1
|
Srivastava P, Bansal R, Madan E, Shoaib R, Singhal J, Kahlon AK, Gupta A, Garg S, Ranganathan A, Singh S. Identification of a De Novo Peptide against Palmitoyl Acyltransferase 6 to Block Survivability and Infectivity of Leishmania donovani. ACS Infect Dis 2024; 10:2074-2088. [PMID: 38717971 DOI: 10.1021/acsinfecdis.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Palmitoylation is an essential post-translational modification in Leishmania donovani, catalyzed by enzymes called palmitoyl acyl transferases (PATs) and has an essential role in virulence. Due to the toxicity and promiscuity of known PAT inhibitors, identification of new molecules is needed. Herein, we identified a specific novel de novo peptide inhibitor, PS1, against the PAT6 Leishmania donovani palmitoyl acyl transferase (LdPAT6). To demonstrate specific inhibition of LdPAT6 by PS1, we employed a bacterial orthologue system and metabolic labeling-coupled click chemistry where both LdPAT6 and PS1 were coexpressed and displayed palmitoylation suppression. Furthermore, strong binding of the LdPAT6-DHHC domain with PS1 was observed through analysis using microscale thermophoresis, ELISA, and dot blot assay. PS1 specific to LdPAT6 showed significant growth inhibition in promastigotes and amastigotes by expressing low cytokines levels and invasion. This study reveals discovery of a novel de novo peptide against LdPAT6-DHHC which has potential to block survivability and infectivity of L. donovani.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruby Bansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Yuan X, Kadowaki T. Protein subcellular relocalization and function of duplicated flagellar calcium binding protein genes in honey bee trypanosomatid parasite. PLoS Genet 2024; 20:e1011195. [PMID: 38437202 PMCID: PMC10939215 DOI: 10.1371/journal.pgen.1011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/14/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
The honey bee trypanosomatid parasite, Lotmaria passim, contains two genes that encode the flagellar calcium binding protein (FCaBP) through tandem duplication in its genome. FCaBPs localize in the flagellum and entire body membrane of L. passim through specific N-terminal sorting sequences. This finding suggests that this is an example of protein subcellular relocalization resulting from gene duplication, altering the intracellular localization of FCaBP. However, this phenomenon may not have occurred in Leishmania, as one or both of the duplicated genes have become pseudogenes. Multiple copies of the FCaBP gene are present in several Trypanosoma species and Leptomonas pyrrhocoris, indicating rapid evolution of this gene in trypanosomatid parasites. The N-terminal flagellar sorting sequence of L. passim FCaBP1 is in close proximity to the BBSome complex, while that of Trypanosoma brucei FCaBP does not direct GFP to the flagellum in L. passim. Deletion of the two FCaBP genes in L. passim affected growth and impaired flagellar morphogenesis and motility, but it did not impact host infection. Therefore, FCaBP represents a duplicated gene with a rapid evolutionary history that is essential for flagellar structure and function in a trypanosomatid parasite.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, China
| |
Collapse
|
3
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Afanasyeva TAV, Schnellbach YT, Gibson TJ, Roepman R, Collin RWJ. OUP accepted manuscript. Hum Mol Genet 2022; 31:2560-2570. [PMID: 35253837 PMCID: PMC9396937 DOI: 10.1093/hmg/ddac057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous form of inherited retinal disease that leads to progressive visual impairment. One genetic subtype of RP, RP54, has been linked to mutations in PCARE (photoreceptor cilium actin regulator). We have recently shown that PCARE recruits WASF3 to the tip of a primary cilium, and thereby activates an Arp2/3 complex which results in the remodeling of actin filaments that drives the expansion of the ciliary tip membrane. On the basis of these findings, and the lack of proper photoreceptor development in mice lacking Pcare, we postulated that PCARE plays an important role in photoreceptor outer segment disk formation. In this study, we aimed to decipher the relationship between predicted structural and function amino acid motifs within PCARE and its function. Our results show that PCARE contains a predicted helical coiled coil domain together with evolutionary conserved binding sites for photoreceptor kinase MAK (type RP62), as well as EVH1 domain-binding linear motifs. Upon deletion of the helical domain, PCARE failed to localize to the cilia. Furthermore, upon deletion of the EVH1 domain-binding motifs separately or together, co-expression of mutant protein with WASF3 resulted in smaller ciliary tip membrane expansions. Finally, inactivation of the lipid modification on the cysteine residue at amino acid position 3 also caused a moderate decrease in the sizes of ciliary tip expansions. Taken together, our data illustrate the importance of amino acid motifs and domains within PCARE in fulfilling its physiological function.
