1
|
Maes L, Szabó A, Van Haevermaete J, Geurs I, Dewettinck K, Vandenbroucke RE, Van Vlierberghe S, Laukens D. Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration. BIOMATERIALS ADVANCES 2025; 171:214232. [PMID: 39983500 DOI: 10.1016/j.bioadv.2025.214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Regeneration of small intestinal mucosal tissue could offer a promising strategy for Crohn's disease patients suffering from chronic inflammatory damage. Here, we aimed to develop hydrogels that mirror the villi and crypts of the small intestine and exhibit a physiological stiffness of G' ~ 1.52 kPa. For this purpose, we developed gelatin-methacryloyl-aminoethyl-methacrylate (gel-MA-AEMA)-, and gelatin-methacryloyl-norbornene (gel-MA-NB)-based biomaterial inks to fabricate 3D hydrogels ("villi only" versus "crypts and villi") with digital light processing (DLP) and co-cultured Caco-2/HT29-MTX cells. Gel-MA-AEMA was selected for its higher amount of methacrylates which was hypothesized to provide superior photo-crosslinking kinetics and hence superior DLP fabrication potential while gel-MA-NB was evaluated for its selective functionalization potential with thiolated bioactive compounds following DLP processing, resulting from its incorporated NB moieties which remain unreacted during the DLP process. Both gel-MA-AEMA-, and gel-MA-NB-based hydrogels exhibited a physiologically relevant stiffness, but only the gel-MA-AEMA-based biomaterial ink could be successfully utilized for printing hydrogels encompassing villi and crypts. Paracellular permeability of small sized marker molecules in combination with transepithelial electrical resistance measurements showed the formation of a functional barrier over time on all hydrogel constructs. Transmission electron microscopy and enterocyte differentiation marker genes' expression levels revealed the superior differentiation of Caco-2 on the 3D constructs compared to 2D hydrogel sheets. In summary, while both hydrogels enhanced functional barrier formation and enterocyte differentiation, gel-MA-AEMA proved more conducive to DLP compared to gel-MA-NB. Furthermore, our study underscored the benefits of cultivating intestinal cells on soft 3D constructs, enhancing cell barrier properties and differentiation, thus providing added value over traditional 2D supports.
Collapse
Affiliation(s)
- Laure Maes
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jens Van Haevermaete
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Indi Geurs
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
| | - Debby Laukens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Rizzuti S, Rosa E, Di Gregorio E, Hasallari F, Palagi L, Gallo E, Accardo A, Gianolio E. Multicomponent peptide and iron(III)-based hydrogel scaffolds: Enhanced MRI detection for biomedical applications. Int J Pharm 2025; 679:125749. [PMID: 40409572 DOI: 10.1016/j.ijpharm.2025.125749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The use of contrast enhanced MRI (Magnetic Resonance Imaging) is particularly useful for the in vivo monitoring of biomaterials used in tissue regeneration or as drug delivery systems. This study aims to develop an injectable, biocompatible hydrogel with in vivo tracking capabilities. It comprises a self-assembled peptide encapsulating the highly stable Iron(III) complex, [Fe(DFX)2]3-, providing T1 MRI contrast. This offers crucial insights into the in vitro characterization of the hydrogel's matrix structural features and allows to non-invasively monitor its fate and degradation kinetics in vivo through MRI. The paramagnetic Fe-complex acts as non-covalent cross-linking agent for the peptide-based hydrogel assembling and displays a robust signal in T1-weighted MR images, as validated both in vitro (r1 = 4.3 mM-1 s-1 at 25 °C and 21.5 MHz) and in in vivo settings. T1-weighted images depicted the stable encapsulation of the scaffold in the subcutaneous region, detectable for up to 72 h. Notably, the physically loaded Fe-complex does not consistently diffuse from the scaffold, as corroborated by the in vitro release profile. This is the first hydrogel loading a low molecular weight Fe-complex as T1-MRI tracker. This material shows great potential for medical applications as there are only few examples of hydrogels scaffolds able to be clearly visualized in vivo. The main element of novelty with respect to other systems, is that the here reported [Fe(DFX)2]3--loaded hydrogel ensures safety over Gd-based scaffolds and superior visualization compared to other iron-containing T2 contrast generating systems.
Collapse
Affiliation(s)
- Serena Rizzuti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via T. De Amicis 95, 80145 Naples, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Ferdeze Hasallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, V.le Teresa Michel, 11, 15120 Alessandria, Italy
| | - Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, Naples 80143, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via T. De Amicis 95, 80145 Naples, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| |
Collapse
|
3
|
Karlinski Zur M, Bhattacharya B, Solomonov I, Ben Dror S, Savidor A, Levin Y, Prior A, Sapir T, Harris T, Olender T, Schmidt R, Schwarz JM, Sagi I, Buxboim A, Reiner O. Altered extracellular matrix structure and elevated stiffness in a brain organoid model for disease. Nat Commun 2025; 16:4094. [PMID: 40312467 PMCID: PMC12045990 DOI: 10.1038/s41467-025-59252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
The viscoelastic properties of tissues influence their morphology and cellular behavior, yet little is known about changes in these properties during brain malformations. Lissencephaly, a severe cortical malformation caused by LIS1 mutations, results in a smooth cortex. Here, we show that human-derived brain organoids with LIS1 mutation exhibit increased stiffness compared to controls at multiple developmental stages. This stiffening correlates with abnormal extracellular matrix (ECM) expression and organization, as well as elevated water content, measured by diffusion-weighted MRI. Short-term MMP9 treatment reduces both stiffness and water diffusion levels to control values. Additionally, a computational microstructure mechanical model predicts mechanical changes based on ECM organization. These findings suggest that LIS1 plays a critical role in ECM regulation during brain development and that its mutation leads to significant viscoelastic alterations.
Collapse
Grants
- AARG-NTF-21-849529 Alzheimer's Association
- We express our gratitude for the help of Dr. Arpan Parichha and Alfredo Isaac Ponce Arias. Orly Reiner is an incumbent of the Berstein-Mason professorial chair of Neurochemistry and the Head of the M. Judith Ruth Institute for Preclinical Brain Research. Our research has been supported by a research grant from Ethel Lena Levy, the Selsky Memory Research Project, the Gladys Monroy and Larry Marks Center for Brain Disorders, the Advantage Trust, the Nella and Leon Benoziyo Center for Neurological Diseases, the David and Fela Shapell Family Center for Genetic Disorders Research, the Abish-Frenkel RNA center, the Brenden- Mann Women's Innovation Impact Fund, The Irving B. Harris Fund for New Directions in Brain Research, the Irving Bieber, M.D. and Toby Bieber, M.D. Memorial Research Fund, The Leff Family, Barbara & Roberto Kaminitz, Sergio & Sônia Lozinsky, Debbie Koren, Jack and Lenore Lowenthal, and the Dears Foundation. A research grant from the Estates of Ethel H. Smith, Gerald Alexander, Mr. and Mrs. George Zbeda, David A. Fishstrom, Norman Fidelman, Hermine Miller, Olga Klein Astrachan, Hermine Miller, and The Maurice and Vivienne Wohl Biology Endowment, Supported by a research grant from Emily Merjan, the ISF grant (545/21), and the United States-Israel Binational Science Foundation (BSF; Grant No. 2023009).
