PMC7955340 DOI: 10.1161/jaha.119.014311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoli Jiang
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jinhua Liu
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ping Ye
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Lang Jiang
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Manhua Chen
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
36
|
Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, Kipling N, Clarke K, Figueiredo CR, Kalirai H, Coupland SE. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102832. [PMID: 33008022 PMCID: PMC7650807 DOI: 10.3390/cancers12102832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies. Abstract Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an “immunoscore” (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions.
Collapse
Affiliation(s)
- Yamini Krishna
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Amelia Acha-Sagredo
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Natalie Kipling
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Kim Clarke
- Computational Biology Facility, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Carlos R. Figueiredo
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turun yliopisto, FI-20014 Turku, Finland;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Sarah E. Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
- Correspondence: ; Tel.: +44-151-794-9104
| |
Collapse
|
37
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
38
|
Yang LM, Stout L, Rauchman M, Ornitz DM. Analysis of FGF20-regulated genes in organ of Corti progenitors by translating ribosome affinity purification. Dev Dyn 2020; 249:1217-1242. [PMID: 32492250 DOI: 10.1002/dvdy.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding the mechanisms that regulate hair cell (HC) differentiation in the organ of Corti (OC) is essential to designing genetic therapies for hearing loss due to HC loss or damage. We have previously identified Fibroblast Growth Factor 20 (FGF20) as having a key role in HC and supporting cell differentiation in the mouse OC. To investigate the genetic landscape regulated by FGF20 signaling in OC progenitors, we employ Translating Ribosome Affinity Purification combined with Next Generation RNA Sequencing (TRAPseq) in the Fgf20 lineage. RESULTS We show that TRAPseq targeting OC progenitors effectively enriched for RNA from this rare cell population. TRAPseq identified differentially expressed genes (DEGs) downstream of FGF20, including Etv4, Etv5, Etv1, Dusp6, Hey1, Hey2, Heyl, Tectb, Fat3, Cpxm2, Sall1, Sall3, and cell cycle regulators such as Cdc20. Analysis of Cdc20 conditional-null mice identified decreased cochlea length, while analysis of Sall1-null and Sall1-ΔZn2-10 mice, which harbor a mutation that causes Townes-Brocks syndrome, identified a decrease in outer hair cell number. CONCLUSIONS We present two datasets: genes with enriched expression in OC progenitors, and DEGs downstream of FGF20 in the embryonic day 14.5 cochlea. We validate select DEGs via in situ hybridization and in vivo functional studies in mice.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa Stout
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Human Epidermal Growth Factor Receptor-2 Promotes Invasion and Metastasis in Gastric Cancer by Activating Mitogen-activated Protein Kinase Signaling. Appl Immunohistochem Mol Morphol 2020; 27:529-534. [PMID: 29734245 DOI: 10.1097/pai.0000000000000672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence supports an important role for the human epidermal growth factor receptor-2 (HER2) gene and mitogen-activated protein kinase (MAPK) signaling pathways in the progression of human cancers by enhancing cancer cell metastasis and proliferation. However, the relationship between HER2 and MAPK signaling pathways in gastric cancer (GC) remains unclear. In the present study, dual in situ hybridization was performed to detect HER2 gene amplification and reverse transcription-quantitative polymerase chain reaction was used to investigate the mRNA expression of members of the MAPK signaling pathway, including rapidly accelerated fibrosarcoma (RAF), extracellular regulated signal-activated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), in 112 primary GC tissue samples. The results revealed that 19/112 (17%) of tissue samples showed positive amplification of HER2, which was correlated with tumor invasion and metastasis. Upregulation of RAF, ERK, p38, and JNK was also observed in samples associated with metastasis. Moreover, the expression levels of RAF and ERK in samples with HER2 gene amplification were significantly increased compared with those without HER2 amplification. However, the expression levels of both p38 and JNK were not significantly correlated with HER2 gene amplification. Our results simultaneously showed the association between HER2 gene amplification and the expression levels of MAPK signaling pathway proteins and clinicopathologic characteristics in GC. These findings provide the basis for investigating the regulation of MAPK signaling pathways by HER2 and potential therapeutic targets for inhibiting metastasis and invasion in GC.