Collapse
Affiliation(s)
- Tess A V Afanasyeva
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA6525, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, GA6525, The Netherlands
| | - Yan-Ting Schnellbach
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA6525, The Netherlands
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA6525, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| | - Rob W J Collin
- To whom correspondence should be addressed at: Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands. Tel: +31 243613750; Fax: +31 243668752;
| |
Collapse
|
5
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Meinnel T, Dian C, Giglione C. Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends Biochem Sci 2020; 45:619-632. [PMID: 32305250 DOI: 10.1016/j.tibs.2020.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
N-myristoylation (MYR) is a crucial fatty acylation catalyzed by N-myristoyltransferases (NMTs) that is likely to have appeared over 2 billion years ago. Proteome-wide approaches have now delivered an exhaustive list of substrates undergoing MYR across approximately 2% of any proteome, with constituents, several unexpected, associated with different membrane compartments. A set of <10 proteins conserved in eukaryotes probably represents the original set of N-myristoylated targets, marking major changes occurring throughout eukaryogenesis. Recent findings have revealed unexpected mechanisms and reactivity, suggesting competition with other acylations that are likely to influence cellular homeostasis and the steady state of the modification landscape. Here, we review recent advances in NMT catalysis, substrate specificity, and MYR proteomics, and discuss concepts regarding MYR during evolution.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
8
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
9
|
Roy K, Marin EP. Lipid Modifications in Cilia Biology. J Clin Med 2019; 8:jcm8070921. [PMID: 31252577 PMCID: PMC6678300 DOI: 10.3390/jcm8070921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are specialized cellular structures with distinctive roles in various signaling cascades. Ciliary proteins need to be trafficked to the cilium to function properly; however, it is not completely understood how these proteins are delivered to their final localization. In this review, we will focus on how different lipid modifications are important in ciliary protein trafficking and, consequently, regulation of signaling pathways. Lipid modifications can play a variety of roles, including tethering proteins to the membrane, aiding trafficking through facilitating interactions with transporter proteins, and regulating protein stability and abundance. Future studies focusing on the role of lipid modifications of ciliary proteins will help our understanding of how cilia maintain specific protein pools strictly connected to their functions.
Collapse
Affiliation(s)
- Kasturi Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA.
| | - Ethan P Marin
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA
| |
Collapse
|
10
|
Kumeta M, Panina Y, Yamazaki H, Takeyasu K, Yoshimura SH. N-terminal dual lipidation-coupled molecular targeting into the primary cilium. Genes Cells 2018; 23:715-723. [PMID: 29900630 DOI: 10.1111/gtc.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilium functions as an "antenna" for cell signaling, studded with characteristic transmembrane receptors and soluble protein factors, raised above the cell surface. In contrast to the transmembrane proteins, targeting mechanisms of nontransmembrane ciliary proteins are poorly understood. We focused on a pathogenic mutation that abolishes ciliary localization of retinitis pigmentosa 2 protein and revealed a dual acylation-dependent ciliary targeting pathway. Short N-terminal sequences which contain myristoylation and palmitoylation sites are sufficient to target a marker protein into the cilium in a palmitoylation-dependent manner. A Golgi-localized palmitoyltransferase DHHC-21 was identified as the key enzyme controlling this targeting pathway. Rapid turnover of the targeted protein was ensured by cholesterol-dependent membrane fluidity, which balances highly and less-mobile populations of the molecules within the cilium. This targeting signal was found in a set of signal transduction molecules, suggesting a general role of this pathway in proper ciliary organization, and dysfunction in ciliary disorders.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yulia Panina
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Quantitative Biology Center (QBiC), Osaka, Japan
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
11
|
Batista CM, Saad F, Ceccoti SPC, Eger I, Soares MJ. Subcellular localisation of FLAG tagged enzymes of the dynamic protein S-palmitoylation cycle of Trypanosoma cruzi epimastigotes. Mem Inst Oswaldo Cruz 2018; 113:e180086. [PMID: 29846394 PMCID: PMC5967602 DOI: 10.1590/0074-02760180086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Dynamic S-palmitoylation of proteins is the addition of palmitic acid by zDHHC palmitoyl transferases (PATs) and depalmitoylation by palmitoyl protein thioesterases (PPTs). A putative PAT (TcPAT1) has been previously identified in Trypanosoma cruzi, the etiological agent of Chagas disease. Here we analyse other 14 putative TcPATs and 2 PPTs in the parasite genome. T. cruzi cell lines expressing TcPATs and TcPPTs plus a FLAG tag at the C terminus were produced for most enzymes, with positive detection by indirect immunofluorescence. Overexpressed TcPATs were mostly found as single spots at the parasite anterior end, while the TcPPTs were dispersed throughout the parasite body.