Collapse
Affiliation(s)
- Maayan Karlinski Zur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Bidisha Bhattacharya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Ben Dror
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel
| | - Alon Savidor
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Talia Harris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Schmidt
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, NY, USA
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amnon Buxboim
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
- The Alexender Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
4
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Clegg J, Curvello R, Gabrielyan A, Croagh D, Hauser S, Loessner D. Tailoring metabolic activity assays for tumour-engineered 3D models. BIOMATERIALS ADVANCES 2025; 167:214116. [PMID: 39561578 DOI: 10.1016/j.bioadv.2024.214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Monitoring cell behaviour in hydrogel-based 3D models is critical for assessing their growth and response to cytotoxic treatment. Resazurin-based PrestoBlue and AlamarBlue reagents are frequently used metabolic activity assays when determining cell responses. However, both assays are largely applied to cell monolayer cultures but yet to have a defined protocol for use in hydrogel-based 3D models. The assays' performance depends on the cell type, culture condition and measurement sensitivity. To better understand how both assays perform, we grew pancreatic cancer cells in gelatin methacryloyl and collagen hydrogels and evaluated their metabolic activity using different concentrations and incubation times of the PrestoBlue and AlamarBlue reagents. We tested reagent concentrations of 4 % and 10 % and incubation times of 45 min, 2 h and 4 h. In addition, we co-cultured cancer cells together with cancer-associated fibroblasts and peripheral blood mononuclear cells in gelatin methacryloyl hydrogels and subjected them to gemcitabine and nab-paclitaxel to evaluate how both assays perform when characterising cell responses upon drug treatment. CyQuant assays were conducted on the same samples and compared to data from the metabolic activity assays. In cancer monocultures, higher reagent concentration and incubation time increased fluorescent intensity. We found a reagent concentration of 10 % and an incubation time of 2 h suitable for all cell lines and both hydrogels. In multicellular 3D cultures, PrestoBlue and AlamarBlue assays detected similar cell responses upon drug treatment but overestimated cell growth. We recommend to assess cell viability and growth in conjunction with CyQuant assays that directly measure cell functions.
Collapse
Affiliation(s)
- Julien Clegg
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia
| | - Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia
| | - Anastasiia Gabrielyan
- Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Centre of Biomaterials, Hohe Straße 6, 01069 Dresden, Germany
| | - Daniel Croagh
- Department of Upper GI and Hepatobiliary Surgery, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Centre of Biomaterials, Hohe Straße 6, 01069 Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
6
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Chen X, Liu W, Su C, Shan J, Li X, Chai Y, Yu Y, Wen G. Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality. J Mater Chem B 2024; 12:7946-7958. [PMID: 39041314 DOI: 10.1039/d4tb00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi Su
- Deyang Hospital of Integrated Traditional Chinese and Western Medicine, Sichuan, 618000, China
| | - Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xiang Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Lichtenberg J, Leonard CE, Sterling HR, Santos Agreda V, Hwang PY. Using Microfluidics to Align Matrix Architecture and Generate Chemokine Gradients Promotes Directional Branching in a Model of Epithelial Morphogenesis. ACS Biomater Sci Eng 2024; 10:4865-4877. [PMID: 39007451 PMCID: PMC11322918 DOI: 10.1021/acsbiomaterials.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The mechanical cue of fiber alignment plays a key role in the development of various tissues in the body. The ability to study the effect of these stimuli in vitro has been limited previously. Here, we present a microfluidic device capable of intrinsically generating aligned fibers using the microchannel geometry. The device also features tunable interstitial fluid flow and the ability to form a morphogen gradient. These aspects allow for the modeling of complex tissues and to differentiate cell response to different stimuli. To demonstrate the abilities of our device, we incorporated luminal epithelial cysts into our device and induced growth factor stimulation. We found the mechanical cue of fiber alignment to play a dominant role in cell elongation and the ability to form protrusions was dependent on cadherin-3. Together, this work serves as a springboard for future potential with these devices to answer questions in developmental biology and complex diseases such as cancers.
Collapse
Affiliation(s)
- Jessanne
Y. Lichtenberg
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Corinne E. Leonard
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Hazel R. Sterling
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Valentina Santos Agreda
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Priscilla Y. Hwang
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
- Massey
Comprehensive Cancer Center, Virginia Commonwealth
University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
9
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
10
|
Szabó A, Kolouchova K, Parmentier L, Herynek V, Groborz O, Van Vlierberghe S. Digital Light Processing of 19F MRI-Traceable Gelatin-Based Biomaterial Inks towards Bone Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2996. [PMID: 38930365 PMCID: PMC11206011 DOI: 10.3390/ma17122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kristyna Kolouchova
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague, Czech Republic
| | - Ondrej Groborz
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo sq. 2, 160 00 Prague, Czech Republic;
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- BIO INX, Technologiepark-Zwijnaarde 66, 9052 Ghent, Belgium
- 4Tissue, Technologiepark-Zwijnaarde 48, 9052 Ghent, Belgium
| |
Collapse
|
11
|
Mottareale R, Frascogna C, La Verde G, Arrichiello C, Muto P, Netti PA, Fusco S, Panzetta V, Pugliese M. Impact of ionizing radiation on cell-ECM mechanical crosstalk in breast cancer. Front Bioeng Biotechnol 2024; 12:1408789. [PMID: 38903185 PMCID: PMC11187264 DOI: 10.3389/fbioe.2024.1408789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
The stiffness of the extracellular matrix plays a crucial role in cell motility and spreading, influencing cell morphology through cytoskeleton organization and transmembrane proteins' expression. In this context, mechanical characterization of both cells and the extracellular matrix gains prominence for enhanced diagnostics and clinical decision-making. Here, we investigate the combined effect of mechanotransduction and ionizing radiations on altering cells' mechanical properties, analysing mammary cell lines (MCF10A and MDA-MB-231) after X-ray radiotherapy (2 and 10 Gy). We found that ionizing radiations sensitively affect adenocarcinoma cells cultured on substrates mimicking cancerous tissue stiffness (15 kPa), inducing an increased structuration of paxillin-rich focal adhesions and cytoskeleton: this process translates in the augmentation of tension at the actin filaments level, causing cellular stiffness and consequently affecting cytoplasmatic/nuclear morphologies. Deeper exploration of the intricate interplay between mechanical factors and radiation should provide novel strategies to orient clinical outcomes.