Collapse
|
40
|
Labuzan SA, Lynch SA, Cooper LM, Waddell DS. Inhibition of protein phosphatase methylesterase 1 dysregulates MAP kinase signaling and attenuates muscle cell differentiation. Gene 2020; 739:144515. [DOI: 10.1016/j.gene.2020.144515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
41
|
Okochi Y, Umemoto E, Okamura Y. Hv1/VSOP regulates neutrophil directional migration and ERK activity by tuning ROS production. J Leukoc Biol 2020; 107:819-831. [DOI: 10.1002/jlb.2a0320-110rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine Osaka University Osaka Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology School of Pharmaceutical Sciences University of Shizuoka Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine Osaka University Osaka Japan
- Graduate School of Frontier Biosciences Osaka University Osaka Japan
| |
Collapse
|
42
|
Li Z, Liu FY, Kirkwood KL. The p38/MKP-1 signaling axis in oral cancer: Impact of tumor-associated macrophages. Oral Oncol 2020; 103:104591. [PMID: 32058294 PMCID: PMC7136140 DOI: 10.1016/j.oraloncology.2020.104591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Oral squamous cell carcinomas (OSCC) constitute over 95% of all head and neck malignancies. As a key component of the tumor microenvironment (TME), chronic inflammation contributes towards the development, progression, and regional metastasis of OSCC. Tumor associated macrophages (TAMs) associated with OSSC promote tumorigenesis through the production of cytokines and pro-inflammatory factors that are critical role in the various steps of malignant transformation, including tumor growth, survival, invasion, angiogenesis, and metastasis. The mitogen-activated protein kinases (MAPKs) can regulate inflammation along with a wide range of cellular processes including cell metabolism, proliferation, motility, apoptosis, survival, differentiation and play a crucial role in cell growth and survival in physiological and pathological processes including innate and adaptive immune responses. Dual specificity MAPK phosphatases (MKPs) deactivates MAPKs. MKPs are considered as an important feedback control mechanism that limits MAPK signaling and subsequent target gene expression. This review outlines the role of MKP-1, the founding member of the MKP family, in OSCC and the TME. Herein, we summarize recent progress in understanding the regulation of p38 MAPK/MKP-1 signaling pathways via TAM-related immune responses in OSCC development, progression and treatment outcomes.
Collapse
Affiliation(s)
- Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
- Department of Medical Genetics, China Medical University, Shenyang, China
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Fa-yu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Keith L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
43
|
Ma R, Ma L, Weng W, Wang Y, Liu H, Guo R, Gao Y, Tu J, Xu TL, Cheng J, Zhu MX, Zhou A, Li Y. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. SCIENCE ADVANCES 2020; 6:eaaz0361. [PMID: 32232156 PMCID: PMC7096176 DOI: 10.1126/sciadv.aaz0361] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/06/2020] [Indexed: 05/05/2023]
Abstract
Imbalanced mitochondrial fission/fusion, a major cause of apoptotic cell death, often results from dysregulation of Drp1 phosphorylation of two serines, S616 and S637. Whereas kinases for Drp1-S616 phosphorylation are well-described, phosphatase(s) for its dephosphorylation remains unclear. Here, we show that dual-specificity phosphatase 6 (DUSP6) dephosphorylates Drp1-S616 independently of its known substrates ERK1/2. DUSP6 keeps Drp1-S616 phosphorylation levels low under normal conditions. The stability and catalytic function of DUSP6 are maintained through conjugation of small ubiquitin-like modifier-1 (SUMO1) and SUMO2/3 at lysine-234 (K234), which is disrupted during oxidation through transcriptional up-regulation of SUMO-deconjugating enzyme, SENP1, causing DUSP6 degradation by ubiquitin-proteasome. deSUMOylation underlies DUSP6 degradation, Drp1-S616 hyperphosphorylation, mitochondrial fragmentation, and apoptosis induced by H2O2 in cultured cells or brain ischemia/reperfusion in mice. Overexpression of DUSP6, but not the SUMOylation-deficient DUSP6K234R mutant, protected cells from apoptosis. Thus, DUSP6 exerts a cytoprotective role by directly dephosphorylating Drp1-S616, which is disrupted by deSUMOylation under oxidation.