Collapse
Affiliation(s)
- Cassiano Martin Batista
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brasil
| | - Felipe Saad
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brasil
| | - Stephane Pini Costa Ceccoti
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brasil
| | - Iriane Eger
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
| | - Maurilio José Soares
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brasil
| |
Collapse
|
12
|
Vincensini L, Blisnick T, Bertiaux E, Hutchinson S, Georgikou C, Ooi CP, Bastin P. Flagellar incorporation of proteins follows at least two different routes in trypanosomes. Biol Cell 2017; 110:33-47. [DOI: 10.1111/boc.201700052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Vincensini
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Cher-Pheng Ooi
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| |
Collapse
|
13
|
Roy K, Jerman S, Jozsef L, McNamara T, Onyekaba G, Sun Z, Marin EP. Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J Biol Chem 2017; 292:17703-17717. [PMID: 28848045 PMCID: PMC5663873 DOI: 10.1074/jbc.m117.792937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Primary cilia are hairlike extensions of the plasma membrane of most mammalian cells that serve specialized signaling functions. To traffic properly to cilia, multiple cilia proteins rely on palmitoylation, the post-translational attachment of a saturated 16-carbon lipid. However, details regarding the mechanism of how palmitoylation affects cilia protein localization and function are unknown. Herein, we investigated the protein ADP-ribosylation factor-like GTPase 13b (ARL13b) as a model palmitoylated ciliary protein. Using biochemical, cellular, and in vivo studies, we found that ARL13b palmitoylation occurs in vivo in mouse kidneys and that it is required for trafficking to and function within cilia. Myristoylation, a 14-carbon lipid, is shown to largely substitute for palmitoylation with regard to cilia localization of ARL13b, but not with regard to its function within cilia. The functional importance of palmitoylation results in part from a dramatic increase in ARL13b stability, which is not observed with myristoylation. Additional results show that blockade of depalmitoylation slows the degradation of ARL13b that occurs during cilia resorption, raising the possibility that the sensitivity of ARL13b stability to palmitoylation may be exploited by the cell to accelerate degradation of ARL13b by depalmitoylating it. Together, the results show that palmitoylation plays a unique and critical role in controlling the localization, stability, abundance, and thus function of ARL13b. Pharmacological manipulation of protein palmitoylation may be a strategy to alter cilia function.
Collapse
Affiliation(s)
- Kasturi Roy
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Stephanie Jerman
- the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Levente Jozsef
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Thomas McNamara
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Ginikanwa Onyekaba
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| | - Zhaoxia Sun
- the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Ethan P Marin
- From the Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8029 and
| |
Collapse
|
14
|
Segal-Salto M, Hansson K, Sapir T, Kaplan A, Levy T, Schweizer M, Frotscher M, James P, Reiner O. Proteomics insights into infantile neuronal ceroid lipofuscinosis (CLN1) point to the involvement of cilia pathology in the disease. Hum Mol Genet 2017; 26:1678. [PMID: 28334871 DOI: 10.1093/hmg/ddx074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 01/23/2023] Open
Abstract
Mutations in the depalmitoylation enzyme, palmitoyl protein thioesterase (PPT1), result in the early onset neurodegenerative disease known as Infantile Neuronal Ceroid Lipofuscinosis. Here, we provide proteomic evidence suggesting that PPT1 deficiency could be considered as a ciliopathy. Analysis of membrane proteins from brain enriched for acylated proteins from neonate Ppt1 knock out and control mice revealed a list of 88 proteins with differential expression levels. Amongst them, we identified Rab3IP, which regulates ciliogenesis in concert with Rab8 and Rab11. Immunostaining analysis revealed that PPT1 is localized in the cilia. Indeed, an unbiased proteomics analysis on isolated cilia revealed 660 proteins, which differed in their abundance levels between wild type and Ppt1 knock out. We demonstrate here that Rab3IP, Rab8 and Rab11 are palmitoylated, and that palmitoylation of Rab11 is required for correct intracellular localization. Cells and brain preparations from Ppt1-/- mice exhibited fewer cells with cilia and abnormally longer cilia, with both acetylated tubulin and Rab3IP wrongly distributed along the length of cilia. Most importantly, the analysis revealed a difference in the distribution and levels of the modified proteins in cilia in the retina of mutant mice versus the wildtype, which may be important in the early neurodegenerative phenotype. Overall, our results suggest a novel link between palmitoylated proteins, cilial organization and the pathophysiology of Neuronal Ceroid Lipofuscinosis.
Collapse
Affiliation(s)
- Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Karin Hansson
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden and BTK, Åbo Academy University, Turku, Finland
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Kaplan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Frotscher
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter James
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden and BTK, Åbo Academy University, Turku, Finland
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 2017; 6:pathogens6030039. [PMID: 28837104 PMCID: PMC5617996 DOI: 10.3390/pathogens6030039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.
Collapse
|
16
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
17
|
Brown RWB, Sharma AI, Engman DM. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence. Crit Rev Biochem Mol Biol 2017; 52:145-162. [PMID: 28228066 PMCID: PMC5560270 DOI: 10.1080/10409238.2017.1287161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aabha I. Sharma
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| | - David M. Engman
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness. Parasitology 2017; 145:157-174. [PMID: 28270257 DOI: 10.1017/s0031182017000282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.