Collapse
Affiliation(s)
- Rocco Mottareale
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems E. Caianiello (CNR-ISASI), Pozzuoli, Italy
| | - Crescenzo Frascogna
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Giuseppe La Verde
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
12
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
13
|
Drakoulas G, Gortsas T, Polyzos E, Tsinopoulos S, Pyl L, Polyzos D. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering. Biomech Model Mechanobiol 2024; 23:987-1012. [PMID: 38416219 DOI: 10.1007/s10237-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 02/29/2024]
Abstract
Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.
Collapse
Affiliation(s)
- George Drakoulas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
| | - Theodore Gortsas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece.
| | - Efstratios Polyzos
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Stephanos Tsinopoulos
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Demosthenes Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece
| |
Collapse
|
14
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
15
|
Dent LG, Curry N, Sparks H, Bousgouni V, Maioli V, Kumar S, Munro I, Butera F, Jones I, Arias-Garcia M, Rowe-Brown L, Dunsby C, Bakal C. Environmentally dependent and independent control of 3D cell shape. Cell Rep 2024; 43:114016. [PMID: 38636520 DOI: 10.1016/j.celrep.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.
Collapse
Affiliation(s)
- Lucas G Dent
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nathan Curry
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vincent Maioli
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Ian Munro
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Francesca Butera
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mar Arias-Garcia
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Leo Rowe-Brown
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Chris Bakal
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
16
|
Szabó A, De Vlieghere E, Costa PF, Geurs I, Dewettinck K, Maes L, Laukens D, Van Vlierberghe S. Effect of Porosity on the Colonization of Digital Light-Processed 3D Hydrogel Constructs toward the Development of a Functional Intestinal Model. Biomacromolecules 2024; 25:2863-2874. [PMID: 38564884 DOI: 10.1021/acs.biomac.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the rapid increase of the number of patients with gastrointestinal diseases in modern society, the need for the development of physiologically relevant in vitro intestinal models is key to improve the understanding of intestinal dysfunctions. This involves the development of a scaffold material exhibiting physiological stiffness and anatomical mimicry of the intestinal architecture. The current work focuses on evaluating the scaffold micromorphology of gelatin-methacryloyl-aminoethyl-methacrylate-based nonporous and porous intestinal 3D, intestine-like constructs, fabricated via digital light processing, on the cellular response. To this end, Caco-2 intestinal cells were utilized in combination with the constructs. Both porous and nonporous constructs promoted cell growth and differentiation toward enterocyte-like cells (VIL1, ALPI, SI, and OCLD expression showed via qPCR, ZO-1 via immunostaining). The porous constructs outperformed the nonporous ones regarding cell seeding efficiency and growth rate, confirmed by MTS assay, live/dead staining, and TEER measurements, due to the presence of surface roughness.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | | | - Indi Geurs
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Gent 9000, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Gent 9000, Belgium
| | - Laure Maes
- IBD Research Unit, Ghent Gut Inflammation Group (GGIG), Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Debby Laukens
- IBD Research Unit, Ghent Gut Inflammation Group (GGIG), Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
17
|
Spessot E, Passuello S, Shah LV, Maniglio D, Motta A. Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:218. [PMID: 38667229 PMCID: PMC11048339 DOI: 10.3390/biomimetics9040218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach.
Collapse
Affiliation(s)
- Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Serena Passuello
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
| | - Lekha Vinod Shah
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
18
|
Gatti P, Mukherjee P, Talukdar PD, Freppel W, Kanou J, Chatel-chaix L, Chatterji U, Germain M. Extracellular matrix signals promotes actin-dependent mitochondrial elongation and activity.. [DOI: 10.1101/2024.01.22.576703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
AbstractMitochondria are crucial metabolic organelles that are regulated by both intracellular and extracellular cues. The extracellular matrix (ECM) is a key component of the cellular environment that controls cellular behavior and metabolic activity. Here, we determined how ECM signalling regulates mitochondrial structure and activity. To distinguish mitochondrial regulation from the general survival cues generated by the ECM, we used breast cancer-derived spheres (mammospheres) because of their ability to grow in suspension culture in the absence of ECM. Using this system, we demonstrate that the association of mammospheres with the ECM results in dramatic mitochondrial elongation, along with enhanced mitochondrial respiration and ATP production. This remodeling occurs independently of DRP1 activity, but relies on integrin signaling and actin polymerization. Therefore, our findings demonstrate that ECM-driven actin polymerization plays a crucial role in remodeling mitochondrial networks to promote OXPHOS, which represents a vital step for migrating cells to enhance cellular adhesion and facilitate cell growth.
Collapse
|
19
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Kim MH, Tan SY, Yamahara K, Kino-Oka M. An in vitro culture platform to study the extracellular matrix remodeling potential of human mesenchymal stem cells. Acta Biomater 2023; 170:376-388. [PMID: 37619896 DOI: 10.1016/j.actbio.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The ability of mesenchymal stem cells (MSCs) to synthesize and degrade extracellular matrix (ECM) is important for MSC-based therapies. However, the therapeutic effects associated with ECM remodeling in cultured MSCs have been limited by the lack of a method to assess the ability of cultured cells to degrade ECM in vitro. Here, we describe a simple in vitro culture platform for studying the ECM remodeling potential of cultured MSCs using a high-density collagen (CL) surface. Cells on the CL surface have remarkable ability to degrade collagen fibrils by secreting matrix metalloproteinase (MMP); to study this, the marker collagen hybridizing peptide (CHP) was used. Confirming the ECM remodeling potential of MSCs with different population doublings (PDs), young and healthy γ-H2AX-negative cells, a marker of DNA damage and senescence, showed more extensive collagen degradation on the CL surface, whereas damaged cells of γ-H2AX-positive cells showed no collagen degradation. The frequency of γ-H2AX-/CHP + cells at PD = 0 was 49%, which was 4.9-fold higher than that at PD=13.07, whereas the frequency of γ-H2AX+/CHP- at PD=13.07 was 50%, which was 6.4-folds higher than that at PD=0. Further experimentation examining the in vitro priming effect of MSCs with the pro-inflammatory cytokine interferon-γ treatment showed increased frequency of cells with ECM remodeling potential with higher MMP secretion. Thus, this culture surface can be used for studying the ECM remodeling capacity of ex vivo-expanded MSCs in vitro and may serve as a platform for prediction in vivo ECM remodeling effect. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) remodeling potential of cultured mesenchymal stem cells (MSCs) is important for assessing the effectiveness of MSC-based therapy. However, methods to assess the ability of cultured cells to degrade ECM in vitro are still lacking. Here, we developed a simple in vitro culture platform to study the ECM remodeling potential of cultured MSCs using high-density collagen surfaces. This platform was used to evaluate the ECM remodeling potential of long-term ex vivo-expanded MSCs in vitro.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shao Ying Tan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Szabó A, Pasquariello R, Costa PF, Pavlovic R, Geurs I, Dewettinck K, Vervaet C, Brevini TAL, Gandolfi F, Van Vlierberghe S. Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model. Macromol Biosci 2023; 23:e2300016. [PMID: 37243584 DOI: 10.1002/mabi.202300016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Indexed: 05/29/2023]