Collapse
Affiliation(s)
- Ruining Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingping Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rongjun Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingwei Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (Y.L.); (A.Z.)
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (Y.L.); (A.Z.)
| |
Collapse
|
44
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
45
|
Chen LL, Zmuda EJ, Talavera MM, Frick J, Brock GN, Liu Y, Klebanoff MA, Trittmann JK. Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatr Res 2020; 87:81-87. [PMID: 31330530 PMCID: PMC6962530 DOI: 10.1038/s41390-019-0502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) in patients with bronchopulmonary dysplasia (BPD) results from vasoconstriction and/or vascular remodeling, which can be regulated by mitogen-activated protein kinases (MAPKs). MAPKs are deactivated by dual-specificity phosphatases (DUSPs). We hypothesized that single-nucleotide polymorphisms (SNPs) in DUSP genes could be used to predict PH in BPD. METHODS Preterm infants diagnosed with BPD (n = 188) were studied. PH was defined by echocardiographic criteria. Genomic DNA isolated from patient blood samples was analyzed for 31 SNPs in DUSP genes. Clinical characteristics and minor allele frequencies were compared between BPD-PH (cases) and BPD-without PH (control) groups. Biomarker models to predict PH in BPD using clinical and SNP data were tested by calculations of area under the ROC curve. RESULTS In our BPD cohort, 32% (n = 61) had PH. Of the DUSP SNPs evaluated, DUSP1 SNP rs322351 was less common, and DUSP5 SNPs rs1042606 and rs3793892 were more common in cases than in controls. The best fit biomarker model combines clinical and DUSP genetic data with an area under the ROC curve of 0.76. CONCLUSION We identified three DUSP SNPs as potential BPD-PH biomarkers. Combining clinical and DUSP genetic data yields the most robust predictor for PH in BPD.
Collapse
Affiliation(s)
- Lauren L Chen
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Erik J Zmuda
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Maria M Talavera
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jessica Frick
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Guy N Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yusen Liu
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mark A Klebanoff
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jennifer K Trittmann
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
46
|
Xiong T, Zhang Z, Zheng R, Huang J, Guo L. N‑acetyl cysteine inhibits lipopolysaccharide‑induced apoptosis of human umbilical vein endothelial cells via the p38MAPK signaling pathway. Mol Med Rep 2019; 20:2945-2953. [PMID: 31524245 DOI: 10.3892/mmr.2019.10526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/05/2019] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) can regulate the expression of apoptotic factors, including caspase‑3, Bcl‑2 and Bcl‑2‑associated X protein (Bax). Nitric oxide (NO) plays an important role in apoptosis. N‑acetyl cysteine (NAC) has been shown to exhibit antioxidant effects in vitro. However, the effects of NAC on LPS‑induced apoptosis of human umbilical vein endothelial cells (HUVECs) and the associated mechanisms are not well characterized. The present study explored the effect of NAC on LPS‑induced apoptosis of HUVECs and determined the participation of the p38 mitogen‑activated protein kinase (MAPK) pathway in the process of