Collapse
|
19
|
Garcia-Gonzalo FR, Reiter JF. Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028134. [PMID: 27770015 DOI: 10.1101/cshperspect.a028134] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cilia are plasma membrane protrusions that act as cellular propellers or antennae. To perform these functions, cilia must maintain a composition distinct from those of the contiguous cytosol and plasma membrane. The specialized composition of the cilium depends on the ciliary gate, the region at the ciliary base separating the cilium from the rest of the cell. The ciliary gate's main structural features are electron dense struts connecting microtubules to the adjacent membrane. These structures include the transition fibers, which connect the distal basal body to the base of the ciliary membrane, and the Y-links, which connect the proximal axoneme and ciliary membrane within the transition zone. Both transition fibers and Y-links form early during ciliogenesis and play key roles in ciliary assembly and trafficking. Accordingly, many human ciliopathies are caused by mutations that perturb ciliary gate function.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
20
|
Wright MH, Paape D, Price HP, Smith DF, Tate EW. Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei. ACS Infect Dis 2016; 2:427-441. [PMID: 27331140 PMCID: PMC4906374 DOI: 10.1021/acsinfecdis.6b00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Indexed: 01/05/2023]
Abstract
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
Collapse
Affiliation(s)
- Megan H. Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daniel Paape
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Helen P. Price
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Imhof S, Fragoso C, Hemphill A, von Schubert C, Li D, Legant W, Betzig E, Roditi I. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? F1000Res 2016; 5:682. [PMID: 27239276 PMCID: PMC4870996 DOI: 10.12688/f1000research.8249.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/20/2022] Open
Abstract
Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes. Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite
Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer. Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.
Collapse
Affiliation(s)
- Simon Imhof
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Cristina Fragoso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Conrad von Schubert
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wesley Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
TbFlabarin, a flagellar protein of Trypanosoma brucei, highlights differences between Leishmania and Trypanosoma flagellar-targeting signals. Exp Parasitol 2016; 166:97-107. [PMID: 27060615 DOI: 10.1016/j.exppara.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/26/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.
Collapse
|
23
|
Herrera LJ, Brand S, Santos A, Nohara LL, Harrison J, Norcross NR, Thompson S, Smith V, Lema C, Varela-Ramirez A, Gilbert IH, Almeida IC, Maldonado RA. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0004540. [PMID: 27128971 PMCID: PMC4851402 DOI: 10.1371/journal.pntd.0004540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.
Collapse
Affiliation(s)
- Linda J. Herrera
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Andres Santos
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Lilian L. Nohara
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Justin Harrison
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Carolina Lema
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Rosa A. Maldonado
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
24
|
Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, Engstler M, Boshart M, Butter F, Janzen CJ. Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei. PLoS Pathog 2016; 12:e1005439. [PMID: 26910529 PMCID: PMC4765897 DOI: 10.1371/journal.ppat.1005439] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/15/2016] [Indexed: 11/18/2022] Open
Abstract
Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.
Collapse
Affiliation(s)
- Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ferdinand Bucerius
- Department Biology I, Genetics, University of Munich (LMU), Großhaderner, Martinsried, Germany
| | - Gülcin Dindar
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Anja Freiwald
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Michael Boshart
- Department Biology I, Genetics, University of Munich (LMU), Großhaderner, Martinsried, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
- * E-mail: (FB); (CJJ)
| | - Christian J. Janzen
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Am Hubland, Wuerzburg, Germany
- * E-mail: (FB); (CJJ)
| |
Collapse
|
25
|
Fukata Y, Murakami T, Yokoi N, Fukata M. Local Palmitoylation Cycles and Specialized Membrane Domain Organization. CURRENT TOPICS IN MEMBRANES 2015; 77:97-141. [PMID: 26781831 DOI: 10.1016/bs.ctm.2015.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organization. However, technical difficulties in (1) detection of palmitoylated substrate proteins and (2) purification and enzymology of palmitoylating enzymes have prevented the progress in palmitoylation research, compared with that in phosphorylation research. The recent development of proteomic and chemical biology techniques has unexpectedly expanded the known complement of palmitoylated proteins in various species and tissues/cells, and revealed the unique occurrence of palmitoylated proteins in membrane-bound organelles and specific membrane compartments. Furthermore, identification and characterization of DHHC (Asp-His-His-Cys) palmitoylating enzyme-substrate pairs have contributed to elucidating the regulatory mechanisms and pathophysiological significance of protein palmitoylation. Here, we review the recent progress in protein palmitoylation at the molecular, cellular, and in vivo level and discuss how locally regulated palmitoylation machinery works for dynamic nanoscale organization of membrane domains.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Murakami
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
26
|
Albisetti A, Wiese S, Schneider A, Niemann M. A component of the mitochondrial outer membrane proteome of T. brucei probably contains covalent bound fatty acids. Exp Parasitol 2015; 155:49-57. [PMID: 25982029 DOI: 10.1016/j.exppara.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
Abstract
A subclass of eukaryotic proteins is subject to modification with fatty acids, the most common of which are palmitic and myristic acid. Protein acylation allows association with cellular membranes in the absence of transmembrane domains. Here we examine POMP39, a protein previously described to be present in the outer mitochondrial membrane proteome (POMP) of the protozoan parasite Trypanosoma brucei. POMP39 lacks canonical transmembrane domains, but is likely both myristoylated and palmitoylated on its N-terminus. Interestingly, the protein is also dually localized on the surface of the mitochondrion as well as in the flagellum of both insect-stage and the bloodstream form of the parasites. Upon abolishing of global protein acylation or mutation of the myristoylation site, POMP39 relocates to the cytosol. RNAi-mediated ablation of the protein neither causes a growth phenotype in insect-stage nor bloodstream form trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
27
|
Ooi CP, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, Perrot S, Subota I, Bastin P. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS One 2015. [PMID: 26218532 PMCID: PMC4517888 DOI: 10.1371/journal.pone.0133676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Molecular Biology of Gene in Extremophiles Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Daria Julkowska
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Sylvie Perrot
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Ines Subota
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Mol Cell Proteomics 2015; 14:1911-26. [PMID: 25931509 PMCID: PMC4587319 DOI: 10.1074/mcp.m114.047647] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/23/2022] Open
Abstract
Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis.