Abstract
To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Pedro F Costa
- Biofabics Lda, Rua do Campo Lindo 168, Porto, 4200-143, Portugal
| | - Radmila Pavlovic
- Protemoics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Indi Geurs
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Dell'Università 6, Lodi, 26900, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| |
Collapse
|
22
|
Patil V, Bohara R, Krishna Kanala V, McMahon S, Pandit A. Models and approaches to comprehend and address glial inflammation following spinal cord injury. Drug Discov Today 2023; 28:103722. [PMID: 37482236 DOI: 10.1016/j.drudis.2023.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Spinal cord injury (SCI) culminates in chronic inflammation and glial scar formation driven by the activation of microglia and astrocytes. Current anti-inflammatory strategies to treat glial activation associated with SCI have several limitations. Existing in vitro and ex vivo models studying molecular mechanisms associated with inflammation focus only on the acute phase. However, the progression of glial cell-derived inflammation over the acute-to-chronic phases has not been assessed. Understanding this progression will help establish a framework for evaluating therapeutic strategies. Additionally, new models could be useful as high-throughput screening (HTS) platforms. This review aims to highlight currently available models and future methods that could facilitate screening of novel therapeutics for SCI.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Vijaya Krishna Kanala
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
23
|
Verma BK, Chatterjee A, Kondaiah P, Gundiah N. Substrate Stiffness Modulates TGF-β Activation and ECM-Associated Gene Expression in Fibroblasts. Bioengineering (Basel) 2023; 10:998. [PMID: 37760100 PMCID: PMC10525202 DOI: 10.3390/bioengineering10090998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates the expression of ECM-associated genes during early injury. Tissue fibrosis development is driven by synergistic cues between the evolving biochemical and mechanical milieu. Few studies have addressed the role of substrate stiffness on TGF-β activity and extracellular matrix (ECM)-associated genes. We used a commercial formulation of polydimethylsiloxane (PDMS) to fabricate substrates of 40 kPa, 300 kPa, and 1.5 MPa stiffness, and cultured the HMF3S fibroblasts on substrates. We quantified TGF-β protein secreted by HMF3S cells on different substrates using a TGF-β responsive promoter reporter assay. We also tested for variations in gene expression levels on the substrates using RT-PCR and Western blotting and determined the MMP-2 and MMP-9 activities with gelatin zymography. The results showed that TGF-β protein activation was significantly compromised at lower stiffnesses. The expression of integrin α5 decreased on lower stiffness substrates and correlated with inefficient TGF-β protein activation. Collagen I, collagen III, and MMP-2 expression levels were lower on softer substrates; there was little MMP-9 activity on all substrates. Cell and nuclear morphologies were more rounded on compliant substrates, correlating with increased tubulin expression. Proliferations were higher on stiffer substrates, whereas cells on softer substrates showed cell cycle arrest. These results demonstrated critical feedback mechanisms between substrate stiffness and ECM regulation by fibroblasts, relevant in fibrosis.
Collapse
Affiliation(s)
- Brijesh Kumar Verma
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Aritra Chatterjee
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Paturu Kondaiah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
24
|
Ahmed RK, Abdalrahman T, Davies NH, Vermolen F, Franz T. Mathematical model of mechano-sensing and mechanically induced collective motility of cells on planar elastic substrates. Biomech Model Mechanobiol 2023; 22:809-824. [PMID: 36814004 DOI: 10.1007/s10237-022-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 02/24/2023]
Abstract
Cells mechanically interact with their environment to sense, for example, topography, elasticity and mechanical cues from other cells. Mechano-sensing has profound effects on cellular behaviour, including motility. The current study aims to develop a mathematical model of cellular mechano-sensing on planar elastic substrates and demonstrate the model's predictive capabilities for the motility of individual cells in a colony. In the model, a cell is assumed to transmit an adhesion force, derived from a dynamic focal adhesion integrin density, that locally deforms a substrate, and to sense substrate deformation originating from neighbouring cells. The substrate deformation from multiple cells is expressed as total strain energy density with a spatially varying gradient. The magnitude and direction of the gradient at the cell location define the cell motion. Cell-substrate friction, partial motion randomness, and cell death and division are included. The substrate deformation by a single cell and the motility of two cells are presented for several substrate elasticities and thicknesses. The collective motility of 25 cells on a uniform substrate mimicking the closure of a circular wound of 200 µm is predicted for deterministic and random motion. Cell motility on substrates with varying elasticity and thickness is explored for four cells and 15 cells, the latter again mimicking wound closure. Wound closure by 45 cells is used to demonstrate the simulation of cell death and division during migration. The mathematical model can adequately simulate the mechanically induced collective cell motility on planar elastic substrates. The model is suitable for extension to other cell and substrates shapes and the inclusion of chemotactic cues, offering the potential to complement in vitro and in vivo studies.
Collapse
Affiliation(s)
- Riham K Ahmed
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa.
| | - Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa
- Computational Mechanobiology, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin, Berlin, Germany
| | - Neil H Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, MRC IUCHRU, University of Cape Town, Observatory, South Africa
| | - Fred Vermolen
- Computational Mathematics Group, Department of Mathematics and Statistics, University of Hasselt, Diepenbeek, Belgium
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
26
|
Walter C, Mathur J, Pathak A. Reciprocal intra- and extra-cellular polarity enables deep mechanosensing through layered matrices. Cell Rep 2023; 42:112362. [PMID: 37027304 PMCID: PMC11246724 DOI: 10.1016/j.celrep.2023.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/11/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Adherent cells migrate on layered tissue interfaces to drive morphogenesis, wound healing, and tumor invasion. Although stiffer surfaces are known to enhance cell migration, it remains unclear whether cells sense basal stiff environments buried under softer, fibrous matrix. Using layered collagen-polyacrylamide gel systems, we unveil a migration phenotype driven by cell-matrix polarity. Here, cancer (but not normal) cells with stiff base matrix generate stable protrusions, faster migration, and greater collagen deformation because of "depth mechanosensing" through the top collagen layer. Cancer cell protrusions with front-rear polarity produce polarized collagen stiffening and deformations. Disruption of either extracellular or intracellular polarity via collagen crosslinking, laser ablation, or Arp2/3 inhibition independently abrogates depth-mechanosensitive migration of cancer cells. Our experimental findings, validated by lattice-based energy minimization modeling, present a cell migration mechanism whereby polarized cellular protrusions and contractility are reciprocated by mechanical extracellular polarity, culminating in a cell-type-dependent ability to mechanosense through matrix layers.