apoptosis. Cell viability was assessed using the Cell Counting Kit‑8 (CCK‑8) assay. The expression of caspase‑3, Bax, Bcl‑2, phosphorylated (p)‑p38MAPK/total (t‑)p38MAPK and p‑endothelial e nitric oxide synthase (eNOS)/t‑eNOS proteins were determined by western blotting. The expression levels of caspase‑3, Bax and Bcl‑2 mRNA were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The rate of apoptosis was determined using flow cytometry. An NO detection kit (nitric reductase method) was used to determine NO concentration. The results of CCK‑8 and flow cytometric analyses showed that pretreatment of HUVECs with NAC or p38MAPK inhibitor (SB203580) attenuated LPS‑induced decrease in cell viability and increase in cell apoptosis. RT‑qPCR and western blotting showed that LPS promoted caspase‑3 and Bax expression, but inhibited that of Bcl‑2 in HUVECs; however, these effects were attenuated by pretreatment with NAC or SB203580. LPS stimulation significantly enhanced the expression of p‑p38MAPK protein and reduced the expression of p‑eNOS protein; however, these effects were attenuated by pretreatment with NAC or SB203580. NAC pretreatment attenuated LPS‑induced inhibition of NO synthesis, which was consistent with the effects of SB203580. The results demonstrated that NAC pretreatment alleviated LPS‑induced apoptosis and inhibition of NO production in HUVECs. Furthermore, these effects were proposed to be mediated via the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenzhen Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Zheng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jialin Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
47
|
An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X, Luan W, Ma F, Ni L, Tang X, Liu M, Guo W, Yu L. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J 2019; 33:12515-12527. [PMID: 31461386 DOI: 10.1096/fj.201802805rr] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) affects bone metabolism and leads to osteoporosis; however, its pathogenetic mechanisms remain unknown. We found that high glucose (HG) conditions induced the production of reactive oxygen species (ROS) and the expression of proteins related to MAPKs [phosphorylated (p)-ERK, p-JNK, and p-p38], NF-κB (NF-κB, p-IκB, and IKK), and NACHT-LRR-PYD domains-containing protein 3 (NALP3) (NLRP3) [apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1, IL-18, IL-1β, and NLRP3] in osteoclasts (OCs) in vitro. Further analysis showed that in HG-induced OCs, ROS is an upstream signal for MAPKs, NF-κB, and the NLRP3 inflammasome. Moreover, MAPKs mediated the activation of NF-κB and NLRP3, whereas NF-κB up-regulated the NLRP3 inflammasome response. Interestingly, HG inducement enhanced the bone resorption of OCs but inhibited their efferocytosis, whereas insulin and lipoxin A4 (4) treatment reversed this phenomenon. In streptozotocin-induced diabetic rats in vivo, the numbers and the bone-resorption capacity of OCs as well as the serum levels of TRACP-5b were significantly increased, and the expression of MAPK-, NF-κB-, and NLRP3 inflammasome-related proteins in the proximal tibia were also significantly elevated; however, treatment with insulin and LXA4 reversed this elevation. Together, these results demonstrated that the activation of ROS/MAPKs/NF-κB/NLRP3 and the inhibition of efferocytosis in OCs are the main causes of osteoporosis in DM.-An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W., Yu, L. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis.