Collapse
Affiliation(s)
- Catarina Gadelha
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH; §Department of Pathology, University of Cambridge, Cambridge, UK, CB2 1QP;
| | - Wenzhu Zhang
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - James W Chamberlain
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - Bill Wickstead
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Mark C Field
- ‖Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK, DD1 5EH
| |
Collapse
|
29
|
Ca2+ Regulation of Trypanosoma brucei Phosphoinositide Phospholipase C. EUKARYOTIC CELL 2015; 14:486-94. [PMID: 25769297 DOI: 10.1128/ec.00019-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
We characterized a phosphoinositide phospholipase C (PI-PLC) from the procyclic form (PCF) of Trypanosoma brucei. The protein contains a domain organization characteristic of typical PI-PLCs, such as X and Y catalytic domains, an EF-hand calcium-binding motif, and a C2 domain, but it lacks a pleckstrin homology (PH) domain. In addition, the T. brucei PI-PLC (TbPI-PLC) contains an N-terminal myristoylation consensus sequence found only in trypanosomatid PI-PLCs. A peptide containing this N-terminal domain fused to green fluorescent protein (GFP) was targeted to the plasma membrane. TbPI-PLC enzymatic activity was stimulated by Ca(2+) concentrations below the cytosolic levels in the parasite, suggesting that the enzyme is constitutively active. TbPI-PLC hydrolyzes both phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2), with a higher affinity for PIP2. We found that modification of a single amino acid in the EF-hand motif greatly affected the protein's Ca(2+) sensitivity and substrate preference, demonstrating the role of this motif in Ca(2+) regulation of TbPI-PLC. Endogenous TbPI-PLC localizes to intracellular vesicles and might be using an intracellular source of PIP2. Knockdown of TbPI-PLC expression by RNA interference (RNAi) did not result in growth inhibition, although enzymatic activity was still present in parasites, resulting in hydrolysis of PIP2 and a contribution to the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway.
Collapse
|
30
|
Merino MC, Zamponi N, Vranych CV, Touz MC, Rópolo AS. Identification of Giardia lamblia DHHC proteins and the role of protein S-palmitoylation in the encystation process. PLoS Negl Trop Dis 2014; 8:e2997. [PMID: 25058047 PMCID: PMC4109852 DOI: 10.1371/journal.pntd.0002997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation. Giardiasis is a major cause of non-viral/non-bacterial diarrheal disease worldwide and has been included within the WHO Neglected Disease Initiative since 2004. Infection begins with the ingestion of Giardia lamblia in cyst form, which, after exposure to gastric acid in the host stomach and proteases in the duodenum, gives rise to trophozoites. The inverse process is called encystation and begins when the trophozoites migrate to the lower part of the small intestine where they receive signals that trigger synthesis of the components of the cyst wall. The cyst form enables the parasite to survive in the environment, infect a new host and evade the immune response. In this work, we explored the role of protein S-palmitoylation, a unique reversible post-translational modification, during Giardia encystation, because de novo generation of endomembrane compartments, protein sorting and vesicle fusion occur in this process. Our findings may contribute to the design of therapeutic agents against this important human pathogen.
Collapse
Affiliation(s)
- María C. Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia V. Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
31
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
32
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
33
|
Blacque OE, Sanders AAWM. Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 2014; 10:126-37. [PMID: 24732235 DOI: 10.4161/org.28830] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease.
Collapse
Affiliation(s)
- Oliver E Blacque
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Anna A W M Sanders
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| |
Collapse
|
34
|
Lefebvre M, Tetaud E, Thonnus M, Salin B, Boissier F, Blancard C, Sauvanet C, Metzler C, Espiau B, Sahin A, Merlin G. LdFlabarin, a new BAR domain membrane protein of Leishmania flagellum. PLoS One 2013; 8:e76380. [PMID: 24086735 PMCID: PMC3785460 DOI: 10.1371/journal.pone.0076380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein.