Collapse
Affiliation(s)
- Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
28
|
Zalieckas J, Mondragon IR, Pobedinskas P, Kristoffersen AS, Mohamed-Ahmed S, Gjerde C, Høl PJ, Hallan G, Furnes ON, Cimpan MR, Haenen K, Holst B, Greve MM. Polycrystalline Diamond Coating on Orthopedic Implants: Realization and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44933-44946. [PMID: 36135965 PMCID: PMC9542704 DOI: 10.1021/acsami.2c10121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycrystalline diamond has the potential to improve the osseointegration of orthopedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitation of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time, we demonstrate diamond growth on titanium acetabular shells using the surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (∼400 °C) on three types of acetabular shells with different surface structures and porosities. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix proteins and monitored the metabolic activity of fibroblasts, osteoblasts, and bone-marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin and type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen-terminated UNCD than on the oxygen-terminated counterpart. These findings correlated with the behavior of collagen on diamond substrates observed by FLIM. Hydrogen-terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while the growth of fibroblasts was poorest on hydrogen-terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopedic implants to further improve bone fixation and osseointegration.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Ivan R. Mondragon
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Arne S. Kristoffersen
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Cecilie Gjerde
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paul J. Høl
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Geir Hallan
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Ove N. Furnes
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Bodil Holst
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Martin M. Greve
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| |
Collapse
|
29
|
Flick Jaecker F, Almeida JA, Krull CM, Pathak A. Nucleoli in epithelial cell collectives respond to tumorigenic, spatial, and mechanical cues. Mol Biol Cell 2022; 33:br19. [PMID: 35830599 PMCID: PMC9582805 DOI: 10.1091/mbc.e22-02-0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells are known to have larger nucleoli, consistent with their higher transcriptional and translational demands. Meanwhile, on stiff extracellular matrix, normal epithelial cells can exhibit genomic and proteomic mechanoactivation toward tumorigenic transformations, such as epithelial-mesenchymal transition and enhanced migration. However, while nucleolar bodies regulate the protein synthesis required for mechanosensation, it remains unknown whether mechanical and spatial extracellular cues can in turn alter nucleoli. Here, we culture mammary epithelial cell sheets on matrices of varying stiffness and show that cancer cells have more nucleoli, with nucleoli occupying larger areas compared with normal cells. By contrast, within normal epithelial sheets, stiffer matrices and leader positioning of cells induce larger nucleolar areas and more nucleolar bodies over time. The observed leader-follower nucleolar differences stem from distinct rates of cell cycle progression. In the nucleoplasm, leader cells on stiffer matrices exhibit higher heterochromatin marker expression and DNA compaction around nucleolar bodies. Overall, our findings advance the emerging framework of cellular mechanobiology in which mechanical cues from the extracellular matrix transmit into the nucleoplasm to alter nucleolar composition, potentially resulting in mechanosensitive ribosomal biogenesis. Ultimately, this proposed mechanosensitivity of nucleoli and associated protein synthesis could have wide implications in disease, development, and regeneration.
Collapse
Affiliation(s)
| | - José A Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Carly M Krull
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science and.,Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| |
Collapse
|
30
|
Tahir I, Floreani R. Dual-Crosslinked Alginate-Based Hydrogels with Tunable Mechanical Properties for Cultured Meat. Foods 2022; 11:foods11182829. [PMID: 36140953 PMCID: PMC9498068 DOI: 10.3390/foods11182829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Cultured meat refers to the production of animal tissue by utilizing the same techniques as tissue engineering through cell culture. Various biomaterials have been designed to serve as in vitro supports for cell viability, growth, and migration. In this study, visible light and dual-crosslinked alginate hydrogels were designed to enable control of the physical and mechanical properties needed for the fabrication of cultured meat scaffolds. We hypothesized that a difference in hydrogel stiffness would influence cell behavior, indicating the efficacy of our processing methods to benefit the cultured meat field. Herein, we synthesized and created: (1) methacrylated alginate (AlgMA) to enable covalent crosslinking via visible light exposure, (2) Methacrylated alginate and arginyl-glycyl-aspartic acid RGD conjugates (AlgMA-RGD), using carbodiimide chemistries to provide cell-binding sites on the material, and (3) designer hydrogels incorporating different crosslinking techniques. The material and mechanical properties were evaluated to determine the structural integrity of the hydrogels, and in vitro cell assays were conducted to verify cytocompatibility and cell adhesion. Gelation, swell ratio, and weight loss calculations revealed longer gelation times for the AlgMA scaffolds and similar physical properties for all hydrogel groups. We showed that by adjusting the polymer concentration and the crosslinking methodology, the scaffold’s mechanical properties can be controlled and optimized within physiological ranges. Incorporating dual crosslinking significantly increased the compressive moduli of the AlgMA hydrogels, compared to visible-light crosslinking alone. Moreover, the muscle satellite cells responded favorably to the AlgMA scaffolds, with clear differences in cell density when cultured on materials with significantly different mechanical properties. Our results indicate the usefulness of the dual-crosslinking alginate hydrogel system to support in vitro meat growth.
Collapse
Affiliation(s)
- Irfan Tahir
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
| | - Rachael Floreani
- Department of Mechanical Engineering, Department of Electrical and Biomedical Engineering, Materials Science and Engineering Graduate Program, Food Systems Graduate Program, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
31
|
El Hamoui O, Saydé T, Svahn I, Gudin A, Gontier E, Le Coustumer P, Verget J, Barthélémy P, Gaudin K, Battu S, Lespes G, Alies B. Nucleoside-Derived Low-Molecular-Weight Gelators as a Synthetic Microenvironment for 3D Cell Culture. ACS Biomater Sci Eng 2022; 8:3387-3398. [PMID: 35772731 DOI: 10.1021/acsbiomaterials.2c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the last few decades, many efforts have been made in developing cell culture methods in order to overcome the biological limitations of the conventional two-dimensional culture. This paradigm shift is driven by a large amount of new hydrogel-based systems for three-dimensional culture, among other systems, since they are known to mimic some living tissue properties. One class of hydrogel precursors has received interest in the field of biomaterials, low-molecular-weight gelators (LMWGs). In comparison to polymer gels, LMWG gels are formed by weak interactions upon an external trigger between the molecular subunits, giving them the ability to reverse the gelation, thus showing potential for many applications of practical interest. This study presents the use of the nucleoside derivative subclass of LMWGs, which are glyco-nucleo-bola-amphiphiles, as a proof of concept of a 3D cell culture scaffold. Physicochemical characterization was performed in order to reach the optimal features to fulfill the requirements of the cell culture microenvironment, in terms of the mechanical properties, architecture, molecular diffusion, porosity, and experimental practicality. The retained conditions were tested by culturing glioblastoma cells for over a month. The cell viability, proliferation, and spatial organization showed during the experiments demonstrate the proof of concept of nucleoside-derived LMWGs as a soft 3D cell culture scaffold. One of the hydrogels tested permits cell proliferation and spheroidal organization over the entire culture time. These systems offer many advantages as they consume very few matters within the optimal range of viscoelasticity for cell culture, and the thermoreversibility of these hydrogels permits their use with few instruments. The LMWG-based scaffold for the 3D cell culture presented in this study unlocked the ability to grow spheroids from patient cells to reach personalized therapies by dramatically reducing the variability of the lattice used.