Collapse
Affiliation(s)
- Yanan An
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chao Wang
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fangtai Jiao
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongyue Xu
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuefei Wang
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjing Luan
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fangxue Ma
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lihui Ni
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xudong Tang
- Key Laboratory for New Drugs Research of Traditional Chinese Medicine (TCM), Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Mingyuan Liu
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Weiying Guo
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology, Department of Interventional Therapy, First Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, and Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
48
|
Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, Lu J, Lv J, Pan X, Qu F, Cui X, Gao Y, Xu D. IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis 2019; 10:517. [PMID: 31273201 PMCID: PMC6609682 DOI: 10.1038/s41419-019-1750-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Advanced-stage prostate cancer (PCa) is often diagnosed with bone metastasis, for which there are limited therapies. Transforming growth factor β (TGF-β) is known to induce epithelial–mesenchymal transition (EMT), and abundance of TGF-β in the bone matrix is one of the important growth factors contributing to bone metastasis. TGF-β is reported as a key mediator of bone metastasis, but the underlying mechanism has not been elucidated. It was found in our study that Interferon-inducible Transmembrane Protein 3 (IFITM3) played a key role in the regulation of malignant tumor cell proliferation, invasion, and bone migration by binding to Smad4, thus activating the TGF-β-Smads Signaling Pathway. Lentivirus-mediated short hairpin RNA (shRNA) knockdown of IFITM3 inhibited cell proliferation and colony formation, induced apoptosis and inhibited migration by reversing EMT and downregulating the expression of metastasis-related molecules including FGFs and PTHrP. Microarray analysis showed that IFITM3 knockdown could alter the MAPK pathway associated with TGF-β-Smads signaling. By knocking down and overexpressing IFITM3, we demonstrated that IFITM3 expression level had an effect on MAPK pathway activation, and this change was more pronounced upon exogenous TGF-β stimulation. These results suggest that IFITM3 played an oncogenic role in PCa progression and bone metastasis via a novel TGF-β-Smads-MAPK pathway.
Collapse
Affiliation(s)
- Xi Liu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lu Chen
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Hong
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqun Yang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yao Li
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianlei Lu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Lv
- Department of Urology, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Fajun Qu
- Department of Urology, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Xingang Cui
- Department of Urology, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Yi Gao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
49
|
Hoppstädter J, Ammit AJ. Role of Dual-Specificity Phosphatase 1 in Glucocorticoid-Driven Anti-inflammatory Responses. Front Immunol 2019; 10:1446. [PMID: 31316508 PMCID: PMC6611420 DOI: 10.3389/fimmu.2019.01446] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) potently inhibit pro-inflammatory responses and are widely used for the treatment of inflammatory diseases, such as allergies, autoimmune disorders, and asthma. Dual-specificity phosphatase 1 (DUSP1), also known as mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), exerts its effects by dephosphorylation of MAPKs, i.e., extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Endogenous DUSP1 expression is tightly regulated at multiple levels, involving both transcriptional and post-transcriptional mechanisms. DUSP1 has emerged as a central mediator in the resolution of inflammation, and upregulation of DUSP1 by GCs has been suggested to be a key mechanism of GC actions. In this review, we discuss the impact of DUSP1 on the efficacy of GC-mediated suppression of inflammation and address the underlying mechanisms.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alaina J Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
50
|
GP78 Cooperates with Dual-Specificity Phosphatase 1 To Stimulate Epidermal Growth Factor Receptor-Mediated Extracellular Signal-Regulated Kinase Signaling. Mol Cell Biol 2019; 39:MCB.00485-18. [PMID: 31061093 DOI: 10.1128/mcb.00485-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
GP78 is an autocrine motility factor (AMF) receptor (AMFR) with E3 ubiquitin ligase activity that plays a significant role in tumor cell proliferation, motility, and metastasis. Aberrant extracellular signal-regulated kinase (ERK) activation via receptor tyrosine kinases promotes tumor proliferation and invasion. The activation of GP78 leads to ERK activation, but its underlying mechanism is not fully understood. Here, we show that GP78 is required for epidermal growth factor receptor (EGFR)-mediated ERK activation. On one hand, GP78 interacts with and promotes the ubiquitination and subsequent degradation of dual-specificity phosphatase 1 (DUSP1), an endogenous negative regulator of mitogen-activated protein kinases (MAPKs), resulting in ERK activation. On the other hand, GP78 maintains the activation status of EGFR, as evidenced by the fact that EGF fails to induce EGFR phosphorylation in GP78-deficient cells. By the regulation of both EGFR and ERK activation, GP78 promotes cell proliferation, motility, and invasion. Therefore, this study identifies a previously unknown signaling pathway by which GP78 stimulates ERK activation via DUSP1 degradation to mediate EGFR-dependent cancer cell proliferation and invasion.
Collapse
|