Collapse
Affiliation(s)
- Michèle Lefebvre
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
| | - Emmanuel Tetaud
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Magali Thonnus
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Bénédicte Salin
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Fanny Boissier
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Corinne Blancard
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Cécile Sauvanet
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Benoît Espiau
- CNRS-EPHE USR 3278, Papetoai, Moorea, Polynésie Française
| | - Annelise Sahin
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Gilles Merlin
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
- * E-mail:
| |
Collapse
|
35
|
Sunter J, Webb H, Carrington M. Determinants of GPI-PLC localisation to the flagellum and access to GPI-anchored substrates in trypanosomes. PLoS Pathog 2013; 9:e1003566. [PMID: 23990786 PMCID: PMC3749955 DOI: 10.1371/journal.ppat.1003566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/05/2013] [Indexed: 02/01/2023] Open
Abstract
In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved. African trypanosomes are unicellular parasites with a single flagellum that maintain a persistent infection through antigenic variation based on changes in a densely packed cell surface coat of variant surface glycoprotein (VSG). The cells also contain an enzyme, GPI-PLC, able to shed the VSG from the cell surface. However, the activity is regulated and substantial shedding only occurs from dying cells. The GPI-PLC is found predominantly on the membrane of this flagellum. Here, we have investigated the relationship between this subcellular localisation and VSG shedding ability of the GPI-PLC. We found that two motifs are important: a cluster of three cysteines that are modified by the addition of fatty acids and a proline, mutation of which caused the redistribution of GPI-PLC from the flagellar to the plasma membrane. Localisation of GPI-PLC to the plasma membrane is necessary for GPI-PLC to access the VSG in dying cells. Finally, the correct localisation of the GPI-PLC was dependent on a functional flagellar pocket. These results have provided a significant and exploitable insight into the regulation of GPI-PLC and more generally into how proteins are targeted to the flagellum membrane.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Heng J, Saunders EC, Gooley PR, McConville MJ, Naderer T, Tull D. Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major. Mol Biochem Parasitol 2013; 190:1-5. [PMID: 23727225 DOI: 10.1016/j.molbiopara.2013.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
Leishmania parasites express three highly conserved small myristoylated proteins (SMPs) that are targeted to distinct membranes. SMP-1 is exclusively found in the flagellum, depending on myristoylation and palmitoylation. In contrast, monoacylated SMP-2 and SMP-4 are localized to the flagellar pocket and plasma membrane, respectively. Here, we demonstrate that unlike SMP-4, SMP-2 resides in detergent resistant membranes, but can be readily solubilized in the presence of high concentrations of salt. We provide evidence that in detergent resistant membranes, SMP-2 forms high molecular weight complexes in vivo. Association with detergent resistant membranes was abrogated in the presence of a C-terminal tag suggesting acylation independent targeting signals. In addition, the N-terminal region of SMP-2 contains sufficient information for membrane targeting, as a GFP-chimera localizes to the flagellar pocket. Thus while the core sequences of the SMPs are highly conserved, individual members have evolved different mechanisms for their diverse membrane localization.
Collapse
Affiliation(s)
- Joanne Heng
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Xu X, Olson CL, Engman DM, Ames JB. (1)H, (15)N, and (13)C chemical shift assignments of the calflagin Tb24 flagellar calcium binding protein of Trypanosoma brucei. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:9-12. [PMID: 22382573 PMCID: PMC6467503 DOI: 10.1007/s12104-012-9366-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Flagellar calcium binding proteins are expressed in a variety of trypanosomes and are potential drug targets for Chagas disease and African sleeping sickness. We report complete NMR chemical shift assignments of the flagellar calcium binding protein calflagin Tb24 of Trypanosoma brucei. (BMRB no. 18011).