Collapse
Affiliation(s)
- Omar El Hamoui
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.,Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS UMR 5254, 2 Avenue Pierre Angot, 64053 Pau Cedex, France
| | - Tarek Saydé
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.,Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France
| | - Isabelle Svahn
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| | - Antoine Gudin
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Etienne Gontier
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| | - Philippe Le Coustumer
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS UMR 5254, 2 Avenue Pierre Angot, 64053 Pau Cedex, France.,Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| | - Julien Verget
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Philippe Barthélémy
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Karen Gaudin
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Serge Battu
- Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France
| | - Gaëtane Lespes
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS UMR 5254, 2 Avenue Pierre Angot, 64053 Pau Cedex, France
| | - Bruno Alies
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| |
Collapse
|
32
|
Joshi H, Morley SC. Efficient T Cell Migration and Activation Require L-Plastin. Front Immunol 2022; 13:916137. [PMID: 35844504 PMCID: PMC9277003 DOI: 10.3389/fimmu.2022.916137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Rapid re-organization of the actin cytoskeleton supports T-cell trafficking towards immune sites and interaction with antigen presenting cells (APCs). F-actin rearrangement enables T-cell trafficking by stabilizing adhesion to vascular endothelial cells and promoting transendothelial migration. T-cell/APC immune synapse (IS) maturation also relies upon f-actin-anchored LFA-1:ICAM-1 ligation. Therefore, efficient T-cell responses require tight regulation of f-actin dynamics. In this review, we summarize how the actin-bundling protein L-plastin (LPL) regulates T-cell activation and migration. LPL enhances f-actin polymerization and also directly binds to the β2 chain of the integrin LFA-1 to support intercellular adhesion and IS formation in human and murine T cells. LPL- deficient T cells migrate slowly in response to chemo-attractants such as CXCL12, CCL19, and poorly polarize towards ICAM-1. Loss of LPL impairs thymic egress and intranodal motility. LPL is also required for T-cell IS maturation with APCs, and therefore for efficient cytokine production and proliferation. LPL-/- mice are less susceptible to T-cell mediated pathologies, such as allograft rejection and experimental autoimmune encephalomyelitis (EAE). LPL activity is regulated by its N-terminal “headpiece”, which contains serine and threonine phosphorylation and calcium- and calmodulin-binding sites. LPL phosphorylation is required for lamellipodia formation during adhesion and migration, and also for LFA-1 clustering during IS formation. However, the precise molecular interactions by which LPL supports T-cell functional responses remain unclear. Future studies elucidating LPL-mediated regulation of T-cell migration and/or activation may illuminate pathways for therapeutic targeting in T-cell-mediated diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sharon Celeste Morley,
| |
Collapse
|
33
|
Lipetskaia L, Gonzalez RR, Wu JM, Northington GM, Henley BR, Lane F, Brucker BM, Jarnagin B, Rosenblatt PL. 36-Month Prospective Study of Transvaginal Bovine Graft versus Native Tissue Repair for the Treatment of Pelvic Organ Prolapse. Urology 2022; 167:234-240. [PMID: 35716871 DOI: 10.1016/j.urology.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE(S) To compare the safety and effectiveness of dermal bovine transvaginal graft, Xenform, to native tissue in the surgical treatment of anterior and/or apical pelvic organ prolapse. This study was designed in conjunction with FDA requirements. METHODS This was a prospective, non-randomized, parallel cohort, multi-center trial. The primary objective was to demonstrate non-inferiority between transvaginal graft and native tissue repair at 36 months compared to baseline. Treatment success was based on a composite of objective and subjective measures. The co-primary outcome was the rate of serious device- or procedure-related adverse events. A total of 228 patients at 25 sites were included in the study arm and 485 patients underwent native tissue repair. Propensity score stratification was applied to achieve balance between treatment groups. Study outcomes were compared in per protocol and intent-to-treat analysis. RESULTS The primary outcome, treatment success at 36 months, was 83.6% (191/228) for transvaginal graft and 80.5% (390/485) native tissue repair (0.2%, 90%CI [-5.6%, 5.9%]), demonstrating non-inferiority at a preset margin of -12%. The overall rate of severe adverse events was 5.3% (12/228) in transvaginal graft vs 2.7% (13/485) in native tissue repair groups. The study group demonstrated non-inferiority in serious adverse events at the preset margin of 11.6% (2.0%, 90%CI [-0.8%, 4.7%]). There were no reports of graft erosion, and graft exposure rates were low (0.9% [2/228]). CONCLUSIONS Transvaginal repair of anterior and/or apical prolapse with a biological graft is non-inferior to traditional native tissue repair in effectiveness and safety at 36 months.
Collapse
Affiliation(s)
- Lioudmila Lipetskaia
- Program Director, Female Pelvic Medicine & Reconstructive Surgery Fellowship, Department of Obstetrics and Gynecology, Cooper University Health Care, Assistant Professor Cooper Medical School of Rowan University, 3 Cooper Plaza Suite #220, Camden, NJ 08103.
| | - Ricardo R Gonzalez
- Program Director, Urology Fellowship in Female Pelvic Medicine & Reconstructive Surgery, Weill Cornell College of Medicine, Houston Methodist Hospital Academic Institute, 6560 Fannin Street, Suite 2100, Houston, TX 77030
| | - Jennifer M Wu
- Interim Vice Dean for Academic Affairs, Professor, Department of Obstetrics and Gynecology, Division of Urogynecology and Reconstructive Pelvic Surgery, University of North Carolina at Chapel Hill, 4030 Bondurant Hall, Campus Box 7000, Chapel Hill, NC 27599
| | - Gina M Northington
- Associate Professor and Director, Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Gynecology and Obstetrics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322
| | - Barbara R Henley
- Section Chief & Associate Professor, Female Pelvic Medicine & Reconstructive Surgery, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, 1120 15th Street, BB 7514, Augusta, GA 30912
| | - Felicia Lane
- Division Director and Urogynecology Fellowship Director, Department of Obstetrics and Gynecology, University of California, Irvine, 333 City Blvd W Suite 1400, Orange, CA 92868
| | - Benjamin M Brucker
- Director, Division of Female Pelvic Medicine & Reconstructive Surgery and Neurourology, Program Director, FPMRS Fellowship, Departments of Urology and Obstetrics & Gynecology, New York University, Langone Health, 550 First Avenue, New York, NY 10016
| | - Barry Jarnagin
- Medical Director, Center for Pelvic Health, 100 Covey Drive, Suite 205, Franklin, TN 37067
| | - Peter L Rosenblatt
- Director of Urogynecology, Boston Urogynecology Associates / Mount Auburn Hospital, Assistant Professor of Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, 725 Concord Avenue, Suite 3500, Cambridge, MA 02138
| |
Collapse
|
34
|
Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics 2022; 14:pharmaceutics14050993. [PMID: 35631579 PMCID: PMC9144371 DOI: 10.3390/pharmaceutics14050993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
The intrinsic architecture and complexity of the brain restricts the capacity of therapeutic molecules to reach their potential targets, thereby limiting therapeutic possibilities concerning neurological ailments and brain malignancy. As conventional models fail to recapitulate the complexity of the brain, progress in the field of microfluidics has facilitated the development of advanced in vitro platforms that could imitate the in vivo microenvironments and pathological features of the blood–brain barrier (BBB). It is highly desirous that developed in vitro BBB-on-chip models serve as a platform to investigate cancer metastasis of the brain along with the possibility of efficiently screening chemotherapeutic agents against brain malignancies. In order to improve the proficiency of BBB-on-chip models, hydrogels have been widely explored due to their unique physical and chemical properties, which mimic the three-dimensional (3D) micro architecture of tissues. Hydrogel-based BBB-on-chip models serves as a stage which is conducive for cell growth and allows the exchange of gases and nutrients and the removal of metabolic wastes between cells and the cell/extra cellular matrix (ECM) interface. Here, we present recent advancements in BBB-on-chip models targeting brain malignancies and examine the utility of hydrogel-based BBB models that could further strengthen the future application of microfluidic devices in oncology research.