Collapse
Affiliation(s)
- Xianzhong Xu
- Department of Chemistry, University of California, Davis, CA 95616
| | - Cheryl L. Olson
- Departments of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David M. Engman
- Departments of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - James B. Ames
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
38
|
Batista CM, Kalb LC, Moreira CMDN, Batista GTH, Eger I, Soares MJ. Identification and subcellular localization of TcHIP, a putative Golgi zDHHC palmitoyl transferase of Trypanosoma cruzi. Exp Parasitol 2013; 134:52-60. [PMID: 23428831 DOI: 10.1016/j.exppara.2013.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95 kDa, consistent with the predicted molecular mass of TcHIP (95.4 kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
Collapse
|
39
|
Beck JR, Fung C, Straub KW, Coppens I, Vashisht AA, Wohlschlegel JA, Bradley PJ. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress. PLoS Pathog 2013; 9:e1003162. [PMID: 23408890 PMCID: PMC3567180 DOI: 10.1371/journal.ppat.1003162] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites. Apicomplexans possess a highly polarized secretory pathway that is critical for their ability to invade host cells and cause disease. This unique cellular organization enables delivery of protein cargo to specialized secretory organelles called micronemes and rhoptries that drive forward penetration into the host cell. The rhoptries are tethered in a bundle at the apex of the parasite, but how these organelles are organized in this manner is unknown. In this work, we identify a rhoptry-localized palmitoyl acyl transferase (named TgDHHC7) that functions to properly affix the rhoptries at the apical end of the parasite. Conditional disruption of TgDHHC7 results in a failure to tether the rhoptries at the cell apex and a corresponding loss of rhoptry function. We exploit this mutant to clearly demonstrate a critical role for the rhoptries in host invasion but not attachment or egress. Additionally, we find that mutation of a key residue predicted to be required for catalytic activity renders TgDHHC7 non-functional and that knockdown of the candidate substrate TgARO produces an identical phenotype to loss of TgDHHC7. The finding that Toxoplasma employs protein palmitoylation to position the rhoptries at the cell apex provides new insight into the molecular mechanisms that underlie apicomplexan cell polarity, host invasion and pathogenesis.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Connie Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kurtis W. Straub
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
S-Palmitoylation, the only reversible post-translational lipid modification, confers unique biochemical and functional properties to proteins. Although it has long been known that viral proteins are palmitoylated, recent studies reveal that this modification plays a critical role for pathogens of all kinds and at multiple steps of their life cycle. The present review examines the involvement of S-palmitoylation in infection by viruses, bacteria and parasites and illustrates how pathogens have evolved to manipulate the host palmitoylation machinery.
Collapse
|
41
|
Xu X, Olson CL, Engman DM, Ames JB. NMR structure of the calflagin Tb24 flagellar calcium binding protein of Trypanosoma brucei. Protein Sci 2012; 21:1942-7. [PMID: 23011904 DOI: 10.1002/pro.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/13/2023]
Abstract
Flagellar calcium binding proteins are expressed in a variety of trypanosomes and are potential drug targets for Chagas disease and African sleeping sickness. The flagellar calcium binding protein calflagin of Trypanosoma brucei (called Tb24) is a myristoylated and palmitoylated EF-hand protein that is targeted to the inner leaflet of the flagellar membrane. The Tb24 protein may also interact with proteins on the membrane surface that may be different from those bound to flagellar calcium binding proteins (FCaBPs) in T. cruzi. We report here the NMR structure of Tb24 that contains four EF-hand motifs bundled in a compact arrangement, similar to the overall fold of T. cruzi FCaBP (RMSD = 1.0 Å). A cluster of basic residues (K22, K25, K31, R36, and R38) located on a surface near the N-terminal myristoyl group may be important for membrane binding. Non-conserved residues on the surface of a hydrophobic groove formed by EF2 (P91, Q95, D103, and V108) and EF4 (C194, T198, K199, Q202, and V203) may serve as a target protein binding site and could have implications for membrane target recognition.
Collapse
Affiliation(s)
- Xianzhong Xu
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
42
|
de Miguel N, Riestra A, Johnson PJ. Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell Microbiol 2012; 14:1797-807. [PMID: 22882837 DOI: 10.1111/cmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022]
Abstract
The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analyses of T. vaginalis tetraspanin 6 (TvTSP6). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We observed that TvTSP6 expression is upregulated upon contact with vaginal ectocervical cells (VECs) and that parasite strains that are highly adherent to VECs express higher levels of TvTSP6 mRNA relative to poorly adherent strains. TvTSP6 is localized predominantly on the flagella of parasites cultured in the absence of host cells; however, adherence of the parasite to VECs initially results in a redistribution of the protein to intracellular vesicles and the plasma membrane of the main body of the cell. We found that a 16-amino-acid C-terminal intracellular tail of TvTSP6 is necessary and sufficient for flagellar localization and protein redistribution when the parasite is in contact with VECs. Additionally, deletion of the C-terminal tail reduced parasite migration through Matrigel, a mimic of the extracellular matrix. Together, our data support roles for TvTSP6 in parasite migration in the host and sensory reception during infection.
Collapse
Affiliation(s)
- Natalia de Miguel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
43
|
Goldston AM, Powell RR, Temesvari LA. Sink or swim: lipid rafts in parasite pathogenesis. Trends Parasitol 2012; 28:417-26. [PMID: 22906512 DOI: 10.1016/j.pt.2012.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
Lipid rafts, sterol- and sphingolipid-rich membrane microdomains, have been extensively studied in mammalian cells. Recently, lipid rafts have been shown to control virulence in a variety of parasites including Entamoeba histolytica, Giardia intestinalis, Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Trypanosoma spp. Parasite rafts regulate adhesion to host and invasion, and parasite adhesion molecules often localize to rafts. Parasite rafts also control vesicle trafficking, motility, and cell signaling. Parasites disrupt host cell rafts; the dysregulation of host membrane function facilitates the establishment of infection and evasion of the host immune system. Discerning the mechanism by which lipid rafts regulate parasite pathogenesis is essential to our understanding of virulence. Such insight may guide the development of new drugs for disease management.
Collapse
Affiliation(s)
- Amanda M Goldston
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
44
|
Abstract
SIGNIFICANCE Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis. RECENT ADVANCES Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites. CRITICAL ISSUES Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments. FUTURE DIRECTIONS The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
45
|
Fung C, Beck JR, Robertson SD, Gubbels MJ, Bradley PJ. Toxoplasma ISP4 is a central IMC sub-compartment protein whose localization depends on palmitoylation but not myristoylation. Mol Biochem Parasitol 2012; 184:99-108. [PMID: 22659420 DOI: 10.1016/j.molbiopara.2012.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/30/2022]
Abstract
Apicomplexan parasites utilize a peripheral membrane system called the inner membrane complex (IMC) to facilitate host cell invasion and parasite replication. We recently identified a novel family of Toxoplasma IMC Sub-compartment Proteins (ISP1/2/3) that localize to sub-domains of the IMC using a targeting mechanism that is dependent on coordinated myristoylation and palmitoylation of a series of residues in the N-terminus of the protein. While the precise functions of the ISPs are unknown, deletion of ISP2 results in replication defects, suggesting that this family of proteins plays a role in daughter cell formation. Here we have characterized a fourth ISP family member (ISP4) and discovered that this protein localizes to the central IMC sub-compartment, similar to ISP2. Like ISP1/3, ISP4 is dispensable for the tachyzoite lytic cycle as the disruption of ISP4 does not produce any gross replication or growth defects. Surprisingly, targeting of ISP4 to the IMC membranes is dependent on residues predicted for palmitoylation but not myristoylation, setting its trafficking apart from the other ISP proteins and demonstrating distinct mechanisms of protein localization to the IMC membranes, even within a family of highly related proteins.
Collapse
Affiliation(s)
- Connie Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
46
|
Acylation-dependent and-independent membrane targeting and distinct functions of small myristoylated proteins (SMPs) in Leishmania major. Int J Parasitol 2012; 42:239-47. [DOI: 10.1016/j.ijpara.2011.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
|
47
|
Maclean LM, O'Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, Smith DF. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol 2012; 14:740-61. [PMID: 22256896 PMCID: PMC3491706 DOI: 10.1111/j.1462-5822.2012.01756.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins of the Leishmania hydrophilic acylated surface protein B (HASPB) family are only expressed in infective parasites (both extra- and intracellular stages) and, together with the peripheral membrane protein SHERP (small hydrophilic endoplasmic reticulum-associated protein), are essential for parasite differentiation (metacyclogenesis) in the sand fly vector. HASPB is a ‘non-classically’ secreted protein, requiring N-terminal acylation for trafficking to and exposure on the plasma membrane. Here, we use live cell imaging methods to further explore this pathway to the membrane and flagellum. Unlike HASPB trafficking in transfected mammalian cells, we find no evidence for a phosphorylation-regulated recycling pathway in metacyclic parasites. Once at the plasma membrane, HASPB18–GFP (green fluorescent protein) can undergo bidirectional movement within the inner leaflet of the membrane and on the flagellum. Transfer of fluorescent protein between the flagellum and the plasma membrane is compromised, however, suggesting the presence of a diffusion barrier at the base of the Leishmania flagellum. Full-length HASPB is released from the metacyclic parasite surface on to macrophages during phagocytosis but while expression is maintained in intracellular amastigotes, HASPB cannot be detected on the external surface in these cells. Thus HASPB may be a dual function protein that is shed by the infective metacyclic but retained internally once Leishmania are taken up by macrophages.
Collapse
Affiliation(s)
- Lorna M Maclean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Proto WR, Castanys-Munoz E, Black A, Tetley L, Moss CX, Juliano L, Coombs GH, Mottram JC. Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. J Biol Chem 2011; 286:39914-25. [PMID: 21949125 PMCID: PMC3220528 DOI: 10.1074/jbc.m111.292334] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1-MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor.
Collapse
Affiliation(s)
- William R Proto
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, Epting CL, Engman DM. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J Biol Chem 2011; 286:33109-17. [PMID: 21784841 DOI: 10.1074/jbc.m111.240895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.
Collapse
Affiliation(s)
- Danijela Maric
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hu Q, Nelson WJ. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68:313-24. [PMID: 21634025 DOI: 10.1002/cm.20514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 11/08/2022]
Abstract
The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues in the environment through receptors and downstream signal proteins enriched along the ciliary membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular and intraflagellar transport, less is known about how ciliary membrane proteins are retained in, and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism for compartmentalizing membranes and lipid domains.
Collapse
Affiliation(s)
- Qicong Hu
- Department of Biology, Stanford University, Stanford, California 94305., USA
| | | |
Collapse
|