Collapse
|
35
|
Balcioglu HE, Harkes R, Danen EHJ, Schmidt T. Substrate rigidity modulates traction forces and stoichiometry of cell–matrix adhesions. J Chem Phys 2022; 156:085101. [DOI: 10.1063/5.0077004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In cell–matrix adhesions, integrin receptors and associated proteins provide a dynamic coupling of the extracellular matrix (ECM) to the cytoskeleton. This allows bidirectional transmission of forces between the ECM and the cytoskeleton, which tunes intracellular signaling cascades that control survival, proliferation, differentiation, and motility. The quantitative relationships between recruitment of distinct cell–matrix adhesion proteins and local cellular traction forces are not known. Here, we applied quantitative super-resolution microscopy to cell–matrix adhesions formed on fibronectin-stamped elastomeric pillars and developed an approach to relate the number of talin, vinculin, paxillin, and focal adhesion kinase (FAK) molecules to the local cellular traction force. We find that FAK recruitment does not show an association with traction-force application, whereas a ∼60 pN force increase is associated with the recruitment of one talin, two vinculin, and two paxillin molecules on a substrate with an effective stiffness of 47 kPa. On a substrate with a fourfold lower effective stiffness, the stoichiometry of talin:vinculin:paxillin changes to 2:12:6 for the same ∼60 pN traction force. The relative change in force-related vinculin recruitment indicates a stiffness-dependent switch in vinculin function in cell–matrix adhesions. Our results reveal a substrate-stiffness-dependent modulation of the relationship between cellular traction-force and the molecular stoichiometry of cell–matrix adhesions.
Collapse
Affiliation(s)
- Hayri E. Balcioglu
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rolf Harkes
- Physics of Life Processes, Kamerlingh Onnes-Huygens Laboratory, Leiden University, Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Kamerlingh Onnes-Huygens Laboratory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
36
|
Holloway PM. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. Methods Mol Biol 2022; 2492:193-224. [PMID: 35733046 DOI: 10.1007/978-1-0716-2289-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of microfluidic chips is now allowing for more advanced modelling of the blood-brain barrier (BBB) in vitro, recapitulating heterotypic interactions, 3D architecture, and physiological flow. This chapter will give an introduction to these new technologies and how they are being applied to model the BBB and neurovascular unit (NVU). A foundational understanding of the fluid dynamics germane to the effective use of these chips will be set and an overview of how physical phenomena at the microscale can be exploited to enable new possibilities to control the cell culture environment. The four main approaches to construct microfluidic blood vessel mimetics will be discussed with examples of how these techniques are being applied to model the BBB and more recently to study specific neurovascular disease processes. Finally, practical guidance will be given for researchers wishing to adopt these new techniques along with a summary of the challenges, limitations faced, and new opportunities opened up by these advanced cell culture systems.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Jaumouillé V. Measurement of Minute Cellular Forces by Traction Force Microscopy. Methods Mol Biol 2022; 2440:125-139. [PMID: 35218537 DOI: 10.1007/978-1-0716-2051-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability of living cells to exert forces on their surrounding environment, such as the extracellular matrix (ECM) or neighboring cells, plays an important role in numerous biological processes. This chapter describes a simple protocol to measure forces exerted by living cells using traction force microscopy. This approach is based on the measurement of the deformation of compliant substrates using fluorescent fiducials. It can be implemented using widefield or confocal fluorescent microscopes, and open-source software. This chapter describes a step-by-step protocol to measure forces exerted by focal adhesions bound to the ECM protein fibronectin. However, this framework is versatile and can be easily adapted to a multitude of ligands and cellular processes in which cells exert forces, including the formation of an immunological synapse or a phagocytic cup. Technical considerations, limitations of the approach, and practical advice are discussed.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Department of Molecular biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
38
|
Islam M, Lantada AD, Mager D, Korvink JG. Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Adv Healthc Mater 2022; 11:e2101834. [PMID: 34601815 PMCID: PMC11469261 DOI: 10.1002/adhm.202101834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Carbon materials constitute a growing family of high-performance materials immersed in ongoing scientific technological revolutions. Their biochemical properties are interesting for a wide set of healthcare applications and their biomechanical performance, which can be modulated to mimic most human tissues, make them remarkable candidates for tissue repair and regeneration, especially for articular problems and osteochondral defects involving diverse tissues with very different morphologies and properties. However, more systematic approaches to the engineering design of carbon-based cell niches and scaffolds are needed and relevant challenges should still be overcome through extensive and collaborative research. In consequence, this study presents a comprehensive description of carbon materials and an explanation of their benefits for regenerative medicine, focusing on their rising impact in the area of osteochondral and articular repair and regeneration. Once the state-of-the-art is illustrated, innovative design and fabrication strategies for artificially recreating the cellular microenvironment within complex articular structures are discussed. Together with these modern design and fabrication approaches, current challenges, and research trends for reaching patients and creating social and economic impacts are examined. In a closing perspective, the engineering of living carbon materials is also presented for the first time and the related fundamental breakthroughs ahead are clarified.
Collapse
Affiliation(s)
- Monsur Islam
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Dario Mager
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jan G. Korvink
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
39
|
Liu C, Li Y, Zhang Y, Xu H. The experimental study of regeneration of annulus fibrosus using decellularized annulus fibrosus matrix/poly(ether carbonate urethane)urea-blended fibrous scaffolds with varying elastic moduli. J Biomed Mater Res A 2021; 110:991-1003. [PMID: 34918475 DOI: 10.1002/jbm.a.37347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Although tissue engineering has attracted increasing attention for the treatment of degenerative intervertebral disc disease, the biochemical properties, structural organization, and mechanical characteristics of annulus fibrosus tissue have restricted progress. Differentiation of annulus fibrosus-derived stem cells (AFSCs) can be regulated by the elasticity of substrates such as poly(ether carbonate urethane)urea (PECUU). Decellularized annulus fibrosus matrix (DAFM) has good biocompatibility and biodegradability, making it suitable for cell adhesion, proliferation, and differentiation. In this study, we used a coaxial electrospinning method to synthesize DAFM/PECUU-blended fibrous scaffolds with elasticities approximating that of native inner and outer annulus fibrosus tissue. AFSCs cultured on DAFM/PECUU-blended fibrous scaffolds exhibited increased collagen type I gene expression with increasing elasticity of the scaffold material; notably, collagen type II and aggrecan gene expression exhibited the opposite trend. Regarding extracellular matrix secretion, collagen type I content gradually increased with substrate elasticity, while collagen type II and aggrecan contents decreased. In vivo evaluations employing magnetic resonance imaging, hematoxylin and eosin staining, and immunohistochemistry indicated that DAFM/PECUU-blended fibrous scaffolds could effectively repair defects of annulus fibrosus tissue. Our findings provide a theoretical and practical basis for the development of bionic annulus fibrosus tissue that closely mimics the biological properties, mechanical function, and matrix composition of native tissue.
Collapse
Affiliation(s)
- Chen Liu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Yu Zhang
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
40
|
|
41
|
Tan S, Fang W, Vangsness CT, Han B. Influence of Cellular Microenvironment on Human Articular Chondrocyte Cell Signaling. Cartilage 2021; 13:935S-946S. [PMID: 32672057 PMCID: PMC8804849 DOI: 10.1177/1947603520941219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Alteration of the cellular microenvironment may influence the intra- and intercellular communication and contribute to cartilage injury and repair. The purpose of this study was to investigate how matrix elasticity/stiffness affects chondrogenic activities, including cell survival, phenotypic expression, and the release of both pro- and anti-inflammatory cytokines. DESIGN Human articular chondrocytes (HACs) cultured on traditional 2-dimensional (2D) plastic surfaces were compared with those cultured within 3D hydrogel matrices of varying stiffness. Chondrogenic proliferation, differentiation, and the expression of pro- and anti-inflammatory cytokines were evaluated. Both interleukin-1-beta (IL-1β) and human synovial fluid-derived cells (hSFCs) were introduced to study the effects of matrix stiffness on chondrocyte response. RESULTS Cells demonstrated the most robust chondrogenic differentiation and secreted the least pro-inflammatory cytokines when the matrix stiffness was close to their native microenvironment. The IL-1β effects were attenuated when HACs were co-cultured with hSFCs. CONCLUSION Modifying the matrix stiffness to mimic the native cartilage microenvironment not only optimized chondrogenic expression but also was essential for the regulation of physiological homeostasis. This study proposed a new toolkit to study cell-molecule, cell-cell, and cell-matrix influence on cartilage physiology.
Collapse
Affiliation(s)
- ShihJye Tan
- Department of Surgery and Biomedical
Engineering, Keck School of Medicine, Uuniversity of Southern California, Los
Angeles, CA, USA
| | - William Fang
- Department of Orthopaedic Surgery, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C. Thomas Vangsness
- Department of Orthopaedic Surgery, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bo Han
- Department of Surgery and Biomedical
Engineering, Keck School of Medicine, Uuniversity of Southern California, Los
Angeles, CA, USA,Bo Han, Department of Surgery and Biomedical
Engineering, Keck School of Medicine, University of Southern California, 1333
San Pablo Street, BMT 302A, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
42
|
Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng 2021; 5:1437-1456. [PMID: 34031559 DOI: 10.1038/s41551-021-00722-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-β1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-β1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and β1 integrins, and activated TGF-β1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of β1 integrin and of TGF-β were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-β signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.
Collapse
|
43
|
Walker CJ, Crocini C, Ramirez D, Killaars AR, Grim JC, Aguado BA, Clark K, Allen MA, Dowell RD, Leinwand LA, Anseth KS. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat Biomed Eng 2021; 5:1485-1499. [PMID: 33875841 PMCID: PMC9102466 DOI: 10.1038/s41551-021-00709-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/07/2021] [Indexed: 02/02/2023]
Abstract
Fibrotic disease is caused by the continuous deposition of extracellular matrix by persistently activated fibroblasts (also known as myofibroblasts), even after the resolution of the injury. Using fibroblasts from porcine aortic valves cultured on hydrogels that can be softened via exposure to ultraviolet light, here we show that increased extracellular stiffness activates the fibroblasts, and that cumulative tension on the nuclear membrane and increases in the activity of histone deacetylases transform transiently activated fibroblasts into myofibroblasts displaying condensed chromatin with genome-wide alterations. The condensed structure of the myofibroblasts is associated with cytoskeletal stability, as indicated by the inhibition of chromatin condensation and myofibroblast persistence after detachment of the nucleus from the cytoskeleton via the displacement of endogenous nesprins from the nuclear envelope. We also show that the chromatin structure of myofibroblasts from patients with aortic valve stenosis is more condensed than that of myofibroblasts from healthy donors. Our findings suggest that nuclear mechanosensing drives distinct chromatin signatures in persistently activated fibroblasts.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Anouk R Killaars
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph C Grim
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Brian A Aguado
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kyle Clark
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Kristi S Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
44
|
Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials 2021; 277:121113. [PMID: 34492582 DOI: 10.1016/j.biomaterials.2021.121113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.
Collapse
|
45
|
Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater 2021; 131:41-61. [PMID: 34192571 DOI: 10.1016/j.actbio.2021.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.
Collapse
|
46
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
47
|
A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A 2021; 118:2021571118. [PMID: 33990464 DOI: 10.1073/pnas.2021571118] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.
Collapse
|
48
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
49
|
Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling. Proc Natl Acad Sci U S A 2021; 118:2016322118. [PMID: 33941688 PMCID: PMC8126831 DOI: 10.1073/pnas.2016322118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clinical utility of mesenchymal stromal/stem cells (MSCs) in mediating immunosuppressive effects and supporting regenerative processes is broadly established. However, the inherent heterogeneity of MSCs compromises its biomedical efficacy and reproducibility. To study how cellular variation affects fate decision-making processes, we perform single-cell RNA sequencing at multiple time points during bipotential matrix-directed differentiation toward soft- and stiff tissue lineages. In this manner, we identify distinctive MSC subpopulations that are characterized by their multipotent differentiation capacity and mechanosensitivity. Also, whole-genome screening highlights TPM1 as a potent mechanotransducer of matrix signals and regulator of cell differentiation. Thus, by introducing single-cell methodologies into mechanobiology, we delineate the complexity of adult stem cell responses to extracellular cues in tissue regeneration and immunomodulation. Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.
Collapse
|
50
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|